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Abstract

High-Resolution NMR of Quadrupolar Nuclei in the Solid State
by
Sheryl Lee Gann
Doctor of Philosophy in Chemistry

University of California at Berkeley

Professor Alexander Pines, Chair

This dissertation describes recent developments in solid state nuclear
magnetic resonance (NMR), for the most part involving the use of dynamic-angle
spinning (DAS) NMR to study quadrupolar nuclei. Chapter 1 introduces some
of the basic concepts and theory that will be referred to in later chapters, such as
the density operator, product operators, rotations, coherence transfer pathways,
phase cycling, and the various nuclear spin interactions, including the
quadrupolar interaction. Chapter 2 describes the theory behind motional
averaging experiments, including DAS, which is a technique where a sample is
spun sequentially about two axis oriented at different angles with respect to the
external magnetic field such that the chemical shift and quadrupolar anisotropy
are averaged to zero. Work done on various rubidium-87 salts is presented as a
demonstration of- DAS. Chapter 3 explains how to remove sidebands from DAS
and magic-angle spinning (MAS) experiments, which result from the time-
dependence of the Hamiltonian under sample spinning conditions, using rotor-
synchronized n-pulses. Data from these experiments, known as DAH-180 and
MAH-180, respectively, are presented for both rubidium and lead salts. In

1




addition, the applicability of this technique to double rotation (DOR)
experiments is discussed. -Chapter 4 concerns the addition of cross-polarization
to DAS (CPDAS). The theory behind spin locking and cross polarizing
quadrupolar nuclei is explained and a method of avoiding the resulting

problems by performing cross polarization at 0° (parallel) with respect to the

magnetic field is presented. Experimental results are shown for a sodium-23 |

compound, sodium pyruvate, and for oxygen-17 labeled L-alanine. In Chapter 5,
a method for broadening the Hartmann-Hahn matching condition under MAS,
called variable effective field cross-polarization (VEFCP), is presented, along

with experimental work on adamantane and polycarbonate.
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Chapter 1
Introduction

Nuclear magnetic resonance (NMR) is a highly useful spectroscopic tech-
nique that has proved essential in the determination of structure and dynamics
of many diverse classes of compounds. This thesis will focus primarily on the
application of NMR to quadrupolar nuclei in the solid state, and in particular,
using the technique of dynamic-angle spinning (DAS) NMR. This introductory
chapter will begin by introducing concepts and theories that will be referred to in
later chapters. The reader interested in a more detailed theoretical treatments is

referred to any number of texts on NMR [1-5].

1.1 The Density Operator

It is quite useful to describe nuclear spin dynamics in terms of the density
operator, defined as follows. If, for a given ensemble, all spin systems are in the
same state (a pure state), described by the normalized state function lw(t)) in an

orthonormal basis {|7)} with coefficients c,(t), then the density operator p(f) is

defined by
p(t) =|w()w(t)|= T X ¢, (B)es ()l rX(s|- (1.1)
Y s
If, on the other hand, all spin systems in the ensemble are not in the same state (a

mixed state), the density operator is given by the ensemble average (denoted by

the bar) as
p(t) =|w(t)) w(®)|= ;gcr(f)i; (£)rXs|- (12)




The equation of motion of the density operator can be derived from the

Schrédinger equation with Hamiltonian H(%),

ZHv()=—HEE). 13)

Using this equation we can derive the Liouville-von Neumann equation,

£ p(t)=~{H(B)p(0)]. (1.4

The solution to this differential equation is

p(t) =U(P(OU(t) ™ U(t) =T exp(-ify H(¥')at (15)
where T is the Dyson time-ordering operator. By a suitable transformation into a
different reference frame, the Hamiltonian can often be made to be time inde-
pendent and the evolution of density matrix can then be calculated quite simply

as

p(t) = exp(—iHt)p(0)exp(iHt) . (1.6)

The expectation values of an observable can be expressed in terms of the
density operator as follows. For an operator O, the expectation value (O) is

(w(t)[Ow(®) (1.7)

where again the bar indicates an ensemble average. Expanding the wave func-

tion in terms of its orthonormal base we can express (O) as
(0)= 22 c; (F)c,(t (rlO]s) > 3 {(sp(8)r)(rOls) = Tr{Op(#)} (1.8)
r s .
The function Tr indicates a trace defined by

Tr{O}=Y.(r|O|). (1.9)

The density operator p(t) as defined depends on both spin and space vari-
ables of the entire quantum mechanical system. However, it is usually correct to

reduce the number of variable in the system and use only a limited set of opera-




tors {Q} that act on the spin states of the system, grouping the remaining degrees
of freedom together and designating them as the lattice. In such a situation, the

density operator is redefined as the reduced spin density operator

G(t) = Trlattice {p(t)} (1'10)
where Try ., refers to a partial trace over the lattice variables. The expectation

value of the operator Q is given by

Try,i, {Qo(1)} (1.11)

and the equation of motion from eqn (1.4) is now
d . 2
—o0)= ~i{ Hyyin, ()| - T{0(£) - 5] (112)

The Hamiltonian, Hgy;, acts on the spin variables and is obtained from the full

Hamiltonian by averaging over the lattice coordinates

spm Z Trlattzce {H } (1 13)

lattice

I' is the relaxation superoperator and accounts for effects of the lattice on the
spin system, driving it to its equilibrium value of 6,. Assuming that the external
magnetic field defines the z-axis of the laboratory reference frame, the equilib-

rium density matrix, 6, can be shown to be given by

cp=1,. (1.14)
Note that oy is not necessarily equivalent to ¢(0). In this text, the relaxation
superoperator and its effects are generally ignored except when otherwise indi-
cated. This greatly simplifies solving eqn (1.12), resulting in a solution analogous

to that seen in eqn (1.5).
oft) =U(t)o(O)U(5)™; U(t) =T exp(~il; Haopin(£)a). (1.15)

It is often convenient to expand the density operator in terms of a set of

base operators {B;}. If the dimension of the Hilbert space defined by the base




functions is #, then the corresponding Liouville space is spanned by n? inde-

pendent operators, and the density operator can thus be defined

nZ

o(t) = 2.b;(t)B; . (1.16)

i=1
The choice of a basis operator set depends on the particular problem being stud-
ied. Three different sets used in this thesis; the first is based on the angular mo-
mentum operators. For a spin I = 1/2, the operators are I, I, and I,. For a sys-

tem contain N spins, the operators can be calculated from

N o
&=2*]EQ&, (1.17)
]=

where j identifies the j® spin, a.is x, , or z, and ¢j; is a coefficient which is one for
n of the spins and zero for the remaining N — 7 spins. In this text, in which the
spin systems are assumed to be one-spin systems, the basis set would then be
{EO, I, IL,1 Z}, with Eg being the identity operator. From this set, a second set of
operators known as spherical operators can be defined consisting of

{Eq,1y,1,,1_}. These operator are defined as
I=1, (1.18)
and
1 .
I, = iﬁ(lx +il, ). (1.19)

A third set of base operators used in this text is comprised of what are
known as fictitious spin-1/2 operators [6-8]. These operators describe a spin
with I>1/2 but behave for the most part like the spin-1/2 operators given

above. This set can be defined by

12 =2 ()rl-1s)s) (1.20)




I = 2 )el+lsKr). (1.21)

I = -;L(—[ Y|+ |s)r])- (1.22)

The commutation rules within a rs sub-manifold and between different sub-
manifolds are given in Appendix A.l. This set will prove particularly useful
when studying CPDAS in Chapter 4.

1.2 Rotations

This section will explain the fundamentals of rotations as pertaining to
NMR. More detailed explanations can be found in references such as [9-11].
First, we will define the Euler angles which describe the relationship of one ref-
erence frame to another. In other words, the Euler angles define what rotations
are needed to transform from the first frame to the second. For example, we
usually want to know the relationship of the principal axis system (PAS) of a
nuclear spin interaction tensor to that of the laboratory,

Principal Axis System M Laboratory .
In the case of a sample spinning experiment such as magic-angle spinning
(MAS), where the sample is spun at a frequency ®, about an axis oriented at an
angle @ with respect to the external magnetic field, we want to transform from
the PAS to the reference frame of the rotor and then to the laboratory frame of
reference,
Principal Axis System M—) Rotor M Laboratory .

Fig. 1.1 shows how the Euler angles, o, B, and v, define the necessary rotations to

transform a frame of reference, S, with axes X, Y, and Z, to that of reference

frame S”” with axis x, y, and z.




S"I Z
Rz(a)
X_ S “y
(a) y
X
Z
xS Z
SI
(b) y
RyAB)
X Y’
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SI"
Z" A Rz(y)
-l
(c) _\ y
X’ S v
X

Figure 1.1 The Euler angles (a, B, Y) are the set of angles which bring the refer-
ence frame S (the PAS frame) with axes X, Y, and Z into coincidence with the ref-
erence frame S’ (the laboratory frame) with the axes x, ¥, and z. (a) A rotation
R,()) about Z by the angle o puts the Y axis into the xy plane. (b) A rotation
R,(B) about the original Y axis now designated the Y" axis puts the X’ (originally
the X axis) into the xy plane. (c) Finally, a rotation R,.(y) about the Z” axis
(originally the Z axis and now coincident with the z axis) results in X” being

parallel to x, and Y” being parallel to z.




Mathematically, we can express the rotation of tensor T of rank /, T}, by

the Euler angles o, B, and yas

. 1
Tin= 3 D0, B,Y) Ty » (1.23)

m'=-1

where D,(f,)n(a, B,v) is a Wigner rotation matrix element of rank I which is defined
as

D (o, B,v) =), (B)e ™. (1.24)
The term dﬁ,l,)n(ﬁ) is known as a reduced Wigner rotation matrix element of rank
I. The reduced rotation matrix elements of rank I = 2 can be found in the Ap-
pendix A.2 in Table A.2 along with a method of calculating matrix elements of
other ranks. Other methods of calculating reduced matrix elements can be found
in the references given above and other text on angular momentum.

One important property of the Wigner rotation matrices is

D3(e,B,v) = did (B) = B(cosB), (1.25)
where Pj(cos 8) is the Ith order Legendre polynomial of cos 6. Of particular inter-

est are the Legendre polynomials of rank I = 2 and I = 4 which are given by,

Py(cos0) = %(3 cos? 6 — 1) (1.26)
and
Py(cos8) = %(35 cos* 8—30cos? 9+3). (1.27)

These polynomials will prove important in the explanation of magic-angle and

dynamic-angle spinning in Chapter 2.

1.3 Coherence Transfer Pathways
The concept of coherence transfer pathways is highly useful in the design

of phase cycles and in the general understanding of the fate of the various orders




of coherences through the course of a NMR experiment [12,13]. The following
description uses the terminology given by Ernst, et al. [1].

Each eigenstate |r) in high-field NMR has a magnetic quantum number
M, giving each coherence |r)s| a coherence order of p,; = M, -~ M,. During free
precession p,; is conserved; however rf pulses can introduce changes in coher-
ence orders. We expand the density operator o(t) in the manner given in eqn

(1.16) in term of operators classified by order p, where the base operator ¢7(¢) is

defined by
o"(t)=  Xcn(Br)sl. (1.28)

restriéted fo
Prs=pP

In eqn (1.28), only those pairs of r and s are included in the sum that fulfill the
condition p,; =p. At the beginning of an NMR experiment, if the systems is in
. equilibrium, p = 0. If we observe the signal with quadrature detection, our signal
is given by

S(t)=Tr{o(t), } (1.29)
and, as a result, only those coherence that follow a pathway such that they end
with p = -1 will contribute to the observed signal. It is quite common to have
multiple pulses in an NMR experiment, each pulse represented by a propagator
U; which describes its effects on the density matrix (eqn (1.5)). We can represent

such evolution of the density matrix as

UoP (1 Uit = 26" (8), (1.30)
j .

where ¢_and ¢, are the times just before and after the application of the propaga-
tor. Noting that a rotation ¢ about the z-axis transforms the density matrix in the

following manner,




e~ 0h P i = P PP | (1.31)
we can see that if the propagator U; is shifted in phase by ¢, then eqn (1.30) be-

comes,

) U;(¢;)0” (ti_ )ui((Pi)_l =3o” (ti+ )e'iAp"""' (1.32)
j

where
Ap; = p]-(t;')—p(t{) : (1.33)
Therefore, each coherence component undergoing a coherence change from
p — p; acquires a phase
o(Ap;, 9;) = o(Ap; 0)e4Pi¥i (1.34)
and the overall signal of the experiment is

S(9:.t) =A25(AP,-,<P,- =0, )¢ 4P (1.35)
Pi

We can select a particular order of coherence Ap” by summing the results of N;

experiments each with the phase of ¢; incremented such that

0 =528, k=01, N-1. (1.36)

N

We can determine the signal through Fourier analysis [14] as
1 N-1 ( 2n ) iAp'k
S(ap't)== X S k==, t | RN 13
(bp't)=5 Z kgt )™ (1.37)
where the only contributions to the signals are

Ap’tnN, n=0,1,2,.. (1.38)
We can obtain the weighting factor exp(-iAp’k2r/N) in eqn (1.37) by a variety of
means; for example, by shifting the phase of the receiver by

Qrerr = —Ap’k21/N. (1.39)
An example of using eqn (1.37) to calculate the selection of Ap” = -2 with a four-




step phase cycle is given in Table 1.1.

The calculation shown in Table 1.1 is tedious, especially for a multiple-
pulse sequence and luckily unnecessary in order to calculate a phase cycle for the
selection of a particular pathway. For a system with n pulses we can define each

coherence transfer pathway as a vector

Ap={Apy,Ap,....Ap,}. (1.40)
Each component of the vector describes the change of coherence with each pulse,

and the sum of the components is constant,

n
3 Ap; =-1 (1.41)
i=1

since each pathway begins with p = 0 and must end with p = -1 to be observable.

We can also define the phases of each of the n pulses as a vector

Table 1.1 Calculation of the signal of a four step phase cycle (N = 4) with selec-
tion of those coherence orders with a change of Ap’ =-2. In the first column the
notation S(Ap) symbolizes S(Ap;, ¢; = 0, t). Columns two through four in each row
represents the sum over each of the phases in the cycle (0°, 90°, 180°, 270°), with
the total being multiplied by S(Ap). The sum of each row divided by N is given in
the last column. The only non-zero contributions after the phase cycle are those

in the unshaded rows with Ap’ =-2+nN,n=0, 1, 2,....

/2
e

+i2n e—i2n

+5(+2) x(1 jl-e"i“e‘i“ =g i2m




0={01,02,-..,0,}. (1.42)

In analogy to eqn (1.39), we can shift the phase of the receiver by

Preor =—Ap-@=-3 Ap;0; (143)
1

to achieve the desired selection process.
As an example of using eqn (1.43) to calculate a phase cycle, consider the
pulse sequence in Fig. 1.2. The pathway we wish to select is represented by

Ap = {-1, +1, +1, -2}. Inserting the components of the vector into eqn (1.43) yields

Preor = P1 — O — O3 + 24 (1.44)

(90°), (90°)g, (90°), (180°),

1 1l N

/o \
N/ \

Figure 1.2 A typical coherence transfer path where the pathp=0—>-1 >0 — +1
—> -1, represented by the vector Ap = {-1, +1, +1, -2} is being selected. During free
precession the order of coherence is preserved, while the application of pulses
induce changes in the coherence order. Since this is assumed to be a one-spin
system, rf pulses generate changes of coherence between the orders p =0 and

p=%L

11




Table 1.2 Phase cycle for selecting the pathway given in Fig. 1.2 described by the
vector Ap = {-1, +1, +1, -2}.

¢ P 03 Oy Preor ¢ ) ?3 Qs Preor
0° 0° 0° 0° 0° g°  180° 0° 0°  180°
90° 0° 0° 0° 90° 90°  180° 0° 0°  270°
180° 0° 0° 0°  180° 180°  180° 0° 0° 0°
270° 0° 0° 0°  270° 270°  180° 0° 0° 90°
0° 0° 90° 0°  270° 0°  180° 90° 0° 90°
90° 0° 90° 0° 0° 90°  180° 90° 0°  180°
180° 0° 90° 0° 90° 180°  180° 90° 0°  270°
270° 0° 90° 0°  180° 270°  180° 90° 0° 0°
0° 0°  180° 0°  180° 0° 180°  180° 0° 0°
90° 0°  180° g 270° 90° 180°  180° 0° 90°
180° 0°  180° 0° 0° 180°  180°  180° g°  180°
270° 0°  180° 0° 90° 270°  180°  180° 0°  270°
0° 0°  270° 0° 90° 0°  180°  270° 0°  270°
90° 0°  270° 0°  180° 90°  180°  270° 0° 0°
180° 0 270° 0°  270° 180°  180°  270° 0°  90°
270° 0° _ 270° 0° 0° 270°  180°  270° 0°  180°

We can simplify phase cycles by realizing that is not necessary to phase cycle
every pulse. For example, it is not necessary to phase cycle the final pulse since
only the coherence p = -1 can be observed. The second pulse only needs to be
phase cycled by 180° to select the Ap = +1 and exclude the Ap =0 and Ap =+2
pathways, since, assuming a one-spin system, rotations are generated in the sub-
space defined by the operators I, I,, and I, which have coherence orders of 0,
+1, and -1, respectively; other values of p do not exist. The resulting phase cycle

is 32 steps long and is given in Table 1.2.

1.4 Nuclear Spin Hamiltonians

A variety of spin interactions influence magnetic resonance and for de-
tailed theoretical background the reader is referred to the many excellent books
on magnetic resonance [1-5], angular momentum [9-11], and quantum mechanics
[15-17]. Of the spin interactions discussed here, the Zeeman, electric quadrupole,

chemical shift, dipolar, and rf interactions, only the electric quadrupole interac-
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tion will be discussed in any detail as this thesis is primarily concerned with

quadrupolar nuclei.

Static Perturbation Theory
In the following discussions, static perturbation theory is used to calculate
the effects of the various nuclear spin Hamiltonians. Static perturbation theory is
described in detail in any number of qﬁantum mechanics text books and only the
results will be given here. Perturbation theory is useful when we have a Hamil-
tonian that can be expressed as
H=Hy+H, (1.45)
where H, < Hy. The eigenvalues and eigenstates of Hj are €, and |n), respec-

tively, such that
Hyln)=¢,|n). (1.46)
We can expand the Hamiltonian H as

H= Z(en +E(1) +E(2) +)I n><nl ‘ (1.47)

where E) are a series of correction terms to the eigenvalue g,. Only two of are

of interest here, the first-order correction

D = <n|Hp[n> (1.48)
and the second-order correction
o g WAL o

Terms with k> 2 are assumed to be small enough to ignore. Only the secular
part of H,, (the part that commutes with Hy) contributes to eqn (1.48), while only

the nonsecular part of H, contributes in eqn (1.49).
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The Zeeman Interaction
In high-field NMR, the strongest spin interaction present is almost always
the Zeeman interaction, the interaction of a magnetic dipole (the nucleus) with a

magnetic field. The Zeeman Hamiltonian is given by

H, =-myByl, = —hwgl,, (1.50)
where By is the magnetic field, the direction of which defines the z-axis of the
laboratory frame, and @y is the Larmor frequency. Since this is the strongest in-
teraction present, its eigenvectors and eigenvalues will be used as the basis set
when using static perturbation theory to calculate the effects of other interac-

tions. The Zeeman spin operator set in spherical operators (eqns (1.18) and (1.19

) is

Iy=1, (1.51)
and
I *+il
Iy= i(—"TEL) (1.52)
The matrix elements of this set are
(ImL|I m)=m (1.53)
and
1 —
(1 m|Iﬂ‘Imi1>=+ﬁ\[(1+m)(lim+1). (1.54)

The Electric Quadrupole Interaction

When dealing with a nucleus with an angular momentum of greater than
1/2, the electrical interaction of the nucleus with its surrounding becomes impor-
tant. For a spin-1/2 nucleus, the nuclear charge distribution is spherical and

therefore reorientation of the nucleus has no effect on its energy. For a quad-
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rupolar nucleus, this is not the case. Consider a nucleus with a charge distribu-
tion density o(7) interacting with a electric field potential V(¥). The classical
interaction energy Ep, would then be

= [o(F)V(F)d*7 (155

Volume

integrated over the volume of the nucleus. The electric field potential V(¥) de-
pends upon the spatial orientation of all the electric charges which originate from
the nuclei and electrons of the system of interest. Since a true analytical expres-
sion would be virtually impossible to obtain, the potential can be expressed as a

Taylor series about the center of mass of the nucleus:

v 2%V
VFE)=vV(0)+ Y o— Y +eeel (1.56)
( ) ( ) o=x,Y,z do r=0 2 o=x,Y,z ﬁaa‘aﬁ r=0
B=x,y,z
Substituting eqn (1.56) into eqn (1.55) yields
9V 3*v
Eg= ZeV(0)+ Y P, ol 2 py QaB > + e (1.57)
o=x,Y,2 r=0 g—x Y2 '3 =0
=X,Y,2

In eqn (1.57) the total charge density of a nucleus with atomic number Z is Ze, the
o. component of the electric dipole moment P is

Py = [og(F)d%F, ’ (1.58)

Volume

and the of component of the electric quadrupole moment Qgg is

foBo(F)d’F . (1.59)

Volume

The term of interest here is the third term of eqn (1.57); the first term is a constant
and independent of the orientation of the nucleus and the second term vanishes
because the center of charge and the center of mass of the nucleus are assumed to
coincide [2,18]. Higher order terms are assumed to be insignificant.

To simplify notation, the elements of the electric field gradient tensor are
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%V
Vg = ——
= 3038 o

(1.60)

By an appropriate choice of a reference frame, designated the principal axis sys-
tem (PAS) of the electric field gradient (EFG) and labeled by X, Y, and Z, the ten-
sor in eqn (1.60) will contain only three diagonal components Vyy, Vyy, and V.,

which are defined to fulfill the relationship,

Vzz| 2 Vyy| 2 Vx| (1.61)
The three components of the EFG in the PAS are used to define two other pa-
rameters, the field gradient of the EFG, eg,

eq=Vzz, (1.62)
and the asymmetry parameter 1
o ol (1.63)
Vzz

which describes the symmetry of the EFG. If the field gradient possesses cylin-
drical symmetry, then 1, is equal to zero. As the symmetry deviates from cylin-
drical the value of ng increases to its maximum value of one. If Vyy =Vyy =V,
then the quadrupolar interaction vanishes.

To simplify further calculations, the following traceless tensor is intro-

duced.

Qup = [3%;3 —Bop ZQ{ZJ = | Q(F)(B’xaxb —5aﬁr2)d37 (1.64)

1=X,Y,2 Volume

By substituting eqn (1.64) into eqn (1.57) and taking note of Laplace’s equation,

VIV = Vg +Vyy + V7 =0, (1.65)

the quadrupolar interaction energy can be written as
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Eg =-i- ﬁz QupVop - | (1.66)
o B=xy,2
We must now discuss the quantum mechanical derivation of the quad-
rupolar Hamiltoﬁian. The quantum mechanical equivalent of the charge density
o(F) is the operator p(¥) defined by

pF)= Z q:(7 - 7) (1.67)
The vector 7 gives the position of the i** nucleon in the nucleus with charge g; .

The quadrupole tensor operator Qg can be obtained by substituting eqn (1.67)
into equation eqn (1.64) yielding

Qup =T ¢(30B; —8g17) (1.68)
1
The quantum mechanical Hamiltonian is then

1
Hg = 3 2.QupVop (1.69)
o.B

The components of the electric field gradient Vg represent expectation values of
an EFG tensor operator.
We can express the above operators in terms of irreducible second-rank

spherical tensors TQ and R2 where the five components of T are

e
T20=§—\/—g—§(3zf—r]?),. (1.70)
TR 3£ Sty
T = 2% (]izy]), (1.71)
and
e .
T8, =ZZ(x]- xiy;). (1.72)
]

The five components Of Rzgm are
RQ =_{—V 1.73
20 9 zz 7 ( . )
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R =HViz iV ), (1.74)

and
1 . :
RE, =5(Vxx ~V,, £2iV, ). (1.75)

The quantum mechanical Hamiltonian can be expressed in term of these irre-

ducible spherical tensors as

2 \mrQ pQ
Hy= 3(-1)"TER (1.76)

=2 2om !

We can now take advantage of the Wigner-Eckert theorem [10,11,15]. This
theorem essentially states that all irreducible tensors of a given rank are propor-
tional to one another. For a set of wave functions with quantum numbers J, M, o,
J, M, and o, where o can represent a set of quantum numbers describing the
system, the theorem can be expressed as

(M[Ty | TM) = (Im, | M’
The quantity (l m, " M’

] MYoJ|T3oT’) - (1.77)
J M> is a Clebsch-Gordon coefficient and contains the

geometric information about the system. A discussion of Clebsch-Gordon coeffi-
cients and their properties can be found in texts on angular momentum and
quantum mechanics such as reference [11]. The quantity <oc JIT e’ ]’} is called
the reduced matrix element of T; and is a constant which depends only upon o, J,
o/, J', and I. Therefore, it is independent of reorientation, depending only upon
the physical properties of the system. By using the Wigner-Eckert theorem, we
can relate Tp,,’s that are a function of different variables:

([T (e 1)
(T 1)

The Clebsch-Gordon coefficient is eliminated since the values [, m, |, M, J’, and M’

o J M) = (o] M{Ty (s)

(o] M[Tyu(r) o ]’ M’y (1.78)

are the same for both tensors. The reduced matrix elements depend upon the

operator in question and form the proportionality constant describing the rela-
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tionship between the two sets of tensors.

Using eqn (1.78) we can now show that

(@I mQqplocIm’) = <a Iml—g—(IaIB + g1, )~ g1

aIm’>C. (1.79)

The value Cis a constant and can be calculated by evaluating eqn (1.79) using the

values m=m’=] and a=f=z.

<aﬂlz 322 —r? aﬂ> = <a11 312 -12|a11>c (1.80)
i
We define the nuclear constant eQQ, the quadrupolar moment, as the matrix ele-
ment
eQ = (I0)Q,,|ITor). (1.81)
Equation (1.80) then becomes
eQ=CI(2I-1), (1.82)
and, therefore, the constant Cis then
eQ
C= . 1.83
1(21-1) (1.83)

Two other constants are typically defined: the quadrupolar frequency wg,

2
_€qQ (1.84)

Q= 212r-1)r"

and the quadrupolar coupling constant, C,

2
Co=t2. (1.85)

The quadrupolar Hamiltonian in eqn (1.76) can now be written as

2 \maAQ TQ
Hy=hog 3, ()AL, (1.86)

2m
m=-2

where the components of TZQm can now be expressed as




(1.87)

(1.88)

T8, =I%4. (1.89)
The tensor Agm corresponds to the tensor RY with components given in

eqn (1.73) to eqn (1.75) but redefined, such that

2
A2m = 2 Dr(rf’)m(a’ B'Y)pgm’ (1'90)

m'=-2

where p%n are the components of the EFG in the principal axis system,

3
pSh = \E , (1.91)

p%y =0, (1.92)
and
1 (Vxx " Vyy) 1
_1 1 1.93
Pra=yy, T2 (199

The angles o, B, and vy are the Euler angles which define the orientation of the
PAS with respect to the laboratory frame of reference, the relationship between
which is illustrated in Fig. 1.1.

Under high-field conditions the Hamiltonian in eqn (1.86) is to be a small
perturbation upon the Zeeman Hamiltonian: ®g <« . We can therefore use
static perturbation theory as explained in eqns (1.45) through (1.49) to calculate
the effects of the quadrupolar interaction on high-field NMR spectra. The first

order correction is calculated using eqn (1.48),
EQQ) = (Im|Hg|1m). (1.94)

Since only the secular part of Hj, contributes to the first order correction we may
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represent the Hamiltonian to first order as

' 10)]
Hp = hopARTS = -J_éQ—A%(BIZZ -12). (1.95)

The first-order correction to the eigenvalue, EQQ) ,is

hro
E{1Q) =T6QA2QO(3m2 ~I(I+1)). (1.96)
We are interested in the case of half-odd integer nuclei and, in particular, the
central (1/2—-1/2) transition. We must therefore calculate the splitting in the
energy levels of this transition. The splitting of a single quantum transition

(m — m - 1) can be calculated as

3ho
1
AE£11—>Q)m—1 /“6Q

The splitting for the central transition is therefore

AS(2m=1). (1.97)

1
AED) 1, =0, (1.98)
and we must calculate the second-order correction to the eigenvalue to see if it

makes a significant contribution to the Hamiltonian. Using eqn (1.49), the sec-

ond-order correction to the eigenvalue is

(20) _ <In|HQ|Im><ImIHQ[In>
E . (1.99)
n#m hay (n - m)
Inserting the Hamiltonian from eqn (1.86), we get
2
L .—2‘,2<In!( 1) a9 ]T§]Im> <Im| (1) A T8im)
E2Q =0 3 J== (1.100)

9 nzm (n m)

Using eqn (1.100) and the values of the matrix elements of TS (given in Ap-

pendix A.3), we can calculate AEg/zQ_)) _12 @8

o2
2
AE%/ZQ—Z L =(I(I+1)- 3/4)—?(2A%A2Q_1+A§2A§_2). (1.101)




In order to simplify this expression, we will combine the A,,,’s, forming
new zero-, second-, and fourth-rank tensors. First, we will define the second or-

der quadrupolar frequency, Qg as

2 AQ A8
®
Qp =2(I(1+1)-3/4)—< 5 2om (1.102)
Wo m=1 m

Substituting in the definition of A,,, found in eqn (1.90), we express the tensor
product as
Q42 =% % DPRLDAD (RS
AsnAsm = kZZk,z2ka(R)p2ka’—m(R)p2k’ : (1.103)
where R represents the set of Euler angles ¢, B, and vy that describe the orientation
of the EFG with respect to the laboratory reference frame. A product of two sec-
ond-rank Wigner rotation matrices can be expressed as a sum of rotation matri- |

ces, yielding

D@ (R)D? _(R)= = 4(2 m, 2 —ml O

DU o(R). (1.104)
Defining n = k + k’, eqn (1.103) can be rewritten as

AL.AL = T (2m2-mfl0) D (2,2 n—Kn) DY)(R) p%; S, - (1.105)
1=0,2,4 =2 n=—4
We then define the tensors, alQn , such that
af? = s (2K, 2n-Kl n)pSpS, - (1.106)

The various components of a,% , given in Table 1.3, can be calculated by evaluat-
ing the Clebsch-Gordon coefficients and using eqns (1.91) through (1.93). Eqn
(1.102) can then be expressed as

Qo =2(10+1-34)°2 3 2(<2m 2m mllo)] _%(Dfl’%( )afy) (1107)

®g 1=0,2,4 m=1

The 4, ’s are used to define a second set of tensors, ﬂ% ,
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2 2 I
AR =A1(1+1)- 3/4) . mf_.l[@m 2m i 0>] f‘, (Df,%(R)aﬁ,). (1.108)

n=—4

The !l =0, 2, and 4 components of A 1% are given by

2
A9 = ——J1_5—(1(1+1)—3/4)2—Qa00 , (1.109)
2
JﬂZQO = 2\/%(1(1"'1) 3/4) g _2_4an0 (R)aZn ’ (1-110)
and
w2 4
AR = J—( (1+1)- 3/4)—0—)-% 24D$,"3(R)a4n- (1.111)

Inserting eqns (1.109) through (1.111) into (1.107), the second-order quadrupolar
frequency Q, can then be expressed as

> A2 (1.112)

1=0,2,4
The Chemical Shift Interaction

We can express the chemical shift Hamiltonian as

Table 1.3 Values for a,% (eqn (1.106)). M, is the quadrupolar asymmetry parame-

ter.

n
0 +2 +4
2

0 _2_3.5.["?@“ _ _
I12 3 _2_["1_(23__1 ?’_n —

2V7| 3 7 R
4 i_[_néﬂj 3 . %
70| 18 27 © 4

23




l
Hes=hy 3 X(-)"T5 R, (1.113)
1=0,2 m=—1

The chemical shift tensor will be indicated by 8C5 and in its principal axis frame
(PAS) has the components 8yy, 8yy, and 8;z. The trace of the chemical shift ten-

sor is proportional to the isotropic chemical shift and is defined by
5SS = %(5%( +355 +353), (1.114)
the chemical shift anisotropy is defined by

3
AS =E(6§§ -3%), (1.115)

and the asymmetry parameter is given by

CS _ sCS
_O%x —dyy

Nes = =CS  <CS ° (1116)
852 -85
The components of T are given by
TS =By, (1.117)
cs _ |2
T20 =\/gB0IZ (1.118)
T = :/EZBOIiI (1.119)
and
Tyip =0. (1.120)

The spatial tensor R is related to the spatial tensor p©°, defined relative to the
PAS of the chemical shift interaction, as
!
Rjn=_Di(ouB 1055 (1121)
m'=—
where the components of p* are

PG =85, (1.122)
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P = \EM, (1.123)

S5 =0, (1.124)

and

CS  «CS
cs _ Oxx—Oyy

2482 = ) (1.125)

Using the above equations we can express the Hamiltonian as the sum of an iso-

tropic component and an anisotropic component.

2
Heg = hogdSL, +hy 3 (-1)"TSSRSS,, . (1.126)

m=—2
Again using static perturbation theory, to first order only the secular part of the
Hamiltonian remains, allowing us to discard terms with m > 0. The Hamiltonian

can then be written as
Heg = hogdS L, + TS RS = hogdS I, + oo \ERZCOSIZ (1.127)

The first term of eqn (1.127), the isotropic chemical shift, is normally incorpo-
rated into the Zeeman interaction and appears as an offset to the Larmor fre-
quency.- The second term eqn (1.127) is known as the chemical shift anisotropy
(CSA). It will prove useful to express eqn (1.127) in a form similar to that of the
quadrupolar Hamiltonian in eqn (1.112). We can define a chemical shift fre-

quency Qcs, such that
Qcs = l % qul%s , (1.128)
where
AL = 04855 (1.129)
and
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A5 =C°0\ER§05- (1.130)
If we wish to describe a system that has both quadrupolar and chemical

shift elements, we can express the resulting Hamiltonian as

H=#Ql,=h ¥ dApl,. (1.131)
1=0,2,4

The irreducible tensor ¢, includes contributions form both the chemical shift
and quadrupolar interactions, since we can combine the chemical shift and quad-

rupolar tensors as follows:

Ao = A+ A5 (1.132)
Az = A%+ A5 (1.133)

and
Ao =AD. (1.134)

The Dipolar Interaction

The dipolar interaction Hamiltonian between two spins I; and I; can be ex-

pressed as
2 mDy 4 Djj
Hp, =-hop, 2&-1) T, i Ay (1.135)
m:._
where ®p, is defined as
op, = @ . (1.136)
hj
The components of T" are given by
D; 1
T, = 75—(312,1-12/]- -1;-1;), (1.137)
D; 2
Ths) =_é‘“(1z,i1ﬂ,j +Iil,iIz,j)/ (1.138)

and
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D;
T2i12 = Iil,iIil,j . (1.139)
The components of R ¥ relative to the PAS frame of the dipolar interaction are

pl = —?21 | (1.140)

D; _ Dy

Pat1 =Pair =0. (1.141)
Analysis of the dipolar interaction is complicated and commonly computed with
the method of moments [19]. For the purposes of this thesis, the dipolar Hamil-

tonian can either be expressed for a homonuclear interaction as

1 D;
Hp=1Yop —=(31,;1, - 1;-1.)A,7 (1.142)
i#f

or for the heteronuclear case as

3 D
Hp=h ) op —+—=I1,5,A4. 1.143
D % DIS«/E 2924120 ( )

pairs

Interaction with Radio-Frequency Irradiation

The Hamiltonian describing a rf pulse of frequency ® and field strength B,
is
H, = ~inyBy[cos(wt +0)L +1, sin(at +9)] (1.144)
To simplify further calculations, the Hamiltonian is transferred into a rotating
frame of frequency ®. The effective Zeeman and rf irradiation Hamiltonian can
then be written
Hog = h(0 - 0p) — hoy (I, coso+ I, sin 9) (1.145)
where ®; = yB;. Note that in the rotating frame, the Larmor frequency appears as
an effective frequency ® — @y, and for an on-resonance pulse (® = @) the rf pulse

induces rotations about an axis is the xy-plane. In such a case the rf Hamiltonian
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can be expressed (assuming ¢ = 0) as

HRF = '—h(l)llx. (1.146)

28




Chapter 2
Dynamic-Angle Spinning

Solid state nuclear magnetic resonance (NMR) spectroscopy of the central
(1/2 <> -1/2) transition of half-odd integer quadrupolar nuclei can yield infor-
mation about the nuclear quadrupole interaction, which in turn can be correlated
with the structural properties of a material [20-24]. As seen in the previous
chapter, the central transition is broadened by the second-order anisotropic
quadrupolar interaction often making the resolution of multiple-sites within a
sample impossible. Solid state NMR techniques, such as magic-angle spinning
(MAS) [25,26] and variable-angle spinning (VAS), can through the use of sample
spinning, achieve high resolution spectra of spin-1/2 nuclei but fail to completely
average the quadrupolar anisotropy. Dynamic-angle spinning (DAS) has been
shown to average such broadening, producing narrow lines and resolution of
crystallographically distinct sites for a variety of samples [27-32]. In this chapter,
the basic technique of DAS will be explained and demonstrated using the spin-
3/2 nucleus 87Rb [33].

2.1 Magic-Angle Spinning

We will start our analysis of the effects of sample spinning for the simpler
case of the chemical shift anisotropy (CSA), using the chemical shift Hamiltonian
in eqn (1.128). If we rotate the sample at a frequency of ®, about an axis oriented
at an angle 8 with respect to the magnetic field, then the chemical shift frequency

g becomes
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I
Qcs(t) = 3z 3 lDf,ﬁ{)(m,t, 6,0).4}1 - 2.1)

In eqn (2.1) only those terms with m # 0 are time dependent and we can rewrite

the Hamiltonian, separating the time-independent and time-dependent terms, as

2
Qcs(t) = oo+ Dig (0,4,0,0). 030+ 3 ZDS,%(“)J, 0,0). 1, - (2.2)
h=—
mz0

The final term in eqn (2.2) is time dependent since it contains the terms
exp(-imw,t) and, as a result, is modulated by frequencies of mw,. This modula-
tion appears as the presence of spinning sidebands at multiples of the spinning
frequency. If ®, is greater than the width of the static powder pattern, then the
effect of this modulation is negligible and the last term can be ignored. For this
discussion on MAS, it will be assumed that the spinning frequency is sufficiently
fast and the last term will be dropped. In Chapter 3, we will discuss methods of
removing sidebands when the last term cannot be ignored, but for now we can

rewrite eqn (2.2) using eqn (1.25) as

Qcs(0,B,v,8) = Aoo + Aao(0t, B, V) Po(c0s6) . (2.3)
In eqn (2.3), the orientational dependence has been given explicitly. The first
term, ¢y is isotropic (eqn (1.129)) and therefore contains no dependence upon
the orientation of the sample. In the second term, ¢%, the CSA, is dependent
upon the Euler angles defining the orientation of the chemical shift tensor to the
frame of the rotor (eqn (1.130)), and therefore will lead to a broadening of the
spectrum because of the distribution of orientations present in a powder sample.

However, if we can manipulate the spins in a way such that
P,(cosB) = —;—(3 cos® 0 - 1) =0, (2.4)

then the chemical shift anisotropy can be averaged to zero, ie., (ﬂ20> =0. The
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angle that solves eqn (2.4), the so-called second-rank magic angle, is

0, = cos'l[—j—g—) =54.74°. . (2.5)

2.2 Dynamic-Angle Spinning

The Dynamic-Angle Spinning Experiment

When dealing with the second-order quadrupolar interaction, the situa-
tion is more complicated, but we can examine it in a similar manner. Starting
with eqn (1.112), we calculate the frequency when the sample is rotating at a fre-
quency ®, around an axis oriented at angle 6 with respect to the magnetic field.

The quadrupolar frequency becomes time dependent and is expressed as

1
Q)= Y Y DU(,t6,0).4,,, - (2.6)
1=0,2,4 m=—I

Again, we separate the time-independent from the time-dependent terms,

yielding
!
! !
Q)= 3 Di(0t00)do+ T 3 Dh(0400)d,.  (27)
1=0,2,4 1=0,2/4 m=]
ms

As in the case of MAS, the last term is time-dependent and can generate side-
bands in the spectrum. For this discussion of DAS the spinning frequency will be
assumed to be great enough to render the second term negligible. We can again

expand eqn (2.7) using eqn (1.25), resulting in

QQ ((X, Bl "{,9) = quOO + JﬂZO(ur B/ Y)PZ(COS 9) + Jﬂw(ar B,'Y)P4(COSG) (28)

As in the case of the CSA we find we have an orientationally independent term,
(2Q)

iso 7

which will be defined as the isotropic second-order quadrupolar shift, 8
(defined in Hz)
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Figure 2.1 Plot of the second- (solid line) and fourth-rank (dashed line) Legendre
polynomial of cos 8 vs. 8. As shown, Py(cos ) is zero when 8 = 54.74° while the
first two zeros of Py(cos 0) are at 6 =30.56° and 6 =70.12°. The second- and

fourth-rank polynomials have no common zero.

(_ZQ)= =—3(I(I+1)—3/4:)C2 1 _1"_2_
O =l 2m 40vI2(21-1)2 © MEN 29)

where Cj, is defined in eqn (1.85) and v, = wp/2n. We also have an orientation-
ally dependent term that is scaled by Py(cos 8) and a second orientationally de-
pendent term that is scaled by P4(cos 6). The sum of these two orientationally
dependent terms will be defined as SE;IQS}, .

We would, of course, like to find an angle 8 where both P,(cos 6) and
P4(cos ©) are zero simultaneously, so that <6ﬁ%> =0. However, as seen in
Fig. 2.1 there is no single angle where both Py(cos 0) and P4(cos 0) are zero. Note
that there are two fourth-rank magic angles, 30.56° and 70.12°, where the fourth-

rank Legendre polynomial is zero; neither of these angles results in a zero sec-

ond-rank polynomial. We can, however, find two angles that will yield the de-
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sired averaging. One such experiment is double rotation DOR [34,35], where the
sample is spun about two axes simultaneously. The axis angles chosen are the
zeros of the second- and fourth rank Legendre polynomials, 54.74° and either
30.56° or 70.12°.

A second solution is dynamic-angle spinning (DAS) where the sample is
spun about two different axes sequentially so that the net evolution period at
both angles results in an averaging of the anisotropy to zero. Such a condition

can be met if we can find a set of angles which solve the equations,

x1P2(C0391)+X2P2(C0592) =0 (210)
and
x1Py(cos8; )+ x,Py(cosB,)=0 C@11)
80° 0,
60°™1 54.74°
2
0
2 o
8,
20° =
0° =7 l | | 1
1 2 3 4 5
k

‘Figure 2.2 Solutions to eqns (2.10) and (2.11) plotted as DAS angle pair (8¢, 6,)
vs. k. Solutions only exist for k=0.8 to k=5.0 and vary continuously from
01 = 0° to 87 = 39.23° and from 0 = 63.43° to 6, = 90°.
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¢

where x; and x, are the fractions of time spent at the angles 6; and 6,, respec-

tively. To solve these equations we define a constant k such that

k=22 (2.12)

X1

The pairs of angles which solve eqns (2.10) and (2.11) are

0, = cos‘l(, }lﬂs@] (2.13)

0, =cos_1[ 1-3J1/5k VVSk] (2.14)

3

and are plotted in Fig. 2.2. For a solution to exist k must be between k = 0.8 and
k=5.0. The allowed values of 6; and 8, are between 6; = 0° and 6; = 39.23° and
between 9, = 63.43° to 6, = 90°, respectively. No angle pair contains the second-
rank magic angle 54.74°. However, the two fourth-rank magic angles, 30.56° and
70.12°, are an allowed set of DAS angles with k = 1.87.

Fig. 2.3 shows the basic DAS pulse sequence. As seen in the figure, an
evolution period of t;/(k + 1) at angle 8; with respect to the external field is fol-
lowed by a /2 storage pulse that stores the magnetization along the z-axis thus
allowing for the hop to the second angle 6,. After a second evolution period of
kt;/(k +1), a DAS echo forms. The phase cycle, which can be calculated using
the coherence transfer pathway given in Fig. 2.3 with the method explained in

Chapter 1, is given in Table 2.1.

Table 2.1 Phase Cycle for experiment in Fig. 2.3.

P P2 O3 Q{191 G2 O3 G || P11 P2 D3 P || P11 P2 O3 O,
0° 0° 0° 0°f] 0° 90° 0° 270°|| 0° 180° 0° 180°|| ©0° 270° 0° 90°
90° 0° 0° 90°|] 90° 90° ©0° 0°f| 90° 180° 0° 270°|| 90° 270° 0° 180°
180° 0° 0° 180°({180° 90° 0° 90°|[180° 180° 0° (°||180° 270° (Q° 270°
270°  0° 0° 270°([270° 90°  0° 180°{[270° 180° 0° 90°||270° 270° 0° (Q°
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kt,/(k+1) m
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b/ (1)

o0 0, /
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Figure 2.3 The basic DAS pulse sequence consists of a /2 pulse followed by an

evolution period of ¢1/(k + 1) while the sample is spun about an axis oriented at
an angle 6; with respect to the external field (the direction of which defines the z-
axis). A second ©t/2 pulse stores the magnetization along the z-axis to allow for
the hop to the second angle 0,. After a second evolution period of kt,/(k + 1), a
DAS echo forms, and one point in the isotropic spectrum can be collected. By in-
crementing 1, a two-dimensional spectrum can be taken. The desired coherence

transfer pathway is shown at the bottom.

Pure Phase DAS
The pulse sequence in Fig. 2.3, leads a two-dimensional spectrum with
phase-twisted lineshape, which means that the lineshape contains a mixture of
absorptive and dispersive Lorentzian elements. The signal arising from a two-
dimensional experiment can be expressed as
St tp) = ¢ (+12)/Ta =ity =5ty (2.15)
where Q; and Q, are the frequencies for a given peak in the first and second di-
mensions, respectively, and 1/2T) is the linewidth. The first Fourier transform

with respect to ¢, gives
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S(t1, 0,) = ™1/ Mg N[ A, Q) +iD(05, 2] (2.16)

where A(®,, ), the absorptive Lorentzian lineshape function is
: L

Alw,Q)= o —Q)2T22 (2.17)
and D(®,, ,), the dispersive Lorentzian lineshape function is
D(w,Q) = 1&1)@——&2)?%2 . (2.18)
The second Fourier transform produces
S, 07) =[A(@1,Q1)A(02,2,) - D(0,Q;)D(02,Q,)] .19

+[ A(@;,21)D(0, Q) - D(0;, 2 )A(@2, Q)]
As can be seen in eqn (2.19), the real component of the signal contains both ab-
sorptive and dispersive terms, which leads to an undesirable lineshape that re-
quires taking the magnitude of the data.

Several of the traditional methods of producing pure-phase spectra, in-
cluding the method of States et al. [36], time-proportional phase incrementation
(TPPI) [37,38], and whole echo acquisition [39] have been used to produce pure-
phase DAS spectra; details can be found in references [27,40-42].

Most of the spectra presented in this thesis have been obtained using

whole-echo acquisition in which a pulse sequence of the form

T/ 22—t popy—T—acquisition (2.20)
is used to refocus the signal and produce an echo. If the entire echo is collected,
the signal is of the form

S(t1, tz) - e_(tZ_tec}zo)z/ T3 e“igz(tz‘fecho)e“tl/ Tt (2.21)

A Fourier transform with respect to t, followed by a phase correction of ¢,
applied to the ®, dimension, and then a Fourier transform with respect to ¢;

gives
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S, @2) = Ay (02,Q,)[ A(01, Q) —iD(w;, Q)] (2.22)

where

Ay, Qp) = e 0 )T /4 (2.23)

giving a pure-absorption mode two-dimensional spectrum.
The method of States, in which a hypercomplex data set is collected, is
also used on occasion in this thesis. Two data sets are acquired, the first cosine
modulated in ¢, and the second sine modulated in t;. The resulting signal can be

expressed as

S.(t1,t2) = cos(Qqt; )e 2l Ta itz (2.24)

and

Ss (tll tz) = sin(Qltl )e—(t1+t2)/Tze_i92t2 . (2.25)
A Fourier transform with respect to £, is performed on each data set and then the
data sets are combined to form a data set whose real component is Re[Sc(tl,coz)]

and whose imaginary component is Im|S,(t;, ®,)]. The result is given by

S(ty, 0,) = A(m,,Q, )e 1/ T2e (2.26)

A pure-phase data set results when eqn (2.26) is Fourier transformed with
respect to t,. The phase cycles necessary to obtain a hypercomplex data set can
be calculated using the coherence transfer pathways method described in Chap-
ter 1 by recognizing that both the p = +1 and p = -1 pathways must be collected
in the #; dimension. The sum of the two pathways produces a cosine modulated

data set and the difference produces a sine modulated data set.

Multiple Field DAS
The isotropic shifts observed in the F; dimension of a DAS spectrum can

be expressed as




8obs = agg +8$so )' (2-27)

where 85 is the isotropic chemical shift and 8( 2Q) is the second-order isotropic

quadrupolar shift, given in eqn (2.9). Evaluating the constants in eqn (2.9), the
second-order quadrupolar shift may be written
T2 1
529 = 128x1070 P2 2.28
iso HZ Ql w2 BO ( )

where the quadrupolar product, Py, is defined by

nZ

Note that, in ppm, the isotropic chemical shift is independent of field strength
while the second-order quadrupolar shift is proportional to the inverse of the

Larmor frequency. By measuring the total isotropic shift at various field

strengths, we can calculate 8, and Pg, using the equation
8o = 0y —| 128 %1070 — T 5 B3| = L (2.30)
Hz? | ©\ B

Note that the values of Cg and 1 are not uniquely specified by P; an inde-

pendent method, such as simulations, must be used to determine these values.

2.3 Dynamic-Angle Spinning of Rubidium-87

Alkali metals such as rubidium are important in a number of areas, serv-
ing as promoters in the heterogeneous catalysis of ammonia synthesis [43] and
the oxidative coupling of methane to yield ethane and ethene [44]. Rubidium is
an important component of some glasses [45], and it has been shown that buck-
minsterfullerene, Cg, doped with Rb metal becomes superconducting with a
transition temperature of 28 K [46].

In order to assess the applicability of dynamic-angle spinning NMR to
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rubidium and its potential to yield structural information about materials such as
those listed above, Rb MAS, VAS and DAS spectra were obtained for five inor-
ganic rubidium salts: RbCl, RbClO,, Rb,SO,, Rb,CrO, and RbNO;. We show
that substantial narrowing of the spectral lines occurs in DAS over MAS or VAS.
Using pure-phase MAS-detected DAS experiments together with single site
simulations and phase-modulated DAS experiments at several field strengths,
we have extracted quadrupolar parameters for the various 8Rb sites in each
compound. The static lineshapes of all of these compounds have previously
been studied by Cheng et al. [47], in order to obtain values for quadrupolar and
chemical shift parameters. Crystal structures for all of the compounds RbCl [48],
RbClO, [49], Rb,CrO, [50], Rb,SO, [51], and RbNO; [52,53], have also been de-
termined previously and are used to identify the number of inequivalent sites in

each compound.

Experimental

All rubidium compounds were obtained from Alfa Products, Morton
Thiokol, Inc., or Aldrich Chemical Co., and were used without further purifica-
tion. Spectra were acquired at 7.0 T (98.55 MHz), 9.4 T (130.89 MHz) and 11.7 T
(163.62 MHz), using the probe design described in reference [54] and the pulse
sequences given earlier and shown in Fig. 2.4. The 81Br signal in solid KBr was
used as an internal standard for calibration of the magic angle. All spectra are
referenced relative to aqueous 1 M RbNO; as an external frequency standard.
Either 256 or 512 complex points were acquired in ¢, and between 128 and 512
real points in #;. Spectra were acquired with 1.0 s relaxation delays and pulses
selective for the central transition of approximately 5 us (B; ~ 20 G). Hopping
times for the reorientation of the rotor axis were about 30 ms. Normal rotor

spinning speeds were between 6.5 and 7.8 kHz. All VAS, MAS, and static spectra
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Figure 24 DAS pulse sequences used for experiments on 8Rb. The pulse se-
quence in (a) gives a phase-modulated data because the entire echo is not ac-
quired, while the pulse sequence in (b) adds a second hop to the magic angle af-
ter the second DAS evolution period. Pure phase data was collected by taking a

hyper-complex data set in £,.

were acquired using a Hahn-echo pulse sequence. Procedures for performing

simulations can be found in reference [55].

Results and Discussion
Figs. 2.5 and 2.6 show the VAS and DAS spectra, respectively, of &Rb at
11.7 T in RbCl, RbClO,4, Rb,SO,, Rby,CrO, and RbNO;. In all cases except for

RbC], there is narrowing by over an order of magnitude in the high-resolution
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DAS dimension over the MAS spectra. The MAS spectrum of the RbCl (Fig. 2.5a)
gives a slightly narrower line than the DAS spectrum (Fig. 2.6a). This is as ex-
pected since the rubidium nucleus is in an environment of cubic symmetry
within the crystal [48]; therefore, there is no second-order broadening. Both
DAS and MAS will average first-order quadrupolar and chemical shift
anisotropy, but only MAS will average the homonuclear dipolar interaction.
This is because multilinear homonuclear terms such as I I,,...I, (eqn (1.135))
created during the first DAS evolution period are not stored during the hop and
therefore cannot be refocused during the second DAS evolution period. The
additional broadening in the DAS spectrum of RbCl arises from the scaled
homonuclear dipolar interaction. For a discussion on the DAS dipolar linewidth
refer to references [55] and [56].

The MAS spectrum of RbClO, (Fig. 2.5b) yields a well resolved powder
pattern which may be simulated easily (Table 2.2). These simulations agree
completely with the isotropic d;emical shift and quadrupolar parameters de-
termined by the DAS measurements (Fig. 2.6b) at the two different fields. The
87Rb VAS spectrum of Rb,SO, (Fig. 2.5c) shows that two powder patterns cen-
tered at -18 and 33 ppm can be resolved. The 79.19° spectrum is shown instead

of the MAS spectrum because the 79.19° spectrum is significantly narrower.

Table 2.2 Results from simulating single-site Rb MAS/DAS spectra of RbClO,

and RbNO, taken at 11.7 T.
85 /ppm  Pg/MHz  Co/MHz o
RbCIO, 162+10  321+£005  320+005 010005
262+10  183+005 183005  0.12+0.05
RbNO, 268+10  239:007  207£005 100005
309+10  191+006  185+005 048005
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Figure 2.5 87Rb VAS spectra at 11.7 T of (a) RbCl at 54.74°, (b) RbClOy at 54.74°,
(c) RbySOy at 79.19°, (d) RbyCrO, at 54.74°, and (e) RbNO; at 54.74°.
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Figure 2.6 87Rb DAS spectra of (a) RbCl (b) RbClOy (c) RbySOy, (d) RbyCrO,,
and (e) RoNO3.
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These lines narrow substantially under DAS (Fig. 2.6c) to give two sharp peaks
corresponding to the two crystallographically distinct rubidium sites in this
compound. One of these resonances is clearly present at SIL7T =34 ppm, while
the upfield site is broken into spinning sidebands. Assignment of the line at
81177 = —10 ppm to the isotropic resonance position of the second site was made
by comparing DAS spectra taken at spinning speeds of 5.3 and 6.5 kHz.

The DAS (Fig. 2.6d) and MAS (Fig. 2.5d) spectra of Rb,CrO, show a single
site with prominent sets of spinning sidebands. The isotropic line was assigned
by performing DAS at two different spinning speeds. However, there are two
crystallographically distinct rubidium sites in Rb,CrO4 [50]. The large Cg,
(~12 MHz) for the second site [47] makes it unobservable because the total in-
tensity is distributed over a bandwidth that is too broad to be excited with 5 ps rf

pulses.

The MAS spectrum of RbNO; (Fig. 2.5e) consists of three overlapping

Table 2.3 Results from DAS experiments of various rubidium compounds at 9.4
and 11.7 T. Sgg and P were determined using eqn (2.30). } This site was too

broad for detection.

85 /ppm S [ppm 8% [ppm Py / MHz
RbCl 127 £1 127+ 1 127 £2 ~0
RbClO, -28+1 23+ 1 142 3.1+03
Rb,SO,4 25+ 1 -10+1 16 £2 53+0.2
29+1 34=+1 42 +2 30+03
Rb,CrO, 27 +1 21+1 -11+2 3.3+0.3
i I ¥ I
32+1 -29+1 24+ 2 24+04
RbNO; 36+ 1 -32+1 25+ 2 28+04
37 +1 34 +1 29 +2 24+04




powder patterns which give rise to narrow, resolved lines under DAS (Fig. 2.6e).
In Fig. 2.7 is the two-dimensional MAS-detected DAS spectrum of RbNO; taken
with the pulse sequence in Fig. 2.4b at 11.7 T. Each of the three sites is resolved
in the isotropic DAS dimension and correlated to its MAS powder pattern. The

cross-sections through the MAS powder patterns in the F, dimension are shown

1600

MAS Dimension (Hz)
o
=

-1600 . . ! T y 7 Y
-2600 0 2600

DAS Dimension (Hz)

Figure 2.7 Two-dimensional MAS-detected spectrum of RbNO, taken at 11.7 T
with the pulse sequence in Fig. 2.4b. MAS powder patterns for each site are
separated by their total isotropic shift.

45




10 —

Jk )
-30 — (b)
~
:Jk (C)
l | | |
-20 35 -50
50 Frequency (ppm from 1M 87RbNO,)

Figure 2.8 Single-site MAS spectra with simulations overlaid taken from Fig. 2.7.
Slices through the isotropic DAS dimension are at (a) -29 ppm, (b) -32 ppm, and
(c) -34 ppm.

cross-sections through the MAS powder patterns in the F, dimension are shown
in Fig. 2.8 for each of the three isotropic frequencies in F;. Simulations of these
three powder patterns are also shown in figure Fig. 2.8, and the values of &5,
Cp, and g obtained by simulating each site are given in Table 2.2. Each simula-
tion started with a different set of initial parameters covering a wide range of
values, with all simulations converging to the same set of parameters within

10.01%. The estimates which are shown in Table 2.2 for the absolute accuracy of




the simulations are that Cj, is accurate to $0.05 MHz, ng to +0.05, and the iso-
tropic chemical shift to +1.0 ppm.

The total isotropic shift at both 9.4 and 11.7 T along with the isotropic
chemical shift, sgf,, and the quadupolar product, Pg, calculated from the DAS
spectra of the five salts at these two fields using eqn (2.30), are tabulated in Table
2.3. Calculation of P and 85 using data from DAS spectra taken at only two
different field strengths can introduce large errors, since this requires two DAS
measurements and two external references. Furthermore, since P is propor-
tional to the square root of the difference between the two isotropic shifts at two
different fields, smaller differences lead to larger errors. The overall errors re-
ported in Table 2.3 for the calculated parameters were made assuming that the
measurements are accurate to £1 ppm. Since the errors of the parameters de-
termined by simulation of a single site can be less than those determined by two
field measureménts, it is highly desirable to perform simulations in conjunction
with the measurements at two or more magnetic field strengths.

By performing measurements at several different magnetic field strengths,
the accuracy and precision of the calculated product, P, and 85> may be greatly
improved. This has been done with RbNO; by comparing the results performed
at three field strengths from this work with measurements taken at 4.2 T [42].
Fig. 2.9 shows the field-dependent shift of the four lines in RbNO; obtained from
these DAS experiments at 4.2, 7.0, 9.4 and 11.7 T. The total isotropic frequency
.55 is plotted vs. (1/B)? in Fig. 2.10, demonstrating the predicted linear relation-
ship. The slope of each line may be related to P by eqn (2.30), while the zero
intercept (which corresponds to.infinite field) is simply 855, A linear least

squares analysis allows estimation of errors and we observe a dramatic im-

provement over two field results (almost a factor of 10). This improvement




arises due to the large range isotropic shift differences between the measure-
ments at all four fields. The results and errors are compiled in Table 2.4 and
agree very well with our simulations.

The isotropic shift for RbCl that reported above is in very good agreement
with the work by Cheng et al. [47], indicating that the external references were
consistent with theirs, but the determination of the isotropic chemical shifts for
the other salts using DAS are different. Dynamic-angle spinning should give
more precise values than wide-line simulation techniques, which require a large
number of adjustable parameters, since DAS allows the determination of iso-
tropic chemical shifts and P directly. Furthermore, in the case of RbNO;, DAS
allows the separation of MAS powder patterns and the determination of iso-
tropic chemical shifts, quadrupolar coupling constants, and asymmetry parame-
ters for each of the RbNOj sites through single site simulation. The quadrupolar
parameters determined for RbNO; by multiple-field DAS measurements agree

quite well with a previous study performed in low magnetic field by Segel [57].

Table 2.4 Data (rows 1-4) and results (rows 5-6) from a linear least squares fit of
the data graphed in Fig. 2.10 for RobNO,. The sites are identified by the asymme-

try parameter 1, obtained from the simulations.

ng=0.12 ng =1.00 ng =048
552" [ppm 48.4+10 675+10 553+ 1.0
8757 /ppm 344+10 402+ 1.0 398+1.0
354" [ppm 320+ 1.0 360+ 1.0 37.0+ 1.0
Sb5T [ppm 29.0+1.0 320+1.0 340+ 1.0
855 /ppm 268+ 0.8 268+0.8 316+ 0.8
P, / MHz 1.72 = 0.06 2.36 + 0.04 1.81 + 0.05
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Figure 2.9 87Rb DAS spectra 6f RbNOj acquired at (a) 11.7 T, (b) 94 T, (c) 70 T,
and (d) 4.2 T.
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50




Chapter 3
Dynamic-Angle Hopping

3.1 Background and Theory
For a static sample, the secular part of the Hamiltonian is given in
eqgn (1.131) as
H=hQlI, = hﬁl', Hiol, (3.1)

where ¢, describes the spatial tensors of the CSA and quadrupolar interactions
withrankI=0orl=2for CSAand [ =0,! =2, or I = 4 for the quadrupolar inter-
action. The anisotropic components of these interaction are contained in the ¢,
with rank [ greater than zero as explained in Chapter 2; motional averaging ex-
periments such as MAS, DAS, and DOR attempt to obtain high resolution by av-
eraging to zero the ¢, with rank greater than zero.

However, as mentioned in Chapter 2, one of the drawbacks of spinning
experiments is the introduction of a time dependence to the Hamiltonian, and
this time dependence introduces sidebands. Sidebands are artifacts that appear
at integer multiples of the spinning speed [58]. If the spinning speed is suffi-
ciently fast, the intensity of the sidebands is negligible and they do not compli-
cate the spectrum. However, for many sample of interest, such speeds cannot be
obtained. Spinning the sample at high speeds also requires a decrease in sample
volume and therefore a decrease in sensitivity, which can cause problems for low
gamma nuclei or for samples where enriching is unfeasible. There are sideband

suppression techniques such as TOSS [59], however, these can also lead to a loss
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of signal intensity.

Another approach to removing sidebands is to remove the time depend-
ence of the Hamiltonian. This can be seen by examining the background of mo-
tional averaging experiments. Sample spinning is an implementation of the fol-
lowing theoretical experiment. Allow a static sample to evolve for equal times at
various orientations with respect to the magnetic field. If the proper orientations
are chosen, such an experiment will result in #j; with [ > 0 being averaged to
zero. This is a consequence of the symmetry of the irreducible spherical tensors
Ao For example, a second-rank spherical tensor is averaged to zero if it under-
goes reorientations with octahedral symmetry, such as being moved instantly
between the vertices of an octahedron. Reorientations with icosahedral symme-
try, such as being instantly moved between the vertices of an icosahedron, will
average to zero both second- and fourth-rank interactions. Under such reorien-

tations, the effective Hamiltonian can be written as
<H>=h§<ﬂzo>fz = Adlool., (32)

with only the isotropic component remaining.

In practice it not possible to instantly reorient the sample between the
various orientations. One implementation that will average second-rank inter-
actions is a two-dimensional experiment called magic-angle hopping (MAH) de-
veloped by Szeverenyi, et al. [60], in which a sample is rotated in 120° steps about
an axis inclined at the magic angle (54.74°). During the reorientation, the mag-
netization is stored with ©t/2 pulses along the direction of the magnetic field. In
another method developed by Gan [61], the sample slowly rotates about the
magic angle and storage pulses are used to interrupt the evolution and approxi-
mate 120° hops.

One big disadvantage of these experiments is the use of the n/2 pulses.
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Figure 3.1 In the basic MAH-180 experiment, periods of isotropic evolution (in
gray) 120° apart are sandwiched by n-pulses such that the isotropic evolution
adds across two rotor cycles while the periods of reorientation to the next evolu-

tion position cancels across the same two rotor cycles.

Since only half the magnetization can be stored, there is a decrease in the signal-
to-noise ratio by a factor of +/2 for each pair of pulses (plus any due to Ty re-
laxation). The experiment described here eliminates the problem of storage
pulses by using n-pulses to refocus the evolution which occurs during the period
of reorientation [62]. An experiment, labeled MAH-180, designed to produce a
sideband-free MAS spectrum is shown in Fig. 3.1. The desired periods of evolu-
tion (shown in gray), at positions 120° degree apart, are sandwiched by n—
pulses. As indicated in the figure, each n-pulse reverses the sign of the evolution
such that the desired periods add while the undesired periods cancel. A mini-
mum of two rotor cycles are needed to accomplish the refocusing

To show how this works for a quadrupolar nucleus, consider the experi-
ment shown in Fig. 3.2. This experiment is assumed to occur over 2N rotor cy-
cles of period 1, for a total time of 2N7,. The first N cycles are divided into x in-

tervals so that each interval has a length of Nt,/x. Each interval consists of a
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riods are divided into x intervals of length Nt,/x. Each interval consists of a pe-
riod & followed by a n-pulse which reverses the sign of the Hamiltonian. At the
end of each interval a n-pulse restores the Hamiltonian to its original sign. The

echo appears at 2Nt,. The maximum value for 8 is §,,,,, = Nt,/k.

period of evolution 8 followed by a perfect n-pulse which reverses the sign of the
evolution of the Hamiltonian.
The second-order quadrupolar frequency Q) (#) of a sample spinning at ®,

about an axis oriented at an angle 8 with respect to the magnetic field is given as

I
QQ(t)=l 022 4 ;lp%(m,,tw,,e,o)ﬂﬁn. (3.3)

The initial phase of the rotor is vy, and Jﬂﬁn is described in egns (1.109) through
(1.111). Since we will be integrating over time to obtain the phase of the signal, it
is useful to separate the time-independent and time-dependent portions of eqn

(3.3), which gives

() (ay 4Q L0 Q
Qp(t) = 0% 4doo(9)ﬂzo "‘122:4 2 leo(“)r“‘Yr'efO)ﬂzm : (3.4)
et 0
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The phase of the resulting signal obtained by integrating over time is then

NTr]/lc +8 (N, j/x)+ NT,./K 2N,
(I T,]/K dt ."N‘;; ]/1())+8 Q(t)dt}‘kfl\hr QQ(t)dt . (3.5)

In eqn (3.5), the negative sign before the second integral reflects the effects of the
n-pulse. The integrals can be solved analytically, yielding

@p(8)=2x8 3 d)(6).42

1=0,2,4
| , ) x-1 i (3.6
+Y 3 e—lerdfrll)o(e)ﬂﬁn(ze—tmm,ﬁ — o~ im2mN/K _1) z(e—lmZRN/K)] (3.6)
1=2,4 m-;?)l =0 '
m

In eqn (3.6), we can see that the sidebands arise from the time-dependent terms
exp(-im,d). If, then, we can render the time-dependent term in egn (3.6) zero
for all & then, as a consequence, the sidebands would be eliminated. We must
therefore examine under what conditions the second term in (3.6) is zero. First,
note that

el —im2aN/x\ _ -i(k=1)mnN /x sin(-mnN)
go(e ) =¢ sin(-mnuN/x) ©7)

This equation is zero when the following is true

sin(—mnN)

sin(—mmN/x) =0. (38)
The solutions to this equation are
mnN =ar, a=0,+1,%+2,... (3.9)
and
MmN b, b=04142,.... (3.10)

For the case of a quadrupolar nucleus, the maximum value of m is four, therefore
for eqn (3.10) to always be true, k must be greater than or equal to five. Also, N

must be an integer to fulfill eqn (3.9) and not equal to a multiple of x, or else eqn
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(3.10) would fail to be true for all m. This means that the minimum experiment
as shown in Fig. 3.2 for a quadrupolar nucleus would consist of five intervals and
ten n-pulses. While this example specifically dealt with the quadrupolar Hamil-
tonian, these results also apply to a Hamiltonian that includes CSA since the
maximum value of [ (and therefore m) is two. If the nucleus is a spin-1/2 nu-
cleus, k must be only greater than or equal to three for a total of six n-pulses.
If the conditions of eqn (3.8) are met, the phase can be written (assuming
K=2>5)as ,
@0 (8) = 05y +53 (0). A5 + ) (0). 45 108 @11
While there are no longer sidebands, there is anisotropy contained in the
tensors A5 and A5. To remove this anisotropy, the standard DAS experi-
ment described in Chapter 2 can be modified by combining it with above method
to give an experiment called dynamic-angle hopping (DAH). As in DAS, the
evolution occurs first at one angle 8, and after storing the magnetization and
hopping to the second angle, further evolution occurs at a second angle 8,. The
ratio of the times spent at the two angles is determined by the constant k which
also determines the two angles used. The presence of two evolution periods at
two different angles complicates the DAH experiment since time dependence can
be introduced into the Hamiltonian during both evolution periods. One method
of dealing with this is to simply perform the ten #-pulse sequence at both angles,
but this of course means the doubling of the number of pulses with the resulting
loss of signal due to pulse imperfections. Theoretically, fewer pulses are needed
over the two evolution periods but the relative phase of the rotor before and after
the hop must be known; this is experimentally difficult to accomplish. However,

by taking advantage of the k = 5 angle pair (0°, 64.43°), the n-pulse sequence only
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needs to be performed when the rotor is at 64.43°. This is because spinning at 0°
is equivalent to static conditions and therefore no time dependence is introduced
and no sidebands produced. Also note that the angle 0° and five equally spaced
positions around the axis 63.43° correspond to the various vertices of an icosahe-

dron. Under the DAH experiment the phase becomes

@ (8) = (18h + a5 (01).05% + 55 (01).45% | 108

(2) Q , 49 108 612
+(ﬂ320 +dgg (82).050 +dog (ez)ﬂgo)"k—
or,sincek =15,
@(8) = AZ 125. (3.13)

Note that the experiment described above gives us a single point just as in
DAS; the experiment must performed two-dimensionally, with the #; evolution
time being #; = 123. As can be seen in Fig. 3.2, the maximum value for ¢;/12 is
Nt,/5; therefore the maximum acquisition length in the #; dimension is 12N, /5.
This limit to the maximum value of ¢; can result in truncation artifacts if the full
FID cannot be collected in the t; dimension. The number of rotor cycles that the
experiment is performed over can be increased to allow for a longer acquisition
time in the t; dimension; however, since the magnetization is in the transverse
plane the entire length of the experiment, the loss in signal due to T, relaxation
can be substantial.

Instead of using n-pulses, the DAH-90 experiment uses 1t/2 storage pulses
as in the MAH experiments mentioned above. Each pair of storage pulses results
in a loss of signal by a factor of +/2 plus an additional loss of signal due to T; re-
laxation during the storage period. As a result the DAH-180 experiment is ex-
pected to be superior to the DAH-90 experiment because of the loss of signal due

to the storage pulses. The phase cycling of the DAH-90 experiment is also much




more complicated because each of the m/2 pulses in the pulse train should be
phase cycled, while in the DAH-180 experiment the n-pulses, if accurate, do not
need phase cycling. In theory, the signal-to-noise of the DAH-180 spectrum
should be identical to that of the standard DAS experiment given in Chapter 2 in
the limit of infinite speed. It should also be superior to a method such as TOSS
[59], which can result in a loss of signal-to-noise since the sideband intensity is
not always folded into the isotropic peak. However, in practice, imperfections in
the train of n-pulses can in itself lead to a loss of intensity in the DAH-180 ex-
periment. Incomplete inversion due to resonant offset effects of the n-pulses can
also lead to significant loss of intensity. Also the effects of T, relaxation can sub-
stantially reduce the signal-to-noise, since T, relaxation times tend to be short in

many solids.

3.2 Experimental Results
Rubidium sulfate and lead nitrate were obtained from standard commer-

cial sources. The 8Rb experiments were performed at 9.4 T (130.89 MHz) and

the 207Pb experiments were performed at 11.7 T (104.25 MHz) using a home-built

DAS probe described in reference [54]. The pulse sequences used for the DAH-
180 and MAH-180 experiments are shown in Fig. 3.3. DAS experiments were
performed as indicated in Chapter 2. The n-pulses were not phase cycled to re-
duce the length of the phase cycle. 8’Rb DAH-180 and DAS experiments were
performed on Rb,5SO,. The magic angle was set by detecting 81Br present in a
KBr internal standard, also obtained from standard commercial sources. The
spectra were referenced relative to a 1 M RbNO; solution. Rubidium ©t/2 pulse
widths selective for the central transition were 4.7 us. Recycle delays of 2 s were

used to allow for relaxation and to allow the spinning speed to stabilize after the
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Figure 3.3 Pulse sequences for the (a) DAH and (b) MAH experiments. In (a)
t,=t/12 and t,=(N7,/5)—(t,/12) and in (b) {,=1,/6 and &, =(Nz,/3) - (t,/6)
where 2N is the number of rotor and 7, is the spinning period. In (a), £, is the
hop time need for sample reorientation and ¢, is the dephasing time needed to
form a Hahn-echo. 6(t) indicates the angle the spinning axis forms with respect
to the magnetic field. Subscripts indicate the phase of the pulses and PSD refers

to phase-sensitive detection.
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hop to the initial angle. We have found that this delay is crucial since significant
variations in spinning speed due to the disruption caused by the hop may lead to
a loss of signal-to-noise and resolution. The hop time was 55 ms. For both DAH-
180 and DAS experiments, 256 complex points were acquired in #,. For the
DAH-180 experiment, 49 were acquired in ¢, and for the DAS experiment, 68
were acquired in #;. The dwell time in ¢, was 16 us and in t; was 33.6 us. 512
transients were acquired for each f; point. Whole-echo acquisition was used to
obtain pure-absorption mode two-dimensional spectra [42,63]. The rotor period
for the DAH-180 experiment was 199.6 us (5.0 kHz). For the DAS experiment,
the spinning frequency was 1.8 kHz. The rotor period was monitored during the
DAH experiment by observing the piezoelectric signal from the vibrations of the
spinner detected with a wire attached to the stator housing. The DAH-180
experiment was performed over eight rotor cycles (N = 4).

207Pb MAH-180 with a hop to 0° was performed on PbNO,;. Lead n/2
pulse widths were 11 ps. A recycle delay of 10.2 s was used. The hop time was
75 ms. 256 complex points were acquired in t, and 64 were acquired in #;. The
dwell time was 40 us in ¢; and 50 us in ¢,. 128 transients were acquired. Whole-
echo acquisition was used to obtain pure-absorption mode 2D spectra. The rotor
period was 1326.67 us. The experiment was performed over two rotor cycles
(N=1).

The two-dimensional spectrum of rubidium sulfate taken with the DAH-
180 sequence in Fig. 3.3a is shown in Fig. 3.4. The projection of the isotropic di-
mension is shown in Fig. 3.5b. The two sites occur at -25 ppm and 28 ppm in
agreement with previous studies at 9.4 T presented in Chapter 2 [33]. As ex-
pected, a sideband-free isotropic dimension is observed, correlated with an ani-

sotropic dimension consisting of the separated static powder patterns for the
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individual sites. Since detection occurs under static conditions no sidebands
observed in the second dimension. Truncatfion artifacts are present in the ¢;
mension since the maximum allowed value for ¢; was not sufficient to collect

full FID in the t; dimension. The projection of the isotropic dimension of

are
di-
the
the

standard DAS experiment is shown in Fig. 3.5a. The site at -25 ppm has a large

number of sidebands reducing the intensity of the isotropic position by a signifi-
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Figure 3.4 DAH-180 spectra of 8’Rb in Rb,50O, acquired at 9.4 T using the se-
quence in Fig. 3.3a. Both the contour and stacked plot show that the spectra are

free from sidebands.
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Figure 3.5 Isotropic projections of (a) DAS and (b) DAH spectra of Rb2S04 taken
at 9.4 T. The isotropic peak positions are at -25 ppm and 29 ppm. The DAS spec-
tra in (a), take with a spinning frequency of 1.8 kHz, shows multiple sidebands
and a corresponding loss of intensity in the isotropic peaks. In contrast the DAH-
180 spectrum exhibits no sidebands and the isotropic peaks appear at full inten-
sity. The spectrum does exhibit some truncation artifacts due to the limitations

on the maximum value of ¢, in the DAH-180 experiment.
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cant amount. In contrast, the same peak in the DAH spectrum is clearly
resolved, and, in faét, the two sites show the expected 1:1 intensity [51]. As an
example of the MAH-180, in Fig. 3.6 is shown the two-dimensional spectrum of
lead nitrate taken with both the MAH-180 pulse sequence given in Fig. 3.3b and
with a MAH-180 pulse sequence followed by a hop to 0° for detection. PbNO;
has a long T, and the spectrum breaks into sidebands at very low spinning
speeds as shown in Fig. 3.6a. However, by following the MAH-180 sequence
with a hop to 0° for detection the isotropic sideband-free dimension is correlated
to the static powder pattern (Fig. 3.6b). Again truncation artifacts are present.
Slight distortions are present in the lineshape and are probably due to

cumulative effects of imperfect n—pulses.

3.3 Sidebands in Double Rotation NMR

An obvious question would be whether this method of removing side-
bands can be applied to double rotation NMR (DOR), an experiment mentioned
in Chapter 2. The problem of sidebands is more acute in DOR experiments due
to the large size that is needed for the outer rotor. (For a detailed analysis of
DOR sidebands see references [64,65]. Typically, the speed of the outer rotor is
limited at most to few kilohertz, leading to the almost inevitable presence of
sidebands for a typical sample. There are methods that will allow the suppres-
sion of the odd order sidebands of the outer rotor [35,65-70]. It would be prefer-
able, however, to eliminate the sidebands completely without any reduction in
signal-to-noise.

To analyze whether the procedure of using nt-pulses to remove sidebands
will work in the case of DOR, the same procedure will be followed as above in

the analysis of DAH. The basic experiment is again give in Fig. 3.2. In the case of
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Figure 3.6 27Pb MAH-180 two-dimensional spectra at 11.7 T of PbNO3 (a) with
detection at the magic angle and a spinning speed of 300 Hz and (b) followed by
a hop to 0° for detection with a spinning speed of 750 Hz. In (a), the sideband
free isotropic spectra is correlated to the MAS spectrum which exhibits side-

bands. In (b), the isotropic spectrum is correlated to the static powder spectrum.
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DOR, we have two rotor frequencies ®; and @,. We will assumé that o, = fw, so
that ®, corresponds to the outer rotor and ®, corresponds to the inner rotor.
Since we must perform the sequence in Fig. 3.2 over complete rotor cycles, 1,
equals the slowest rotor period 7,. The two DOR angles will be labeled 6; and 6,
and the initial phase of the rotors will be labeled y. The second-order quadrupo-

lar frequency of a sample under double rotations may be written

!
!
Qpor(t) = 0%4 )y lD%(mlt,el,O)Dnlm(mzt,ez,y),ﬂl%, (3.14)
=U,2,4 mn=—

As in the above derivation of DAH, we will separate out the time-inde-
pendent components of eqn (3.14). To do so, we must recognize that not only
does the conditions m =n =0 yield time-independent terms, but the condition

m=~fn as well. We can see this by expanding the two Wigner rotation matrices:

DY) (@yt,01,0)DU, (0,2, 0,,y) = e oot =imi g0) g )a0) 9.y (3.15)

m0

Separating the time-independent from the time-dependent terms, we have

l
orlt)= 3, 0000+ 3 3 do(0r)dl) g 02)

1=0,2,4 n=—1

!
! (3.16)
+ Y % DU(et+o,0;,0)D(0,t,05,7)
1=0,2,4 mn=—1
m,n#0
mz—fn
Performing the integration in eqn (3.5) using the expression for the frequency in
eqn (3.16), gives
!
! ! ! I
@y (t) = 28 3 4dgg(el)dgg(ez)ﬂ,o +28 3 Zld(_}nlo (81)d%_4,(02).1
=V, 4, =U,2,4 h=—

2’: L)

" 0,)d!) (9, )e ™
1=0,2,4 m,n=¢al (mml + nmz) mO( 1) nm 2)
e (3.17)
8 [ze_iml(mW 5 _ grizmN(mifu)fx Icf,l(e-z'an(mﬁuﬁz)/rc)j
j=0

_ e—i(mm1+nw2)2N1:, _ e—i(mw1+nu)2)Nt,




In eqn (3.17), the term exp(~i031(m+ fn)S) leads to sidebands, and to

eliminate them, we need to find the conditions for which the sum over j is zero

for all . Performing the summation over j results in

Kl —ionN(mefu)fc\ _ —i(k-1)nN(msfin)x sin{~aN(m + fn))
E(e ) ¢ sin(—nN(m+ fn) /) (3.18)
The solutions to the equation
sin(—mtN(m + fn)) ~
sin(—nN(m + fn) /x) =0 (3.19)
are
nN(m+ fn)=ar, a=04142,... (3.20)
and
AN+ e b0, (3.21)

K

The second time-independent term in eqn (3.17), generated when m=-fn,
contains quadrupolar anisotropy in the form of the ¢{,’s. However, the maxi-
mum allowed value for m is [mmaxl =4; therefore, as long as the ratio of the
speeds of the inner rotor to the outer is greater than four, the second term van-
ishes. In order to fulfill eqn (3.20) and to eliminate the anisotropy, the minimum
allowed value for fis five. If we use x =5, as in the case of the DAH experiment,
along with f= 5, then we find that eqn (3.21) is fulfilled for all values of m except
m = 0, eliminating any sidebands arising from the spinning of the outer rotor.
However, when m = 0, the time-dependent term in eqn (3.17) no longer vanishes
and noting that the total evolution time in the ; dimension is t; =2x8, we find
that the term that generates sidebands, exp(-—iu)l(m + fn)8) , how reduces to

e—z’col(m+ fn)S’ —y g~ ity /10 (3.22)

m=0

The implication of eqn (3.22) is that, while the sidebands arising from the
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outer rotor have disappeared, the inner rotor appears to be spinning at one-tenth
its actual speed. Since we are assuming that the inner rotor is spinning five times
faster than the outer rotor, we have actually increased the number of sidebands
appearing in the spectrum. If we wish to completely remove the sidebands in
the DOR spectrum, we can see using eqn (3.21) that since the maximum values of
m and n are four and f=5 in our example, x must be equal to or greater
than twenty-five. Therefore, a train of at least fifty n-pulses is needed to produce
a sideband-free isotropic spectrum.

A further comment is necessary about the above derivation. It was as-
sumed that the inner rotor was spinning an integral number of times faster than
the outer rotor. In practice, the ratio of the outer and inner rotors is determined
by the design of the DOR probe [34,35] and, for a given probe, adjusting the two
speeds so that eqns (3.20) and (3.21) are satisfied for reasonable value of N and x

will quite likely prove impossible.

67




Chapter 4
Cross-Polarization Dynamic-Angle Spinning

4.1 Introduction

Significant increases in NMR sensitivity can be achieved by transferring
high nuclear spin polarization between inequivalent nuclei using cross polariza-
tion (CP) techniques [71,72]. In addition, selective CP transfer can be applied as a
useful tool for spectral editing [73-80]. While CP is a very effective technique for
static samples, the combination of CP with sample spinning NMR techniques
from a number of difficulties. One of these difficulties is that the dipolar spin
interactions that mediate the CP transfer become time dependent under magic-
angle spinning (MAS), making the Hartmann-Hahn matching conditions more
complicated and also reducing the efficiency of the polarization transfer [81]. In
Chapter 5, the effects of MAS on cross-polarization will be examined more
closely. Another difficulty arises when cross polarizing the central transition of
half-integer quadrupolar nuclei. In this situation, the time-dependence of the
large first-order quadrupolar interaction interferes with the Hartmann-Hahn
matching [82,83]. However, by using the techniques of dynamic-angle spinning{
the problem can be eliminated by exploiting the time independence of the spin
eigenvalues when spinning at 0° (parallel) with respect to the external magnetic
field. By performing cross polarization while spinning at 0°, the full static CP
intensity can be obtained and used in a MAS, variable-angle spinning (VAS) or

DAS experiment [56]. First, the problem of cross-polarizing quadrupolar nuclei

68




will be presented and then experimental results will be shown.

4.2 Theoretical Background
This is a condensed treatment of a detailed treatment by Vega [82,83] of
the theory of spin locking and cross polarization of the central transition of a
half-odd integer spin nucleus. Consider a cross-polarization experiment in
which polarization is transferred from a spin I = 1/2 to a quadrupolar nucleus
S = 3/2. The secular Hamiltonian in the rotating frame can be written as
H(t) = Hgg + Hp(t)+ Hg(t) (4.1)

where the rf Hamiltonian is given using eqn (1.146) as

Hpp =—hoy11, —hsS,, 4.2)
the dipolar Hamiltonian is given using eqn (1.143) by

Hp(f) = hopAR(H)21,5,, (4.3)
and the quadrupolar Hamiltonian is given using eqn (1.95) by

ho
Hp = horgAR Ty = 7_62A§0(31§ -12). 44

The nutation frequency ®,,, for the central transition of a quadrupolar
nucleus with a spin S in the presence of a large quadrupolar interaction [2,84-86]
is

(Dnut = (S + 1/2)'YsBls . (4.5)

This leads to a Hartmann-Hahn match condition for a spin-1/2 and a spin-3/2 of

YiBir = 2YsBig; 11 = 2055 (4.6)
In order to simplify the following calculations, it is necessary to rewrite
the Hamiltonian in eqn (4.1) using fictitious spin-1/2 operators (see eqns (1.20) to

(1.22)) as




H(t) = ~hooy I, ~V3has(S2 + 5774~ 2001557
+ogAR(H)(sT -5 47)
+30p AR ()21, + wp AR (821,527
To diagonalize Hgr +H(t), we assume that {017, |015| > |0p| and transform the
Hamiltonian into a time-dependent frame [85]. The function, W(t), that per-

forms this transformation is
. LT .14 . .03
W(t)= exp(-—z 5 Iy)exp(z 5 Sy )exp(—z ESy )
xexp(iZE_,l(t)S;'s)exp(iZ&z(t)S§'4), (4.8)

where 0<{&;(t),&,(t)} <m/2,

tan 2&, () = ‘/g‘”ls 4.9)
~0gAZ(t)+ o1
and
tan 26,(t) = */gmls . (4.10)
~0qAZ(t) - 015
In the rotating frame a given operator O(f) can be calculated using
O(t)=WHHOo(W(t). (4.11)
Therefore, the Hamiltonian in this time-dependent frame H(t) is given by
H(t) =W H(W(¢) (4.12)
becoming
A(t) = oL + ons (S -527°) 012 (98] - 0P H ()87 @13)
bl (121, Sht + b (021,872 — b A (1)2L,S3 2 — big H(1)21,S5
where
_ 2 —0pAS (4o
o 3(f) = \/3@%3 +(0gAR () -0ns) =—2 n(t)* o5 (4.14)

cos2t,(f)
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0
2-4y _ _ a2 Q 2 -mQAZO(t)+m15
o?4(f) = \/3"315 +{ogAR(B)+ars) = cos 28(?)

b5%(6) = 0p AR 2cos(Es() - Ex()) +cos(Ea()+En(8)},  (416)

) (4.15)

bis*(£) = op Az (§){2sin(£1(£) - E(F)) - sin(&y () +E2())} . (4.17)

b5 3(£) = 0p AR (1){ 2c0s(1(t) ~ 2 (8)) - cos(&1 (1) +E2(1)} , (4.18)

and

b(t) = “)DA%(t){z sin(&;(£) - 2 (£))+sin(§,(£) + ﬁz(t))} . (4.19)

The observable (S, (t)) of interest can be calculated using eqn (1.8),
(S.(1)="Tr{o(1)S. }. (4.20)
Ignoring the effects of relaxation, the time evolution of the density matrix o(f) is

given by (see eqn (1.15))
o) =U(Ho)U(1); U(t)= Texp(—i N H(s)ds). (4.21)
The propagator in the rotating frame is given by

() = Texp{—i L[ A)- iW‘f(t')W(t')]dt'}

(4.22)
where

x d&i(t) w1-3 . ~ 4o (t) oo

iWT(EW(t) = 2————;5 )s; ’ +2———&§t( )55 : (4.23)
The derivatives are related to A%(#) by

5 .
at (—(oQA%(t)+mls) +30 U
and
o B (t) _ V300 dAR(E) (4.25)

2
dt ((DQA% (t) + (Dls) + 3(9%5 dt
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The propagator U(t) in the original frame is related to the propagator U(t) in the

rotating frame by

u(t) =w(ea@wto). (4.26)

Therefore, the observable <S+(t)> from eqn (4.20) can be expressed as

(8.(0) =] T(08(0)T* (13, ] (4.27)

S, =528 cos? &, (£) cos® £, () + 5172 sin 2&4 (£)

~S;*sin® & (t)sin® &, (t) - 57~ sin 28, (t)

~SE25in2 & () cos® &, (t) - S37* cos? &4 (#) sin? £, (#)

+53*[cos&; (t)sin&; (£) ~ cos 28 (£)]

+S2 4 cosE(t)sin &y (t) +cos 26,(t))]

+le 2[sm&l(t‘)cos&z(t)+cos(§1 t))]

+zS3 4[(:05(&1 t)—E,(t)) —cos&:(t) sm&z(t)]

+i5,”4[sin&; (£) sin &, (t) - sin(&; (£) ~ &, (#))]

+iSy ™% cos&y (t) cos () —sin(&, () - Ea(t))].
The initial density matrix in a typical experiment after an initial ©/2 pulse on the
I spin is o(0)=1,; using eqn (4.11), the initial density operator in the rotating
frame becomes 5(0)=1, .

To calculate U(f) it is necessary to evaluate eqn (4.22). The Dyson time-
ordering operator T makes the evaluation of the integral difficult since the inte-
grand does commute with itself at all times. However, certain approximations
can be made by examining the relative size of the two terms in the Hamiltonian.
In Fig. 4.1 the functions &;(t) and &,(¢) are plotted for a typical crystallite. For a
majority of the rotor cycle, both functions have values close to either 0 or /2.

The abrupt transition between the two values occurs as the quadrupolar cou-
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Figure 4.1 &, and &, vs. rotor phase for a typical crystallite under MAS with a
PAS oriented perpendicular to the rotor, e29Q/h = 11 MHz and 1 = 0.0.

pling passes through zero. As a result, the Hamiltonian in eqn (4.13) can be

written as either
H(E~0)~ -0yl - 205822 + 0o (Sk* - 557 ) - 60p AR (HLS; ™
+20pAD (£)1,5%72 (4.29)
or
A (& ~ g) ~ -0y +2055; " - wQ(5364 -Sto 3) ~20pAR (LS
+60p Az (£S5 (4.30)
It is also necessary to consider the nature of the passage of Q(t) through
zero. Fig. 4.2 shows a schematic of the eigenvalues of a spin-3/2 nucleus under

spin-locking conditions; we can use this to predict the effects on various eigen-

states as Q(t) oscillates through zero. If the change in Q(#) is slow, the passage is
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considered adiabatic, and the population of the original states change along with
the quadrupolar coupling (lC ) > |£3/ )) If the change in Q(f) is fast, the pas-
sage is considered sudden and there is no change in state. The third possibility is
the intermediate regime which is more difficult to describe but in general results
in the creation of non-spinlocked states.

In terms of our previous calculations, the adiabatic approximation is ap-

plicable when |I:1 (t)| > ‘W*(t)W(t)l and the sudden approximation holds when

— [C+)
| +3/2) )
1-3/2) @18
— |C~)
5
~
- W1s
‘C_> | (\‘\
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Figure 4.2 Eigenvalues E of a quadrupolar nucleus with 5§ =3/2 and Hamilto-
nian HQ + Hgp vs. the ratio Q(f)/wg. The eigenstates are indicated for
Qt) > o5 where |C1)= (l 1/ 2>i‘—1/ 2>) / V2 corresponding to the central
transition and |+3/2) corresponding to the triple quantum transitions.




Iﬁ(t)l < ‘W*(t)W(t)l. The relative intensity of H(t) vs. W'(t)W(t) is shown in
Fig. 4.3a and c. If the adiabatic approximation holds when Ago(t) passes through
the extremum in WT()W(t), the level crossing is avoided and the propagator for

all times can be written

T b TTON 140
i) = xp| i, (¢ )t | s
If we assume a crystallite initially starts with &; =&, =0, and if the Hartmann-
Hahn matching condition of ®;; =(S+1/2)ws is being fulfilled then evolution of

the density matrix, 6(0) =I,, under the Hamiltonian in eqn (4.29) leads to

~ ~ N 1 -

() = Uadtabric()5(O) Wit (8) = 5 (1 +52°°) . (4.32)
Polarization is thus transferred from the I spin to the central transition of the S
spin. Polarization transfer is interrupted when the first-order quadrupolar
coupling passes through zero as a consequence of the sample rotation. The val-

ues of & and &, now approach ©n/2 and the eqn (4.30) is now the governing

Hamiltonian. The density matrix with 6(0) = I, now evolves as

~ ~ 1 -

&(t) = Ungiatic ()3 (O} U paparic (£) = E(Iz +5; 4) (4.33)
During MAS, this process occurs either two or four times every rotor period de-
pending on the PAS orientation. In addition, $22and S1™* remain spin locked
and unchanged during those periods when they are not involved in polarization

transfer, the polarization transfer from I, is switching between $23and S1™,

and the effective observable is also switching between
2-3 gl-3  g2-4 1-2 2«/_ 2-3  o3-4
S.(E~0)=257° - 3(S;2 + 8274 )+4/3]| §; 2+ 2623 4 8 (4.34)

and
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Figure 4.3 Diagonal coefficients 0! (—) and w?* (- - -) and off-diagonal ele-
ments 2d;/dt (— - —) and 2d&y/dt (— — —) as a function of wuAR(t).
(a) Adiabatic regime calculated with a spinning rate 100 Hz corresponding to
o=55. (b) Intermediate regime calculated with a spinning rate of 1 kHz corre-

sponding to o = 0.55. (c) Sudden regime calculated with a spinning rate of 5 kHz

corresponding to o = 0.11.
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§+(&=§)=-2s§‘4+£(51-3 ~S24)+43 {51-2 243 2ty 53-4]. (4.35)

As shown by Vega [83], after multiple zero crossings, the central and triple
quantum transitions will be equally polarized from the I spin. The overall CP
intensity will be identical to that observed for a static spin in the thermodynamic
limit. However, the overall rate will be half as fast, since both the central énd
triple quantum transitions are being polarized simultaneously. In the presence
of a short rotating frame relaxation time, this will lead to a reduced overall CP
intensity from the spins undergoing adiabatic zero crossings.

When the sudden approximation holds, the propagator can be written

~

Ooutgen() = expfy WHEW ()t | 436

While this propagator does not hold for all times, the term W*({)W(¢) has

the form of an impulse function with an integrated area of /2 centered near the

zero crossing of A(f). This results in a discontinuous transition between the

adiabatic propagator of eqn (4.31) and the sudden propagator of eqn (4.36) (see
Fig. 4.3c). Under the sudden propagator, S2 2and S.™* transform according to

5(t) = Usuagen(t)S7 " Udyazen(t) = S~ (4.37)

and

&(t) = Usutzen(t)Sz ™ Uguaden(t) = S27° (4.38)

Therefore, the coefficients of the 52>and S} terms in the density matrix

will be exchanged after evolving through a sudden zero crossing. After multiple
zero crossings, one of the two transitions will be completely polarized while the
other will be unpolarized. The observable operator will always match the cross
polarizing transition, so the polarized intensity will always remain observable,

and the CP efficiency and rate should be identical to the static case.

77




Crystallites which pass through the zero crossing under neither adiabatic
or sudden conditions fall into the intermediate regime. This type of evolution is
the most difficult to calculate analytically. As indicated in Fig. 4.3b, in determin-
ing such evolution, contributions from both H(¢) and W(t)W(t), which do not
commute at all times, must be retained in the propagator in eqn (4.22). Vega [82
,83] has shown with numerical simulations that spins undergoing an intermedi-
ate regime zero crossing evolve into non-spin locked states and thus result in a
significant loss of CP intensity. |

To indicate whether a zero crossing is in the adiabatic, intermediate, or

sudden regime, an adiabaticity parameter o is defined:

S
o= = =
2454 (1) 245, (t) dAS ()
dt |70 at o QT4
o (4.39)

This is then evaluated at one of the zero crossings, (oQAgo(t(l,‘s) =~ (15O
(DQA%(%"‘B) =~ —@g, corresponding to a maximum in W' ()W(t) as &, or &, pass
through n/4. This definition of the adiabaticity parameter is proportional to the
one used by Vega [83], however, there is an additional orientation dependence as
well which comes from the time derivative of AS(t). When the value of o at the
zero crossing is much larger than one, the crossing will be adiabatic. If it is much
less than one, it will fall into the sudden regime. When a is on the order of one,
the crossing will be in the intermediate regime.

Theoretically, it is possible to adjust o to match any of these three condi-
tions by changing the spinning rate or rf power levels. However, in a multi-site
system it may be difficult or even impossible to adjust for optimal CP transfer of
all sites while spinning at the magic angle. One solution that eliminates the

problem is to exploit the time independence of the spin eigenvalues when spin-
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ning at 0° (parallel) to the external magnetic field direction. By performing cross
polarization while spinning at 0°, none of the spins undergo zero crossing and
the full static CP intensity can be recovered. When designing the CPDAS ex-
periment, we therefore logically pick the k = 5 angle pair (0°, 63.43°), performing
the cross-polarization at 0° and acquisition at 63.43°. In order to improve cross
polarization under MAS or VAS, we can perform the zero-polarized MAS
(ZPMAS) or zero-polarized (ZPVAS), in which cross polarization occurs at 0°

followed by a hop to a second angle to collect a MAS or VAS spectrum. |

4.3 Experimental

Experiments were performed on a home-built spectrometer at 7.04 T, cor-
responding to a TH NMR frequency of 301.2 MHz and a 2Na frequency of 79.671
MHz. The DAS probe was home built with a stationary coil with a diameter of
19 mm, used for both transmission and detection [54]. The double-tuned rf reso-
nant circuit was similar to one described by Doty et al. [87,88]. The input power
of 300 watts on the IH channel gave 7 ps H n/2 pulses and 100 watts on the
Z3Na channel gave 7 ps central transition selective 22Na 1t/2 pulses. The spinning
frequency was between 4.0 kHz and 6.6 kHz. The samples of sodium pyruvate
used for these experiments were obtained from standard commercial sources.
The pulse sequence for the various VAS experiments are given in Fig. 4.4, and
the pulse sequence for CPDAS is shown in Fig. 4.5. Further details about the
DAS pulse sequence and data processing can be found in Chapter 2 and in refer-
ence [42]. For the CP efficiency experiments, phase alternation of the 1H rf pulse
was used to assure that only the intensity due to CP would be measured. For

CPDAS and ZPVAS experiments, a 22Na /2 pulse was
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Figure 44 Pulse sequences used for (a) ZPVAS, (b) CPVAS, and (c) decoupled
MAS experiments. SL refers to the spin lock period, subscripts refer to the pha-
ses of the.pulses, 0(t) refers to the orientation of the spinning axis angle with
respect to the magnetic field, and PSD refers to phase-sensitive detection. De-
coupling is not performed during the storage period while the spinning axis is

reoriented due to the long interval required.
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Figure 4.5 Pulse sequence and rf phase cycle for the two-dimensional H decou-
pled CPDAS experiment. SL refers to spinlock period, PSD refers to phase-sen-
sitive detection, subscripts indicated the phase of the pulse, and 6(t) refers to the
orientation of the spinning axis with respect to the magnetic field. Decoupling is
not performed during the storage interval while the sample is being reoriented
because of the long delay needed (typically 30 ms - 100 ms). Further details can
be found in Chapter 2.

applied simultaneously with the initial 1H n/2 pulse to achieve the largest final
sodium polarization. For the 23Na spectra without CP, a recycle delay of 16 s
was used for the sodium pyruvate while for the CP experiments a recycle delay
of 36 s was used to assure complete relaxation and accurate intensity compari-

sons. For the DAS experiments, 32 scans were acquired after one dummy scan




for each of the 90 t; points, while for the CP build up curves and ZPVAS either 4,

8, or 64 scans were bacquired after two dummy scans for each different contact

time and angle pair. For the CPDAS and ZPVAS experiments on sodium pyru-

vate the CP contact time was 20 ms. The procedures used for simulating quad-

rupolar powder patterns can be found in reference [55].
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Figure 4.6 CP intensity as a function of VAS angle for sodium pyruvate using
traditional CPVAS (M) and using ZPVAS (@). The curve through the CPVAS
data was obtained numerically as described in the text. The line through the
ZPVAS data indicates the average intensity obtained from all experiments. The

contact time was 20 ms.
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4.4 Results and Discussion

The effect of level crossings on CP efficiency can be seen clearly in Fig. 4.6,
which shows the cross polarization efficiencies of sodium pyruvate,
CH30COONa, versus VAS angle. All intensities are scaled relative to the corre-
sponding single pulse 22Na VAS and MAS spectra, using the sequence in Fig. 4.4
a. As expected, only under static (0° VAS) conditions is the expected CP effi-
ciency maximum of approximately 3y,/4y, for sodium pyruvate achieved. The
factor of 3/4 is due to the high abundance of both TH and 23Na causing cross po-
larization to be controlled by the equilibrium between the respective spin tem-
peratures. As the VAS angle increases, CP efficiency decreases dramatically.
Spinning the sample at an angle greater than approximately 25° results in an ef-
ficiency that is less than that achieved by a single pulse. This indicates that the
level crossings are significant, even when only a reduced fraction of the spins are
undergoing the maximum of four crossings per rotor cycle.

We can calculate the approximate CP efficiency at any given spinning an-
gle, shown by the dashed curve in Fig. 4.6, by first determining the number of
crystallites with excursions of &;(t) and &,(t) within some value 8 of 0° or 90° and
therefore capable of Hartmann-Hahn matching. For the data shown in Fig. 4.6, it
was assumed that &=15° corresponding to approximately coQA%(t) > 5wy,
which should be sufficiently large to allow the Hartmann-Hahn match condition
to be met. For those spins that can undergo cross polarization, we sum the num-
ber that undergo adiabatic or sudden regime zero crossings. The spins undergo-
ing sudden regime zero crossings are assigned an intensity of 1.0. Spins where
‘coQAgo(t)l is large for the entire rotor period but undergo no zero crossings also
fall into this category. The adiabatic spins are assigned an arbitrary intensity be-

tween 0.5 and 1.0 to account for their slower rate of polarization compared to the
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spins undergoing sudden regime zero crossings. The intensity of those spins

with a large ‘mQA%(t) , but undergoing intermediate regime zero crossings, as
well as those where l(oQAz%(t)I is sufficiently small for much of the rotor period
so that the Hartmann-Hahn match condition in eqn (4.6) does not hold, is as-
sumed to be lost. To determine whether a spin is undergoing an adiabatic or
sudden regime zero crossing, we consider the value of the adiabaticity parame-
ter, a, given in eqn (4.39) and as explained above, assume those spins with o
much greater than one are in the adiabatic regime, those spins with o. much less
than one are in the sudden regime, and those spins with o on the order of one are
in the intermediate regime. The values used for €2qQ/h and Mg were 2.36 MHz
and 0.77, respectively, in these calculations. These values were obtained from
simulations of the MAS spectrum as mentioned earlier.

Fig. 4.6 also shows CP efficiency for sodium pyruvate at the angle at
which detection occurred under ZPVAS. Since CP always occurs at 0°, under ef-
fectively static conditions, the observed efficiency is constant for all angles. The
observed decrease in efficiency compared to that of cross-polarization under 0°
VAS is due to T; relaxation processes that occur during the hop from 0° to the
detection angle.

Fig. 4.7 shows the TH decoupled MAS spectra of sodium pyruvate ac-
quired with and without cross polarization and with ZPMAS along with the
simulation of the MAS powder pattern. The signal-to-noise is the worst for
CPMAS—about 75% of that seen in the MAS spectrum without CP. On the other
hand, the ZPMAS spectrum has a signal-to-noise ratio about twice that seen in

the MAS spectrum taken without CP.
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Figure 4.7 MAS spectra of sodium pyruvate acquired with the (b) ZFMAS,
(c) MAS, and (d) CPMAS pulse sequences given in Fig. 4.4. The center band is
expanded on the right to show details more clearly. The insets show magnified

sections of the baseline for comparison of signal-to-noise ratios. (a) The MAS

simulation was calculated as explained in reference [55] and generated values of

e%qQ/h = 2.36 MHz and 0, = 0.77.
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Figure 4.8 CPDAS and DAS spectra of sodium pyruvate taken with the k=1
(37.38°, 79.19°) and k=5 (0°, 63.43°) angle pairs using the pulse sequence in
Fig. 4.5. Insets shows the baseline of the respective spectra magnified by x 5 for

better comparison of signal-to-noise ratios.

In Fig. 4.8, the decoupled DAS and CPDAS spectra of sodium pyruvate
for the k=5 (0°, 63.43°) and k=1 (37.38°, 79.19°) angle pairs are compared. For




k=5, we observe over 2.5 times the signal-to-noise in the spectrum taken with
CP compared to the spectrum taken without CP. In addition, the CPDAS experi-
ment at k = 5 has a signal-to-noise ratio over 4.5 times that of the CPDAS experi-
ment at k = 1. This demonstrates the importance of 0° cross polarization for DAS.
The CPDAS experiment done at 37.38° (k= 1) has a worse signal-to-noise than
the same experiment done without cross polarization. Other k values will also

have reduced CP efficiencies.

4.5 CPDAS of 170 Labelled L-Alanine

The study of biologically active and other organic compounds by solid-
state NMR has for the most part been limited to spin-1/2 nuclei such as 1H, 13C,
15N, 19F, and 31P. The study of 17O, a quadrupolar nucleus (S = 5/2), in solid or-
ganic compounds has been limited due to its low natural abundance, low gyro-
magnetic ratio, and strong second-order quadrupolar interactions. The first two
difficulties can be alleviated to some extent through isotopic substitution, the use
of high magnetic fields, and through cross polarization (CP) [72] from 1H to the
central (1/2 <> 1/2) 170 transition. For a static sample, it is theoretically possible
to achieve a one-shot sensitivity enhancement of 7.3 (assuming a large excess of
1H compared to 170). However, as described above, when the sample is spun
about an axis inclined with respect to the magnetic field, there can be a signi-
ficant decrease in CP efficiency because the time dependence of the first-order
quadrupolar interaction interferes with Hartmann-Hahn matching. In this sec-
tion is demonstrated the application of CPDAS to 17O labeled L-alanine [89].

Experimental
A sample of L-alanine, enriched approximately to 20% in 70O, was synthe-

sized by H. Zimmermann by acid-catalyzed exchange of oxygen in 170 labeled
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water at 80 °C, followed by neutralization with aniline and precipitation of the

free amino acid. Powder x-ray diffraction was consistent with the known struc-
ture of L-alanine [90]. A polycrystalline sample of approximately 200 mg was
used for the following experiments. Experimental details of the DAS experiment
are as explained in Chapter 2. Cross-polarization experiments were performed
at a field of 7.04 T (301.2 MHz for the 1H frequency and 40.832 MHz for the 170
frequency) on a home-built spectrometer using a Tecmag acquisition system and
a home-built DAS probe [54] spinning at 6 kHz, with the pulse sequence shown
in Fig. 4.5. The probe was equipped with a double-tt.med rf-circuit with a 3/4"
static coil based on a description by Doty et al. [88]. A decoupling power level of
500 W on the TH channel produced a n/2 pulse width of approximately 7 us. A
7 us 170 /2 pulse selective to the central transition was also used to achieve the
Hartmann-Hahn match condition given in eqn (4.5). The cross-polarization con-
tact time was 1 ms, which gave a CP efficiency per scan (signal compared to a
single pulse FID on oxygen with hydrogen spin decoupling) of approximately
200%. The theoretical maximum was not achieved because of short rotating
frame relaxation times. T, relaxation times were 750 ms for 'H and 2.5 s for 170.
DAS experiments at a field strength of 11.7 T (67.797 MHz) were performed on a
CMX spectrometer using the single-tuned DAS probe described in reference [54].
No decoupling or cross-polarization was performed at this field because the DAS

probe as designed is incapable of being tuned to the 1H frequency of 500 MHz.

Results and Discussion
The structure of the amino acid L-alanine, shown in Fig. 4.9, has been
determined previously by x-ray crystallography and neutron diffraction [90-91]

and indicates two inequivalent 170 sites due to a difference in hydrogen bonding




Figure 4.9 Structure of L-alanine showing the differences in hydrogen bonding at
the two oxygen sites.

of the two oxygen atoms [91], so the spectrum should consist of two overlapping
powder patterns. Fig. 4.10 shows the 170 MAS and DAS spectra of L-alanine tak-
en at 11.7 T, both without spin decoupling. The MAS spectrum shows a broad
powder pattern with a number of singularities. In addition, sidebands compli-
cate the powder pattern, resulting in a spectrum that is difficult to simulate. In
contrast, the DAS spectrum shows a separated isotropic peak and sideband pat-
tern. The two sites in alanine are not clearly resolved in this spectrum and ap-

pear as one peak. The isotropic position is assigned to 200 + 7 ppm by com-
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parison with a spectrum taken at a different spinning speed.
Fig. 4.11 shows the two-dimensional CPDAS spectrum of alanine, along

with the projection of the isotropic shift dimension, acquired at 7.0 T. Spin de-
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100 200 300 400

Frequency / ppm from H,7O

Figure 4.10 Magic-angle spinning (MAS) and dynamic-angle spinning (DAS)
spectra of 7O in L-alanine at 11.7 T (67.797 MHz), without proton spin decoup-
ling. The spectra are referenced to 17O labeled H,O.
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coupling of 1H resulted in lines significantly narrower than that of the experi-
ment without decoupling in Fig. 4.10. The two sites are clearly resolved and are
assigned to 51 + 4 and 80 + 4 ppm by comparison to a spectrum taken at a differ-
ent spinning speed. The advantages of using cross polarization are that the sig-
nal intensity per scan is approximately twice that seen in an experiment without
cross polarization, and the recycle time is determined by the T; of TH rather than
that of 170, resulting in an increase in the signal-to-noise ratio by a factor of two,
giving an overall four-fold increase in the signal-to-noise ratio. As mentioned
above, cross polarizing from 1H to 170 can result in an increase in intensity by a
factor of 7.3, so with favorable relaxation times the enhancement of the signal-to-
noise ratio can be considerable and in fact could be crucial in rendering an exper-
iment feasible. Even with the enhancement provided by cross polarization and
decreased recycle time, the CPDAS experiment in Fig. 4.11 required approxi-
mately 400 hours; a decoupled CPDAS spectrum without cross polarization
could not be acquired for this reason.

Using the results of the experiments at the two different fields, the
isotropic chemical shifts and quadrupolar coupling products can be calculated by
solving a system of simultaneous linear equations as described in Chapter 2,
using eqn (2.30), the results given in Table 4.1. The values for the quadrupolar
coupling product, Py, are in good agreement with the quadrupolar coupling
constant measured for the carboxyl oxygen atoms in similar compounds using
NOQOR [92]. Due to the similarities of the sites, it is not possible to assign the
spectra to particular 170 sites. However, further work on amino acids might
reveal trends in isotropic chemical shift and quadrupolar coupling products

which allow for the assignment of sites.
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Figure 4.11 Two-dimensional DAS with cross polarization (CPDAS) and proton
spin decoupling spectrum of YO in L-alanine at 7.04 T (40.832 MHz). The
projection of the isotropic shift dimension is shown at the top with the isotropic
peak positions indicated. The spectrum is referenced to O labeled H,0. The

spinning frequency was 6 kHz.
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Table 4.1 Isotropic shifts and quadrupolar coupling product, Pg), for L-alanine.
7.0T 11.7T Ccs
S /ppm 83 T/ppm  Po/MHz 50 /ppm

51+4 200+7 81+03 285+8

80+4 100 + 7 71+03 268 £ 8

NMR of 170 in L-alanine has been performed previously by Goc, et al. [93],
in which the static lineshape of a polycrystalline sample was simulated. Their
simulation assumed that there was only a single 170 site, while our work and the
crystal structure are consistent with two inequivalent sites. The reported values
for e2qQ/h of 6.6 MHz and for ng, of 0.55, which were reported to be precise to
20% [93], give a Py from their data of 6.9 MHz, which agrees (to within 20%)
with our calculations for either site.

Both Figs. 4.10 and 4.11 show the disadvantages of insufficient spinning
speeds. While the sidebands are clearly separated from the isotropic peaks in
these spectra, in general, the large number of sidebands normally present in 170
NMR of organic compounds can be a considerable problem. The types of
compounds one would like to study with solid-state NMR, such as small
peptides or carbohydrates, will typically have numerous inequivalent sites.
However, fast spinning speeds are becoming easier to achieve in DAS
experiments resulting in fewer sidebands. In addition, such techniques as
dynamic-angle hopping (DAH), described in Chapter 3, can eliminate sidebands

altogether in cases where adequate spinning speeds cannot be obtained.




Chapter 5
Variable-Effective-Field Cross Polarization

5.1 Introduction

Cross-polarization (CP) combined with magic angle spinning (CPMAS) is
a powerful technique in modern solid state NMR to obtain high resolution, high
sensitivity spectra of dilute spin nuclei (S) in the presence of an abundant spin
species (I). The advantages of cross-polarization are both enhanced polarization,
from the higher gyromagnetic ratio of the abundant spin species, and an en-
hanced repetition rate, as the experiment may be repeated at the abundant spin
relaxation rate, which may be an order of magnitude faster than the rare spin
relaxation rate.

Magic-angle spinning, at speeds comparable to the homonuclear I-spin
dipolar interaction, converts the Hartmann-Hahn matching condition {71] for
most efficient cross-polarization, ;= w5, into a series of sidebands at
07 = g + no, [81] where w, is the spinning frequency and # is an integer. The
sidebands can be very sharp and small deviations from the center of a peak,
either due to spinning speed fluctuations or amplifier drift, can lead to dramat-
ically decreased transfer rates as well as smaller equilibrium polarizations. Fur-
thermore, the exact Hartmann-Hahn match (n =0) exhibits kinetics that are
several times slower than on the n =+ 1 or + 2 sidebands [81]. The sidebands,

however, are quite sensitive to rf inhomogeneity as the condition ®;; = w5 + no,
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may not be satisfied for different regions of the sample, though ®;; and w,¢ are
scaled together. |

These problems have attracted some attention recently as an increasing
number of solid state NMR experiments require very rapid spinning rates which
cause polarization sidebands even for strongly coupled 1H spin systems [94-96].
As a result, several methods have been proposed to broaden the matching con-
dition under MAS. Mechanical methods such as slowing [97] or stopping [98]
the sample rotation, or hopping away from the magic angle during cross-pol-
arization [99] are difficult to implement as well as costing an average factor of 2
in signal intensity, as the coherence must be stored along the z-axis during the
motion. Barbara et al. [100], Zilm and coworkers [101], and Ernst and coworkers
[102] have proposed pulse sequences which require synchronization with the
sample rotation. As such the experiments are as sensitive to spinning speed in-
stabilities as conventional CP, though they are well compensated for minor
amplifier drift, as the match condition is substantially broadened. Smith and co-
workers [103,104] have proposed the most promising variation to date, variable
amplitude cross-polarization (VACP) which utilizes an amplitude modulated 1H
spin-locking field to cross-polarize under different matching conditions for dif-
ferent parts of the contact time. Unlike the sequences of Ernst and coworkers
[102], which also employ amplitude modulation of the pulse train, VACP re-
quires no rotor synchronization, however does require rapid switching of the rf
amplitude while maintaining phase coherence.

In this chapter a new method is described to broaden the cross-polar-
ization condition under MAS, variable effective field cross-polarization (VEFCP).
VEEFCP, like VACP, employs periods of differing I-spin nutation frequencies with
the difference that VEFCP is performed at a constant rf amplitude. The varying
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Figure 5.1 Schematic of the time-averaged precession frequency (TAPF) pulse
sequence, a windowless two-pulse cycle consisting of a y pulse of length ¢, 1 fol-
lowed by a -y pulse of duration 7, resulting in a net nutation of (f,-2t)w,.
Assuming a short {, compared to the dipolar correlation time, the rf field is
scaled over the cycle, resulting in an effective rf field of amplitude

K@, = [(tc —21)/tc]m1 .

nutation frequencies are achieved by changing the timing conditions of a time-
averaged precession frequency (TAPF) pulse sequence [105]. A comparison of
the polarization transfer versus the 13C rf field for VEFCP and conventional CP
will be made for adamantane and bisphenol-A polycarbonate. Further, the kin-

etics of cross-polarization under conventional CP and VEFCP will be compared.

5.2 Theory

The time-averaged precession frequency (TAPF) pulse sequence, shown in
Fig. 5.1, is a windowless two pulse cycle with alternating  phase shifts, resulting
in an effective scaling of the rf by a factor x over the cycle. The scaling factor, «,
can be adjusted between 0 < x < 1, thus achieving a low nutation frequency for
CP, while maintaining effective spin-locking due to the strong actual rf field. The
TAPF pulse consists of a y pulse of duration ¢, — 1, followed by a -y pulse of dur-
ation 1. The net nutation, around the y-axis, over the cycle time, t,, is given by

(t. - 27)o,. The scaling factor, x, is given by
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c=le=2T (5.1)
tC

Provided that ¢, is small compared to the dipolar correlation time of the protons
in the solid, the effective nutation is equivalent to a nutation about the y-axis at

an effective rf field @, ;¢ of amplitude
t.—21

O o =KW = ®;. (5.2)

c

The pulse sequence for VEFCP is illustrated in Fig. 5.2. After a n/2 pulse
of phase x or -x, the protons are spin locked with a TAPF sequence of phase y.
Adjusting the scaling factor by incrementing t over the duration of the spin lock,
leads to varying effective fields during the contact time which serve to broaden

the matching conditions and average the kinetics of the polarization transfer.

{ C
J J
XX| 1=9 T=208 T=Nb
{ C
-t /N> ) ) =t /N
13C MIXING

» T ; \/\v’\v

Figure 5.2 Schematic of the pulse sequence for variable-effective field cross
polarization (VEFCP). Following a n/2 pulse of alternating phase of x and -x, the
protons are spin-locked with a series of TAPF sequences, which give rise to an

effective rf amplitude of xw, = [(tC - 21:) / £, ]0)1 . Varying effective fields are gen-

erated by incrementing t over the duration of the spin lock.
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Figure 5.3 Cross-polarized intensity (in absolute units) vs. 13C rf field strength for
VEFCP (solid dots, solid lines) and conventional CP (open dots, dashed lines) of
the CH line of adamantane spinning at ®,/2n = 5.2 kHz. The total contact time in
all cases is 6 ms, and the TAPF pulses used £, = 10 ms. Lines are guides to the
eye. The VEFCP parameters are (a) 8 intervals, 750 ms each, with scaling factors
k =0.90 to 0.76 in steps of 0.02, (b) 14 intervals, 430 ms each, with x = 1, and .90
to 0.66 in steps of 0.02, and (c) 26 intervals, 230 ms each, with « = 0.90 to 0.40 in
steps of 0.02.




5.3 Results and Discussion

Fig. 5.3 demonstrates the polarization transfer vs. rf field strength for
VEEFCP (solid dots) and conventional CP (open circles) for a sample of adaman-
tane spinning at ,/2n = 5.2 kHz. Note the polarization sidebands present in the
conventional CP curve are centered around 37.5 kHz, the Hartmann-Hahn
match, and spaced at integral multiples of ®,. Although the thermodynamic
limit at long contact times is identical for all of the polarization sidebands, a 6 ms
contact time results in the slower kinetics at the Hartmann-Hahn match leading
to a severely depressed signal strength at that position. The solid dots in Fig. 5.3
a represent the polarization transfer curve for an eight step VEFCP cycle in
which the scaled rf fields vary over a range from 0.9®; to 0.76w;, which spans a
region 5 kHz wide around the Hartmann-Hahn condition. The frequency profile
is somewhat lower at lower rf fields and correspondingly higher at higher rf
fields. The entire VEFCP curve is shifted due to the rf scaling and is centered at
<m1 I,eﬁ"> =0.83w,;. The hole at (col I,eﬁ> = Mg, the average scaled Hartmann-Hahn
condition, occurs because the scaling profile does not encompass the +w, side-
bands. At the average scaled Hartmann-Hahn match, the kinetics are com-
parable to that which would be obtained with conventional CP at the actual
Hartmann-Hahn match, therefore, a contact time of 6 ms, the polarizations ob-
tained are less than those for VEFCP with a profile centered about the +®, or
+2, sidebands. Fig. 5.3b illustrates the VEFCP curve (solid dots) versus conven-
tional CP for a 14 step cycle with k®; spanning the range ®; to 0.66®;. As the rf
profile is now greater than ®, at the scaled Hartmann-Hahn match, the
depression is much less pronounced. Fig. 5.3c, which demonstrates a 26 interval

VEFCP cycle with x®; ranging from 0.4, to 0.9®, in steps of 0.02, shows an en-

hancement at the average scaled Hartmann-Hahn match condition. The profile




for this sequence is over 12 kHz wide at the average scaled Hartmann-Hahn con-

dition of 24.4 kHz, so at least 2 sidebands are covered over most of the rf range.
The polarizatibn curve displays shoulders as the rf profile moves through the
range of the first and second order sidebands on either side of the match. The
overall polarizations obtained are somewhat lower in Fig. 5.3c than in the VEFCP
curves of Fig. 5.3a and 5.3b, due to the large nutation frequency spread for the 26
interval VEFCP (Fig. 2c). Clearly, the flattening of the matching condition to this
extent has come with a price since some intervals at the edges of the profile have
a very low efficiency per unit time.

VEFCP also has the effect of reducing the sensitivity of the kinetics to the
matching conditions. Fig. 5.4a illustrates the kinetics of polarization transfer for
conventional CP at w;; = ®;g £ ®,, (solid circles) and Hartmann-Hahn match, o;;
= g (open circles). The polarization rise with increasing contact time is several
times more rapid for the sideband than it is for the Hartmann-Hahn match,
though the thermodynamic limit is approximately the same for both. The decay
of polarization at long times for the n = -1 sideband is not due to rotating frame
relaxation, but is instead due to the extreme sharpness of the polarization side-
bands for adamantane and a combination of coil detuning due to rf heating and a
very slight amplifier drift over the course of the 2D experiment required for this
measurement.

The polarization transfer vs. contact time for the 14-interval VEFCP se-
quence is illustrated in Fig. 5.4b. The solid dots represent transfer under the con-
dition ©;t= ©;5 + ®,, while the open dots represent the Hartmann-Hahn match-
ing condition. The transfer rates are rather insensitive to the matching condi-
tions, and are intermediate between the sideband and center band rates in con-

ventional CP. Even in the thermodynamic limit, VEFCP seems to yield sub-
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Figure 5.4 Cross-polarized intensity vs. contact time for the CH resonance of ada-
mantane. The spinning frequency is ,/2r = 5.2 kHz. The open circles represent
data acquired on the Hartmann-Hahn match, while the solid circles represent
data acquired at either +®, or -, away from match. The data was acquired in a
two-dimensional fashion, with a read pulse following a variable spin-lock period.
(a) Conventional CP where the solid dots are the intensity of the n = -1 sideband,
and (b) VEFCP where the solid dots are the intensity of the n = +1 sideband, and
taken over 14 intervals with {, = 10 ms, k = 1, and 0.90 to 0.66 in steps of 0.02.
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stantially more polarization than conventional CP. This is likely to have resulted
from the extreme sensitivity of adamantane to the matching conditions in con-
ventional CP, which made a precise and stable match to a center- or sideband
condition difficult. As VEFCP employs a range of different [-spin nutation fre-
quencies, the effect of rf inhomogeneity is minimal, and this may contribute to
larger equilibrium polarizations, relative to conventional CP, though, for conven-
tional CP, the contribution of rf inhomogeneity is unimportant for the center
band (Hartmann-Hahn) condition [102,104]. The experimental results reported
here were acquired with a 7mm diameter, 10mm long sample centered in a
15 mm long solenoid coil wrapped with flat wire. The rf inhomogeneity was est-
imated, from a two-dimensional nutation experiment [106], to be 6.5% over the
sample volume. A detailed study of the effects of rf inhomogeneity on CPMAS
intensities has been recently reported by Smith and coworkers [104].

Fig. 5.5 illustrates the polarization profiles for bis-phenol-A poly-
carbonate. Some of the homonuclear dipolar couplings in polycarbonate are av-
eraged by molecular motion leading to polarization sidebands for several sites at
moderate spinning speeds (®,/2r = 5.3 kHz for the data shown in Fig. 5.5. Fig.
5.5a shows the profiles for VEFCP (solid dots) and conventional CP (open circles)
for the 13C line at 129.5 ppm from TMS, which is a superposition of a quaternary
aromatic and a protonated carbon. In this case, the modulations are barely pre-
sent, though VEFCP seems to perform marginally better. The situation is dif-
ferent, however, in Fig. 5.5b, which shows the intensity of the line at 151 ppm,
which is due to a superposition of two quaternary carbons. Here the polariza-
tion sidebands are pronounced, and VEFCP results in a much smoother profile.
At this contact time (0.52 ms), the rapid kinetics of the +1 and +2 sidebands

yields higher polarizations for conventional CP, though for longer contact times
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Figure 5.5 Cross-polarized intensity vs. 13C rf field for VEFCP (solid circles) and
conventional CP (open circles) of polycarbonate spinning at w,/2x = 5.3 kHz.
The VEFCP experiment used a 26-interval sequence with fc =10 ps and scaling
factor x between 0.9 and 0.4 in steps of 0.02. Lines are guides to the eye. (a) The
resonance at 129.5ppm, a superposition of a protonated carbon with a
quaternary carbon with a contact time of 520 us. (b) The purely quaternary
carbon resonance at 151 ppm with a contact time of 520 us. (c) The same purely

quaternary carbon line at 151 ppm but with a contact time of 1.56 ms.
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(Fig. 5.5c) VEFCP results in higher polarizations.

Fig. 5.6 shows the increase in signal strengths for VEFCP vs. conventional
CP for polycarbonate. Note that the VEFCP signal intensities are, for all lines, at
least as intense as in the conventional CP spectrum, and some lines are substan-
tially more intense.

A comment should be made as to the performance of VEFCP for a strong-
ly coupled spin system. Though the need for broadband matching would be re-
duced, there are some samples in which strong and weak couplings coexist. For
strong couplings the performance of VEEFCP is slightly inferior to that of conven-
tional CP due to two effects. First the effects of all the phase shifts, including
switching transients, lead to a 7% reduction in signal intensity after 200 phase
shifts for a sample of L-glycine, which is strongly coupled due to the presence of
methylene protons. Second, if the matching condition is already broad, VEFCP
suffers by containing intervals which may have a very low CP efficiency. On
Hartmann-Hahn match, VEFCP with 400 phase shifts yielded, for a sample of L-

glycine, intensities of 87% and 81% of the conventional CP intensity for the 8 and

14 interval sequences, respectively.
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Figure 5.6 CPMAS spectra of polycarbonate with ®,/2r = 5.3 kHz acquired
under (a) conventional CP with a contact time of 1.56 ms and (b) VEFCP with 26
intervals, . = 10 ms, a total contact time of 1.56 ms, and scaling factors from 0.9 to

0.4 in steps of 0.02. 64 scans were averaged and 30 Hz line broadening was ap-
plied to both FID's before Fourier transformation.
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Appendix

A.1 Commutation Rules for Fictitious Spin-1/2 Operators

Tﬁe commutation rules within a rs sub-manifold and between different sub-

manifolds are as follows:

|15 15 | =i (A1)
12,12 =[17,17] = %I;‘i (A2)
17, 12°]=0 (A.3)

[I;S , I_;}S] = —;—I;" (A4)

12, 17]= -éI;S (A5)
[I;S,iQS] = —;—I;S (A.6)

[Igf, Ig*] =0 (A7)

A.2 Reduced Wigner Rotation Matrices

The reduced Wigner rotation matrices are given by
d) (8) = JA+m) (I—m) [+ m ) (I—m)!

XZ ("1) °

> {(l—m’—u)!(l+m—u)!(u+m’—-m)!u!

0 2l4m-m'-2v 0 m’'—m+2v
x[cos—] [—sin—]
2 2
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where the sum over v is performed over all integers for which the factorial are -
non-negative. Some useful identities involving the reduced rotation matrices are

given in Table A.1. The explicit values for d,(f)m are given in Table A.2

A.3 Matrix Elements of Ty,

If the components of T}, given by

/

Table A.1 Identities involving the reduced Wigner rotation matrices, d(’l (6) .

d),(0)=d,_,.(0)=(-1)" ™, ,(6)=(-1)" "d), _,(6)
A,(-0) =1, (0) = ), (0) =[ a0, @) =[a 0)]
d),,(0)=
40 () = (1" 8y

A (1) = (1" 8y

) (n+6)=(-1*"d", (6)

), (n-8)=(-1)*™ ). (e)

dfnzm (27!:) = (—1) 2 8m’m

Table A.2 Second-rank reduced Wigner rotation matrix elements, dsfn) (B) .

m
n 2 1 0 -1 -2
1+cosp)? _l+cosf . 3 .. 2 _1-cosf . 1-cos B}
2 (—2—) —z—smﬁ J;sm B — sinf8 ( 5 )
1 1+Czosﬁsinﬁ coszﬁ———————l_;osﬁ -—\/-g—sinZﬁ ———I+Czosﬁ—coszﬁ ————l_czosﬁsinﬁ
0 \g sin? ‘E sin2B %ﬁ_ﬁl —\g sin2p \E sin?
1 —-—l_czosﬁsinﬁ ———1+Czosﬁ—coszﬁ \EsinZﬁ coszﬁ—l—czosﬂ 1+C208psinﬁ
2 _ 2
) [l—czosﬁ) 1 CzosﬁsinB \Esinz 1+c;)sﬁsinﬁ (1+czosﬁ)




Ty =—}6—.(BI§ %),

1
Thn =7—2“(101¢1 +141p),

and

2
Tosp = I,
the corresponding matrix elements are

1

(1£172|Tyo|T£1/2) =7—g(3

Z—-I(I+1)),

(IF1/2[T |1 £1/2) =0,

(1£3/2|To |1 £1/2) = (I-1/2)(1+3/2),

21; L JI-12)(1+3/2),

(I1F3/2|Tpso|T£1/2) =

and

1

(I1£5/2|Tyu,|T£1/2) = >
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JI-1/2)(1-3/2)(1+5/2).

(A.9)

(A.10)
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