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Abstract 

Multigroup cross sections (66 neutron groups and 22 photon groups) are described for 
neutron energies from thermal to 400 MeV. The elements considered are hydrogen, I0B, 
"B, carbon, nitrogen, oxygen, sodium, magnesium, aluminum, silicon, sulfur, potassium, 
calcium, chromium, iron, nickel, tungsten, and lead. The cross section data presented are 
a revision of similar data presented previously. In the case of iron, transport calculations 
using the earlier and the revised cross sections are presented and compared, and significant 
differences are found. The revised cross sections are available from the Radiation 
Shielding Information Center of the Oak Ridge National Laboratory. 

v 
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I. INTRODUCTION 

For a variety of applications, e.g., accelerator shielding design,1 neutron radiotherapy,2 

radiation damage studies,3 etc., it is necessary to carry out transport calculations involving 
medium-energy (>20 MeV) neutrons. In a previous paper4 (see also Ref. 5), neutron-
photon multigroup cross sections in the ANISN6 format for neutrons from thermal to 400 
MeV were presented. In the present paper the cross section data presented previously have 
been revised to make them agree with available experimental data. 

The elements considered (hydrogen, l0B, n B , carbon, nitrogen, oxygen, sodium, 
magnesium, aluminum, silicon, sulfur, potassium, calcium, chromium, iron, nickel, 
tungsten, and lead) and the basic approximations used in developing the revised cross 
sections are the same as those used in Ref. 4. There are, however, two substantive 
differences between the data presented here and those given previously. First, except for 
sulfur and lead, the revised cross sections at neutron energies below 19.6 MeV are based 
on ENDF/B-V7 and on a P5 Legendre expansion, while those in Ref. 4 below 14.9 MeV 
were based on ENDF/B-IV and used a P3 Legendre expansion. Second, the elastic cross 
sections used here at neutron energies >19.6 MeV have been chosen so that the total, i.e., 
elastic + nonelastic, cross sections agree with experimental data. The elastic cross 
sections used previously were based on optical model calculations with global parameters 
and, as pointed out by V. Herrnberger,* this led to total cross sections that were not 
always in good agreement with experimental data. 

In Section II the procedures used to generate the cross sections are discussed and some 
cross section data are presented. In Section III the results of transport calculations for an 
iron shield using the data from Ref. 4 and those presented here are compared. 

The multigroup cross section data described here are available from the Radiation 
Shielding Information Center of the Oak Ridge National Laboratory. 

II. CROSS SECTION CALCULATIONS 
A. Neutron Energies <19.6 MeV 

The multigroup cross sections at neutron energies below 19.6 MeV were, except for the 
elements sulfur and lead, obtained by collapsing the 174-neutron, 38-photon VITAMIN-E 
data library9 that is based on ENDF/B-V. For the elements sulfur and lead, the cross 
sections at neutron energies <19.6 MeV are the same as those in Ref. 4 and are therefore 
more approximate than the cross sections for the other elements considered here. 

The fine-group library was collapsed with ANISN6 using a spherical configuration, a 
source characteristic of a fusion reactor spectrum as specified by R. T. Santoro et al.,10 

weighting functions as specified by R. T. Santoro et al.,11 a symmetric SI 2 angular 
quadrature, and a P» Legendre expansion of the cross sections. 

The energy group boundaries of the multigroup cross sections are shown in Table 1. 
The neutron energy group boundaries below 14.9 MeV are the same as those used in Ref. 
4. The photon energy group boundaries are also the same as those in Ref. 4, except that a 
group has been added above 14 MeV. 
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Table 1 

Energy Group Structure 

Upper Group Energy (MeV) 

Neutron Groups Photoi Groups 

400 140 45 12.2 1.35 7.10X10"3 20.0 4.50 
375 120 40 10.0 1.11 3 .35XIO - 3 14.0 4.00 
350 110 35 8.19 9.07 X10" 1 1.58X 10~3 12.0 3.50 
325 100 30 6.70 7.43 X10" 1 4 .54X10 - 4 10.0 3.00 
300 90 27.5 5.49 4.98 X10" 1 1.01 X 1 0 - 4 8.00 2.50 
275 80 25.0 4.49 3 J 4 X 1 0 " 1 2.26X10"5 7.50 2.00 
250 70 22.5 3.68 2.24X10"1 1 .07X10- 5 7.00 1.50 
225 65 19.6 3.01 1.50X10- 1 5 .04X10- 6 6.50 1.00 
200 60 17.5 2.46 8 .65X10 - 2 2 .38X10 - 6 6.00 4.00X10"1 

180 55 14.9 2.02 3.18X10"2 1 .12XI0 - 6 5.50 2.00X10"1 

160 50 13.5 1.65 1.50X10- 2 4 .14X10- 7" 5.00 1.00X10"l h 

"The lower energy of this group is 1.00X 10~10 MeV. 
'The lower energy of this group is 1.00X 10~2 MeV. 
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B. Neutron Energies >19.6 MeV 

At neutron energies >19.6 MeV, the multigroup cross sections described here are based 
on intranuclear cascade and optical model calculations as in Ref. 4, supplemented by 
experimental data. As explained below, many of the data used here are the same as those 
used in Ref. 4. 

In Ref. 4 photon production from neutron-nucleus nonelastic collisions at neutron 
energies >14.9 MeV was neglected and similarly here for all elements considered photon 
production from neutron-nucleus collisions at energies >19.6 MeV is neglected. Some 
information on the validity of this approximation is given in Ref. 12. 

For the elements hydrogen, 10B, 11B, sulfur, potassium, calcium, chromium, and 
tungsten the multigroup cross section data presented here are the same as those in Ref. 4. 

For all other elements considered here, except lead, the neutron-nucleus nonelastic cross 
sections and the energy-angle distributions of neutrons from neutron-nucleus nonelastic 
collisions are the same as those used in Ref. 4. Also, for these elements the energy-angle 
distributions of neutrons from elastic scattering at energies >19.6 MeV are taken to be the 
same as those in Ref. 4. 

With these specifications the only quantity that remains to be determined is the elastic 
scattering cross section as a function of energy. This cross section has been determined by 
adjusting it to make the total cross section agree with experimental data. 

In Fig. 1 the total cross sections used in compiling the multigroup cross sections 
presented here (solid curve) are compared with experimental data.13"25 References to the 
various experimental data are given in the figure caption. It should be noted that in Fig. 1 
only experimental data at energies >50 MeV are shown. This is not because of the 
absence of data points but rather because of the very large number of available data points 
make it impractical to reproduce them here. References and graphs of much of the data 
available in the 20 to 50 MeV energy range are given in Ref. 26. The value of the total 
cross section at an energy of 19.6 MeV for each of the elements shown in Fig. 1 is taken 
from ENDF/B-V.7 The purpose of Fig. 1 is to indicate the extent to which the solid curve 
is determined by available experimental data at energies >50 MeV. For some elements, 
e.g., Fe, the total cross section is rather well defined by the experimental points while in 
other cases, e.g., Ni, the total cross section is not al all well defined by the experimental 
data. 

For lead, elastic scattering at energies >19.6 MeV is neglected. There are, however, 
some data available on the nonelastic cross section as a function of energy and these data 
have been used. In Fig. 2 the solid curves show the neutron-nucleus nonelastic collision 
cross sections used in the compilation and the points indicate the experimental data.27,28 In 
this case, experimental data in the 20 to 50 MeV energy range have also been shown. 

Finally, in Table 2 the elastic and nonelastic cross sections that have been used in the 
compilation are given as a function of energy. 



k 

ORNL-DWG 6 6 - H 9 4 3 

ENERGY (MeV) 
Fig. 1. Total cross sections vs. incident neutron energy for several dements. Hare 0 3 3 

Ref. 13, * = Ref. 14, x = Ref. 15, • = Ref. 16, • = Rcf. 17, + « Ref. 18, • = Ref. 
19, • = Ref. 20, v = Ref. 21, A = Ref. 22, • = Ref. 23, O = Ref. 24, + = Ref. 25. 
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Fig. 2. Nooelastic cross section in lead vs. neutron energy. Here O = Ref. 27 and • 
= Ref. 28. 
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Table 3 
Elastic and Nonelastic Neutron-Nucleus Cross Sections 

in Barns as a Function of Energy 

Element 
19.6 30 

Energy (MeV) 
50 100 200 300 400 

ioB 0.96" 0.88 0.63 0.22 0.16 0.23 0.31 
0.43 0.38 0.32 0.24 0.20 0.19 0.20 

"B 0.86 0.85 0.64 0.22 0.18 0.26 0.32 
0.46 0.40 0.34 0.25 0.21 0.20 0.22 

Carbon 1.03 0.84 0.59 0.24 0.07 0.06 0.08 
0.50 0.45 0.36 0.24 0.22 0.22 0.22 

Nitrogen 0.98 0.98 0.70 0.28 0.15 0.27 0.38 
0.63 0.46 0.39 0.29 0.25 0.24 0.25 

Oxygen 1.05 1.06 0.80 0.32 0.24 0.33 0.41 
0.61 0.50 0.42 0.33 0.28 0.27 0.28 

Sodium 0.99 1.19 1.03 0.40 0.32 0.43 0.52 
0.86 0.69 0.51 0.41 0.35 0.35 0.35 

Magnesium 0.95 1.21 1.08 0.43 0.33 0.44 0.53 
0.82 0.64 0.52 0.42 0.36 0.36 0.36 

Aluminum 0.82 1.22 1.20 0.57 0.14 0.15 0.18 
0.97 0.72 0.52 0.43 0.42 0.41 0.41 

Silicon 0.93 1.16 1.18 0.57 0.37 0.49 0.58 
0.97 0.78 0.59 0.47 0.40 0.42 0.41 

Sulfur 1.00 1.26 1.22 0.54 0.41 0.54 0.64 
0.93 0.78 0.63 0.51 0.44 0.45 0.44 

Potassium 0.97 1.24 1.31 0.61 0.48 0.62 0.72 
0.98 0.78 0.69 0.57 0.50 0.50 0.50 

Calcium 0.90 1.32 1.32 0.63 0.49 0.63 0.73 
1.18 0.98 0.75 0.58 0.51 0.52 0.51 

Chromium 0.78 1.25 1.38 0.73 0.61 0.76 0.87 
1.26 1.10 0.71 0.71 0.64 0.64 0.63 

Iron 0.97 1.34 1.58 1.07 0.46 0.34 0.25 
1.28 0.96 0.86 0.73 0.66 0.66 0.75 

Nickel 1.04 1.25 1.41 0.81 0.57 0.50 0.44 
1.35 1.25 0.94 0.74 0.68 0.68 0.68 

Tungsten 2.52b 1.95 1.70 1.53 1.45 1.50 1.48 
Lead 2.50" 2 48 2.40 1.90 1.90 1.90 1.95 

"For each element the elastic cross section is given on the first line and the nonelastic cross section 
is given on the second line. 
bElastic scattering at energies ^ 19.6 MeV is neglected for tungsten and lead. 
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C. Multigroup Cross Sections 

With the specifications given in Sections II.A and II.B, multigroup cross sections in the 
form needed for use in the discrete ordinates codes ANISN6 and DOT29 and in the 
MORSE30 Monte Carlo code may be calculated in a straightforward manner. A 
weighting function of "1/E" has somewhat arbitrarily been used for neutron energies 3= 
19.6 MeV. 6 

III. TRANSPORT CALCULATIONS 

In Ref. 8 V. Hermberger proposed a "benchmark" configuration that may be used for 
the intercomparison of cross section libraries and computational methods. Here this 
configuration has been used to compare transport results obtained with the original iron 
cross sections of Ref. 4 and the revised iron cross sections presented here. The original 
iron cross sections will hereinafter be referred to as HILO, while the revised iron cross 
sections will be referred to as HILO(Rl). 

Briefly, the benchmark configuration is that of an iron sphere of radius 5 m with a 
spherical volumetric isotropic neutron source at its center. The neutron source has a 
radius of 5 cm and the neutron energy spectrum is uniform over the energy interval 300 to 
400 MeV. The density of iron was taken to be 7.84 g/cm3. 

Calculations for this configuration were carried out using the discrete ordinates code 
ANISN6 and an S|2 angular quadrature. In the HILO(Rl) calculations a P5 Legendre 
expansion was used at all energies while in the HILO calculations a P5 expansion was used 
at energies >14.9 MeV and a P3 expansion was used below this energy. In the HILO 
library only a P3 expansion is available below 14.9 MeV. 

In Figs. 3 and 4 the neutron flux per unit energy and the photon flux per unit energy 
are shown at various radii in the iron sphere. In Figs. 3 and 4 and in the remaindert)f this 
section all of the transport results are normalized to 1 source neutron per second entering 
the system. In both Fig. 3 and Fig. 4 there are noticeable differences in the fluxes 
obtained with the original (HILO) and the revised (HILQ(Rl)) cross sections. 

The total scalar neutron and photon flux, i.e., the result of integrating over energy the 
fluxes per unit energy in Figs. 3 and 4, are shown as a function of radius in Fig. 5. At the 
larger radii the neutron and photon scalar fluxes from the HILO(Rl) cross sections are 
significantly larger than the fluxes from the original HILO cross sections. The sharp 
decreases in the scalar fluxes just before the radius of 500 cm are due to the fact that ,.ie 
shield thickness is 500 cm and thus the albedo contributions to the fluxes are absent. 

The two cross section sets were also used to calculate, as a function of radius, the 
absorbed dose and dose equivalent for neutrons and photons. The neutron fluxes were 
converted to absorbed doses and dose equivalents with the conversion factors recommended 
by the International Commission on Radiological Protection.31 The photon fluxes were 
converted to doses with the conversion factors recommended by the American Nuclear 
Standards Institute.32 
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Fig. 3. Neutron flux per unit energy vs. energy at various radii. The factor F 
associated with various fluxes in the figure is a scale factor used for plotting purposes. 
The values plotted must be multiplied by the corresponding F to be correctly normalized. 
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The results of the dose calculations are given in Table 3. For both neutrons and 
photons the absorbed doses and dose equivalents from HILO(Rl) are larger than those 
from HILO at the larger radii. 

IV. SUMMARY 

The HILO neutron-photon cross section library has been revised by modifying the 
elastic cross section so the total cross section is in agreement with experimental data. The 
revised cross sections HILO(Rl) should be more accurate and are therefore recommended. 
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Table 3 

Comparison of Calculated Absorbed Dose and Dose Equivalent Results 
in Iron Obtained Using the HILO(Rl) and HILO Cross Section Libraries 

(The first line in the table for each radius is from HILO(Rl) and the second line is from HILO.) 

Radius 
(cm) 

( 
Absorbed Dose 

Due to Neutrons 
Absorbed Dose 
Due to Photons 

Dose Equivalent 
Due to Neutrons 

mrad/hr 
(source neu./sec 

mrad/hr 
(source neu./sec t ) ( 

mrem/hr 
(source neu./sec 

5 ) ( 

Dose Equivalent 
Due to Photons 

mrem/hr 
(source neu./sec.) ) 

20 5.0X10- 5 

4 .6X10 - 5 
1 .4X10- 6 

1 .5X10- 6 
3 .7X10- 4 

3 .3X10- 4 
1.4X10- 6 

1.5X10"6 

60 4 .8X10 - 6 

3 .2X10- 6 
1 .5X10- 7 

1 .5X10- 7 
3.3X10- 5 

2.2X10- 5 
1.5X10- 7 

1.5X10- 7 

100 5.5X10"7 

2 .8X10- 7 
2.1 X 1 0 - 8 

14X10 - 8 
33.4X10- 6 

1.8X10- 6 
2 .1X10- 8 

1.4X10"8 

200 2.1 X 1 0 - 9 

7 .5X10- 1 0 
9 .8X10- 1 1 

4 .1X10- 1 1 
1.2X10- 8 

4 .8X10- 9 
9.8X10- 1 1 

4 .1X10 - ' 1 

300 7.0X10- 1 2 

2 .1X10- 1 2 
3 .5X10- 1 3 

1.2X10"13 
3.7X10- 1 1 

1.4X10-11 
3 .5X10 - ' 3 

1.2X10- 1 3 

400 2.2X10- 1 4 

5.8X 10~15 
1.1X10- 1 5 

3 .3X10- 1 6 
1.1X10-13 

3.7X10- 1 4 
1.1X10- 1 5 

3.3X10- 1 6 

450 1.2X10- 1 5 

3.0X10- 1 6 
6 .1X10- 1 7 

1.7X10- 1 7 
6.2X10- 1 5 

1.9X10- 1 5 
6.1 X 1 0 - 1 7 

1.7X10- 1 7 

500 1 .2X10- ' 7 

3 .8X10- 1 8 
6 .3X10- 1 9 

1.8X10- 1 9 
8.3X10- 1 7 

2.8X10- 1 7 
6.3X10"19 

I .8X10- 1 9 
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