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Although Sisal (Streams and Iterations in a Single Assignment Language) is a

general-purpose applicative language, its expected program domain is large-scale

scientific applications. Since arrays are an indispensable data structure for such

applications, the designers of Sisal included arrays and a robust set of array

operations in the language definition. In this paper, we review and evaluate those

design decisions in light of the first Sisal compilers and runtime systems for

shared-memory multiprocessor systems• In general, array intensive applications

written in Sisal 1.2 execute as fast as their Fortran equivalents• However, a

number of design decisions have hurt expressiveness and performance. We

discuss these flaws and describe how the new language definition (Sisal 2.0)

corrects them.

Intr_uetion

Sisal 1.0 [7] was defined in 1983 and revised in 1985 (Sisal 1.2 [8]). The language definition

was a collaborative effort by Lawrence Livermore National Laboratory, Colorado State

University, University of Manchester, and Digital Equipment Corporation. Although Sisal is a

1 general-purpose applicative language, its expected program domain is large-scale scientific

applications. Since arrays are an indispensable data structure for such applications, the

designers of Sisal included arrays and a robust set of array operations in the language definition.

Unfortunately, defining and implementing arrays under applicative semantics is not easy.

There are three major problems• First, an array, like any object, is the result of an expression.

, . The idea of allocating storage and filling in values is alien to applicative semantics. Second, not

all array definitions are legal. Since an array element can be defined at most once, any

.' recursive definition which defines some elements more than once is illegal. Third, operations

which modify arrays must first copy their operands. The cost of copying large array is

prohibitive, i_ _ _T _. _u
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To solve the first problem, designers of applicative and higher-order functional languages

have developed array comprehensions and gather clauses. Array comprehensions, or monolithic

arrays, permit the definition of subregions of an array within a single expression. For example, a

4 x 4 block diagonal unit matrix is defined in Sisal 2.0 as

X := array [i..4, I..4:

[1.2, 1..2] i, 1, i, 1;

[I..2, 3..4] 0, 0, 0, 0;

[3..4, 1..2] 0, 0, 0, 0;

[3..4, 3..4] I, i, I, i]

Sisal 2.0 includes array comprehensions, but Sisal 1.2 does not. In Sisal 1.2, arrays are built

primarily by loop expressions that deterministically assemble loop values into arrays via gather

clauses. For example, vector sum is defined in Sisal 1.2 as

X := for i in I, n

z := Ali] + B[i]

return_ array of z

end for

The loop body generates n z-values which are formed into an array by the returns clause.

What to do about recursive array definition is a difficult problem with no good solution. One

possibility is to exclude recursive definitions all together; however, this restricts a language's

ability to express certain computations and may obscure parallelism. A second alternative is to

accept only those recursive definitions that can be proved legal at compile time. Recent work in

this area appears promising [4]. Finally, a language designer may decide to accept all recursive

definitions and rely on hardware to trap illegal expressions. This solution maximizes

expressiveness, but requires special hardware and without a fine-grain implementation may

- introduce deadlock. Recent studies have shown fine-grain implementations to be impractical [2].

For applicative programs to execute as fast as imperative programs, copy elimination is

essential. We cannot overcome the cost of copying large arrays by increased parallelism- there

is simply not enough parallelism. Copy elimination involves three levels of analysis: static ,,

inferencing, node reordering, and reference counting. Compile-time analysis can often identify

the last user of an array. Reordering the graph to schedule read operations before write operations '.

improves the chances of in place operations. In those instances in which analysis fails, the

compiler can insert reference count operations and runtime checks to identify the last ,,_or at
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runtime. But if done improperly,referencecountingcan become a bottleneckand degrade

performance[11].In recentyearsresearchershave made tremendousprogressinthegeneralarea

ofcopy eliminationand referencecountoptimizationin applicativeand higher-orderfunctional

. languages [1,5,14]. The work by Cann [1] has virtually eliminated the copy problem in Sisal.

Although conservative, the Sisal 1.2 approach has been successful. The language includes
e

gather clauses, but neither array comprehensions nor recursive definitions (in fact, the compiler

enforces a strict "definition before use" style). To eliminate copy operations, the native code

compiler rearranges nodes, introduces artificial dependencies to schedule readers before writers,

and inserts runtime checks when analysis fails [1]. We find that we can express most array

computations easily and concisely in Sisal 1.2, and most array intensive applications execute as

fast as their Fortran equivalents on shared-memory multiprocessors [3].

This paper is organized as follows. Section two describes arrays and array operations in Sisal

1.2 and discusses changes to arrays i n the new language definition, Sisal 2.0 [12]. Section three

presents an efficient solution for Gaussian elimination using gather operations. We compare the

Sisal 1.2 code to an equivalent Fortran program on the Alliant FX/80. Section 4 discusses an array

computation which is difficult to express in Sisal 1.2, but easy to express in Sisal 2.0. In section 5,

we conclude by describing some of the new language directions we are persuing.

Arrays in Sisal L2

Array Declaration

Sisal 1.2 includes the standard scalar types" integer, real, double precision, boolean, and

character. All other types are user-defined. An array declaration specifies only the component

Wpe (any scalar or user-defined type). It does not specify size, lower or upper bound, or structure -

these are specified by the expressions that create arrays. An array of integers is defined as

type OneDim = array[integer]

In Sisal 1.2, an n-dimensional array is sn array of (n.1)-dimensional arrays. A two-

dimensional array of integers is defined as an array of array of integers,
e •

- type TwoDim = array [OneDim]
i
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Figure 1 - Hierarchial Ragged Arrays

The componentsofTwoDim canbe eitherthe rows or the columnsofthemathematicalarray.Since

the elementsofan n-dimensionalarrayare arrays,the sizeand bounds ofeach element may be

different,Thus, Sisal1.2arraysarehierarchicaland ragged[Figurela].

Hierarchicalarrays are convenientwhen expressingrow- or column-orderedalgorithms,

permit row sharing,and reduce copying costs. However, they make read operationsmore

expensive,prevent easyaccess to arbitrarysubcomponents (suchas blocksor diagonals),and

make expressinganythingbut a row- or column-orderedalgorithmdifficult.Raggedness isideal

when programming an array whose rows (columns)have differentor continuallychangingsizes

and bounds. In hydrodynamicscodes,an arrayistypicallyused torepresenta gridofcells- each

cellcomprisingan arbitrarynumber ofparticles.During execution,particlesmove from cellto

cell.The continualchange in cellsizeis easilyprogrammed using ragged arrays. In LU-

decomposition,the lower and upper triangularmatricesmay bestored as two ragged arraysin

minimum space. However, ragged arraysdo not support strides,make vectorizationdifficult,

and requirea hierarchicalstorageimplementation[Figurelb].

For the great majority of applications which do not need hierarchical ragged arrays, the

drawbacks are severe. But, since the advantage to some applications is great, Sisal 2.0 includes

both hierarchical ragged arrays and flat arrays.
• o
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Array Creation

Any expressionwhich has typearraycreatesa new array.The simplestway tocreatean array

inSisal1.2isto!isrtheelements,

r :- array OneDim []

, s := array OneDim [I: 1,2,3]

t := array TwoDim [i: array [i: 1,2,3], array [I 4,5, 6]]

The first expression creates an empty array of integers. The type specification is mandatory. The

second expression builds an array of integers with lower bound 1. The type specification is

optional since it can be derived from the element list. The third expression builds a two-

dimensional array (an array of arrays) of integers, t is similar to a flat array with two rows and

three columns.

The most common way to create arrays in Sisal 1.2 is by loop expressions. The for expression

provides a means to specify independent iterations. This expression's semantics does not allow

references to values defined in other iterations. Recursive definitions are not permitted. A for

expression comprises three parts: a range generator, a loop body, and a returns clause. Consider

the expression

u := for i in l,n cross j in 1,m

z := i + j

returns array of z

end for

An instance of the loop body is executed for each (i, j) pair, I _ i _ n, 1 _ j _ m. The returns

clause, array of, deterministically gathers the z values into an array. The order of reduction, size,

and structure of the array are specified by the range generator. Thus, u is a two-dimensional

array with n rows, m columns, and u[i, j] = i + j.

For expressions are expressive, flexible, easy to implement, and exhibit goc_,2speedup on

medium- and coarse-grain shared memory multiprocessors. Because the loop bodies are

independent and recursive definitions are not permitted, the runtime system may execute the

subexpressions in any order. Compile-time analysis inserts code to preallocate array storage

where analysis or runtime calculations can determine array sizes [13]. Thus, most results are

' built in place eliminating useless copying [3]. For expressions do have one flaw - they couple the

scattering of work and the gathering of result values. This is unnecessary, and results in
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confusion and programming errors. A common mistake is to write the transpose of an (n x m)

matrix as

for i in l,n cross j, in l,m

returns array of X[j, i]

end for

This expression returns an (n x m) matrix, not sn (mx n) matrix. The correct expression is

for i in 1,m cross j in 1,n

returns array of X[j,, i]

end for

In Sisal 2.0, the scattering of work and gathering of results sre decoupled. The former governed

by the range generator and the latter gove_'ned by the returns clause.

For initial expressions resemble sequential iteration in conventional languages, but retain

single assignment semantics. They comprise four parts: initialization, loop body, termination

test, and returns clause. The initialization segment defines ali loop constants and assigns initial

values to all loop-carried names. It is the first iteration of the loop. The loop body computes new

- values for the loop names. Unlike for expressions, loop values on the previous iteration are

accessible - old <name> returns the value of <name> on the previous iteration. The returns

clause, array of, gathers loop values in order into an array.

Although Sisal 1.2 prohibits recursive definitions, for initial expressions can build

recursively defined arrays. Consider the array definition

1 i=1
X(i, j) = 1 j = 1

X(i, j-1) + X(i.I, j) 2 _: i g n, 2 <_j <_n

A legal Sisal 1.2 expression for X is

X := for initial

i := i;

row := array fill(l, n, i);

while i < n repeat

-- i := old i + i;

row := for initial

- j := i;

x := 1

6



while j < n repeat

j := _Id j + !;

' x := old x + old row[j]

returns array of x
end for

returns array .of row
end for

The expressionis certainlylong and obscures parallelism, lt is hard to ascertsinthat

computationsalonga diago,alaredataindependent.However,a nonstrictimplementationofthe

loopbodies- initiateallloopbodiessimultaneouslyand have eachwaitforitsinputs- willrealize

the parallelism.

Iffor initialexpressionscan buildrecursivelydefinedarraysand do not necessarilylimit

parallelism,has excludingrecursivedefinitionscostus anything?Definitely,yes7 A for initial

expressioncan compute new loopvaluesas a Rmction of onlythe loopvaluesof the previous

iteration.Worse yet,returns an'a:,of bindstheithelementoftheresulttotheithiteration.The_e

two restrictionsgreatlycomplicatetheprogramming effortand may increasecopyingcosts.Sisal
h

2.0stillprohibitsrecursivearraydefinitions(theperformanceconsequencesare justtoo great),

but doesallowuserstospecifywhere valuescomputed on thelthiterationappearintheresults.

Other Array Operations

Read operations have the form,

x := A[I]

The type ofx is the component type of A. The sherthand notation, Ali, j J, returns thejth component

of the ith component of A. In Sisal 1.2, you can read (access) only single elements. This is

unfortunate because many array computations operate along diagonals or within blocks of an

array. Sisal 2.0 permits reads to any contiguous set of elements separated by a constant stride.

Write operations have the form,

x := A[I: 0, l, 2]

The expression preserves single assignment semantics by creating a new array, x, which is

identical to A except that the first, second, and third elements are 0, 1, and 2, respectively. The

inclusion of such explicit write operations simplifies copy elimination analysis. If the compiler

7
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can ascertain, or a runtime check can assure, that the write is the last consumer of A, then the

update can execute in place. Although write operations can change several element values at once,

the syntax is still too limiting. Values along diagonals or within blocks cannot be changed in a

single expression. Like reads, Sisal 2.0 permits writes to any contiguous set of elements separated

by constant stride.
q

Sisal 1.2 also includes operations to concatenate arrays, insert or remove values at either end

of an array, set the bounds of an array, and return an array's size. Except for concatenation and

array size, the more general syntax of read, write, and array creation in Sisal 2.0 supplants the

other operations. It remains to be seen whether we have overly complicated copy elimination

analysis by replacing explicit array modification operations with more general expressions.

LU Dec0mposition

LU decomposition is a metl_.od to solve systems of linear equations of the form

Ax=b

where A is an n x n matrix, and x and b are n x I column vectors. ,The method reduces A into a

lower (L) and upper (U) triangular matrix. A common solution method for LU decomposition is

Gaussian elimination without pivoting. The algorithm comprises n iterative steps. At step i, rows

i + 1 to n are reduced by row i. Row i is called the pivot row and A/i, i] is called the pivot element.

The reduction executes in two steps: ,
/

1. A[k, i] = A[k, i] /A[i, i], i+1 _ k _; n

2. A[k, l]=A[k, 11. A[k, ii* Ali, l], i+1 _k,l _n

L comprises the n column vectors computed in step 1 (the multipliers) and U comprises the n pivot

rows.

Since A is modified every iteration, a functional implementation of Gaussian elimination

creates n - 1 intermediate copies of A. As the computation progresses, the number of computations

decreases and the amount of computationless copying increases. Solutions have ranged from

proposing new algorithms [6,10] to extending the idea of monolithic arrays [4]. However, Sisal's

gather operations solve the problem naturally and efficiently.

Consider the following functions



type OneDim = array [double_real]

type TwoDim = array [array [double_real] ] L

function GE (n: integer; A_in : TwoDim returns TwoDim, TwoDim)

for initial

i := I;

, p := A in[li;

M := Multipliers(i, :n, A_in);

A := RedUce(i, n, M, A_in)

while i < n repeat

i := old i + i;

P := 0ld A[i] ;

M := Multipliers(i,, n, old A);

A := Reduce(i, n, M, old A)

returns array of M

array of P

end for

end function % Gau3sian Elimination

function Multipliers(i,n:intege=; A: TwoDim returns OneDim)

for k in i+l, n

returns array of A[k,i] / A[iri]

end for

end function % Multipliers

function Reduce(i,n: integer; M: OneDim; A: TwoDim

returns TwoDim)

for k in i+1, n cross i in i+I, n

returns array of A[k,l] - M[k] * Ali,li

end for

end function % Reduce

In function GE, P is the pivot row, M is the vector of multipliers, and A is the reduced matrix.

Notice the number of rows and columns in A decrease by one every iteration. There is no copying

and no useless computation. Every computation is necessary and computes a new value. The

vectors of multipliers and pivot rows are 8athered to form L and [7. Both arrays are ragged;

however, it is easy to extend the code to return _-ectan_,_lar arrays. Because the gather operation

_ removes P and M from the computation, the code avoids useless copying. The completed portion of

L and U are not carried (i.e., copied) from iteration to iteration, Unlike the equivalent Fortran

code which stores the reduced matri_ back into A, the Sisal code preallocates new storage for A and
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deallocates the storage for old A every iteration. Although this is cheap, it is not an ipsignificant

expense.

We compared equivalent Sisal and Fortran versions of Gaussian elimination on a 200 x 200

problem on the Alliant FX/80. The Sisal execution times on one and five processors were 7.53 and

2.30 seconds, respectively. The Fortran execution times were 7.09 and 1.42 seconds, respectively.

Memory management operations cost Sisal 1.15 and 0.61 seconds on one and five processors,

respectively. In all, Sisal was6% slower than Fortran on one processor and 62% slower on five

processors. Because memory deallocation is sequential, the speedup of the Sisal code was only 3.3.

Clearly, not reusing storage is hurting performance. There are two solutions. One possible

optimization is to all0cate,space for two n x n arrays outside the for initial expression and use the

two arrays alternatively for A aud old A, At the end of each iteration we would swap pointers

instead of allocati_g and deallocating memory. A second solution is to use flat arrays. We have
. found repeatedly that managing hierarchical arrays is expensive. The cost of allocating and

deallocating a hierarchical array is linear in the product of the sizes of the outer dimensions, and

the cost of accessing the innermost comPonent is linear in the number of dimensions. For flat

arrays th_ cost of both these operations is constant. We expect the Sisal 2.0 version of Gaussian

elimination, which will include both optimizations, to execute as fast as the Fortran code.

Segmental Recomputation

Segmental recomputation is a simplification of the second Livermore Loop [9]. Let X and V be

two n element vectors (assume n _s a power of 2). Compute new values for X as follows:

1. Initialize LHS, RHS, and VHS as:

n n _ n .?.]X[1.. 51, X[ g + 1.. 1, V[-_ + I.

2. Compute new values for the elements of RHS

n

RHS(i) - LHS(2 * i) + V(i) 1 _ i _-_2'

3. Advance LHS, RHS, and VI-IS:

- n

4. C_ t_ step 2

4 _

10
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• Figure 2 - Segmental Recomputation

Continue until X is exhausted. The algorithm comprises Log n itera_.ive steps. Figure 2 depicts the

algorithm's state after the first step. The computations at Step 2 are data independent and can

execute in parallel. Moreover, since LHS and RHS are disjoint, X can be updated in place.

Since Sisal 1.2 lacks subarray operations, the (Log n) RHS vectors must be built independently

and gathered into an array by the reduction operation

returns value of catenate rhs

The Sisal 1.2 code is

type OneDim = array [double_real]

function SegRec(X, V: OneDim returns OneDim)

for initial

n := array_size (X) / 2;

vhs := 0;

rhs := array_adjust(X, I, n)

while n > 1 repeat

n := oldn / 2;

vhs := old vhs + old n;

rhs := for i in I, n

returns array of

old rhs[2 * i] + V[vhs + i]

end for

returns value of catenate rbs

end for

end function % Segmental Recomputation

Two points about the code: 1) instead of forming the subvector VHS every iteration, we use a

pointer, vhs, to point to the start of the subvector; and 2) observe that LHS is just old RHS.

11
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The performance of this routine is dismal; in fact, regardless of the size of X, computing the

new values for X one at a time is faster. The Sisal optimizers completely break down on this code.

First, the runtime system allocates new memory for rhs every iteration, and deallocates old rhs

every iteration. Second, the optimizers fail to recognize (and who can blame them) that X can be

updated in place. Third, the build-in-piace analysis fails to preallocate memory for the result.

Thus, not only do we copy rhs every iteration as we move it into the result, we also copy the partial

result every iteration as it grows and requires more space. The optimization discussed in the

previous chapter (allocate two arrays outside the for initialexpression and switch back and forth)

alleviates the first problem, and an enhanced build-in-piace analyzer solves the third problem.

But unless X is updated in place, the cost of copying rhs every iteration will destroy performance.

The computation per loop body (one addition) is too small to recuperate much, if any, of the cost.,

The problem is not weak optimizers, but poor syntax. The lack of subarray operations destroys

all hope of realizing that X can by updated-in-piace. In Sisal 2.0, which includes subarray

operations, the algorithm is clean, concise, and easily optimized for update-in-piace. The Sisal

2,0 code is

type OneDim = array [double_real]

function SegRec(X, V: OneDim returns OneDim)

let

n := size(X) / 2;

: i := i;

j := n

in

while n > 1 do

new n := n / 2;

new i := j + i;

new j := j + n;

new X := X[new i..new j:

x[i..j..2] + v[new i..new j]

returns X

end while

: end let

end function % Segmental Recomputation

Here we useiandj topointtothe startand end ofeachsubvector.The plusoperationon Line13 is

an element-by-element vector addition. The update of X is now obvious. Moreover, it is easy for

the compiler to realize that the subarray of X which is written, X[new i.. new j], is disjoint from

the subarray which is read, X[i..j.. 2], since new i "=j + 1 (Line 10).
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Conclusions

Inthispaperwe discussedthedefinitionofarraysinSisal1.2and thechangestoarraysinthe

new languagedefinition,S_al 2.0.The biggestchangesare:truemultidimensionalarrays(flat

arrays),array comprehensions,and subarrayoperations.We showed thatthesechanges can

, yieldmore readablecodeand betterperformance.We arehopefulthattheoptimizationtechniques

developedforSisal1.2areextendabletothenew languagedefinition.The goalofany functional

language must be to achieveequivalent,or better,performancethan Fortran;otherwise,the

languagewillnotbe widelyaccepted.Sisal1.2didachieveFortran-likespeedon shared-memory

multiprocessors.We believeSisal2.0can achieveevenbetterperformance.
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