
/

;, CONF-910223--6

DE91 004151

A DISIRIBUTED DATA ACQUISITION SOFTWARE SCHEME
FOR THE LABORATORY TELEROBOqqC MANIPULATOR"

P. L. Butler, R. L. Glassell, and J. C. Rowe
OakRidge National Laboratory.f

Robotics and Process Systems Division
P. O. Box 2008

Oak Ridge, Tennessee 37831

To be presented at the
AMERICAN NUCLEAR SOCIETY

FOURTH TOPICAL MEETING ON ROBOTICS AND REMOTE SYSTEMS

Albuquerque, New Mexico
February 24-28, 1991

"The ra_mmKI rnarM_mt haz be_
,JthOtO0 by a contraDcto of the U.S.
Go,remit ur¢_ contract No. DE-
ACOS-8.,_OR21400 Accor_ty. the U.S.
Governing! retmns e nonexclu_,

ro¥1l_y-f'r_ kcww,o to _ ca rooroOuco
the _ form of th_ contrd0utmn, of

oth_s to ao so. for U,S Govornm_t

DISCLAIMER

'This report was prepared as ata account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or

process disclosed, or represents that its use would not infringo privately owned rights. Refer-

ence herein to an)' specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-

mendation, or favoring by the United States Government or any agency thereof. The views

and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

*Research sponsored by the U. 5. Department of Energy and the National Aeronautics and
Space Administration.

*Managed by Martin Marietta Energy Systems, Inc., for the U. S. Department of Energy under /l.

Contract No. DE-AC05-84OR21400. _._

_ . _ ,

A DISTRIBUTED DATA ACQUISITION
SOFTWARE SCHEME FOR THE LABORATORY
TELEROBOTIC MANIPULATOR*

P. L. Butler, R. L. Glassell, and J. C. Rowe
Oak Ridge National Laboratory t
Robotics and Process Systems Division
P. O. Box 2008
Oak Ridge, Tennessee 37831

ABSTRACT

A custom software architecture was developed for use in the
Laboratory Telerobotic Manipulator (LTM) to provide support for
the distributed data acquisition electronics. This architecture was
designed to provide a comprehensive development environment
that proved to be useful for both hardware and software
debugging. This paper describes the development environment and
the operational characteristics of the real-time data acquisition
software.

INTRODUCTION

With the increased emphasis on space exploration and habitation, the need for
robotic systems that can extend human capabilities in the hazardous environment of
outer space is greatly apparent. To help meet the goal of increased use of robotics in
space, Oak Ridge National Laboratory (ORNL) has designed and developed a dual-
arm, 7 degree-of-freedom (DOF)master/slave manipulator for ground-based
research at NASA's Langley Research Center (LaRC). This manipulator, the
Laboratory Telerobotic Ma_ipulator LTM [11,provides a two-fold test-bed for space
manipulator research. First, new design and fabrication techniques were developed
to ascertain their feasibility for eventual use in a highly reliable space manipulator.
Second, the LTM provides valuable performance information as to what is feasible
for a telerobotic system.

Many techniques of manipulator design were brought together in the design of
LTM. First, LTM had to be a good force-reflecting teleoperator. This normally
requires low reflected joint friction to reduce operator fatigue and high joint back
drivability for good force-reflection. Second, LTM also had to be a good robot.
This requires high joint stiffness for increased end-effector positioni,ag accuracy.
These otherwise conflicting constraints were solved with a modular pitch-yaw
differential joint design and is complimented with control compensation
software [2,3].

Research sponmred by the National Aeronataics and Space Administration, LaJlgley Research
Center.

5-Managedby MartinMariettaEnergySystems,Inc.,Ibr the U.S.Departmentof Encrgyundcr
contractDE-AC05-g,iOR2i400.

LTM provides NASA LaRC with a valuable research tool for performance
testing. One aspect of this performance testing is task segmentation and evaluation.
Another aspect is evaluation of training techniques for operators. These two diverse
issues may eventually lead to a semiautonomous system that can take advantage of
past operation successes and failures.

ORNL also provided a similar system, called the MicroGravity Manipulator
(_tGM), to NASA's Lewis Research Center (LeRC) for microgravity research. This
system consists of a single-arm, 4-DOF manipulator used in a robotics mode.
NASA LeRC uses the laGM to explore the forces and torques that a robotic arm
places on its support as it executes a typical motion.

LTM/_GM CONTROL ARCHITECTURE

The computer architecture for the LTM system is arranged in a hierarchical,
modular fashion [4]. The computer system consists of two identical VME racks, a
master and a slave, as shown in Fig. 1. The master is also connected, via a
9600-baud serial link, to a Macintosh II computer, which serves as a human-
machine interface. There are three commercially available Motorola 68020 CPU
cards e': each rack. One processor, the control processor (CP), serves as a control
and conzmunications processor and the other two 68020 CPU cards, called arm
processors (APs), run the control loops for the right and left arms. Communication
between the racks is accomplished using a 10-Mbaud Proteon link, which provides
the necessary data swapping for the servo-level control loops. The data swapping is
controlled by the master rack and swaps 232 bytes from one rack to another at
250 Hz.

i ii

I HumanInterfaceMachine

MasterVMERack Slave VMERackcp

i.... ,]---

Left _ L_ft RightShoulder ._

! FI,__J

FIG. 1. The LTM architectural block diagram.

Custom data acquisition processors [5], based on the Intel 80C196
microcontroller, res!', within each pitch/yaw joint. This arrangement has the
_dvantage of minimizing the wiring from ciozens of analog signals to a single
bidirectional, fiber optic line for each joint. A multi-drop arrangement using a single
fiber optic line for each arm was considered but not implemented because of the
higher communications bandwidth that would have been required. Since the joint
processors (JPs) are directiy within the joint, signal noise is also greatly reduced.
An Intel 82588 local-area-network (LAN) controller, with a data rate of 2 Mbaud, is
used to communicate with the link processors (LPs) within the VME racks. LPs
handle the limit checking and place the data acquired by JPs directly into dual-port
RAM (DPRAM) for access by the arm processors. The functional organization of a
single LP/JP pair is shown in Fig. 2.

VME Bus Interface

DPRAM
.... --11

80(2196
CPU

COMM

4---.- 2,Mbaud FiberOptic Link

COMM

80C196
CPU

i

I ,lo" i
I

Joint Sensors & Brakes

FIG. 2. The LP/JP functional diagram.

The OS-9 operating syster,, from Microware is used for the main control
'algorithms, providing a real-time, multitasking development environment. Most of
the operational code is written in the C language, but some Forth is used for utilities
and debug support All of the LP/JP code, however, was written in the Forth
language. This provides an interesting challenge - interfacing between the C
language and the Forth language. This problem is solved by having the LP/JP data
acquisition system place data in common memory to conform to a predefined C
structure. After initial!zation, the control algorithms only need to reference this C
structure for the required data.

DATA ACQUISITION REQUIREMENTS

The LP/JP data acquisition software provides fast, reliable acquisition of ali
analog and digital data points within each pitch/yaw joint. These data points are
acquired by the JP and transmitted to the LP using one of the independe_ t 2-Mbaud,
bidirectional fiber optic links. The LP places the data into the dual-i)ort RAM for use
by the arm processors and communication to the other VME rack. The data
acquisition software also provides e_or checkingand recovery from occasional
missed or corrupted packets. Since the LP is more directly controllable by the CP
and the APs, it is actually in control of the I,P/JP synchronization. The LP receives
a periodic interrupt to communicate command information to the JP. The JP
receives the command packet, starts data acquisition, and sends a return packet back
to the LP with the newly acquired data. After the LP receives this packet, it
performs certain safety limit checks and pl:tces the data into the dual-port RAM for
use by the APs.

The JP also has control over the individual joint brakes. Therefore, it must
accept commands from the LP to lock or unlock the brakes. This places additional
safety constraints on the design of the software while providing a redundant safety
system. In the event of loss of LP/JP communications, the JP automatically resets
and forces tile brakes to lock. Only with valid communications can the brakes be
unlocked, activating the joint. As an example of the redundant safety system, the
AP can also disable brake power on each arm, thus locking the brakes.

A development mode was required for direct debugging of both hardware and
software. It was decided that the development mode should be as close as possible
in nature to the acquisition mode. This minimized the effort that would have
normally been required to implement two totally separate modes. In fact, both
modes can be active at the same time. In other words, development can be in
progress while data are actually being acquired. Due to the number of LP/JP pairs in
the system, this development environment was implemented to allow direct
multiprocessor debugging on any LP or JP in the system from a single terminal.

FORTH LANGUAGE

Forth was chosen as the development language for the data acquisition system
because of its highly interactive nature. Forth allows a minimal system to have
powerful debug capabilities, important because of the limited RAM and ROM on the
link and joint processors (16 Kbytes of each). In addition, the Forth system is open
and can be modified for a specific application. For a development environment,
Forth requires a terminal and disk interface. However, the user is not bound by
conventional terminal and disk interfaces. For example, the DPRAM interface
provides the terminal and disk interface to the LPs and the 2-Mbaud link provides
the same interface from the LPs to the JPs. A server program on the VME system
connects these logical interfaces to the actual RS-232 VT-100 terminal and the OS-9
file system.

ROM CODE FOR LINK AND JOINT PROCESSORS

The ROM code holds the bootstrap mechanism for the data acquisition system.
The ROM code contains the polyFORTH kernel [6], communication controller code,
and virtual terminal and disk support. Because of the similar nature of the LP and

JP (processor type and address maps), it was decided that one ROM set should plug
into both the LP and JP. This reduced code management by a factor of two during
the ROM development, lt did, however, require some "manipulations" to get
around the few differences between the LP and JP. For example, the 82588
communication controller chip interrupt line was connected to different 80C196
interrupt lines on the two processor boards. This required a table lookup scheme to
allow two different interrupt behaviors while not compromising speed. On power-
up, the ROM code can determine which board it is running on by trying to write ,md
read from DPRAM. If it sees DPRAM, the board is a LP. Otherwise, it is a JP.

The ROM code for the LP waits for a command from the VME system and then
initiates communications with the JP. Once started, communication with the JP
proceeds at approximately a 620-Hz rate. The original design called for a 1-Khz
loop-rate, which was initially attained. However, as the system evolved, some of
the error checking was off-loaded from the arm processors and placed on the link
processors. Therefore, the fastest rate that the loop could run was determined to be
620-Hz.

The JP has to perform additional tasks at power-up. For safety reasons, the JP
locks the joint brakes on power-up. Only when valid communication is established
with the LP can the VME system command the JP to unlock the brakes. The
Intel 80C196 processor also provides support for a watchdog timer that will reset the
processor if a certain control port is not loaded with the proper pattern on a periodic
basis. This watchdog support is tied to the communication link on the JP so that if
communications were ever lost, the JP would automatically reset, therefore locking
the brakes. The LP does not utilize the watchdog capabilities of the 80C196, but
does update a heartbeat counter that the APs check to ensure the acquisition system
is functioning properly.

The LP communication is through the DPRAM interface. A server' program on
the CP polls a chosen LP for I/O requests. Character I/O on the LP is a simple
matter of reading or writing characters to DPRAM. A semaphore handshake flag is
used to tell both the LP and VME system when valid characters are in DPRAM.
Disk I/O is similar to character I/O, except that the LP ROM tells the VME system
where in DPRAM to read or write a 1024.-byte block of data.

The 2-Mbaud communication link between the LP and JP is synchronized by
the LP, as shown in Fig. 3, so that it can be synchronized by the VME control
system. A 620-Hz timer interrupt on the LP starts a packet transmission from the
LP to dkeJP. After the JP receives this packet, it transmits a data packet back to the
LP. If, at any time, communications is lost, the LP can notify the VME system of
this condition. This communication handshake was determined to be what the actual
data acquisition code required, so the Forth support was designed to conform to this
scheme. To do this, a packet header is at the start of every packc_ with Forth
terminal and disk handshake infi)rmation. To keep the interrupt time constant,
special consideration had to be given to disk I/O transfers of 1024 bytes. Disk I/O
during normal development uses 32-byte chunks between the LP and JP. However,
during data acquisition, disk I/O is limited to 2 bytes for every time slice. This
slows disk transfers to slightly over 0.5 s while the JPs are acquiring data but was
considered acceptable, since a programmer would probably not be doing code
development during an actual run.

LINK PROCESSOR FUNCTIONS

The run-time code for the LP is primarily responsible for placing the .IP data
into the dual-port memory. The LP will also perform certain data conversions
before placing the JP data into the dual-port memory. For example, zero effsets are
subtracted from the raw data for use by the control algorithms• In addition, the LP
performs safety limit checks for all critical data points. The main rationale is to
offload and parallelize the processing from the arm proces:/ors required to perform
limit checks. The arm processors only have to read a single status byte from each
pitt,bJyaw joint to tell if an error occurred. The LP is also se_asitive to corrupt data
packets. If a communication error occurs, the LP keeps the old data instead of
placing corrupt data into the dual-port memory common block. However, if a large
number of sequential bad data packets arrive, then the LP will notify the VME
control system, initiating a system shutdown.

620-hz. interrupt

LPtoJP-_._(6 bytes).............. L_"-

JPtoLP _ -_l [(38 bytes).................

FIG. 3. LP/JP communication protocol.

JOINT PROCESSOR FUNCTIONS

The data acquisition code is downloaded into RAM upon system initialization
by the VME system. This allows quick modifications to be made on the data
acquisition code. The actual data acquisition routines are machine coded for speed
and also for easy incorporation into the communication link interrupt routines. The
Forth language was used for the debugging of these routines and can be used
interactively during a run tc,check on their progress. One interesting point of the
data acquisition code is that lower priority data are read after the main data block has
been transmitted. This keeps the main acquisition speed up and allows convenient

control over an 8 to 1 analog multiplexer. One channel of this multiplexer is read
after the main data packet has been sent back to the LP. Therefore, lower speed
signals such as motor temperatures are updated every 8 time-slices.

DEBUG SUPPORT

A program called SERVE on the VME system allows extensive capabilities for
software development and system debugging. The multiprocessor development
environment uses the same philosophy that was developed for OPSNET [7,8].
SERVE allows any LP or JP in a particular rack to be brought up in a debug mode
with an interactive Forth prompt. Several debug words allow for quick checks on
the integrity of the data being read by the Jr. Fig. 4 shows the main SERVE status
screen. From this screen, an operator can select which LP or JP to "attach" a
terminal to, check status and error codes, and determine brake status• Fig. 5 shows
the same terminal after it has been switched to one of the LPs. Notice that the name

of the attached processor is always displayed on the bottom of the screen. In this
case, a program is running, called SHOW, that displays all important information
that the LP is receiving from the Jr. SHOW also i,--aps track of signal minimums
(second data column) and maximums (third data column) for use by system
developers.

8095 processor server sgstem (01/23/90) Moster Rock
Beep ZOn

Processor Star Err MotorR MotorB Ro I,t
Right Shoulder LP C@ 00 Locked Locked

On[ine JP C0
On [ine R igh t E [bow LP C0 00 Locked Locked
iOn[ine JP CQ
Ontine Right Wrist LP CQ @Q)Locked Locked Locked
Onl ine JP Ce
Jnt ine Left Shoutder LP Ce _)0 Locked Locked
ant i ne JP C@
Ontine Left Etbow LP C0 00 Locked Locked
Ont ine JP Ce
On[ine Left Wr ist L.P C0 00 Locked Locked Locked
On[ine JP CQ

Q - Quit to os-g T - Toggte beep mode
U - Mo.oeup in processor status C - C tear error status
D - Move down in processor status ^B - Load atr processors
sp - Loop through processor status ^0 - Load setected processor
cr - Serve selected processor ^R - Reset setected processor

FIG. 4.- SERVE debug screen.

CONCLUSION

The LP/Jr data acquisition software of the LTM project has demonstrated
proper design of a software system to minimize the difficulties normally associated
with multiprocessor system configuration. One important factor is to create a
modeless communication system that is useful both in development and run-time
operation. Another factor is to create a multiproce ,sor develophaent environment
that allows software to be debugged with a minimum of effort.

Pi tch Position_ 32764 32763 32764
Ue t oc i rg_ 0 - 1 42

Yaw Position_ 31951 31950 31951

Velocity_ 1 -35 8

MotorA Pos __--.. 8eOOO1Q1
Vet ____ 42 38 69

Torque _ -86 -107 -86
Temp .__ 29 26 47

MotorB Pos _..___ 80eeOlel

Uet ____ 21 12 36 Logic Brd Temp_ 33 29 48

Torque _ 40 24 64 Power Brd Temp_ 55 45 57
Temp _.__ 32 14 32

Rott Position_ 65535 65535 65535

Uetocity_ -2048 -2048 -?00

Temp ____ 0 0 0

Grip Trigger __ 0 0 0

dow X __ 0 e e

dog Y ____ 0 e 0

Digital __ 0

FIG. 5. The joint status display.

REFERENCES

1. J.N. Herndon et al., "The Laboratory Tcleroboti¢ Manipulator Program", Proceedings for the
NASA Conference on Space Telerobotics Volume IV, Pasadena, California, January 31-
February 2, 1989.

2. J. F. Jansen and J. N. Herndon, "Design of a Telerobotic Controller with Joint Torque
Sensors", IEEE International Conference on Robotics and Automation, Cincinnati, Ohio,
1990.

3. J.F. Jansen and J. N. Hemdon, "Design of a Telerobotic Controller wi_ Joint Torque Sensors
Using 2-port Network Theory", Third International Symposium on Robotics and
Manufacturing, Vancouver, British Columbia, Canada, July 18-20, 1990.

4. J. C, Rowe, P. L. Butler, R. L.Glassell, and J. N. Herndon, "The NASA Laboratory
Telerobotic Manipulator Control System Architecture", Proceedings of the ANS Fourth
Topical Meeting on Robotics and Remote Systems, Albuquerque, New Mexico, February 24-
28, 1991.

5. R. L. Glassell, P. L. Butler, J. C. Rowe, and S. D. Zimmermann, "Custom Electronic
Subsystems for the Laboratory Telerobotic Manipulator", Proceedings of the ANS Fourth
Topical Meeting on Robotics and Remote Systems, Albuquerque, New Mexico, February 24-
28, 1991

6. polyFORTH li Reference Manual, FORTH Inc., Herrno_ Beach, California

4 7. P. L. Butler, J. D. Allen, and D. W. Bouldm, "Design ap.d Implementation of a Parallel
Computer for Expert System Applications", SPIE Vol. 937 Application_ of Artificial
Inte!ligcEce VI, Orlando, Florida, April 4-8, 1988.

8. P.L. Butler, J. D. Allen, and D. W. Bouldin, "P_u'allel Architecture for OPS5", Proceedings of
the Fifteenth International Symposium on Computer Architecture, Honolulu, Hawaii, May 3(1-

. June 2, 1988.

(

't' _r _' ' ill ' i_

