[r- 110203 ¢

[

o CONF-910223--6

DE91 004151

A DISTRIBUTED DATA ACQUISITION SOFTWARE SCHEME
FOR THE LABORATORY TELEROBOTIC MANIPULATOR*

P. L. Butler, R. L. Glassell, and J. C. Rowe

Oak Ridge National Laboratory t
Robotics and Process Systems Division
P. O. Box 2008
Oak Ridge, Tennessee 37831

To be presented at the
AMERICAN NUCLEAR SOCIETY
FOURTH TOPICAL MEETING ON ROBOTICS AND REMOTE SYSTEMS
Albuquerque, New Mexico
February 24-28, 1991

“The submettsd menuscript has bean
suthored by a contractor of the US,
Government under contract No. DE-
AC05-840R21400 Accordngly. the U.S.
Government retans 8 nonexclusive,
rovaity-free hconse to pubksh or reproduce
the pubkshed form of this contribution, or
allow others to do 0, tor U.S. Government
purnoses.”

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Meither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, o assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would rot infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer. or otherwise does not necessarily constitute or imply ils endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

*Research sponsored by the U. 5. Department of Energy and the National Aeronautics and
Space Administration,

*Managed by Martin Marietta Energy Systems, Inc., for the U. S. Depart t of
Contract No. DE-ACO5-84OR2140G, y epartment of Energy under E

~o b Ve - e e

Joich

A DISTRIBUTED DATA ACAQUISITION
SOFTWARE SCHEME FOR THE LABORATORY
TELEROBOTIC MANIPULATOR*

P. L. Butler, R. L. Glassell, and J. C. Rowe

Ouak Ridge National Laboratory
Robotics and Process Systems Division
P. 0. Box 2008

Qak Ridge, Tennessee 37831

ABSTRACT

A custom software architecture was developed for use in the
Laboratory Telerobotic Manipulator (1.TM) to provide support for
the distributed data acquisition electronics. This architecture was
designed to provide a comprehensive development environment
that proved to be useful for both hardware and software
debugging. This paper describes the development environment and
the operational characteristics of the real-time data acquisition
software.

INTRODUCTION

With the increased emphasis on space exploration and habitation, the need for
robetic systems that can extend human capabilities in the hazardous environment of
outer space is greatly apparent. To help meet the goal of increased use of robotics in
space, Oak Ridge National Laboratory (ORNL) has designed and developed a dual-
arm, 7 degree-of-freedom (DOF) master/slave manipulator for ground-based
research at NASA's Langley Research Center (LaRC). This manipulator, the
Laboratory Telerobotic Manipulator LTM [1], provides a two-fold test-bed for space
manipulator research. First, new design and fabrication techniques were developed
to ascertain their feasibility for eventual use in a highly reliable space manipulator.
Second, the 1.TM provides valuable performance information as to what is feasible
for a telerobotic system.

Many techniques of manipulator design were brought together in the design of
LTM. First, LTM had to be a good force-reflecting teleoperator. This normally
requires low reflected joint friction to reduce operator fatigue and high joint back
drivability for good force-reflection. Second, LTM also had to be a good robot.
This requires high joint stiffness for increased end-effector positioning accuracy.
These otherwise conflicting constraints were solved with a modular pitch-yaw
differential joint design and is complimented with control compensation
software [2,3].

* Research sponsored by the National Acronautics and Space Administration, Langley Research
Center.

T Managed by Martin Marictta Energy Systems, Inc., for the U.S. Department of Energy under
contract DE-AC(5-840R 214000,

LLTM provides NASA LaRC with a valuable research tool for performance
testing. One aspect of this performance testing is task segmentation and evaluation.
Another aspect is evaluation of training techniques for operators. These two diverse
issues may eventually lead to a semiautonomous system that can take advantage of
past operation successes and failures.

ORNL also provided a similar system, called the MicroGravity Manipulator
(LGM), to NASA's Lewis Research Center (LeRC) for microgravity research. This
system consists of a single-arm, 4-DOF manipulator used in a robotics mode.
NASA LeRC uses the pGM to explore the forces and torques that a robotic arm
places on its support as it executes a typical motion.

LTM/uGM CONTROL ARCHITECTURE

The computer architecture for the LTM system is arranged in a hierarchical,
modular fashion [4]. The computer system consists of two identical VME racks, a
master and a slave, as shown in Fig. 1. The master is also connected, via a
9600-baud serial link, to a Macintosh II computer, which serves as a human-
machine interface. There are three commercially available Motorola 68020 CPU
cards r each rack. One processor, the control processor (CP), serves as a control
and comimunications processor and the other two 68020 CPU cards, called arm
processors (APs), run the control loops for the right and left arms. Communication
between the racks is accomplished using a 10-Mbaud Proteon link. which provides
the necessary data swapping for the servo-level control loops. The data swapping is
controlled by the master rack and swaps 232 bytes from one rack to another at
250 Hz.

Human Machine
Interface
Master VME Rack Slave VME Ruack
L Cp -
4— APs
4— LPs
b A A % b A 4
Left Right Left Right
Shoulder
— || =l e [
— - s Wrist 4 >

Y

FIG. 1. The LTM architectural block diagram.

Custom data acquisition processors [5], based on the Intel 80C196
microcontroller, res’ .. within each pitch/yaw joint. This arrangement has the
advantage of minimizing the wiring from dozens of analog signals to a single
bidirectional, fiber optic line for each joint. A multi-drop arrangeinent using a single
fiber optic line for each arm was considered but not implemented because of the
higher communications bandwidth that would have been required. Since the joint
processors (JPs) are directiy within the joint, signal noise is also greatly reduced.
An Intel 82588 local-area-network (LAN) controller, with a data rate of 2 Mbaud, is
used to communicate with the link processors (LPs) within the VME racks. LPs
handle the limit checking and place the data acquired by JPs directy into dual-port
RAM (DPRAM) for access by the arm processors. The functional organization of a
single LP/JP pair is shown in Fig. 2.

VME Bus Interface

k:
I DPRAM I

80C196
CPU

COMM

¢ 2-Mbaud Fiber Optic Li

COMM

80C196
CPU

110

-

Joint Sensors & Brakes

FIG. 2. The UP/JP functional diagram.

The OS-9 operating syster.. from Microware is used for the main control
algorithms, providing a real-time, multitasking development environment. Most of
the operational code is written in the C language, but some Forth is used for utilities
and debug support. All of the LP/JP code, however, was written in the Forth
language. This provides an interesting challenge — interfacing between the C
language and the Forth language. This problem is solved by having the LP/JP data
acquisition system place data in common memory to conform to a predefined C
structure. After initialization, the control algorithms only need to reference this C
structure for the required data.

DATA ACQUISITION REQUIREMENTS

The LP/JP data acquisition software provides fast, reliable acquisition of all
analog and digital data points within each pitch/yaw joint. These data points are
acquired by the JP and transmitted to the LP using one of the independer t 2-Mbaud,
bidirecticnal fiber optic links. The LP places the data into the dual-port RAM for use
by the arm processors and communication to the other VME rack. The data
acquisition software also provides error checking and recovery from occasional
missed or corrupted packets. Since the LP is more directly controllable by the CP
and the APs, it is actually in control of the L.P/JP synchronization. The LP receives
a periodic interrupt to communicate command information to the JP. The JP
receives the command packet, starts data acquisition, and sends a return packet back
to the LP with the newly acquired data. After the LP receives this packet, it
performs certain safety limit checks and plices the data into the dual-port RAM for
use by the APs.

The JP also has control over the individual joint brakes. Therefore, it must
accept commands from the LP to lock or unlock the brakes. This places additional
safety constraints on the design of the software while providing a redundant safety
system. In the event of loss of LP/JP communications, the JP automatically resets
and forces the brakes to lock. Only with valid communications can the brakes be
unlocked, activating the joint. As an example of the redundant safety system, the
AP can also disable brake power on each arm, thus locking the brakes.

A development mode was required for direct debugging of both hardware and
software. It was decided that the development mode should be as close as possible
in nature to the acquisition mode. This minimized the effort that would have
normally been required to implement two totally separate modes. In fact, both
modes can be active at the same time. In other words, development can be in
progress while data are actually being acquired. Due to the number of LP/JP pairs in
the system, this development environment was implemenied to allow direct
multiprocessor debugging on any LP or JP in the system from a single terminal.

FORTH LANGUAGE

Forth was chosen as the development language for the data acquisition system
because of its highly interactive nature. Forth allows a minimal system to have
powerful debug capabilities, important because of the limited RAM and ROM on the
link and joint processors (16 Kbytes of each). In addition, the Forth system is open
and can be modified for a specific application. For a development environment,
Forth requires a terminal and disk interface. However, the user is not bound by
conventional terminal and disk interfaces. For example, the DPRAM interface
provides the terminal and disk interface to the LPs and the 2-Mbaud link provides
the same interface from the LPs to the JPs. A server program on the VME system
connects these logical interfaces to the actual RS-232 VT-100 terminal and the OS-9
file system.

ROM CODE FOR LINK AND JOINT PROCESSORS

The ROM code holds the bootstrap mechanism for the data acquisition system.
The ROM code contains the polyFORTH kernel {6], communication controller code,
and virtual terminal and disk support. Because of the similar nature of the LP and

JP (processor type and address maps), it was decided that one ROM set should plug
into both the LP and JP. This reduced code management by a factor of two during
the ROM development. It did, however, require some "manipulations” to get
around the few differences between the LP and JP. For example, the 82588
communication controller chip interrupt line was connected to different 80C196
interrupt lines on the two processor boards. This required a table lookup scheme to
allow two different interrupt behaviors while not compromising speed. On power-
up, the ROM code can determine which board it is running on by trying to write nd
read from DPRAM. If it sees DPRAM, the board is a LP. Otherwise, itis a JP.

The ROM code for the LP waits for a command from the VME system and then
initiates communications with the JP. Once started, communication with the JP
proceeds at approximately a 620-Hz rate. The original design called for a 1-Khz
loop-rate, which was initially attained. However, as the system evolved, some of
the error checking was off-loaded from the arm processors and placed on the link
processors. Therefore, the fastest rate that the loop could run was determined to be
620-Hz.

The JP has to perform additional tasks at power-up. For safety reasons, the JP
locks the joint brakes on power-up. Only when valid communication is established
with the LP can the VME system command the JP to unlock the brakes. The
Intel 80C196 processor also provides support for a watchdog timer that will reset the
processor if a certain control port is not loaded with the proper pattern on a periodic
basis. This watchdog support is tied to the communication link on the JP so that if
communications were ever lost, the JP would automatically reset, therefore locking
the brakes. The LP does not utilize the watchdog capabilities of the 80C196, but
does update a heartbeat counter that the APs check to ensure the acquisition system
is functioning properly.

The LP communication is through the DPRAM interface. A server program on
the CP polls a chosen LP for 1/O requests. Character 1/O on the LP is a simple
matter of reading or writing characters to DPRAM. A semaphore handshake flag is
used to tell both the LP and VME system when valid characters are in DPRAM.
Disk /O is similar to character I/O, except that the LP ROM tells the VME system
where in DPRAM to read or write a 1024-byte block of data.

The 2-Mbaud communication link between the LP and JP is synchronized by
the LP, as shown in Fig. 3, so that it can be synchronized by the VME control
system. A 620-Hz timer interrupt on the LP starts a packet transmission from the
LP to the JP. After the JP receives this packet, it transmits a data packet back to the
LP. If, at any time, communications is lost, the LP can notify the VME system of
this condition. This communication handshake was determined to be what the actual
data acquisition code required, so the Forth support was designed to conform to this
scheme. To do this, a packet header is at the start of every packei with Forth
terminal and disk handshake information. To keep the interrupt time constant,
special consideration had to be given to disk 1/O transfers of 1024 bytes. Disk 1/0
during normal development uses 32-byte chunks between the LP and JP. However,
during data acquisition, disk 1/O is limited to 2 bytes for every time slice. This
slows disk transfers to slightly over 0.5 s while the JPs are acquiring data but was
considered acceptable, since a programmer would probably not be doing code
development during an actual run.

LINK PROCESSOR FUNCTIONS

The run-time code for the LP is primarily responsible for placing the JP data
into the dual-port memory. The LP will also perform certain data conversions
before placing the JP data into the dual-port memory. For example, zero cffsets are
subtracted from the raw data for use by the control algorithms. In addition, the LP
performs safety limit checks for all critical data points. The main rationale is to
offload and parallelize the processing from the arm processors required to perform
limit checks. The arm processors only have te read a single status byte from each
pitch/yaw joint to tell if an error occurred. The LP is also seasitive to corrupt data
packets. If a communication error occurs, the LP keeps the old data instead of
placing corrupt data into the dual-port memory common block. However, if a large
number of sequential bad data packets arrive, then the LP will notify the VME
control system, initiating a system shutdown.

620-hz. interrupt
LPtolJP I »
(6 bytes) U
JPtoLP

l) (38 bytes)

FIG. 3. LP/JP communication protocol.

JOINT PROCESSOR FUNCTIONS

The data acquisition code is downloaded into RAM upon system initialization
by the VME system. This allows quick modifications to be made on the data
acquisition code. The actual data acquisition routines are machine coded for speed
and also for easy incorporation into the comrmunication link interrupi routines. The
Forth language was used for the debugging of these routines and can be used
interactively during a run to check on their progress. One interesting point of the
data acquisition code is that lower priority data are read after the main data block has
been transmitted. This keeps the main acquisition speed up and allows convenient

control over an 8 to 1 analog multiplexer. One channel of this multiplexer is read
after the main data packet has been sent back to the LP. Therefore, lower speed
signals such as motor temperatures are updated every 8 time-slices.

DEBUG SUPPORT

A program called SERVE on the VME system allows extensive capabilities for
software development and system debugging. The multiprocessor development
environment uses the same philosophy that was developed for OPSNET [7,8].
SERVE allows any LP or JP in a particular rack to be brought up in a debug mode
with an interactive Forth prompt. Several debug words allow for quick checks on
the integrity of the data being read by the JP. Fig. 4 shows the main SERVE status
screen. From this screen, an operator can select which LP or JP to "attach" a
terminal to, check status and error codes, and determine brake status. Fig. 5 shows
the same terminal after it has been switched to one of the LPs. Notice that the name
of the attached processor is always displayed on the bottom of the screen. In this
case, a program is running, called SHOW, that displays all important information
that the LP is receiving from the JP. SHOW also k~eps track of signal minimums
(second data column) and maximums (third data column) for use by system
developers.

Laboratory Telerobotic Manipulator Systém
8096 processor server system (01/23/90>

01/26/90
Master Rack

Processor Stat Err MotorA MotorB Rolt

' Right Shoulder LP CO 00 Locked Locked

Online JP Co

Online Right Elbow LP Co 00 Locked Locked

Online JP CO

Online Right Urist LP Cao 00 Locked Locked Locked
Ontine JP CO

Inline Left Shoulder LP C0 00 Locked Locked

Ontine JP CO

Online Left Elbow LP CO 0@ Locked Locked

Online JP Co

Online Left Hrist ILP CO 00 Locked Locked Locked
Ontine JP CO

Q@ = Quit to 0S-9 T - Toggle beep mode

U = Move up in processor status C - Clear error status

D - Move down in processor status “B - Load all processors

sp — Loop through processor status "D - Load selected processor
cr — Serve seilected processor "R - Reset selected processor

FIG. 4. - SERVE debug screen.

CONCLUSION

The LP/JP data acquisition software of the LTM project has demonstrated
proper design of a software system to minimize the difficulties normally associated
with multiprocessor system configuration. One important factor is to create a
modeless communication system that is useful both in deveiopment and run-time
operation. Another factor is to create a multiproce ssor development environment
that allows software to be debugged with a minimum of effort.

‘\ 1

Velocity— 0 -1 42
Yaw Position— 31951 31950 31951
Velocity— 1 =35 8
MotorA Pos S000101
Vel 42 38 69
Torque — -86 -107 -86
Temp —— 29 26 47
MotorB Pos 80000101
Vel 21 12 36 Logic Brd Temp_ 33 29 48
Torque — 40 24 64 Power Brd Temp_—_ 53 45 57
Temp —— 32 14 32
Roll Position_ 65535 65535 65535
Velocity— -2048 -2048 -700
Temp (1] 0 1)
Grip Trigger —— (1] 0 0
Joy X 0} 0)]
Joy ¥] o (0]
Digital — 0

floint Status:' -
Pitech Position_ 32764 32763 32764

Master Right -Shou ld ﬂ!i

FIG 5. The Jomt status display.

REFERENCES

1.

J. N. Herndon et al., “The Laboratory Tclerobotic Manipulator Program", Proceedings for the
NASA Conference on Space Telerobotics Volume 1V, Pasadena, California, January 31-
February 2, 1989.

J. F. Jansen and J. N. Hemdon, "Design of a Telerobotic Controller with Joint Torque
Sensors", IEEE International Conference on Robotics and Automation, Cincinnati, Ohio,
1990.

J.F. Jansen and J. N. Herndon, "Design of a Telerobotic Controller with Joint Torque Sensors
Using 2-port Network Theory", Third International Symposium on Robotics and
Manufacturing, Vancouver, British Columbia, Canada, July 18-20, 1990.

J. C. Rowe, P. L. Butler, R. L.Glassell, and J. N. Herndon, "The NASA Laboratory
Telerobotic Manipulator Control System Architecture”, Procecdings of the ANS Fourth
Topical Meeting on Robotics and Remote Systems, Albuquerque, New Mexico, February 24-
28, 1991,

R. L. Glassell, P. L. Butler, J. C. Rowe, and S. D. Zimmermann, "Custom Electronic
Subsystems for the Laboratory Telerobotic Manipulator”, Proceedings of the ANS Fourth
Topical Meeting on Robotics and Remote Systems, Albuquerque, New Mexico, February 24—
28, 1991.

polyFORTH 1I Refercnce Manual, FORTH Inc., Hermosa Beach, California

P. L. Butler, J. D. Allen, and D. W, Bouldin, "Design and Imp.cmcnwuon of a Pardllcl
Computer for Expert System Applications”, .
Intelligence VI, Orlando, Florida, April 4-8, 1988.

P. L. Buter, J. D. Allen, and D. W. Bouldin, "Parallel Arcnitecture for OPSS5", Proceedings of
the Fifteenth International Symposium on Computer Architecture, Honolulu, Hawaii, May 30-
June 2, 1988,

