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Abstract

High-Resolution NMR of Quadrupolar Nuclei in the Solid State

by

Sheryl Lee Gann

Doctor of Philosophy in Chemistry

University of California at Berkeley

Professor Alexander Pines, Chair

This dissertation describes recent developments in solid state nuclear

magnetic resonance (NMR), for the most part involving the use of dynamic-angle

spinning (DAS) NMR to study quadrupolar nuclei. Chapter 1 introduces some

of the basic concepts and theory that will be referred to in later chapters, such as

the density operator, product operators, rotations, coherence transfer pa~ways,

phase cycling, and the various nuclear spin interactions, including the

quadrupolar interaction. Chapter 2 describes the theory behind motional

averaging experiments, including DAS, which is a technique where a sample is

spun sequentially about two axis oriented at different angles with respect to the

external magnetic field such that the chemical shift and quadrupolar anisotropy

are averaged to zero. Work done on various rubidium-87 salts is presented as a

demonstration of DAS. Chapter 3 explains how to remove sidebands from DAS

and magic-angle spinning (MAS) experiments, which result from the time-

dependence of the Hamiltonian under sample spinning conditions, using rotor-

synchronized x-pulses.

MAH-180, respectively,

Data from these experiments, known as DAH-180 and

are presented for both rubidium and lead salts. In
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addition, the applicability of this technique to double rotation (DOR)

experiments is discussed. Chapter 4 concerns the addition of cross-polarization

to DAS (CPDAS). The theory behind spin locking and cross polarizing

quadrupolar nuclei is explained and a method of avoiding the resulting

problems by performing cross polarization at 0° (parallel) with respect to the

magnetic field is presented. Experimental results are shown for a sodium-23

compound, sodium pyruvate, and for oxygen-17 labeled L-akmine. In Chapter 5,

a method for broadening the Hartmann-Hahn matching condition under MAS,

called variable effective field cross-polarization (VEFCI?), is presented, along

with experimental work on adamantane and polycarbonate.
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Chapter 1
Introduction

Nuclear magnetic resonance (NMR) is a highly useful spectroscopic tech-

nique that has proved essential in the determination of structure and dynamics

of many diverse classes of compounds. This thesis will focus primarily on the

application of NMR to quadrupolar nuclei in the solid state, and in particular,

using the technique of dynamic-angle spinning (DAS) NMR. This introductory

chapter will begin by introducing concepts and theories that will be referred to in

later chapters. The reader interested in a more detailed theoretical treatments is

referred to any number of texts on NMR [1-5].

1.1 The Density Operator

It is quite useful to describe nuclear spin dynamics in terms of the density

operator, defined as follows. If, for a given ensemble, all spin systems are in the

same state (a pure state), described by the normalized state function ~(t)) in an

orthonormal basis {1r)} with coefficients Cr(t),then the density operator p(f) is

defined by

p(i) = l~(t))(y(t)l = ~~cr(t)c:(t)]l’)(sl . (1.1)
Ys

If, on the other hand, all spin systems in the ensemble are not in the same state (a

mixed state), the density operator is given by the ensemble average (denoted by

the bar) as

p(t) = lly(f))(~(t)l = ~~cr(t)c:(t)lr)(sl .
rs

(1.2)



The equation of motion of the density operator can be derived from the

Schrodinger equation with Hamiltonian H(t),

(1.3)

Using this equation we can derive the Liouville-von Neumann equation,

$p(t) = –i[H(t)/p(t)] . (1.4)

The solution to this differential equation is

p(t) = LI(t)p(0)ZJ(t)-l; L.I(t) = Texp(-ij~H(t’)dt’) (1.5)

where T is the Dyson time-ordering operator. By a suitable transformation into a

different reference frame, the Hamiltonian can often be made to be time inde-

pendent and the evolution of density matrix can then be calculated quite simply

as

p(t) = exp(-iHt)p(0) exp(iHt). (1.6)

The expectation values of an observable can be expressed in terms of the

density operator as follows. For an operator O, the expectation value (0) is

(Y(Ololw(0) (1.7)

where again the bar indicates an ensemble average. Expanding the wave func-

tion in terms of its orthonormal base we can express (0) as

(0)= ~~c~(t)c,(t)(rlOls) = ~~(slp(t)lr)(rlols) = Tr{Op(t)}. (1.8)
?-s rs

The function Tr indicates a trace defined by

Tr{O} = ~(rlOl r). (1.9)
r

The density operator p(t) as defined depends on both spin and space vari-

ables of the entire quantum mechanical system. However, it is usually correct to

reduce the number of variable in the system and use only a limited set of opera-
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tors {Q} that act on the spin states of the system, grouping the remaining degrees

of freedom together and designating them as the lattice. In such a situation, the

density operator is redefined as the reduced spin density operator

~(f) = Tr~ttice{P(~)}

where Trhttia refers to a partial trace over the lattice

value of the operator Q is given by

,(Q) = Trspin{Q~(f)}

and the equation of motion from eqn (1.4) is now

(1.10)

variables. The expectation

(1.11)

+(f) = ‘i[H~i~,6(t)]-fi[O(f)-G~]. (1.12)

The Hamiltonian, H$pin,acts on the spin variables and is obtained from the full

Harniltonian by averaging over the lattice coordinates

Hspin = XTrZatfice{H} . (1.13)
lattice

~ is the relaxation superoperator and accounts for effects of the lattice on the

spin system, driving it to its equilibrium value of cro. Assuming that the external

magnetic field defines the z-axis of the laboratory reference frame, the equilib-

rium density matrix, Oo,can be shown to be given by

O()=lz. (1.14)

Note that 00 is not necessarily equivalent to o(O). In this text, the relaxation

superoperator and its effects are generally ignored except when otherwise indi-

cated. This greatly simplifies solving eqq (1.12), resulting in a solution analogous

to that seen in eqn (1.5).

O(f)= U(t)O(0)U(t)-l; U(t) = TeXp(-iJ~Hwin(t’)dt’) . (1.15)

It is often convenient to expand the density operator in terms of a set of

base operators {B,}. If the dimension of the Hilbert space defined by the base

3



functions is n, then the corresponding Liouville space is spanned by n2 inde-

pendent operators, and the density operator can thus be defined
.

(1.16)

The choice of a basis operator set depends on the particular problem being stud-

ied. Three different sets used in this thesis; the first is based on the angular mo-

mentum operators. For a spin I = 1/2, the operators are IX,IY,and Iz For a sys-

tem contain N spins, the operators can be calculated from

Bi = Zn-l Hfji (1.17)j=l la’

where j identifies the jfi spin, a is x, y, or z, and cji is a coefficient which is one for

n of the spins and zero for the remaining N – n spins. In this text, in which the

spin systems are assumed to be one-spin systems, the basis set would then be

{ }E., 1X,$, ~Z , with EO being h identity operator. From this set, a second set of

operators known as spherical operators can be defined consisting of

{Eo,lO,l,,l.}. ~ese operator are defined as

10 = lz (1.18)

and

(1.19)

A third set of base operators used in this text is comprised of what are

known as fictitious spin-1/2 operators [6-8]. These operators describe a spin

with I > 1/2 but behave for the most part like the spin-1/2 operators given

above. This set can be defined by

r=;(lws)m (1.20)



+1s)(rt), (1.21)

and

T =~(-lo(d+lw. (1.22)

The commutation rules within a rs sub-manifold and between different sub-

manifolds are given in Appendix Al. This set will prove particularly useful

when studying CPDAS in Chapter 4.

1.2 Rotations

Thissection will explain the fundamentals of rotations as pertaining to

NMR. More detailed explanations can be found in references such as [9-11].

First, we will define the Euler angles which describe the relationship of one ref-

erence frame to another. In other words, the Euler angles define what rotations

are needed to transform from the first frame to the second. For example, we

usually want to know the relationship of the principal axis system (PAS) of a

nuclear spin interaction tensor to that of the laboratory,

Principal Axis System
(a,~,y)

>Laboratory.

In the case of a sample spinning experiment such as magic-angle spinning

(MAS), where the sample is spun at a frequency ~, about an axis oriented at an

angle 0 with respect to the external magnetic field, we want to transform from

the PAS to the reference frame of the rotor and then to the laboratory frame of

reference,

Principal Axis System (a,~,~) >Rotor (@@~O) ,Laboratory .

Fig. 1.1 shows how the Euler angles, a, ~, and y, define the necessary rotations to

transform a frame of reference, S, with axes X, Y, and Z, to that of reference

frame S’” with axis x, y, and z.



z

z

(a)

x
z

x’ s’” I z

1

(c)

z

““”t

x’

Y

Y

Y

x

Figure 1.1 The Euler angles (u, ~, y) are the set of angles which bring the refer-

ence frame S (the PAS frame) with axes X, Y, and Z into coincidence with the ref-

erence frame S’” (the laboratory frame) with the axes x, y, and z. (a) A rotation

Rz(ct) about Z by the angle a puts the Y axis into the xy plane. (b) A rotation

Ry(~) about the original Y axis now designated the Y’ axis puts the X (originally

the X axis) into the xy plane. (c) Finally, a rotation RZ(I’) about the Z“ axis

(originally the Z axis and now coincident with the z axis) results in X being

parallel to x, and Y“ being parallel to z.
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Mathematically, we can express the rotation of tensor T of rank 1, Tz, by

the Euler angles a, ~, and y as

%n=i ~:~m(@,Y)Tzm’ , (1.23)
m’=–l

where D~~~(a, ~,y) is a Wigner rotation matrix element of rank 1which is defined

as

D~~{ct,~,y) = e–imci (f)dmn(~)e-iny. (1.24)

The term d~)(~) is known as a reduced Wigner rotation matrix element of rank

1. The reduced rotation matrix elements of rank 1 = 2 can be found in the Ap-

pendix A.2 in Table A.2 along with a method of calculating matrix elements of

other ranks. Other methods of calculating reduced matrix elements can be found

in the references given above and other text on angular momentum.

One important property of the Wigner rotation matrices is

(1.25)@#(@/Y) = &l(P)= q(c@) /

where F’f(cos0) is the 1~ order Legendre polynomial of cos 0. Of particular inter-

est are the Legendre polynomials of rank 1= 2 and 1= 4 which are given by,

P~(cose) = +(3COS2e-1) (1.26)

and

F’JCOS8)= ;(35COS4 e– 30COS2o + 3) . (1.27)

These polynomials will prove important in the explanation of magic-angle and

dynamic-angle spinning in Chapter 2.

1.3 Coherence Transfer Pathways

The concept of coherence transfer pathways is highly useful in the design

of phase cycles and in the general understanding of the fate of the various orders
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of coherence through the course of a NMR experiment [12,13]. The following

description uses the terminology given by Ernst, et d. [1].

Each eigenstate Ir) in high-field NMR has a magnetic quantum number

M, giving each coherence Ir)(s I a coherence order of p,, = M, – M,. During free

precession p,$ is conserved; however rf pulses can introduce changes in coher-

ence orders. We expand the density operator o(t) in the manner given in eqn

(1.16) in term of operators classified by order p, where the base operator c&(t) is

defined by

d(t) = ~cr,(t)lr)(sl. (1,28)
r,s

restrictedto
Prs=P

In eqn (1.28), only those pairs of r and s are included in the sum that fulfill the

condition pr~= p. At the beginning of an NMR experiment, if the systems is in

equilibrium, p = O. If we observe the signal with quadrature detection, our signal

is given by

S(t) = Tr{@t)I+}

and, as a result, only those coherence that follow

(1.29)

a pathway such that they end

with p = –1 will contribute to the observed signal. It is quite cornrnon to have

multiple pulses in an NMR experiment, each pulse represented by a propagator

Ui which describes its effects on the density matrix (eqn (1.5)). We can represent

such evolution of the density matrix as

(1.30)

where t_and i+ are the times just before and after the application of the propaga-

tor. Noting that a rotation q about the z-axis transforms the density matrix in the

following manner,



e–Wz ~pe@Fz s ~pe–ip~1 (1.31)

we can see that if the propagator Ui is shifted in phase by q, then eqn (1.30) be-

comes,

. (1.32)

where

Therefore, each coherence component undergoing

P + ~j acqtires a phase

(1.33)

a coherence change from

(1.34)

and the overall signal of the experiment is

We can select a particular order of coherence Ap’ by summing the results of Ali

experiments each with the phase of qi incremented such that

Pi= *, k=o,l,...,l-l.
i

(1.36)

We can determine the signal through Fourier analysis [14] as

where the only contributions to the signals are

(1.37)

Ap’k nN, n = O,1,2, .... (1.38]

We can obtain the weighting factor exp(–iAp’k2n/N) in eqn (1.37) by a variety of

means; for example, by shifting the phase of the receiver by

%vr = -Ap’k2n/N. (1.39)

An example of using eqn (1.37) to calculate the selection of Ap’ = –2 with a four-



step phase cycle is given in Table 1.1.

The calculation shown in Table 1.1 is tedious, especially for a multiple-

pulse sequence and luckily unnecessary in order to calculate a phase cycle for the

selection of a particular pathway. For a system with n pulses we can define each

coherence transfer pathway as a vector

AP={AP1W2,”””,WJ” (1.40)

Each component of the vector describes the change of coherence with each pulse,

and the sum of the components is constant,

:Api=-1 (1.41)
i=l

since each pathway begins with p = Oand must end with p = –1 to be observable.

We can also define the phases of each of then pulses as a vector

Table 1.1 Calculation of the signal of a four step phase cycle (N= 4) with selec-

tion of those coherence orders with a change of Ap’= –2. In the first column the

notation S(Ap)symbolizes S(Api,~i = O,t). COIWIUMtwo through four in each row

represents the sum over each of the phases in the cycle (0°, 90°, 180°, 2700), with

the total being multiplied by S(Ap). The sum of each row divided by N is given in

the last column. The only non-zero contributions after the phase cycle are those

in the unshaded rows with Ap’= –2 &nN, n = O,1,2, ....

+ S(–2) x(l +e+ine-ix= e+i’o +e+i2ne-i2n= e+i”o +e+i3ne-i3n= e+i”o) = 1

+ S(+2) X(l +e–ine–in= e–i2n +e–i2Xe–i2X= e–i4K +e-i3Ze–i3n= e-i6z) 1=1

10



9={WP2,...,%}. (1.42)

In analogy to eqn (1.39), we can shift the phase of the receiver by

Vrcvr = ‘AP”~ = ‘X4i9i (1.43)
i

to achieve the desired selection process.

As an example of using eqn (1.43) to calculate a phase cycle, consider the

pulse sequence in Fig. 1.2. The pathway we wish to select is represented by

Ap = {-1,+1, +1, -2}. Inserting the components of the vector into eqn (1.43) yields

%cvr = W -92 – 93 + 294” (1.44)

(90°)91 (90°)~ (90°)93 (180*)Q,

p=+2

p=o 1 \

p=-1

Figure 1.2 A typical coherence transfer path where the path p = O~ -1 ~ O~ +1

~ -1, represented by the vector Ap= {-1, +1, +1, -2} is being selected. During free

precession the order of coherence is preserved, while the application of pulses

induce changes in the coherence order. Since this is assumed to be a one-spin

system, rf pulses generate changes of coherence between the orders p = O and

p = H.

11



Table 1.2 Phase cycle for selecting the pathway given in Fig. 1.2 described by the

vector Ap= {-1,+1,+1, -2}.

% 92 W3 94 %_7vr

0° 0° o“ 0° 0°
90° 0° 0° 0° 90°

180° 0° 0° 0° 180°
270° 0° 0° 0° 270°

0° 0° 90° 0° 270°
90° 0° 90° 0° 0°

180° 0° 90° 0° 90°
270° 0° 90° 0° 180°

0° 0° 180° 0° 180°
90° 0° 180° 0° 270°

180° 0° 180° 0° 0°
270° O“ 180° 0° 90°

0° 0° 270° 0° 90°
90° 0° 270° 0° 180°

180” 0° 270° 0° 270°
270° 0° 270° 0° 0°

%

0°
90°

180°
270°

0°
90°

180°
270”

0°
90°

180°
270°

0°
90°

180°

180°
180°
180°
180°
180°
180°
180°
180°
180°
180°
180°
180°
180°
180°
180°

0° 0°
0° 0°
0° 0°
0° 0°

90° 0°
90° 0°
90° 0°
90° 0°

180° 0°
180° 0°
180° 0°
180° 0°
270° 0°
270° 0°
270° 0“

%cwr

180°
270°

0°
90°
90°

180°
270°

0°
0°

90°
180°
270°
270°

0°
90”

270° 180° 270° 0° 180°1

We can simplify phase cycles by realizing that is not necessary to phase cycle

every pulse. For example, it is not necessary to phase cycle the final pulse since

only the coherence p = –1 can be observed. The second pulse only needs to be

phase cycled by 180° to select the Ap= +1 and exclude the Ap= O and Ap= +2

pathways, since, assuming a one-spin system, rotations are generated in the sub-

space defined by the operators IZ,1+, and 1., which have coherence orders of O,

+1, and –1, respectively; other values of p do not exist. The resulting phase cycle

is 32 steps long and is given in Table 1,2.

1.4 Nuclear Spin Hamiltonians

A variety of spin interactions influence magnetic resonance and for de-

tailed theoretical background the reader is referred to the many excellent books

on magnetic resonance [1-5], angular momentum [9-11], and quantum mechanics

[15-17]. Of the spin interactions discussed here, the Zeeman, electric quadruple,

chemical shift, dipolar, and rf interactions, only the electric quadruple interac-

12



tion will be discussed

quadrupolar nuclei.

in any detail as this thesis is primarily concerned with

StaticPerturbation Theory

In the following discussions, static perturbation theory is used to calculate

the effects of the various nuclear spin Hamiltonians. Static perturbation theory is

described in detail in any number of quantum mechanics text books and only the

results will be given here. Perturbation theory is useful when we have a Hamil-

tonian that can be expressed as

where HP <CHo. The

tively, such that

H= HO+HP (1.45)

eigenvalues and eigenstates of El. are en and In), respec-

Ii&)=&J’z). (1.46)

We can expand the Hamiltonian H as

H=~(En+#)+E(2}+... ~ ~)1)( I (1.47)
n

where E(k) are a series of correction terms to the eigenvalue ~. Ordy two of are

of interest here, the first-order correction

(1 1)E(lJ=n~pn (1.48)

and the second-order correction

(nlHdm)(mlHdn)E(2) = ~ ~
m*n n–~m “

(1.49)

Terms with k >2 are assumed to be small enough to ignore. Only the secular

part of HP (the part that commutes with Ho) contributes to.eqn (1.48), while only

the nonsecular part of HPcontributes in eqn (1.49).

13



The Zeeman Interaction

In high-field NMR, the strongest spin interaction present is almost always

the Zeeman interaction, the interaction of a magnetic dipole (the nucleus) with a

magnetic field. The Zeeman Hamiltonian is given by

Hz= –liyBOIz= –hDOIz,

where B. is the magnetic field, the direction of which

(1.50)

defines the z-axis of the

laboratory frame, and COOis the Larmor frequency. Since this is the strongest in-

teraction present, its eigenvectors and eigenvalues will be used as the basis set

when using static perturbation theory to calculate the effects of other interac-

tions. The Zeeman spin operator set in spherical operators (eqns (1.18) and (1.19

)) is

10 = Iz (1.51)

and

,,=+(’.*”Y)*—
JE”

The matrix elements of this set are

(1 mlIzlIm) = m

and

(1.52)

(1.53)

(1.54)

The Electric Quadruple Interaction

When dealing with a nucleus with an angular momentum of greater than

1/2, the electrical interaction of the nucleus with its surrounding becomes impor-

tant. For a spin-1/2 nucleus, the nuclear charge distribution is spherical and

therefore reorientation of the nucleus has no effect on its energy. For a quad-

14



rupolar nucleus, this is n?t the case.

tion density @(?) interacting with a

interaction energy EQwould then be

EQ=

Consider a nucleus with a charge distribu-

electric field potential V(7). The classical

jQ(~)v(@i3~ (1.55)
Volume

integrated over the volume of the nucleus. The electric field potential V(7) de-

pends upon the spatial orientation of all the electric charges which originate from

the nuclei and electrons of the system of interest. Since a true analytical expres-

sion would be virtually impossible to obtain, the potential can be expressed as a

Taylor series about the center of mass of the nucleus:

avV(7)=v(o)+~ ct— +1 ~ ap=-+.
Ix=x,y,z a~ ,+ 2! ~=X,y,z adp ,d

p=x,y,z

Substituting eqn (1.56) into eqn (1.55) yields

(1.56)

In eqn (1.57) the total charge density of a nucleus with atomic number Z is Ze, the

a component of the electric dipole moment P is

pa= jCXQ(~)d3? , (1.58)
volume

and the @component of the electric quadruple moment Q&pis

Q&p= JC@Q(P)a3F. (1.59)
Volume

The term of interest here is the third term of eqn (1.57); the first term is a constant

and independent of the orientation of the nucleus and the second term vanishes

because the center of charge and the center of mass of the nucleus are assumed to

coincide [2,18]. Higher order terms are assumed to be insignificant.

To simplify notation, the elements of the electric field gradient tensor are

15



defined as

a2v
‘“F=%sji,=0 (1.60)

By an appropriate choice of a reference frame, designated the principal axis sys-

tem (PAS) of the electric field gradient (EFG) and labeled by X, Y, and Z, the ten-

sor in eqn (1.60) will contain only three diagonal components Vxx, Vw, and Vzz,

which are defined to fulfill the relationship,

lv~~l2 Ivyyl2 Ivxxl. (1.61)

The three components of the EFG in the PAS are used to define two other pa-

rameters, the field gradient of the EFG, eq,

eq= Vzz, (1.62)

and the asymmetry parameter qQ
Vxx-v~

~Q = Vzz / (1.63)

which describes the symmetry of the EFG. If the field gradient possesses cylin-

drical symmetry, then ~Q is equal to zero. AS the symmetry deviates from cylin-

drical the value of ~Q increases to its maximum value of one. If Vxx = VW= Vzz,

then the quadrupolar interaction vanishes.

To simplify further calculations, the

duced.

following traceless tensor is intro-

Q.cq3 =
[ ) )3@@– 6CX~ ~ at = l@(~)(3~axb–6apl’2d3~ (1.64)

i=x,y,z Volume

By substituting eqn (1.64) into eqn (1.57) and taking note of Laplace’s equation,

(1.65)V%=vxx+vyy+vzz =(),

the quadrupolar interaction energy can be written as

16



We must now discuss

(1.66)

the quantum mechanical derivation of the quad-

rupolar FIamiltonian. The quantum mechanical equivalent of the charge density

@) is the operator p(?) defined by

The

The

P(o = Hw -1) (1.67)
i

vector fi gives the position of the it~nucleon in the nucleus with charge ~i.

quadruple tensor operator QaP can be obtained by substi~ting eqn (1.67)

into equation eqn (1.64) yielding

Qap= ~e(3~#i -6aBq2). (1.68)
i

The quantum mechanical Hamiltonian is then

(1.69)

The components of the electric field gradient VaPrepresent expectation values of

an EFG tensor operator.

We can express the above operators in terms of irreducible second-rank

spherical tensors T~mand F!~mwhere the five components of T~mare

[1.70)

and

(1.71)

(1.72)

The five components of R~mare

(1.73)

17



and

The quantum mechanical Harniltonian can be expressed

ducible spherical tensors as

(1.74)

(1.75)

in term of these irre-

(1.76)

We can now take advantage of the Wigner-Eckert theorem [10,11,15]. This

theorem essentially states that all irreducible tensors of a given rank are propor-

tional to one another. For a set of wave functions with quantum numbers j, M, a,

J’, M’, and d, where a can represent a set of quantum numbers describing the

system, the theorem can be expressed as

(aJMlqmldj’M’) =(z~, ]’ M’IJM)(CKIIITIICW). (1.77)

The quantity (1n-z,]’ M’IJ M) is a Clebsch-Gordon coefficient and contains the

geometric information about the system. A discussion of Clebsch-Gordon coeffi-

cients and their properties can be found in texts on angular momentum and

quantum mechanics such as reference [11]. The quantity (a ]ll~llct’J’) is called

the reduced matrix element of T1and is a constant which depends only upon a, J,

u’, J’, and 1. Therefore, it is independent of reorientation, depending only upon

the physical properties of the system. By using the Wigner-Eckert theorem, we

can relate Tzm’sthat are a function of different variables:

The Clebsch-Gordon coefficient is eliminated since the values 1,M,J, M, J’, and M

are the same for both tensors. The reduced matrix elements depend upon the

operator in question and form the proportionality

18
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tionship between the two sets of tensors.

Using eqn (1.78) we can now show that

(1.79)

The value c is a constant and can be calculated by evaluating eqn (1.79) using the

values m=m’=1 anda=fl=z.

(1.80)

We define the nuclear constant eQ, the quadrupolar moment, as the matrix ele-

ment

eQ = (UalQu@). (1.81)

Equation (1.80) then becomes

eQ = d(21 – 1),

and, therefore, the constant c is then

eQ
C= I(21-1)”

Two other constants are typically defined: the quadrupolar frequency OIQ

e2qQ

‘Q= 21(21– l)h ‘

and the quadrupolar coupling constant, CQ,

e2qQCQ =~.

The quadrupolar Hamiltonian in eqn (1.76) can now be written as

HQ = h6JQ $ (–l)m@.mT~m
m=–2

(1.82)

(1.83)

(1.84)

(1.85)

(1.86)

where the components of T2~ can now be expressed as

19



and

(1.89)

The tensor A~~ corresponds to the tensor l$m with components given in

eqn (1.73) to eqn (1.75) but redefined, such that

(1.90)A~m= i D#~m(di7)P&)
~~=-z

where p~~ are the components of the EFG in the principal axis system,

r
3

P?o= y, (1.91)

and

(1.92)

(1.93)

The angles et, ~, and y are the Euler angles which define the orientation of the

PAS with respect to the laboratory frame of reference, the relationship between

which is illustrated in Fig. 1.1.

Under high-field conditions the Hamiltonian in eqn (1.86) is to be a small

perturbation upon the Zeeman Hamiltonian: @Q<C00.we can therefore we

static perturbation theory as explained in eqns (1.45) through (1.49) to calculate

the effects of the quadrupolar interaction on high-field NMR spectra. The first

order correction is calculated using eqn (1.48),

E:Q) = (hnlHQIIrn) . (1.94)

Since only the secular part of ~Q contributes to the first order correction we may

20



represent the Hamiltonian to first order as

‘@Q Q 312-12).H~ = hDQA!&T$ = -@20( z

The first-order correction to the eigenvalue, E~Q), is

(1.95)

(1.96)

We are interested in the case of half-odd integer nuclei and; in particular, the

central (1/2+-1/2) transition. We must therefore calculate the splitting in the

energy levels of this transition. The splitting of a single quantum transition

(rn+ m - 1) can be calculated as

3fi@QA~(2w-$ .~:(l; ~.
&

(1.97)

The splitting for the central transition is therefore

~(lQ)
l/2-+-l/2 = o ‘ (1.98)

and we must calculate the second-order correction to the eigenvalue to see if it

makes a significant contribution to the Hamiltonian. Using eqn (1.49), the sec-

ond-order correction to the eigenvalue is

(I+IQIITIZ)(I+QII~)
~:Q) . ~

Roo(n– m) “
(1.99)

n*m

Inserting the Hamiltonian from eqn (1.86), we get

Using eqn (1.100) and the values of the matrix elements of T~m(given in Ap-

(2Q)pendix A.3), we can calculate AEV2+_V2as

AE(2Q)
l/2-+-l/2 S(I(I+l)-3/4)~(2Af1Af_1 +A$!2A$_2). (1.101)

(00



In order to simplify this expression, we will combine the A2m’s, forming

new zero-, second-, and fourth-rank tensors. First, we will define the second or-

der quadrupolar frequency, ~Qas

(1.102)

Substituting in the definition of A2mfound in eqn (1.90), we express the tensor

product as

Q (2)
‘f~Af-rn = ~ ~ ‘fj(R)P2~Dk’-m(R)Pfk’1

k=–2 k’=-2
(1.103)

where R represents the set of Euler angles U, ~, and y that describe the orientation

of the EFG with respect to the laboratory reference frame. A product of two sec-

ond-rank Wigner rotation matrices can be expressed as a sum of rotation matri-

ces, yielding

D(2)(R)D#~m(R) = ~ (2 m, 2- mlf 0)(2 k, 2 k’12k+k’)D~’Y O(R). (1.104)km
1=0,2,4

Defining n = k + k’, eqn (1.103) can be rewritten as

Afm@m . ~ (2 m, 2 -roll O) ~ ~ (2 k, 2 n-kll n) Dg~(R) p~k P!/n_k . (1.105)
1=0,2,4 k=-2 n=-4

We then define the tensors, a~, such that

at= $ (2 k, 2 n-kll n)pfkp~n_k . (1S06)
k=-2

The various components of a~, given in Table 1.3, can be calculated by evaluat-

ing the Clebsch-Gordon coefficients and using eqns (1.91) through (1.93). Eqn

(1.102) can then be expressed as

The a~’s are used to define a second set of tensors, ~~,
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The 1= 0,2, and 4 components of @fi are given by

and

(1.109)

(1.110)

(1.111)

Inserting eqns (1.109) through (1.111) into (1.107), the second-order quadrupolar

frequency fl~ can then be expressed as

i2Q = ~~g .
1=0,2,4

The Chemical Shift Interaction

(1.112)

We can express the chemical shift Hamiltonian as

Table 1.3 Values for a: (eqn (1.106)). qQ is the quadrupolar asymmetry paramet-

er.

n

1

0
—

2

4

0

[)3 na+l—.
2JE 3

—

3
2J7 ‘Q

—

4
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1
Eq-- = h-y ~ ~ (–l)m~;%:; (1.113)

1=0,2m=-1

The chemical shift tensor will be indicated by &$ and in its principal axis frame

(PAS) has the components 6XX, iliw, and 8ZZ. The trace of the chemical shift ten-

sor is proportional to the isotropic chemical shift and is defined by

the chemical shift anisotropy is defined by

and the asymmetry parameter is given by

The components of ~s are given by

T&s = BOIZ,

(1.114)

(1.115)

(1.116)

(1.117)

(1.118)

(1.119)

and

T2t2 = 0. (1.120)

The spatial tensor Rcs is related to the spatial tensor pcs, defined relative to the

PAS of the chemical shift interaction, as

R::= h$k(%lLY)P::~ (1.121)
m’=-l

where the components of pcs are

p~s = & , (1.122)
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(1.123)

p;:~ = 0, (1.124)

and

(1.125)

Using the above equations we can express the Hamiltonian as the sum of an iso-

tropic component and an anisotropic component.

Again using static perturbation theory, to first order only the secular part of the

Hamiltonian remains, allowing us to discard terms with w >0. The Hamiltonian

can then be written as

The first term of eqn (1.127), the isotropic chemical shift, is normally incorpo-

rated into the Zeeman interaction and appears as an offset to the Larmor fre-

quency. The second term eqn (1.127) is known as the chemical shift anisotropy

(CSA). It will prove useful to express eqn (1.127) in a form similar to that of the

quadrupolar Hamiltonian in eqn (1.112). We can define a chemical shift fre-

quency Klcs, such that

Qcs = bi’fl$s, (1.128)
l=o,2

where

(1.129)

and
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(1.130)

If we wish to describe a system that has both quadrupolar and chemical

shift elements, we can express the resulting Hamiltonian as

El=m-l.lz =tl ~Jifs& (1.131)
1=0,2,4

The irreducible tensor ~0 includes contributions form both the chemical shift

and quadrupolar interactions, since we can combine the chemical shift and quad-

‘h)D,,
l]

(1.135)

(1.136)

(1.137)

(1.138)

rupolar tensors as follows:

and

The Dipolar Interaction

J&o = J’%-w::1 (1.132)

d20 = &o +&i (1.133)

&40 = J@ “ (1.134)

The dipolar interaction Hamiltonian between two spins Ii and Ij can be ex-

pressed as

where @DJ k defined as

‘YiYj
@Dy=~.

rij

The components of T~~are given by

_ ~(31Z,iIZ,j -Ii .Ij) ,
‘~-&

T~=fi(
)— ~z,i~tl,j + ~+l,i~z,j Z2

and
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(1.139)

The components of R~~relative to the PAS frame of the dipolar interaction are

and

DV Dq
P2*1= P2*’2= o “ (1.141)

Analysis of the dipolar interaction is complicated and commonly computed with

the method of moments [19]. For the purposes of this thesis, the dipolar Hamil-

tonian can either be expressed for a homonuclear interaction as

‘D= ‘~@Dti __&(31z,i1z,j ‘$ “lj)A% (1.142)
ij

i+j

or for the heteronuclear case as

pairs

(1.143)

Interaction with Radio-Frequency Irradiation

The Hamiltonian describing a rf pulse of frequency @ and field strength B1

is

E+= -kyqcos(cf)t+q)px + Iy Sin(cot+@)] (1.144)

To simplify further calculations, the Hamiltonian is transferred into a rotating

frame of frequency co. The effective Zeeman and rf irradiation Hamiltonian can

then be written

HM=fi(m-@o)-h@l(Ix cos@+Iysh$) (1.145)

where ml = @l. Note that in the rotating frame, the Larmor frequency appears as

an effective frequency co– Oo,and for an on-resonance pulse (co= coo)the rf pulse

induces rotations about an axis is the xy-plane. In such a case the rf Hamiltonian
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can be expressed (assuming $ = O)as

Hw = –FKD~Ix.

28
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Chapter 2
Dynamic-Angle Spinning

Solid state nuclear magnetic resonance (NMR) spectroscopy of the central

(1/2 ++-1/2) transition of half-odd integer quadrupolar nuclei can yield infor-

mation about the nuclear quadruple interaction, which in turn can be correlated

with the structural properties of a material [20-24]. As seen in the previous

chapter, the central transition is broadened by the second-order anisotropic

quadrupolar interaction often making the resolution of multiple-sites within a

sample impossible. Solid state NMR techniques, such as magic-angle spinning

(MM) [25,26] and variable-angle spinning (VAS), can through the use of sample

spinning, achieve high resolution spectra of spin-1/2 nuclei but fail to completely

average the quadrupolar anisotropy. Dynamic-angle spinning (DAS) has been

shown to average such broadening, producing narrow lines and resolution of

crystallographically distinct sites for a variety of samples [27-32]. In this chapter,

the basic technique of DAS will be explained and demonstrated using the spin-

3/2 nucleus sTRb[33].

2.1 Magic-Angle Spinning

We will start our analysis of the effects of sample spinning for the simpler

case of the chemical shift anisotropy (CSA), using the chemical shift Harniltonian

in eqn (1.128). If we rotate the sample at a frequency of or about an axis oriented

at an angle e with respect to the magnetic field, then the chemical shift frequency

Qcs becomes
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Qcsw = x i 4?O(%MW)J?%. (2.1)
1=0,2 m=–1

In eqn (2.1) only those terms with w # Oare time dependent and we can rewrite

the Hamiltonian, separating the time-independent and time-dependent terms, as

~c~{t) = ~00 +&I(0rf,e,o)@20+ i Dfi~(0,he,o)@2m.(2.2)

The final term

exp(-inqt) and,

m..z
m*O

in eqn (2.2) is time dependent since it contains the terms

as a result, is modulated by frequencies of mq. This modula-

tion appears as the presence of spinning sidebands at multiples of the spinning

frequency. If Or is greater than the width of the static powder pattern, then the

effect of this modulation is negligible and the last term can be ignored. For this

discussion on MAS, it will be assumed that the spinning frequency is sufficiently

fast and the last term will be dropped, In Chapter 3, we will discuss methods of

removing sidebands when the last term cannot be ignored, but for now we can

rewrite eqn (2.2) using eqn (1.25) as

~~~(~,~,~,f)) = Moo +@~~(~,~,y)P~(cos e). (2.3)

In eqn (2.3), the orientational dependence has been given explicitly. The first

term, do is isotropic (eqn (1.129)) and therefore contains no dependence upon

the orientation of the sample. In the second term, @?20,the CSA, is dependent

upon the Euler angles defining the orientation of the chemical shift tensor to the

frame of the rotor (eqn (1.130)), and therefore will lead to a broadening of the

spectrum because of the distribution of orientations present in a powder sample.

However, if we can manipulate the spins in a way such that

P2(c0se) =#3c0s2e-l)=o, (2.4)

then the chemical shift anisotropy can be averaged to zero, i.e., (@fzo) = O. The
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k

angle that solves eqn (2.4), the so-called second-rank magic angle, is

()
em ‘1 ~= Cos

&
= 54.74°. (2.5)

2.2 Dynamic-Angle Spinning

The Dynamic-Angle Spinning Experiment

When dealing with the second-order quadrupolar interaction, the situa-

tion is more complicated, but we can examine it in a similar manner. Starting

with eqn (1.112), we calculate the frequency when the sample is rotating at a fre-

quency CO,around an axis oriented at angle 6 with respect to the magnetic field.

The quadrupolar frequency becomes time dependent and is expressed as

QQ(t)= x i #@,mo)@/m.
1=0,2,4 m=-1

(2.6)

Again, we separate

yielding

the time-independent from the time-dependent terms,

QQ(t)= z ~$f@/&o)@Kl+ z i D:)(W,W)J?%. (2.7)
1=0,2,4 1=0,2,4 m=-1

m#O

As in the case of MAS, the last term is time-dependent and can generate side-

bands in the spectrum. For this discussion of DAS the spinning frequency will be

assumed to be great enough to render the second term negligible. We can

expand eqn (2.7) using eqn (1.25), resulting in

QQ((x,p,y,e) = J&j +@2&p,y)P2(cose)+ J&.@p,y)P~(cose)

again

(2.8)

As in the case of the CSA we find we have an orientationally independent term,

which will be defined as the isotropic second-order quadrupolar shift, 5\~OQ),

(defined in Hz)
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1.0

0.5

0.0

-0.5

r~(cos e)

30.56

0° 30° 60° 90°
0

Figure 2.1 Plot of the second- (solid line) and fourth-rank (dashed line) Legendre

polynomial of cos 0 vs. 0. As shown, P2(cos 9) is zero when 0 = 54.74° while the

fust two zeros of P4(cos 0) are at f)= 30.56° and 6 = 70.12°. The second- and

fourth-rank polynomials have no common zero.

-3(1(1+1) - 3/4) ~

(1
tJ2Q) = Jzt%/2~ = 4ovo12(21_1)2 CQ 1+$ ‘is”

where CQis defined in eqn (1.85) and V. = coo/2m We also have an orier

ally dependent term that is scaled by P2(cos 6) and a second orientation?

pendent term that is scaled by PA(cos 0).

dependent terms will be defined as ~~~~.

We would, of course, like to find

The sum of these two orientat

an angle 6 where both P2(cos

F’4(cos$) are zero simultaneously, so that
()
~~2QJ = O. However, as f

aniso

Fig. 2.1 there is no single angle where both P2(cos 6) and P4(cos 6) are zerc

that there are two fourth-rank magic angles, 30.56° and 70.12°, where the

rank Legendre polynomial is zero; neither of these angles results in a zc

end-rank polynomial. We can, however, find two angles that will yield
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sired averaging. One such experiment is double rotation DOR [34,35], where the

sample is spun about two axes simultaneously.

zeros of the second- and fourth rank Legendre

30.56° or 70.12°.

The axis angles chosen are the

polynomials, 54.74° and either

A second solution is dynamic-angle spinning (DAS) where the sample is

spun about two different axes sequentially so that the net evolution period at

both angles results in an averaging of the anisotropy to zero. Such a condition

can be met if we can find a set of angles which solve the equations,

X1~2(c0SeJ + X2 P2(COS02)s o (2.10)

and

~lq(cOseJ +X2P4(CON32)= o

80° –

60° i 54.74o

(2.11)

20°

0° I I I I
1 2 3 4 5

k

Figure 2.2 Solutions to eqns (2.10) and (2.11) plotted as DAS angle pair @l, 02)

VS.k. Solutions only exist for k = 0.8 to k = 5.0 and vary continuously from

91 = 0° to 61 = 39.23° and from (12= 63.43° to (32= 90°
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where xl and X2 are the fractions of time spent at the angles el and 02, respec-

tively. To solve these equations we define a constant k such that

The pairs of angles which solve eqns (2.10) and (2.11) are

e~= COS-l
[r]

1+2~

3

and

e~=COS-l [T]l-3J@

3

(2.12)

(2.13)

(2.14)

and are plotted in Fig. 2.2. For a solution to exist k must be between k = 0.8 and

k = 5.0. The allowed values of& and (32are between tll = 0° and (lI = 39.23° and

between e2 = 63.43° to (lZ= 90°, respectively. No angle pair contains the second-

rank magic angle 54.74°. However, the two fourth-rank magic angles, 30.56° and

70.12°, are an allowed set of DAS angles with k = 1.87.

Fig. 2.3 shows the basic DAS pulse sequence. As seen in the figure, an

evolution period of tl /(k + 1) at angle 01 with respect to the external field is fol-

lowed by a n/2 storage pulse that stores the magnetization along the z-axis thus

allowing for the hop to the second angle 92. After a second evolution period of

kfl/(k + 1), a DAS echo forms. The phase cycle, which can be calculated using

the coherence transfer pathway given in Fig. 2.3 with the method explained in

Chapter 1, is given in Table 2.1.

Table 2.1 Phast

1
%92 93 w
0° 0° 0° 0°

90° 0° 0° 90°

180° 0° 0° 180°

270° 0° 0° 270°

Cycle for experiment

% 92 93 %
0° 90” 0° 270°

90° 90° 0° 0°
180° 90° 0° 90”

270° 90° 0° 180°

n Fig. 2.3.



(go”)(pl (90”)% (90”)% PSD9,

81
e(f)

p=+l

Figure 2.3 The basic DAS pulse sequence consists of a n/2 pulse followed by an

evolution period of tl /(k+ 1) while the sample is spun about an axis oriented at

an angle 61 with respect to the external field (the direction of which defines the z-

axis). A second 7c/2pulse stores the magnetization along the z-axis to allow for

the hop to the secmciangle 02 After a second evolution period of kfl/(k + 1), a

DAS echo forms, and one point in the isotropic spectrum can be collected. By in-

crementing tl, a two-dimensional spectrum can be taken. The desired coherence

transfer pathway is shown at the bottom.

Pure Phase DAS

The pulse sequence in Fig. 2.3, leads a two-dimensional spectrum with

phase-twisted lineshape, which means that the lineshape contains a mixture of

absorptive and dispersive Lorentzian elements. The signal arising from a two-

dimensional experiment can be expressed as

S(tl, tz) = e-(~’+~2)/~2e-i~lfle-i~2~2 (2.15)

where fll and K22are the frequencies for a given peak in the first and second di-

mensions, respectively, and 1/2T2 is the linewidth. The first Fourier transform

with respect to t2 gives
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(2.16)

where A(%, L22),the absorptive Lorentzian lineshape function is

A(co,!i2)= ‘2
1+((H2)2T;

and D(%, f12), the dispersive Lorentzian lineshape function is

(2.17)

D(c@) =
(oX)T;

l+(co-Q)2T; “
(2.18)

The second Fourier transform produces

s(01,~2) = [A(W2JA(02,i22)-D(01,QJD(02,f22)]
(2.19)

+i[A(q,C21)D(co2, f22) -D(CI)l,f21)A((I) 2, K22)]“

As can be seen in eqn (2.19), the real component of the signal contains both ab-

sorptive and dispersive terms, which leads to an undesirable lineshape that re-

quires taking the magnitude of the data.

Several of the traditional methods of producing pure-phase spectra, in-

cluding the method of States et al. [36], time-proportional phase incrementation

(TI?PI) [37,38], and whole echo acquisition [39] have been used to produce pure-

phase DAS spectra; details can be found in references [27,40-42].

Most of the spectra presented in this thesis have been

whole-echo acquisition in which a pulse sequence of the form

~/ z—fecho—~—acquisition

obtained using

(2.20)

is used to refocus the signal and produce an echo. If the entire echo is collected,

the signal is of the form

S(tl, t2) = e-(t2-t’&0)2/T;e-iQ2(t2-te’1’”)e-fl/T2e-iQ1tl. (2.21)

A Fourier transform with respect

applied to the ~2 dimension, and

gives

to tz followed by a phase correction of t,Ck

then a Fourier transform with respect to tl
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q@@J = A,e(m2,Q2)[A(@l/Ql)-~~(@l/Ql)]

where

(2.22)

(2.23)

giving a pure-absorption mode two-dimensional spectrum.

The method of States, in which a hypercomplex data set is collected, is

also used on occasion in this thesis. Two data sets are acquired, the first cosine

modulated in tl, and the second sine modulated in fl. The resulting signal can be

expressed as

‘c(4, fz)=C0s(Q1t1)6?-(tl+t2)/~2 e-iQ2t2

and

S,(fl, t2) = sin(!21t1)e-(f1+f2)/T2e-iQ2f2.

(2.24)

(2.25)

A Fourier transform with respect to t2 is performed on each data set and then the

data sets are combined to forma data set whose real component is Re[SC(tl,m2)]

and whose imaginary component is @S~ (tl, 02)]. The result is given by

S(tl, 02)= A(@2,f22)e-fl/~2 e-i~ltl. (2.26)

A pure-phase data set results when eqn (2.26) is Fourier transformed with

respect to t2. The phase cycles necessary to obtain a hypercomplex data set can

be calculated using the coherence transfer pathways method described in Chap-

ter 1 by recognizing that both the p = +1 and p = –1 pathways must be collected

in the tl dimension. The sum of the two pathways produces a cosine modulated

data set and the difference produces a sine modulated data set.

Multiple Field DAS

The isotropic shifts observed in the FI dimension of a DAS spectrum can

be expressed as
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where b~~ is the isotropic chemical shift and 8$Q) is

quadrupolar shift, given in eqn (2.9). Evaluating the

second-order quadrupolar shift maybe written

(2.27)

the second-order isotropic

constants in eqn (2.9), the

&:Q) = (– 1.28X 10-
1[)

10 T2 ~2 1
~Q$

where the quadrupolar product, PQ is defined by

(2.28)

(2.29)

Note that, in ppm, the isotropic chemical shift is independent of field strength

while the second-order quadrupolar shift is proportional to the inverse of the

Larmor frequency. By measuring the total isotropic shift at various field

strengths, we can calculate ~~~ and PQ, using the equation

(2.30)

Note that the values of CQ and l’lQare not uniquely specified by PQ; an inde-

pendent method, such as simulations, must be used to determine these values.

2.3 Dynamic-Angle Spinning of Rubidium-87

Alkali metals such as rubidium are important in a number of areas, serv-

ing as promoters in the heterogeneous catalysis of ammonia synthesis [43] and

the oxidative coupling of methane to yield ethane and ethene [44]. Rubidium is

an important component of some glasses [45], and it has been shown that buck-

minsterfullerene, C@ doped with Rb metal becomes superconducting with a

transition temperature of 28 K [46].

In order to assess the applicability of dynamic-angle spinning NMR to
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rubidium and its potential to yield structural information about materials such as

those listed above, sTRbMAS, VAS and DAS spectra were obtained for five inor-

ganic rubidium salts RbCl, RbCIOA, Rb#Oq, Rb2Cr01 and RbN03. We show

that substantial narrowing of the spectral lines occurs in DAS over M&5 or VAS.

Using pure-phase M.As-detected DAS experiments together with single site

simulations and phase-modulated DAS experiments at several field strengths,

we have extracted quadrupolar parameters for the various gyRb sites in each

compound. The static lineshapes of all of these compounds have previously

been studied by Cheng et aL [471, in order to obtain values for quadrupolar and

chemical shift parameters. Crystal structures for all of the compounds RbCl [48],

RbCIOA [49], Rb2CrOQ[50], Rb#OA [51], and RbNOg [52,53], have also been de-

termined previously and are used to identify the number of inequivalent sites in

each compound.

Experimental

All rubidium compounds were obtained from Alfa Products, Morton

Thiokol, Inc., or Aldrich Chemical Co., and were used without further purifica-

tion. Spectra were acquired at 7.0 T (98.55 MHz), 9.4 T (130.89 MHz) and 11.7 T

(163.62 MHz), using the probe design described in reference [54] and the pulse

sequences given earlier and shown in Fig. 2.4. The slBr signal in solid KBr was

used as an internal standard for calibration of the magic angle. All spectra are

referenced relative to aqueous 1 M RbN03 as an external frequency standard.

Either 256 or 512 complex points were acquired in tp and between 128 and 512

real points in tl. Spectra were acquired with 1.0s relaxation delays and pulses

selective for the central transition of approximately 5 w (l?l -20 G), Hopping

times for the reorientation of the rotor axis were about 30 ms. Normal rotor

spinning speeds were between 6.5 and 7.8 kHz. All VAS, MAS, and static spectra
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‘(t)a 79.19°
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e(t) 37.38°

Figure 2.4 DAS pulse sequences used for experiments on 87Rb. The pulse se-

quence in (a) gives a phase-modulated data because the entire echo is not ac-

quired, while the pulse sequence in (b) adds a second hop to the magic angle af-

ter the second DAS evolution period. Pure phase data was collected by taking a

hyper-complex data set in tl.

were acquired using a Hahn-echo pulse sequence. Procedures for performing

simulations can be found in reference [55].

Results and Discussion

Figs. 2.5 and 2.6 show the VAS and DAS spectra, respectively, of gyRb at

11.7 T in RbCl, RbC104, Rb2S04, Rb2Cr04 and RbN03. In all cases except for

RbCl, there is narrowing by over an order of magnitude in the high-resolution
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DAS dimension over the MAS spectra. The MAS spectrum of the RbCl (Fig. 2.5a)

gives a slightly narrower line than the DAS spectrum (Fig. 2.6a). This is as ex-

pected since the rubidium nucleus is in art environment of cubic symmetry

within the crystal [48]; therefore, there is no second-order broadening. Both

DAS and MAS will average first-order quadrupolar and chemical shift

anisotropy, but only MAS will average the homonuclear dipolar interaction.

This is because multilineal homonuclear terms such as Il+&...InZ (eqn (1.135))

created during the first DAS evolution period are not stored during the hop and

therefore cannot be refocused during the second DAS evolution period. The

additional broadening in the DAS spectrum of RbCl arises from the scaled

homonuclear dipolar interaction. For a discussion on the DAS dipolar linewidth

refer to references [55] and [56].

The MAS spectrum of RbCIOg (Fig. 2.5b) yields a well resolved powder

pattern which may be simulated easily (Table 2.2). These simulations agree

completely with the isotropic chemical shift and quadrupolar parameters de-

termined by the DAS measurements (Fig. 2.6b) at the two different fields. The

sTRb VAS spectrum of Rb#OA (Fig. 2.5c) shows that two powder patterns cen-

tered at -18 and 33 ppm can be resolved. The 79.19° spectrum is shown instead

of the MAS spectrum because the 79.19° spectrum is significantly narrower.

Table 2.2 Results from simulating single-site 87RbMAS/DAS spectra of RbC104

and RbN03 taken at 11.7 T.

& / ppm PQ / MHz cQ/MHz

RbCIOq -16.2 * 1.0 3.21 &0.05 3.20 * 0.05 0.10 * 0.05

-26.2 & 1.0 1.83 &0.05 1.83 &0.05 0.12 &0.05

RbN03 -26.8 * 1.0 2.39 * 0.07 2.07 * 0.05 1.00 &0.05

-30.9 * 1.0 1.91 a 0.06 1.85 * 0.05 0.48 &0.05
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Figure 2.5 87Rb VAS spectra at 11.7 T of (a) RbCl at 54.74°, (b) RbC104 at 54.74°,

(c) Rb2S04 at 79.19°, (d) Rb2Cr04 at 54.74°, and (e) RbN03 at 54.74°.
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These lines narrow substantially under DAS (Fig. 2.6c) to give two sharp peaks

corresponding to the two crystallographically distinct rubidium sites in this

compound. One of these resonances is clearly present at 60&~11-7*=34 ppm, while

the upfield site is broken into spinning sidebands. Assignment of the line at

~;:m = –10 ppm to the isotropic resonance position of the second site was made

by comparing DAS spectra taken at spinning speeds of 5.3 and 6.5 kHz.

The DAS (Fig. 2.6d) and MAS (Fig. 2.5d) spectra of Rb2CrOAshow a single

site with prominent sets of spinning sidebands. The isotropic line was assigned

by performing DAS at two different spinning speeds. However, there are two

crystallographically distinct rubidium sites in Rb2Cr04 [50]. The large C~

(-12 MHz) for the second site [47] makes it unobservable because the total in-

tensity is distributed over a bandwidth that is too broad to be excited with 5 ys rf

pulses.

The MAS spectrum of RbNO~ (Fig. 2.5e) consists of three overlapping

Table 2.3 Results from DAS experiments of various rubidium compounds at 9.4

and 11.7 T. 5$ and P~ were determined using eqn (2.30). $ This site was too

broad for detection.

6~JT/ppm &~#T/ppm &~/ppm PQ/MHz

RbCl 127 & 1 127 & 1 127 * 2 -o

RbCIOA -28 & 1 .23 ~ 1 -14 * 2 3.1 &0.3

Rb@04 -25 k 1 -lo & 1 16&2 5.3 * 0.2

29*1 34A1 42*2 3.() &().3

Rb2Cr04 -27 & 1 -21 * 1 -11 * 2 3.3 * ().3

$- $ t $
-32 ~ 1 -29 ~ 1 -24 ~ 2 2.4 ~ 0.4

RbNO~ -36 ~ 1 -32 f 1 -25 ~ 2 2.8 ~ 0.4

-37 * 1 -34 t 1 .29 ~ 2 2.4 ~ 0.4

44



powder patterns which give rise to narrow, resolved lines under DAS (Fig. 2.6e).

In Fig. 2.7 is the two-dimensional M.As-detected DAS spectrum of RbN03 taken

with the pulse sequence in Fig. 2.4b at 11.7 T. Each of the three sites is resolved

in the isotropic DAS dimension and correlated to its MAS powder pattern. The

cross-sections through the MAS powder patterns in the F2 dirnension are shown

1600

‘K’
g
g
.A
;0
6
!5
2
2

-1600

0

-2600 0 2600

DAS Dimension (Hz)

Figure 2.7 Two-dimensional MAS-detected spectrum of IWN03 taken at 11.7 T

with the pulse sequence in Fig. 2.4b. MAS powder patterns for each site are

separated by their total isotropic shift.
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Figure 2.8 Single-site MAS spectra with simulations overlaid taken from Fig. 2.7.

Slices through the isotropic DAS dimension are at (a) -29 ppm, (b) -32 ppm, and

(c) -34 ppm.

cross-sections through the MAS powder patterns in the F2 dimension are shown

in Fig. 2.8 for each of the three isotropic frequencies in ~l. Simulations of these

three powder patterns are also shown in figure Fig. 2.8, and the values of &~,

CQ, and qQ obtained by simulating each site are given in Table 2.2. Each simula-

tion started with a different set of initial parameters covering a wide range of

values, with all simulations converging to the same set of parameters within

&O,ol~O.The estimates which are shown in Table 2.2 for the absolute accuracy of
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the simulations are that C~ is accurate to MI.05 MHz, ~Qto HI.05, and the iso-

tropic chemical shift to *1.O ppm.

The total isotropic shift at both 9.4 and 11.7 T along with the isotropic

chemical shift, b~, and the quadupolar product, ~QJcalculated from the DAS

spectra of the five salts at these two fields using eqn (2.30), are tabulated in Table

2.3. Calculation of PQ and 6~s using data from DAS spectra taken at only two

different field strengths can introduce large errors, since this requires two DAS

measurements and two external references. Furthermore, since PQ is propor-

tional to the square root of the difference between the two isotropic shifts at two

different fields, smaller differences lead to larger errors. The overall errors re-

ported in Table 2.3 for the calculated parameters were made assuming that the

measurements are accurate to *1 ppm. Since the errors of the parameters de-

termined by simulation of a single site can be less than those determined by two

field measurements, it is highly desirable to perform simulations in conjunction

with the measurements at two or more magnetic field strengths.

By performing measurements at several different magnetic field strengths,

the accuracy and precision of the calculated product, P@ and 6& maybe greatly

improved. This has been done with RbN03 by comparing the results performed

at three field strengths from this work with measurements taken at 4.2 T [42].

Fig. 2.9 shows the field-dependent shift of the four lines in RbNO~ obtained from

these DAS experiments at 4.2, 7.0, 9.4 and 11.7 T. The total isotropic frequency

60~,is plotted vs. (1/Bo)zin Fig. 2.10, demonstrating the predicted linear relation-

ship. The slope of each line may be related to PQ by eqn (2.30), while the zero

intercept (which corresponds to infinite field) is simply 5$:. A linear least

squares analysis allows estimation of errors and we observe a dramatic im-

provement over two field results (almost a factor of 10). This improvement
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arises due to the large range isotropic shift differences between the measure-

ments at all four fields. The results and errors are compiled in Table 2.4 and

agree very well with our simulations.

The isotropic shift for RbCl that reported above is in very good agreement

with the work by Cheng et al. [47], indicating that the external references were

consistent with theirs, but the determination of the isotropic chemical shifts for

the other salts using DAS are different. Dynamic-angle spinning should give

more precise values than wide-line simulation techniques, which require a large

number of adjustable parameters, since DAS allows the determination of iso-

tropic chemical shifts and P~ directly. Furthermore, in the case of RbN03, DAS

allows the separation of MAS powder patterns and the determination of iso-

tropic chemical shifts, quadrupolar coupling constants, and asymmetry parame-

ters for each of the RbN03 sites through single site simulation. The quadrupolar

parameters determined for RbNO~ by multiple-field DAS measurements agree

quite well with a previous study performed in low magnetic field by Segel [57].

Table 2.4 Data (rows 1-4) and results (rows 5-6) from a linear least squares fit of

the data graphed in Fig. 2.10 for RbNOY The sites are identified by the asymme-

tryparameterIIQobtainedfromthesimulations.

‘?lQ= 0.12 qQ = 1.00 q~ = 0.48

8~~T/ppm -48.4 * 1.0 -67.5 & 1.0 -55.3 * 1.0

~~~~/ppm -34.4 * 1.0 -40.2 * 1.0 -39.8 &1.0

&jjT/ppm -32.0 * 1.0 -36.0 * 1.0 -37.0 * 1.0

/5~~~Tppm -29.0 * 1.0 -32.0 & 1.0 -34.0 * 1.0

6~~/ppm -26.8 * 0.8 -26.8 * 0.8 -31.6 &0.8

P@fHz 1.72 * 0.06 2.36 * 0,04 1.81 * 0.05
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Figure 2.10 Isotropic shifts (50J of 87RbNO~plotted vs. (1/BO)2and fit using a

linearleast squares algorithm. Using the slopes and intercepts, the values of ti~~

and P~ are calculated and tabulated in Table 2.4.
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Chapter 3
Dynamic-Angle Hopping

3.1 Background and Theory

For a static sample, the secular part of the Hamiltonian is given in

eqn (1.131) as

H = MUz = lixgflo~z (3.1)
1

where do describes the spatial tensors of the CSA and quadrupolar interactions

with rank 1= Oor 1= 2 for CSA and 1= O,1= 2, or /= 4 for the quadrupolar inter-

action. The anisotropic components of these interaction are contained in the do

with rank 1 greater than zero as explained in Chapter 2; motional averaging ex-

periments such as MAS, DAS, and DOR attempt to obtain high resolution by av-

eraging to zero thefio with rank greater than zero.

However, as mentioned in Chapter 2, one of the drawbacks of spinning

experiments is the introduction of a time dependence to the Hamiltonian, and

this time dependence introduces sidebands. Sidebands are artifacts that appear

at integer multiples of the spinning speed [58]. If the spinning speed is suffi-

ciently fast, the intensity of the sidebands is negligible and they do not compli-

cate the spectrum. However, for many sample of interest, such speeds cannot be

obtained. Spinning the sample at high speeds also requires a decrease in sample

volume and therefore a decrease in sensitivity, which can cause problems for low

gamma nuclei or for samples where enriching is unfeasible. There are sideband

suppression techniques such as TOSS [59], however, these can also lead to a loss
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of signal intensity.

Another approach

ence of the Hamiltonian.

to removing sidebands is to remove the time depend-

This can be seen by examining the background of mo-

tional averaging experiments. Sample spinning is an implementation of the fol-

lowing theoretical experiment. Allow a static sample to evolve for equal times at

various orientations with respect to the magnetic field. If the proper orientations

are chosen, such an experiment will result in @o with 1>0 being averaged to

zero. This is a consequence of the symmetry of the irreducible spherical tensors

@?jo. For example, a second-rank spherical tensor is averaged to zero if it under-

goes reorientations with octahedral symmetry, such as being moved instantly

between the vertices of an octahedron. Reorientations with icosahedral symme-

try, such as being instantly moved between the vertices of an icosahedron, will

average to zero both second- and fourth-rank interactions. Under such reorien-

tations, the effective Hamiltonian can be written as

(3.2)

with only the isotropic component remaining.

In practice it not possible to instantly reorient the sample between the

various orientations. One implementation that will average second-rank inter-

actions is a two-dimensional experiment called magic-angle hopping (MAH) de-

veloped by Szeverenyi, et al. [60], in which a sample is rotated in 120° steps about

an axis inclined at the magic angle (54.740). During the reorientation, the mag-

netization is stored with n/2 pulses along the direction of the magnetic field. In

another method developed by Gan [61], the sample slowly rotates about the

magic angle and storage pulses are used to interrupt the evolution and approxi-

mate 120° hops.

One big disadvantage of these experiments is the use of the n/2 pulses.
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Figure 3.1 In the basic MAH-180 experiment, periods of isotropic evolution (in

gray) 120° apart are sandwiched by z-pulses such that the isotropic evolution

adds across two rotor cycles while the periods of reorientation to the next evolu-

tion position cancels across the same two rotor cycles.

Since only half the magnetization can be stored, there is a decrease in the signal-

to-noise ratio by a factor of ~ for each pair of pulses (plus any due to T1 re-

laxation). The experiment described here eliminates the problem of storage

pulses by using n-pulses to refocus the evolution which occurs during the period

of reorientation [62]. An experiment, labeled MAH-180, designed to produce a

sideband-free MAS spectrum is shown in Fig. 3.1. The desired periods of evolu-

tion (shown in gray), at positions 120° degree apart, are sandwiched by n–

pulses. As indicated in the figure, each n-pulse reverses the sign of the evolution

such that the desired periods add while the undesired periods cancel. A minim-

um of two rotor cycles are needed to accomplish the refocusing

To show how this works for a quadrupolar nucleus, consider the experi-

ment shown in Fig. 3.2. This experiment is assumed to occur over 2N rotor cy-

cles of period q for a total time of 2NzT. The first N cycles are divided into K in-

tervals so that each interval has a length of NZr/K Each interval consists of a
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Figure 3.2 Experiment occurs over 2N rotor periods of length ‘c,. The first N pe-

riods are divided into Kintervals of length MJK. Each interval consists of a pe-

riod 8 followed by a n-pulse which reverses the sign of the Hamiltonian. At the

end of each interval a n-pulse restores the Hamiltonian to its original sign. The

echo appears at 2M,. The maximum value for 6 is t3mx = N7JK.

period of evolution 5 followed by a perfect n-pulse which reverses the sign of the

evolution of the Hamiltonian.

The second-order quadrupolar frequency ~~(t) of a sample spinning at a+.

about an axis oriented at an angle 6 with respect to the magnetic field is given as

The initial phase of the rotor is yr and ~fi is described in eqns (1.109) through

(1.111). Since we will be integrating over time to obtain the phase of the signal, it

is useful to separate the time-independent and time-dependent portions of eqn

(3.3), which gives
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The phase of the resulting signal obtained by integrating over time is then

I
‘- (~’,j/K)+6~~(f)dt- J~~~:{j~/&/”)Q~ (t)dt]+jfi~ ~~(t)dt. (3.5)@Q(6) = ~ hj/K
1-

I.neqn (3.5), the negative sign before the second integral reflects the effects of the

z-pulse. The integrals can be solved analytically, yielding

In eqn (3.6), we can see that the sidebands arise from the time-dependent terms

exp(–imor~). If, then, we can render the time-dependent term in eqn (3.6) zero

for all 5 then, as a consequence, the sidebands would be eliminated. We must

therefore examine under what conditions the second term in (3.6) is zero. First,

note that

–im2nN~K j e–i(K–l)m7wfK
Y.’(e ) =

Sin(-ltdv)

j=o Sh(–?7ZZ~/K)“

This equation is zero when the following is true

Sin(--%dv) = ~.
Sin(-tl’Z~~/K)

The solutions to this equation are

n-all = an, a = 0,&l,&2,...

and

mdV—#t-m, b=o,tl,ti, . .. .
K

(3.7)

(3.8)

(3.9)

(3.10)

For the case of a quadrupolar nucleus, the maximum value of m is four, therefore

for eqn (3.10) to always be true, K must be greater than or equal to five. Also, N

must be an integer to fulfill eqn (3.9) and not equal to a multiple of K, or else eqn
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(3.10) would fail to be true for all m This means that the minimum experiment

as shown in Fig. 3.2 for a quadrupolar nucleus would consist of five intervals and

ten n-pulses. While this example specifically dealt with the quadrupolar Hamil-

tonian, these results also apply to a Hamiltonian that includes CSA since the

maximum value of 1 (and therefore m) is two. If the nucleus is a spin-1/2 nu-

cleus, Kmust be only greater than or equal to three for a total of six n-pulses.

If the conditions of eqn (3.8) are met, the phase can be written (assuming

K=5)as

Q+dfi)(f))&o+d&)@)J?@~108‘Q(3) = (@OO ) (3.11)

While there are no longer sidebands, there is anisotropy contained in the

tensors @o and &O. To remove this anisotropy, the standard DAS experi-

ment described in Chapter 2 can be modified by combining it with above method

to give an experiment called dynamic-angle hopping (DAH). As in DAS, the

evolution occurs first at one angle 91 and after storing the magnetization and

hopping to the second angle, further evolution occurs at a second angle 02. The

ratio of the times spent at the two angles is determined by the constant k which

also determines the two angles used. The presence of two evolution periods at

two different angles complicates the DAH experiment since time dependence can

be introduced into the Hamiltonian during both evolution periods. One method

of dealing with this is to simply perform the ten n-pulse sequence at both angles,

but this of course means the doubling of the number of pulses with the resulting

loss of signal due to pulse imperfections. Theoretically, fewer pulses are needed

over the two evolution periods but the relative phase of the rotor before and after

the hop must be known; this is experimentally difficult to accomplish. However,

by taking advantage of the k = 5 angle pair (0°, 64.430), the n-pulse sequence only
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or, since k =5,

needs to be performed when the rotor is at 64.43°. This is because spinning at 0°

is equivalent to static conditions and therefore no time dependence is introduced

and no sidebands produced. Also note that the angle 0° and five equally spaced

positions around the axis 63.43° correspond to the various vertices of an icosahe-

dron. Under the DAH experiment the phase becomes

‘Q(8) = (@&+ ‘&)(Ol)@O ‘d!#(el)J&O)106
(3.12)

+(@@. +&)(e2)@Fo +&J(e2)fio)y

(3.13)

Note that the experiment described above gives us a single point just as in

DAS; the experiment must performed two-dimensionally, with the tl evolution

time being fl = 12& As can be seen in Fig. 3.2, the maximum value for tl/12 is

N7,/5; therefore the maximum acquisition length in the tl dimension is 12N~,/5.

This limit to the maximum value of tl can result in truncation artifacts if the full

FID cannot be collected in the fl dimension. The number of rotor cycles that the

experiment is performed over can be increased to allow for a longer acquisition

time in the tl dimension; however, since the magnetization is in the transverse

plane the entire length of the experiment, the loss in signal due to T2 relaxation

can be substantial.

Instead of using n-pulses, the DAH-90 experiment uses n/2 storage pulses

as in the MAH experiments mentioned above. Each pair of storage pulses results

in a loss of signal by a factor of Z plus an additional loss of signal due to T1 re-

laxation during the storage period. As a result the DAH-180 experiment is ex-

pected to be superior to the DAH-90 experiment because of the loss of signal due

to the storage pulses. The phase cycling of the DAH-90 experiment is also much

57



more complicated because each of the n/2 pulses in the pulse train should be

phase cycled, while in the DAH-180 experiment the n-pulses, if accurate, do not

need phase cycling. In theory, the signal-to-noise of the DAH-180 spectrum

should be identical to that of the standard DAS experiment given in Chapter 2 in

the limit of infinite speed. It should also be superior to a method such as TOSS

[59], which can result in a loss of signal-to-noise since the sideband intensity is

not always folded into the isotropic peak. However, in practice, imperfections in

the train of n-pulses can in itself lead to a loss of intensity in the DAH-180 ex-

periment. Incomplete inversion due to resonant offset effects of the n-pulses can

also lead to significant loss of intensity. Also the effects of T’zrelaxation can sub-

stantially reduce the signal-to-noise, since T2 relaxation times tend to be short in

many solids.

3.2 Experimental Results

Rubidium sulfate and lead nitrate were obtained from standard commerc-

ial sources. The s7Rb experiments were performed at 9.4 T (130.89 MHz) and

the zOTPbexperiments were performed at 11.7 T (104.25 MHz) using a home-built

DAS probe described in reference [54]. The pulse sequences used for the DAH-

180 and MAH-180 experiments are shown in Fig. 3.3. DAS experiments were

performed as indicated in Chapter 2. The z-pulses were not phase cycled to re-

duce the length of the phase cycle. sTRb DAH-180 and DAS experiments were

performed on Rb2SOQ. The magic angle was set by detecting slBr present in a

KBr internal standard, also obtained from standard commercial sources. The

spectra were referenced relative to a 1 M RbN03 solution. Rubidium n/2 pulse

widths selective for the central transition were 4.7 ps. Recycle delays of 2s were

used to allow for relaxation and to allow the spinning speed to stabilize after the
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Figure 3.3 Pulse sequences for the (a) DAH and (b) MAH experiments. In (a)

t.= tl/12 and tb= (NT,/5)- (tl/12) and in (b) ta= 4/6 and tb= (NT,/3)- (tl/6)

where XV is the number of rotor and ~, is the spinning period. In (a), tw is the

hoptimeneedfor sample reorientation and t,aisthedephasing timeneededto

form a Hahn-echo. tl(t)indicates the angle the spinning axis forms with respect

to the magnetic field. Subscripts indicate the phase of the pulses and PSD refers

tophase-sensitive detection.



hop to the initial angle. We have found that this delay is crucial since significant

variations in spinning speed due to the disruption caused by the hop may lead to

a loss of signal-to-noise and resolution. The hop time was 55 rns. For both DAH-

180 and DAS experiments, 256 complex points were acquired in tz. For the

DAH-180 experiment, 49 were acquired in tl, and for the DAS experiment, 68

were acquired in tl. The dwell time in tz was 16 w and in tl was 33.6 vs. 512

transients were acquired for each tl point. Whole-echo acquisition was used to

obtain pure-absorption mode two-dimensional spectra [42,63]. The rotor period

for the DAH-180 experiment was 199.6 ws (5.0 kHz). For the DAS experiment,

the spinning frequency was 1.8 kHz. The rotor period was monitored during the

DAH experiment by observing the piezoelectric signal from the vibrations of the

spinner detected with a wire attached to the stator housing. The DAH-180

experiment was performed over eight rotor cycles (N= 4).

zOTpbMAH-180 with a hop to 0° was performed on l?bN03. Lead n/2

pulse widths were 11 vs. A recycle delay of 10.2s was used. The hop time was

75 ms. 256 complex points were acquired in t2 and 64 were acquired in tl. The

dwell time was 40 ps in tl and 50 ps in t2. 128 transients were acquired. Whole-

echo acquisition was used to obtain pure-absorption mode 2D spectra. The rotor

period was 1326.67 vs. The experiment was performed over two rotor cycles

(N= 1).

The two-dimensional spectrum of rubidium sulfate taken with the DAH-

180 sequence in Fig. 3.3a is shown in Fig. 3.4. The projection of the isotropic di-

mension is shown in Fig. 3.5b. The two sites occur at -25 ppm and 28 ppm in

agreement with previous studies at 9.4 T presented in Chapter 2 [33]. As ex-

pected, a sideband-free isotropic dimension is observed, correlated with an ani-

sotropic dimension consisting of the separated static powder patterns for the
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individual sites. Since detection occurs under static conditions no sidebands are

observed in the second dimension. Truncation artifacts are present in the tl di-

mension since the maximum allowed value for tl was not sufficient to collect the

full FID in the tl dimension. The projection of the isotropic dimension of the

standard DAS experiment is shown in Fig. 3.5a. The site at -25 ppm has a large

number of sidebands reducing the intensity of the isotropic position by a signifi-

100
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-50

-100

-150
~ ,,/,,,,,:,,,

Q fl!l6

●

-50 -25 0 25 50
Frequency (ppm from lM S7RbNOJ

100

1 ,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,

-50 -25 0 25 50

Frequency (ppm from lM 87RbN03)

Figure3.4 DAH-180spectraof 87Rbin Rb2SOAacquiredat 9.4T usingthe se-

quencein Fig.3.3a. Boththecontourandstackedplotshowthatthespectraare

freefromsidebands.
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Figure3.5 Isotropicprojectionsof (a)DASand(b)DAHspectraof~2S04 taken

at9.4T. Theisotropicpeakpositionsareat -25ppmand29ppm. TheDASspec-

tra in (a), takewitha spinningfrequencyof 1.8kHz,shows multiple sidebands

and a corresponding loss of intensity in the isotropic peaks. In contrast the DAH-

180 spectrum exhibits no sidebands and the isotropic peaks appear at full inten-

sity. The spectrum does exhibit some truncation artifacts due to the limitations

on the maximum value of tl in the DAH-180 experiment.
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cant amount. In contrast, the same peak in the DAH spectrum is clearly

resolved, and, in fact, the two sites show the expected 1:1 intensity [51]. As an

example of the MAH-180, in Fig. 3.6 is shown the two-dimensional spectrum of

lead nitrate taken with both the MAH-180 pulse sequence given in Fig. 3.3b and

with a MAH-180 pulse sequence followed by a hop to 0° for detection. l?bN03

has a long Tz and the spectrum breaks into sidebands at very low spinning

speeds as shown in Fig. 3.6a. However, by following the MAH-180 sequence

with a hop to 0° for detection the isotropic sideband-free dimension is correlated

to the static powder pattern (Fig. 3.6b).

Slight distortions are present in the

cumulative effects of imperfect n–pulses.

3.3 Sidebands in Double Rotation

Again truncation artifacts are

lineshape and are probably

present.

due to

ISIMR

An obvious question would be whether this method of removing side-

bands can be applied to double rotation NMR (DOR), an experiment mentioned

in Chapter 2. The problem of sidebands is more acute in DOR experiments due

to the large size that is needed for the outer rotor. (For a detailed analysis of

DOR sidebands see references [64,65]. Typically, the speed of the outer rotor is

limited at most to few kilohertz, leading to the almost inevitable presence of

sidebands for a typical sample. There are methods that will allow the suppres-

sion of the odd order sidebands of the outer rotor [35,65-70]. It would be prefer-

able, however, to eliminate the sidebands completely without any reduction in

signal-to-noise.

To analyze whether the

will work in the case of DOR,

procedure of using n-pulses to remove sidebands

the same procedure will be followed as above in

the analysis of DAH. The basic experiment is again give in Fig. 3.2. In the case of
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Figure 3.6 207PbMAH-180 two-dimensional spectra at 11.7 T of PbN03 (a) with

detection at the magic angle and a spinning speed of 300 Hz and (b) followed by

a hop to 0° for detection with a spinning speed of 750 Hz. Ln (a), the sideband

free isotropic spectra is correlated to the MAS spectrum which exhibits side-

bands. In (b), the isotropic spectrum is correlated to the static powder spectrum.
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DOR, we have two rotor frequencies (.oland q. We will assume that ~ =jiil so

that q corresponds to the outer rotor and ~ corresponds to the inner rotor.

Since wemustperform thesequence in Fig. 3.2 over complete rotor cycles, ~r

equals the slowest rotor period q. The two DOR angles will be labeled (11and 62

and the initial phase of the rotors will be labeled y. The second-order quadrupo-

lar frequency of a sample under double rotations may be written

%OR(t) = x i ~$i(@l~/el/o)~i2k(@*~, e2,Y)dg . (3.14)
1=0,2,4m,n=-1

As in the above derivation of DAH, we will separate out the time-inde-

pendent components of eqn (3.14). To do so, we must recognize that not only

does the conditions m = n = O yield time-independent terms, but the condition

‘=-fi aswdl w. e can see this by expanding the two Wigner rotation matrices:

Separating the time-independent from the tirne-dependent terms, we have

(3.16)

1=0,2,4 m,n=–1
m,n#O
m+-fn

Performing the integration in eqn (3.5) using the expression for the frequency in

eqn (3.16), gives

m,n73
ink-j%

{[
x 2e ]( )

–iq(m+@)i5 _ e-i2nN(m+jiz)/K _ ~ ‘~1 e–i2nN(m+jjz)/K j

i=o

(3.17)

\
_~-i(mu)1+nm2)2Nq _ e–i(mq+nco2)Nq ‘

.
J

65



In eqn (3.17), the term exp(–kol(vz+fi)ti) leads to sidebands, and to

eliminate them, we need to find the conditions for which the sum over j is zero

for all & Performing the summation over j results in

‘–1 ~–i%Ch@Z+fi)/K ] = ~–i(K–@@Z+J?Z)/K ‘h
2(

)

(-m(m+fn))

(3.18)
j=() Si+7C~(tlZ +fi)/K) “

The solutions to the equation

Sin(-dq?n+fi))

SiI@Ch@Z+j%)/K) = 0
(3.19)

are

and

W(VZ +j%) = an, a =0,*1,+2,... (3.20)

(3.21)

The second time-independent term in eqn (3.17), generated when m = –K,

contains quadrupolar anisotrop y in the form of the ~n’s. However, the maxi-

mum allowed value for w is mmXI=4; therefore, as long as the ratio of the

speeds of the inner rotor to the outer is greater than four, the second term van-

ishes. In order to fulfill eqn (3.20) and to eliminate the anisotropy, the minimum

allowed value for ~ is five. If we use K = 5, as in the case of the DAH experiment,

along with~ = 5, then we find that eqn (3.21) is fulfilled for all values of m except

w = O, eliminating any sidebands arising from the spinning of the outer rotor.

However, when m = O,the tirne-dependertt term in eqn (3.17) no longer vanishes

and noting that the total evolution tke in the tl dimension is tl = 2K5, we find

that the term that generates sidebands, exp(–kol(nz +fi)i5), now reduces to

The implication of eqn (3.22) is that, while the sidebands arising from the
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outer rotor have disappeared, the inner rotor appears to be spinning at one-tenth

its actual speed. Since we are assuming that the inner rotor is spinning five times

faster than the outer rotor, we have actually increased the number of sidebands

appearing in the spectrum. If we wish to completely remove the sidebands in

the DOR spectrum, we can see using eqn (3.21) that since the maximum values of

w and n are four and f=5 in our example, Kmust be equal to or greater

than twenty-five. Therefore, a train of at least fifty n-pulses is needed to produce

a sideband-free isotropic spectrum.

A further comment is necessary about the above derivation. It was as-

sumed that the inner rotor was spinning an integral number of times faster than

the outer rotor. In practice, the ratio of the outer and inner rotors is determined

by the design of the DOR probe [34,35] and, for a given probe, adjusting the two

speeds so that eqns (3.20) and (3.21) are satisfied for reasonable value of N and K

will quite likely prove impossible.
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Chapter 4
Cross-Polarization Dynamic-Angle Spinning

4.1 Introduction

Significant increases in NMR sensitivity can be achieved by transferring

high nuclear spin polarization between inequivalent nuclei using cross polariza-

tion (Cl?) techniques [71,72]. In addition, selective CP transfer can be applied as a

useful tool for spectral editing [73-80]. While CP is a very effective technique for

static samples, the combination of CP with sample spinning NMR techniques

from a number of difficulties. One of these difficulties is that the dipolar spin

interactions that mediate the CP transfer become time dependent under magic-

angle spinning (MAS), making the Hartmann-Hahn matching conditions more

complicated and also reducing the efficiency of the polarization transfer [81]. In

Chapter 5, the effects of MAS on cross-polarization will be examined more

closely. Another difficulty arises when cross polarizing the central transition of

half-integer quadrupolar nuclei. In this situation, the time-dependence of the

large first-order quadrupolar interaction interferes with the Hartmann-Hahn

matching [82,83]. However, by using the techniques of dynamic-angle spinning,

the problem can be eliminated by exploiting the time independence of the spin

eigenvalues when spinning at 0° (parallel) with respect to the external magnetic

field. By performing cross polarization while spinning at 0°, the full static Cl?

intensity can be obtained and used in a MAS, variable-angle spinning (VAS) or

DAS experiment [56]. First, the problem of cross-polarizing quadrupolar nuclei
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will be presented and then experimental results will be shown.

4.2 Theoretical Background

Thisis a condensed treatment of a detailed treatment by Vega [82,83] of

the theory of spin locking and cross polarization of the central transition of a

half-odd integer spin nucleus. Consider a cross-polarization experiment in

which polarization is transferred from a spin I = 1/2 to a quadrupolar nucleus

S = 3/2. The secular Hamiltonian in the rotating frame can be written as

H(t) = Hm +~~(f)+~Q(f) (4.1)

where the rf Hamiltonian is given using eqn (1.146) as

li~ = –Ri)lIIx – fioqssx, (4.2)

the dipolar Hamiltonian is given using eqn (1.143) by

H~(t) = Fm~A~(t)21ZSZ,

and the quadrupolar Hamiltonian is given using eqn (1.95) by

(4.3)

‘ioQ Q 312_ ~2HQ = ficoQA~T20 = -77420( z )“ (4.4)

The nutation frequency co~Uffor the central transition of a quadrupolar

nucleus with a spin S in the presence of a large quadrupolar

is

Conuf= (s + l/2)y@ls .

interaction [2,84-86]

(4.5)

This leads to a Hartmann-Hahn match condition for a spin-1/2 and a spin-3/2 of

y~l$~= 2y@~s; W*1= 2(01s, (4.6)

In order to simplify the following calculations, it is necessary to rewrite

the Hamiltonian in eqn (4.1) using fictitious spin-1/2 operators (see eqns (1.20) to

(1.22)) as
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H(t) = ( ) 2-3
–FiqIIx – &t?tils S:-2 + S:-4 - =qs$

+@@@)(s;-2 - S:-4) (4.7)

2-3
+30~A~(t)2@-4 + O~A~ (t)21ZSZ

To diagonalize Hm + H~(t), we ass~e that 1%1, I%sl >> 1~~1and transfo~ the

Hamiltonian into a time-dependent frame [85]. The function, W(t), that per-

forms this transformation is

xexp(i2~l(t)S~-3 )exp(i2~2(t)S~-4),

and

43%
tan2g2(t) = .

-O)QA~(t) – ~ls

In the rotating frame a given operator 6(t) can be calculated using

(4.8)

(4.9)

(4.10)

d(t)=Wow. (4.11)

Therefore, the Hamiltonkm in this time-dependent frame fi(f) is given by

ii(t)=w+(tpqqw(t) (4.12)

becoming

where
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and

&4(~) = 03D@f){zs~(&(~)-52 (~))+sin(&(~)+~ 2(f))} . (4.19)

The observable (S+(t)) of interest can be calculated using eqn (1.8),

(S+(f)) =Tr{6(f)S+}. (4.20)

Ignoring the effects of relaxation, the time evolution of the density matrix ~(t) is

given by (see eqn (1.15))

o(t) = U(t)o(0)U+(t); U(t) = Texp(-i@(s)ds). (4.21)

The propagator in the rotating frame is given by

a(f) = Texp{-ij~[~(t’) -iwt(t’)W(t’)]dt’}
(4.22)

where

(4.23)

The derivatives are related to A~(t) by

and

(4.24)

(4.25)
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The propagator U(t) in the original frame is related to the propagator ~(t) in the

rotating frame by

u(t) = W(t)ii(f)w+(o) . (4.26)

Therefore, the observable (S+(t)) from eqn (4.20) can be expressed as

(S+(t)) =tr[ti(f)i$(o)ti’(t)s+] (4.27)

where

3+= S;-3 COS2g~(t)cos2 &(t) +s;-3 sin 2g~(t)

-s;-%-? g1(t)sin2g2(t)- s:-4sin2g2(t)

-sl-2sin2 g1(t)cos2 g~(t)-s:-4 COS2&(t)sin2 g’(f)

+S;-s[cosgl(t) sing~(t) – cos2g~(t)]

+s:-4[cosg2(@lg2(f)+cos %2(4]

+isp[singl(t)cosg’(t)+cos(&(t)-~2(f))]

+is;-4[cos(g,(t) -&(t)) -cos&(@&2(q]

+is;-4[sin&(t)sing2(t) -sin(gI(t) -g2(t))]

+is;-3[cos<,(t) cosgJf)-sin(&(t) -g’(t))] .

(4.28)

The initial density matrix in a typical experiment after an initial 7c/2pulse on the

I spin is o(O)= IX; using eqn (4.11), the initial density operator in the rotating

frame becomes G(O)= 1,.

To calculate ~(t) it is necessary to evaluate eqn (4.22). The Dyson time-

ordering operator T makes the evaluation of the integral difficult since the inte-

grand does commute with itself at all times. However, certain approximations

can be made by examining the relative size of the two terms in the FIamiltonian.

In Fig. 4.1 the functions ~l(t) and ~2(t) are plotted for a typical crystallite. For a

majority of the rotor cycle, both functions have values close to either O or n/2.

The abrupt transition between the two values occurs as the quadrupolar cou-
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3.U

90°
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0° 90° 180° 270° 360°

Rotor Phase

Figure 4.1 ~1 and ~z vs. rotor phase for a typical crystallite under MAS with a

PAS oriented perpendicular to the rotor, .@~Q/h= 11 l@Iz and q = 0.0.

pling passes through zero. As a result, the Harniltonian in eqn (4.13) can be

written as either

(4.29)

or

()ii+;= 1-4- COQ(S:~4– S&3) – 2co~A~(t)IXS:-4–collIz + 2(D1SSZ

(4.30)

the nature of the passage of Q(t) through

+6co~A~(f)IXS:-3 .

It is also necessary to consider

zero. Fig. 4.2 shows a schematic of the eigenvalues of a spin-3/2 nucleus under

spin-locking conditions; we can use this to predict the effects on various eigen-

states as Q(t) oscillates through zero. If the change in Q(t) is slow, the passage is
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considered adiabatic, and the population of the original states change along with

the quadrupolar coupling (IC~) ++ &3/2)). If the change in Q(t) is fast, the pas-

sage is considered sudden and there is no change in state. The third possibility is

the intermediate regime which is more difficult to describe but in general results

in the creation of non-spinlocked states.

In terms of our previous calculations, the adiabatic approximation is ap-

plicable when fi(f) >> ~+(i)W(i) and the sudden approximation holds when

I+3/2)

1-3/2)

%s

– It+)

L Ic-)

I+3/2)
1-3/2)

+ o
Q/co1~ -

Figure 4.2 Eigenvalues E of a quadrupolar nucleus with S = 3/2 and Harnilto-

nian ~Q + f’i~ ?)s. the rdio Q(t)/~ls. The eigenstates are indicated for

Q(t) >> q~ where IC~)=(11/2) f - l/2))/fi corresponding to the central

transition and \fi/2) corresponding to the triple quantum transitions.
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fi(t) << W+(f)W(t) . The relative intensity of fi(t) vs. ~+(t)W(t) is shown in

Fig. 4.3a and c. If the adiabatic approximation holds when A~(t) passes through

the extremum in W+(t)W(t), the level crossing is avoided and the propagator for

all times can be written

%diwic(t)=exp[-ij~fi(t’)dt’] (4.31)

If we assume a crystallite initially starts with ~1= ~z = O, and if the Hartmann-

Hahn matching condition of @lI = (S + l/2)ol~ is being fulfilled then evolution of

the density matrix, 5(0) = IZ, under the Hamiltonian in eqn (4.29) leads to

1
(

2–3
)‘(t) = ‘idhbatic(t)~(o)ti~hbatic (t) + — ~z + ‘z “2

(4.32)

Polarization is thus transferred from the I spin to the central transition of the S

spin. Polarization transfer is interrupted when the first-order quadrupolar

coupling passes through zero as a consequence of the sample rotation. The val-

ues of <1 and ~2 now a-pproach z/2 and the eqn (4.30) is now the governing

Hamiltonian. The density matrix with 5(0)=12 now evolves as

‘(f) = ‘adzizbafic(i)~(o)uhbbatic(t) - ~(~z + ‘;-4) (4.33)

During IvlAS, this process occurs either two or four times every rotor period de-

pending on the PAS orientation. In addition, S~-3and S~-4 remain spin locked

and unchanged during those periods when they are not involved in polarization

transfer, the polarization transfer from IZ is switching between S~-3 and S~-4,

and the effective observable is also switching between

)[S+(g = O)= 2S$-3 – fi(S~-3 + S~-4 + fii Sj-2 + 2~ 2-3 $-4~sy +
)

(4.34)

and
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O& (- - -) and off-diagonal ele-Figure 4.3 Diagonal coefficients 0J-3 (—) and

ments Zd&l/dt (— . –) and 2dg2/df (– – –) as a function of cII~A~(t).

(a) Adiabatic regime calculated with a spinning rate 100 Hz corresponding to

a = 5.5. (b) Intermediate regime calculated with a spinning rate of 1 I&z corre-

sponding to a = 0.55. (c) Sudden regime calculated with a spinning rate of 5 kHz

corresponding to u = 0.11.
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() )[ )Z& #-4+ $-4 .
~+ ~=; = -2$4 +fi($3 -%-4 + tii $2 +y y (4.35)

As shown by Vega [83], after multiple zero crossings, the central and triple

quantum transitions will be equally polarized from the I spin. The overall CP

intensity will be identical to that observed for a static spin in the thermodynamic

limit, However, the overall rate will be half as fast, since both the central and

triple quantum transitions are being polarized simultaneously. In the presence

of a short rotating frame relaxation time, this will lead to a reduced overall CP

intensity from the spins undergoing adiabatic zero crossings.

When the sudden approximation holds, the propagator can be written

(4.36)

While this propagator does not hold for all times, the term W+(t)W(t) has

the form of an impulse function with an integrated area of n/2 centered near the

zero crossing of A~O(t). This results in a discontinuous transition between the

adiabatic propagator of eqn (4.31) and the sudden propagator of eqn (4.36) (see

Fig. 4.3c). Under the sudden propagator, S~-3 and S~-4 transform according to

and

(4.37)

(4.38)

2-3 and S~-4 terms in the density matrixTherefore, the coefficients of the SZ

will be exchanged after evolving through a sudden zero crossing. After multiple

zero crossings, one of the two transitions will be completely polarized while the

other will be unpolarized. The observable operator will always match the cross

polarizing transition, so the polarized intensity will always remain observable,

and the CP efficiency and rate should be identical to the static case.
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Crystallite which pass through the zero crossing under neither adiabatic

or sudden conditions fall into the intermediate regime. This type of evolution is

the most difficult to calculate analytically. As indicated in Fig. 4.3b, in determin-

ing such evolution, contributions from both H(t) and ~+ (f)W(t), which do not

commute at all times, must be retained in the propagator in eqn (4.22). Vega [82

,83] has shown with numerical simulations that spins undergoing an intermedi-

ate regime zero crossing evolve into non-spin locked states and thus result in a

significant loss of Cl? intensity,

To indicate whether a zero crossing is in the adiabatic, intermediate, or

sudden regime, an adiabaticity parameter a is defined:

()~1-3 &3
()

032-4 t&4 3&
a= 2d&(t) = - 2d&2(t) = dA~(t)

dt t:-3 dt &4 ~Q dt

tp (4.39)

This is then evaluated at one of the zero crossings, (OQA~ &3() = oils or

()
Q 1-3

‘QA20 ‘O = –ols, corresponding to a maximum in ~+(t)W(t) as & or ~2 pass

through n/4. This definition of the adiabaticity parameter is proportional to the

one used by Vega [83], however, there is an additional orientation dependence as

well which comes from the time derivative of APO(t). When the value of a at the

zero crossing is much larger than one, the crossing will be adiabatic. If it is much

less than one, it will fall into the sudden regime. When u is on the order of one,

the crossing will be in the intermediate regime.

Theoretically, it is possible to adjust a to match any of these three condi-

tions by changing the spinning rate or rf power levels. However, in a multi-site

system it maybe difficult or even impossible to adjust for optimal CP transfer of

all sites while spinning at the magic angle. One solution that eliminates the

problem is to exploit the time independence of the spin eigenvalues when spin-
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ning at 0° (parallel) to the external magnetic field direction. By performing cross

polarization while spinning at 0°, none of the spins undergo zero crossing and

the full static CP intensity can be recovered. When designing the CPDAS ex-

periment, we therefore logically pick the k = 5 angle pair (0°, 63.430), performing

the cross-polarization at 0° and acquisition at 63.43°. In order to improve cross

polarization under MAS or VAS, we can perform the zero-polarized MAS

(ZPMAS) or zero-polarized (ZPVAS), in which cross polarization occurs at 0°

followed by a hop to a second angle to collect a MAS or VAS spectrum.

4.3 Experimental

Experiments were performed on a home-built spectrometer at 7.04 T, cor-

responding to a lH NMR frequency of 301.2 MHz and a ZsNafrequency of 79.671

MHz. The DAS probe was home built with a stationary coil with a diameter of

19 mm, used for both transmission and detection [54]. The double-tuned rf reso-

nant circuit was similar to one described by Doty et al. [87,88]. The input power

, of 300 watts on the lH channel gave 7 ws lH 7c/2pulses and 100 watts on the

~Na channel gave 7 w central transition selective zsNa n/2 pulses. The spinning

frequency was between 4.0 kHz and 6.6 kHz. The samples of sodium pyruvate

used for these experiments were obtained from standard commercial sources.

The pulse sequence for the various VAS experiments are given in Fig. 4.4, and

the pulse sequence for CPDAS is shown in Fig. 4,5. Further details about the

DAS pulse sequence and data processing can be found in Chapter 2 and in refer-

ence [42]. For the CP efficiency experiments, phase alternation of the lH rf pulse

was used to assure that only the intensity due to CP would be measured. For

CPDAS and ZPVAS experiments, a zsNa n/2 pulse was
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Figure 4.4 Pulse sequences used for (a) ZPVAS, (b) CPVAS, and (c) decoupled

MAS experiments. SL refers to the spin lock period, subscripts refer to the pha-

ses of the pulses, 13(t)refers to the orientation of the spinning axis angle with

respect to the magnetic field, and PSD refers to phase-sensitive detection. De-

coupling is not performed during the storage period while the spinning axis is

reoriented due to the long interval required.
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Figure4.5 Pulsesequenceandrfphasecycleforthetwo-dimensional lHdecou-

pled CPDAS experiment. SL refers to spirdock period, PSD refers to phase-sen-

sitive detection, subscripts indicated the phase of the pulse, and O(t) refers to the

orientation of the spinning axis with respect to the magnetic field. Decoupling is

not performed during the storage interval while the sample is being reoriented

because of the long delay needed (typically 30 ms -100 ins). Further details can

be found in Chapter 2.

applied simultaneously with the initial lH R/2 pulse to achieve the largest final

sodium polarization, For the 2sNa spectra without CP, a recycle delay of 16s

was used for the sodium pyruvate while for the CP experiments a recycle delay

of 36s was used to assure complete relaxation

sons. For the DAS experiments, 32 scans were

81

and accurate intensity compari-

acquired after one dummy scan



for each of the 90 fl points, while for the CP build up curves and ZPVAS either 4,

8, or 64 scans were acquired after two dummy scans for each different contact

time and angle pair. For the CPDAS and ZPVAS experiments on sodium pyru-

vate the CP contact time was 20 ms. The procedures used for simulating quad-

rupolar powder patterns can be found in reference [55].
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Figure4.6 CP intensityas a functionof VASanglefor

70° 80° 90°

sodium pyruvate using

traditional CPVAS (H) and using ZPVAS (0). The curve through the CPVAS

data was obtained numerically as described in the text. The line through the

ZPVAS data indicates the average intensity obtained from all experiments. The

contact time was 20 ms.

82



4.4 Results and Discussion

The effect of level crossings on CP efficiency can be seen clearly in Fig. 4.6,

which shows the cross polarization efficiencies of sodium pyruvate,

CH@COONa, versus VAS angle. All intensities are scaled relative to the corre-

sponding single pulse,~Na VAS and MAS spectra, using the sequence in Fig. 4.4

a. As expected, only under static (0° VAS) conditions is the expected CP effi-

ciency maximum of approximately 3y1/4y2for sodium pyruvate achieved. The

factor of 3/4 is due to the high abundance of both lH and zsNa causing cross po-

larization to be controlled by the equilibrium between the respective spin tem-

peratures. As the VAS angle increases, CP efficiency decreases dramatically.

Spinning the sample at an angle greater than approximately 25° results in an ef-

ficiency that is less than that achieved by a single pulse. This indicates that the

level crossings are significant, even when only a reduced fraction of the spins are

undergoing the maximum of four crossings per rotor cycle.

We can calculate the approximate CP efficiency at any given spinning an-

gle, shown by the dashed curve in Fig. 4.6, by first determining the nuniber of

crystallite with excursions of &(t) and ~2(f)within some value 5 of 0° or 90° and

therefore capable of Hartmann-Hahn matching. For the data shown in Fig. 4.6, it

was assumed that 6 = 15°, corresponding to approximately @QA~o(t)> 5C01S,

which should be sufficiently large to allow the Hartmann-Hahn match condition

to be met. For those spins that can undergo cross polarization, we sum the numb-

er that undergo adiabatic or sudden regime zero crossings. The spins undergo-

ing sudden regime zero crossings are assigned an intensity of 1.0. Spins where
*

COQA$o(t)~ large for the entire rotor period but undergo no zero crossings also

fall into this category. The adiabatic spins are assigned an arbitrary intensity be-

tween 0.5 and 1.0 to account for their slower rate of polarization compared to the
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spins undergoing sudden regime zero crossings. The intensity of those spins

Qwith a large oQA20(t), but undergoing intermediate regime zero crossings, as

well as those where COQA~o(t) is sufficiently small for much of the rotor period

so that the Hartrnann-Hahn match condition in eqn (4.6) does not hold, is as-

sumed to be lost. To determine whether a spin is undergoing an adiabatic or

sudden regime zero crossing, we consider the value of the adiabaticity parame-

ter, U, given in eqn (4.39) and as explained above, assume those spins with a

much greater than one are in the adiabatic regime, those spins with IXmuch less

than one are in the sudden regime, and those spins with ct on the order of one are

in the intermediate regime. The values used for e2qQ/h and l’lQwere 2.36 MHz

and 0.77, respectively, in these calculations. These values were obtained from

simulations of the MAS spectrum as mentioned earlier.

Fig. 4.6 also shows Cl? efficiency for sodium pyruvate at the angle at

which detection occurred under ZPVAS. Since CP always occurs at 0°, under ef-

fectively static conditions, the observed efficiency is constant for all angles. The

observed decrease in efficiency compared to that of cross-polarization under 0°

VAS is due to T1 relaxation processes that occur during the hop from 0° to the

detection angle.

Fig. 4.7 shows the lH decoupled MAS spectra of sodium pyruvate ac-

quired with and without cross polarization and with ZPMAS along with the

simulation of the MAS powder pattern. The signal-to-noise is the worst for

CPMAS-about 75°/0of that seen in the MAS spectrum without CP. On the other

hand, the ZPMAS spectrum has a signal-to-noise ratio about twice that seen in

the MAS spectrum taken without CP.

84



ZPMAS

(a)

x4

MAs [

CPMAS

x4

x4

i

I
20 10 0 -lo -20

Frequency (kHz)

I

Simulation

ZPMAS

~

(c) MAs {

(d) CPMAS

I
5 0 -5

Frequency (kHz)

Figure 4.7 MAS spectra of sodium pyruvate acquired with the (b) ZPMAS,

(c) MAS, and (d) CPMAS pulse sequences given in Fig. 4.4. The center band is

expanded on the right to show details more clearly. The insets show magnified

sections of the basetie for comparison of signal-to-noise ratios. (a) The MAS

simulation was calculated as explained in reference [55] and generated values of

e2qQ/k= 2.36 MHz and q~ = 0.77.
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Figure 4.8 CPDAS and DAS spectra of sodium pyruvate taken with the k = 1

(37.38°, 79.19°) and k = 5 (O”, 63.43°) angle pairs using the pulse sequence in

Fig. 4.5. Insets shows the baseline of the respective spectra magnified by x 5 for

better comparison of signal-to-noise ratios.

In Fig. 4.8, the decoupled DAS and CPDAS spectra of sodium pyruvate

for the k = 5 (0°, 63.43°) and k = 1 (37.38°, 79.19°) angle pairs are compared. For
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k =5, we observe over 2.5 times the signal-to-noise in the spectrum taken with

CP compared to the spectrum taken without CP. In addition, the CPDAS experi-

ment at k = 5 has a signal-to-noise ratio over 4.5 times that of the CPDAS experi-

ment at k = 1. This demonstrates the importance of 0° cross polarization for DAS.

The CPDAS experiment done at 37.38° (k= 1) has a worse signal-to-noise than

the same experiment done without cross polarization. Other k values will also

have reduced CP efficiencies.

4.5 CPDAS of 170 Labelled L-Alanine

The study of biologically active and other organic compounds by solid-

state NMR has for the most part been limited to spin-1/2 nuclei such as lH, lSC,

lSN, lgF, and 31P. The study of 170, a quadrupolar nucleus (S = 5/2), in solid or-

ganic compounds has been limited due to its low natural abundance, low gyro-

magnetic ratio, and strong second-order quadrupolar interactions. The first two

difficulties can be alleviated to some extent through isotopic substitution, the use

of high magnetic fields, and through cross polarization (CP) [72] from lH to the

central (1/2 ++ 1/2) lTO transition. For a static sample, it is theoretically possible

to achieve a one-shot sensitivity enhancement of 7.3 (assuming a large excess of

lH compared to 170). However, as described above, when the sample is spun

about an axis incliqed with respect to the magnetic field, there can be a signi-

ficant decrease in Cl? efficiency because the time dependence of the first-order

quadrupolar interaction interferes with Harttnann-Hahn matching. In this sec-

tion is demonstrated the application of CPDAS to lPO labeled L-akmine [89].

Experimental

A sample of L-alanine, enriched approximately to 20°/0in 170, was synthe-

sized by H. Zimmermann by acid-catalyzed exchange of oxygen in lTO labeled
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water at 80 “C, followed by neutralization with aniline and precipitation of the

free amino acid. Powder x-ray diffraction was consistent with the known struc-

ture of L-akmine [90]. A polycrystalline sample of approximately 200 mg was

used for the following experiments. Experimental details of the DAS experiment

are as explained in Chapter 2. Cross-polarization experiments were performed

at a field of 7.04 T (301.2 MHz for the lH frequency and 40.832 MHz for the lTO

frequency) on a home-built spectrometer using a Tecmag acquisition system and

a home-built DAS probe [54] spinning at 6 kHz, with the pulse sequence shown

in Fig. 4.5. The probe was equipped with a double-tuned rf-circuit with a 3/4”

static coil based on a description by Doty et al. [88]. A decoupling power level of

500 Won the lH channel produced a 7c/2pulse width of approximately 7 ps. A

7 wslTO n/2 pulse selective to the central transition was also used to achieve the

Hartrnann-Hahn match condition given in eqn (4.5). The cross-polarization con-

tact time was 1 ms, which gave a CP efficiency per scan (signal compared to a

single pulse FID on oxygen with hydrogen spin decoupling) of approximately

200Y0. The theoretical maximum was not achieved because of short rotating

frame relaxation times. T1 relaxation times were 750 ms for lH and 2.5s for 170.

DAS experiments at a field strength of 11.7 T (67.797 MHz) were performed on a

CMX spectrometer using the single-tuned DAS probe described in reference [54].

No decoupling or cross-polarization was performed at this field because the DAS

probe as designed is incapable of being tuned to the lH frequency of 500 MHz.

Results and Discussion

The structure of the amino acid L-alanine, shown in Fig. 4.9, has been

determined previously by x-ray crystallography and neutron diffraction [90-91]

and indicates two inequivalent 17’0sites due to a difference in hydrogen bonding



Figure 4.9 Structure of L-akmine showing the differences in hydrogen bonding at

the two oxygen sites.

of the two oxygen atoms [91], so the spectrum should consist of two overlapping

powder patterns. Fig. 4,10 shows the l% MAS and DAS spectra of L-alanine tak-

en at 11.7 T, both without spin decoupling. The MAS spectrum shows a broad

powder pattern with a number of singularities. In addition, sidebands compli-

cate the powder pattern, resulting in a spectrum that is difficult to simulate. In

contrast, the DAS spectrum shows a separated isotropic peak and sideband pat-

tern. The two sites in alanine are not clearly resolved in this spectrum and ap-

pear as one peak. The isotropic position is assigned to 200&7 ppm by com-
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parison with a spectrum taken at a different spinning speed.

Fig. 4.11 shows the two-dimensional CPDAS spectrum of alanine, along

with the projection of the isotropic shift dimension, acquired at 7.0 T. Spin de-

MAs

I 1 1 1 I l“ 1 1 ,Illlll~_lltlll[’’”l” I’111

100 200 300 400

Frequency / ppm from HZ170

Figure 4.10 Magic-angle spinning (MAS) and dynamic-angle spinning (DAS)

spectra of 170 in L-alanine at 11.7 T (67.797 MHz), without proton spin decoup-

ling. The spectra are referenced to 170 labeled H20.
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coupling of lH resulted in lines significantly narrower than that of the experi-

ment without decoupling “h Fig. 4.10. The two sites are clearly resolved and are

assigned to 51 * 4 and 80 * 4 ppm by comparison to a spectrum taken at a differ-

ent spinning speed. The advantages of using cross polarization are that the sig-

nal intensity per scan is approximately twice that seen in an experiment without

cross polarization, and the recycle time is determined by the T1 of lH rather than

that of 170, resulting in an increase in the signal-to-noise ratio by a factor of two,

giving an overall four-fold increase in the signal-to-noise ratio. As mentioned

above, cross polarizing from lH to lTO can result in an increase in intensity by a

factor of 7.3, so with favorable relaxation tirnes the enhancement of the signal-to-

noise ratio can be considerable and in fact could be crucial in rendering an exper-

iment feasible. Even with the enhancement provided by cross polarization and

decreased recycle time, the CPDAS experiment in Fig. 4.11 required approxi-

mately 400 hours; a decoupled CI?DAS spectrum without cross polarization

could not be acquired for this reason.

Using the results of the experiments at the two different fields, the

isotropic chemical shifts and quadrupolar coupling products can be calculated by

solving a system of simultaneous linear equations as described in Chapter 2,

using eqn (2.30), the results given in Table 4.1. The values for the quadrupolar

coupling product, PQ, are in good agreement with the quadrupolar coupling

constant measured for the carboxyl oxygen atoms in similar compounds using

NQR [92]. Due to the similarities of the sites, it is not possible to assign the

spectra to particular 170 sites. However, further work on amino acids might

reveal trends in isotropic chemical shift and quadrupolar coupling products

which allow for the assignment of sites.
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Figure 4.11 Two-dimensional DAS with cross polarization (CI?DAS) and proton

spin decoupling spectrum of 170 in L-alanine at 7.04 T (40.832 MHz). The

projection of the isotropic shift dimension is shown at the top with the isotropic

peak positions indicated. The spectrum is referenced to 170 labeled H20. The

spinning frequency was 6 kHz.
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Table 4.1 Isotropic shifts and quadrupolar coupling product, P~ for L-alanine.

51*4 200 &7 8.1 f o.3 285 * 8

80&4 100 &7 7.1 &().3 268 &8

NMR of 17’0in L-akmine has been performed previously by Got, et aL [93],

in which the static lineshape of a polycrystalline sample was simulated. Their

simulation assumed that there was only a single lPO site, while our work and the

crystal structure are consistent with two inequivalent sites. The reported values

for ezqQ/k of 6.6 MHz and for qQ of 0.5!5, which were reported to be precise to

20% [93], give a PQ from their data of 6.9 MHz, which agrees (to within Z070)

with our calculations for either site.

Both Figs. 4.10 and 4.11 show the disadvantages of insufficient spinning

speeds. While the sidebands are clearly separated from the isotropic peaks in

these spectra, in general, the large number of sidebands normally present in 17’0

NM.R of organic compounds can be a considerable problem. The types of

compounds one would like to study with solid-state NMR, such as small

peptides or carbohydrates, will typically have numerous inequivalent sites.

However, fast spinning speeds are becoming easier to achieve in DAS

experiments resulting in fewer sidebands. In addition, such techniques as

dynamic-angle hopping (DAH), described in Chapter 3, can eliminate sidebands

altogether in cases where adequate spinning speeds cannot be obtained.
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Chapter 5
Variable-Effective-Field Cross Polarization

5.1 Introduction

Cross-polarization (CP) combined with magic angle spinning (CPMAS) is

a powerful technique in modern solid state W to obtain high resolution, high

sensitivity spectra of dilute spin nuclei (S) in the presence of an abundant spin

species (Z). The advantages of cross-polarization are both enhanced polarization,

from the higher gyromagnetic ratio of the abundant spin species, and an en-

hanced repetition rate, as the experiment maybe repeated at the abundant spin

relaxation rate, which may be an order of magnitude faster than the rare spin

relaxation rate.

Magic-angle spinning, at speeds comparable to the homonuclear l-spin

dipolar interaction, converts the Hartmann-Hahn matching condition [71] for

most efficient cross-polarization, colI= qs, into a series of sidebands at

011 = cols+ nor [81] where or is the spinning frequency and n is an integer. The

sidebands can be very sharp and small deviations from the center of a peak,

either due to spinning speed fluctuations or amplifier drift, can lead to dramat-

ically decreased transfer rates as well as smaller equilibrium polarizations. Fur-

thermore, the exact Hartmann-Hahn match (n = O) exhibits kinetics that are

several times slower than on the n = ~ 1 Or ~ z sidebands [s1]. me sidebands,

however, are quite sensitive to rf inhomogeneity as the condition coil= cols + ncor
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may not be satisfied for different regions of the sample, though ql and COlSare

scaled together.

These problems have attracted some attention recently as an increasing

number of solid state NMR experiments require very rapid spinning rates which

cause polarization sidebands even for strongly coupled lH spin systems [94-96].

As a result, several methods have been proposed to broaden the matching con-

dition under MAS. Mechanical methods such as slowing [971 or stopping [98]

the sample rotation, or hopping away from the magic angle during cross-pol-

arization [99] are difficult to implement as well as costing an average factor of 2

in signal intensity, as the coherence must be stored along the z-axis during the

motion. Barbara et al. [100], Zilm and coworkers [101], and Ernst and coworkers

[102] have proposed pulse sequences which require synchronization with the

sample rotation. As such the experiments are as sensitive to spinning speed in-

stabilities as conventional Cl?, though they are well compensated for minor

amplifier drift, as the match condition is substantially broadened. Smith and co-

workers [103,104] have proposed the most promising variation to date, variable

amplitude cross-polarization (VACP) which utilizes an amplitude modulated lH

spin-locking field to cross-polarize under different matching conditions for dif-

ferent parts of the contact time. Unlike the sequences of Ernst and coworkers

[102], which also employ amplitude modulation of the pulse train, VACP re-

quires no rotor synchronization, however does require rapid switching of the rf

amplitude while maintaining phase coherence.

In this chapter a new method is described to broaden the cross-polar-

ization condition under MAS, variable effective field cross-polarization (VEFCP).

VEFCP, like VACP, employs periods of differing I-spin nutation frequencies with

the difference that VEFCP is performed at a constant rf amplitude. The varying
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Figure 5.1 Schematic of the time-averaged precession frequency (TAPF) pulse

sequence, a windowless two-pulse cycle consisting of a y pulse of length tC– z fol-

lowed by a –y pulse of duration ‘c, resulting in a net nutation of (t, – 2’@l.

Assuming a short f, compared to the dipolar correlation time, the rf field is

scaled over the cycle, resulting in an effective rf field of amplitude

nutation frequencies are achieved by changing the timing conditions of a time-

averaged precession frequency (TAPF) pulse sequence [105]. A comparison of

the polarization transfer versus the 13C rf field for VEFCP and conventional CP

will be made for adamantane and bisphenol-A polycarbonate. Further, the kin-

etics of cross-polarization under conventional CP and VEFCP will be compared.

5.2 Theory

The time-averaged precession frequency (TAPF) pulse sequence, shown in

Fig. 5.1, is a windowless two pulse cycle with alternating n phase shifts, resulting

in an effective scaling of the rf by a factor K over the cycle. The scaling factor, K,

can be adjusted between O< K < 1, thus achieving a low nutation frequency for

Cl?, while maintaining effective spin-locking due to the strong actual rf field. The

TAPF pulse consists of a y pulse of duration tc– T, followed by a –y pulse of dur-

ation z. The net nutation, around the y-axis, over the cycle time, tC,is given by

(t, - 2~)o.11.The scaling factor, K, is given by
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tc – 2T
K =

tc “
(5.1)

Provided that tc is small compared to the dipolar correlation time of the protons

in the solid, the effective nutation is equivalent to a nutation about the y-axis at

an effective rf field q~ of amplitude

(5.2)
‘c

The pulse sequence for VEFCP is illustrated in Fig. 5.2. After a 7c/2pulse

of phase x or –x, the protons are spin locked with a TAPF sequence of phase y.

Adjusting the scaling factor by incrementing ~ over the duration of the spin lock,

leads to varying effective fields during the contact time which serve to broaden

the matching conditions and average the kinetics of the polarization transfer.

JJ

lH n/2 TAPF TAPF TAPF DECOUPLE
x,x T=6 7=28 T=N8

f r

Figure 5.2 Schematic of the pulse sequence for variable-effective field cross

polarization (VEFCP). Following a n/2 pulse of alternating phase of x and -x, the

protons are spin-locked with a series of TAPF sequences, which give rise to an

[-Y]effective rf amplitude of Kcol= (tC 27 tC c.ol. Varying effective fields are gen-

erated by incrementing z over the duration of the spin lock.
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Figure 5.3 Cross-polarized intensity (in absolute units) vs. 13C rf field strength for

VEFCP (solid dots, solid lines) and conventional CP (open dots, dashed lines) of

the CH line of adamantane spinning at cO,/2n= 5.2 kHz. The total contact time in

all cases is 6 m, and the TAPF pulses used tC= 10 ms. Lines are guides to the

eye. The VEFCP parameters are (a) 8 intervals, 750 ms each, with scaling factors

k = 0.90 to 0.76 in steps of 0.02, (b) 14 intervals, 430 ms each, with K = 1, and .90

to 0.66 in steps of 0.02, and (c) 26 intervals, 230 ms each, with K = 0.90 to 0.40 in

steps of 0.02.
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5.3 Results and Discussion

Fig. 5.3 demonstrates the polarization transfer vs. rf field strength for

VEFCP (solid dots) and conventional CP (open circles) for a sample of adaman-

tane spinning at CDr/2n= 5.2 kHz. Note the polarization sidebands present in the

conventional CP curve are centered around 37.5 kHz, the Hartrnann-Hahn

match, and spaced at integral multiples of q. Although the thermodynamic

limit at long contact times is identical for all of the polarization sidebands, a 6 ms

contact time results in the slower kinetics at the Hartmann-Hahn match leading

to a severely depressed signal strength at that position. The solid dots in Fig. 5.3

a represent the polarization transfer curve for an eight step VEFCP cycle in

which the scaled rf fields vary over a range from 0.9coI to 0.76ci)l, which spans a

region 5 ld% wide around the Hartmann-Hahn condition. The frequency profile

is somewhat lower at lower rf fields and correspondingly higher at higher rf

fields. The entire VEFCP curve is shifted due to the rf scaling and is centered at

(~ll,e&) = 0“83011”‘e ‘“le at (@ll,e~) = (1)1~,the average scaled Hartmann-Hahn

condition, occurs because the scaling profile does not encompass the ~corside-

bands. At the average scaled Hartmann-Hahn match, the kinetics are com-

parable to that which would be obtained with conventional CP at the actual

Hartrnann-Hahn match, therefore, a contact time of 6 ms, the polarizations ob-

tained are less than those for VEFCP with a profile centered about the ~~r or

&2corsidebands. Fig. 5.3b illustrates the VEFCP curve (solid dots) versus conven-

tional CP for a 14 step cycle with K~l spanrting the range 011to 0.66@l. As the rf

profile is now greater than @r at the scaled Hartmann-Hahn match, the

depression is much less pronounced. Fig. 5.3c, which demonstrates a 26 interval

VEFCP cycle with Kcolranging from 0.40, to 0.9@, in steps of 0.02, shows an en-

hancement at the average scaled Hartrnann-Hahn
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for this sequence is over 12 kHz wide at the average scaled Hartmann-Hahn con-

dition of 24.4 kHz, so at least 2 sidebands are covered over most of the rf range.

The polarization curve displays shoulders as the rf profile moves through the

range of the first and second order sidebands on either side of the match. The

overall polarizations obtained are somewhat lower in Fig. 5.3c than in the VEFCI?

curves of Fig. 5.3a and 5.3b, due to the large nutation frequency spread for the 26

interval VEFCP (Fig. 2c). Clearly, the flattening of the matching condition to this

extent has come with a price since some intervals at the edges of the profile have

a very low efficiency per unit time.

VEFCP also has the effect of reducing the sensitivity of the kinetics to the

matching conditions. Fig. 5.4a illustrates the kinetics of polarization transfer for

conventional CP at 011= COlS* Or, (solid circles) and Hartmann-Hahn match, colI

= cols (open circles). The polarization rise with increasing contact time is several

times more rapid for the sideband than it is for the Hartmann-Hahn match,

though the thermodynamic limit is approximately the same for both. The decay

of polarization at long times for the n = –1 sideband is not due to rotating frame

relaxation, but is instead due to the extreme sharpness of the polarization side-

bands for adamantane and a combination of coil detuning due to rf heating and a

very slight amplifier drift over the course of the 2D experiment required for this

measurement.

The polarization transfer vs. contact time for the 14-interval VEFCP se-

quence is illustrated in Fig. 5.4b. The solid dots represent transfer under the con-

dition Olfi= Wls+ co,,while the open dots represent the Hartmann-Hahn match-

ing condition. The transfer rates are rather insensitive to the matching condi-

tions, and are intermediate between the sideband and center band rates in con-

ventional CP. Even in the thermodynamic limit, VEFCP seems to yield sub-
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Figure 5.4 Cross-polarized intensity vs. contact time for the CH resonance of ada-

mantane. The spinning frequency is wJ27c = 5.2 kHz. The open circles represent

data acquired on the Hartmann-Hahn match, whiIe the solid circles represent

data acquired at either +w, or -w, away from match. The data was acquired in a

two-dimensional fashion, with a read pulse following a variable spin-lock period.

(a) Conventional CP where the solid dots are the intensity of the n = -1 sideband,

and (b) VEFCP where the solid dots are the intensity of the n = +1 sideband, and

taken over 14 intervals with t, = 10 ms, K = 1, and 0.90 to 0.66 in steps of 0.02.
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stantially more polarization than conventional CP. This is likely to have resulted

from the extreme sensitivity of adamantane to the matching conditions in con-

ventional Cl?, which made a precise and stable match to a center- or sideband

condition difficult. As VEFCP employs a range of different I-spin nutation fre-

quencies, the effect of rf inhomogeneity is minimal, and this may contribute to

larger equilibrium polarizations, relative to conventional CP, though, for conven-

tional CP, the contribution of rf inhomogeneity is unimportant for the center

band (Hartmann-Hahn) condition [102,104]. The experimental results reported

here were acquired with a 7mm diameter, 10rnm long sample centered in a

15 mm long solenoid coil wrapped with flat wire. The rf inhomogeneity was est-

imated, from a two-dimensional nutation experiment [106], to be 6.5°/0over the

sample volume. A detailed study of the effects of rf inhomogeneity on CPMAS

intensities has been recently reported by Smith and coworkers [104].

Fig. 5.5 illustrates the polarization profiles for his-phenol-A poly-

carbonate. Some of the homonuclear dipolar couplings in polycarbonate are av-

eraged by molecular motion leading to polarization sidebands for several sites at

moderate spinning speeds (cor/2n= 5.3 kHz for the data shown in Fig. 5.5. Fig.

5.5a shows the profiles for VEFCP (solid dots) and conventional CP (open circles)

for the 13C line at 129.5 ppm from TMS, which is a superposition of a quaternary

aromatic and a protonated carbon. In this case, the modulations are barely pre-

sent, though VEFCP seems to perform marginally better. The situation is dif-

ferent, however, in Fig. 5.5b, which shows the intensity of the line at 151 ppm,

which is due to a superposition of two quaternary carbons. Here the polariza-

tion sidebands are pronounced, and VEFCP results in a much smoother profile.

At this contact time (0.52 ins), the rapid kinetics of the Al and *2 sidebands

yields higher polarizations for conventional CP, though for longer contact times
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Figure 5.5 Cross-polarized intensity m. 13Crf field for VEFCP (solid circles) and

conventional CP (open circles) of polycarbonate spinning at Wr/2n= 5.3 kHz.

The VEFCP experiment used a 26-interval sequence with h =10 ~ and scaling

factor K between 0.9 and 0.4 in steps of 0.02. Lines are guides to the eye. (a) The

resonance at 129.5 ppm, a superposition of a protonated carbon with a

quaternary carbon with a contact time of 520 ps. (b) The purely quaternary

carbon resonance at 151 ppm with a contact time of 520 vs. (c) The same pureIy

quaternarycarbonlineat 151 ppm but with a contact time of 1.56 ms.
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(Fig. 5.5c) VEFCI? results in higher polarizations.

Fig. 5.6 shows the increase in signal strengths for VEFCP vs. conventional

CP for polycarbonate. Note that the VEFCP signal intensities are, for all lines, at

least as intense as in the conventional CP spectrum, and some lines

tially more intense.

A comment should be made as to the performance of VEFCP

are substan-

for a strong-

ly coupled spin system. Though the need for broadband matching would be re-

duced, there are some samples in which strong and weak couplings coexist. For

strong couplings the performance of VEFCP is slightly inferior to that of conven-

tional CP due to two effects. First the effects of all the phase shifts, including

switching transients, lead to a 7% reduction in signal intensity after 200 phase

shifts for a sample of L-glycine, which is strongly coupled due to the presence of

methylene protons. Second, if the matching condition is already broad, VEFCP

suffers by containing intervals which may have a very low CP efficiency. On

Hartmann-Hahn match, VEFCP with 400 phase shifts yielded, for a sample of L-

glycine, intensities of 87% and 81% of the conventional CP intensity for the 8 and

14 interval sequences, respectively.
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Figure 5.6 CPMAS spectra of polycarbonate with co,/2n = 5.3 kHz acquired

under (a) conventional CP with a contact time of 1.56 ms and (b) VEFCP with 26

intervals, tc= 10 rns, a total contact time of 1.56 ms, and scaling factors from 0.9 to

0.4 in steps of 0.02. 64 scans were averaged and 30 Hz line broadening was ap-

plied to both PID’s before Fourier transformation.
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Appendix

A.1 Commutation Rules for Fictitious Spin-1/2 Operators

fie commutation rules within a rs sub-manifold and between different sub-

manifolds are as follows

A.2 Reduced Wigner Rotation Matrices

The reduced Wigner rotation matrices are given by

d(z)(e)=J(1+7’?’2)!(1– m)!(1 + 7?2’)!(1– nz’)!m’m

{

(-l)”

‘; (hrz’-@!(l+m-@! (v+?L?’-Trz)!v!
(A.8)

x[cos:r-”-’”[-sh;~-”+”}
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where the sum over v is performed over all integers for which the factorial are

non-negative. Some useful identities involving the reduced rotation matrices are

given in Table Al. The explicit values for d~)mare given in Table A.2

A.3 Matrix Elements ofTlm

Ifthe components of Tl~ given by

Table A.1 Identities involving the reduced Wigner rotation matrices, d~)m(()).

(’$1)(0)=d!~_m@)=(-qm’ m
m’-v:~,(e) = (-l)m’-md!~/Je)

I

mLmZd(Z)(6)= JO (e, = [~ym(e)]-l = [~!~m(e)~d[lm(-e)s (-1) m,m ~ml

f#m(o)=q#m
d! (x)= (–l)l+%m#_m

(i;–7C)=(–lp%m,.mm’ m

t+? (~+e)s (-g~+m’d~),m(e)

‘+m’(’)(e)~t)m(n_e)=(–1) din-m
m’ m

d(~) (2n) = (–l)%m,rnm’ m

n

E
2

1

0

1

2

Table A.2 Second-rank reduced Wigner rotation matrix elements, d~)(~).

m

2

()l+cosp 2
2

I+cosp
—Sinp

2

I–-cosp
—Sinp

2

()l–cosf? 2
2

1 I o I -1 -2
l+cosp

–—sinp 1{;Sinz /3 I ‘—S’P I [%7l–cosp

2 2

l–cosp

[

l+cosp l–cos~
COS2B -—

2
– ;sh12fl —– COS2p

2
–—sinp

2

[
; sin2/3

3cos2p–1

-[
:sin2p

[

3.2

2
~sln p

l+cosfl

r

I–cosp l+cosp
—– COS2j

2
~ sin2fl COS2fi –—

2
-—sinp

2

l–cosp
r

l+cosfl l+cosp 2
—Sinp

2
: Sinz p

()
—Sinp —

2 2
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and

(A.9)

(A.1O)

&2=k)
the corresponding matrix elements are

-x(%’’’+”)
(1~1/21TzolIAI/2)- 1

(1~1/21T,@l/2)= 0,

and

(All)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)
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