

HC-13

1h.805

IS-4448

Changing Scene Highlights III

MASTER

Ames Laboratory/Energy & Mineral Resources Research Institute,
Iowa State University, Ames, Iowa 50011

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

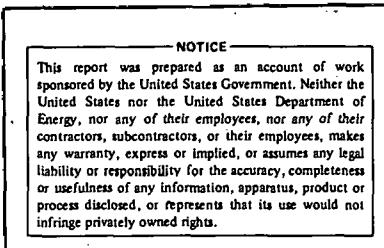
Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Foreword

The Ames Laboratory is a multiprogram, government-owned, contractor-operated laboratory of the United States Department of Energy. Iowa State University is the operating contractor through its Energy and Mineral Resources Research Institute (EMRRI), which also administers the Iowa Coal Project.

The Ames Laboratory's activities range from the most fundamental research in the physical sciences to applications-oriented programs in the energy and environmental sciences. Many of the Laboratory's scientific group leaders are also members of the University faculty, and a substantial part of the basic research is performed by University graduate students who hold research assistantships in the Laboratory.

Multi translates to interdisciplinary in many of the Laboratory's programs. Here interdisciplinary really means interpersonal because the Laboratory is an aggregate of research and support people who establish the identity of the Laboratory.


For this reason the emphasis in this biennial report is on the people performing the research. And the research reported covers broad topical areas rather than research along strict disciplinary lines. By extrapolating a little beyond the basic science reported we have attempted to show the integration of basic and applied programs in the Ames Laboratory's approach to energy research.

Robert S. Hansen
Director, Energy and Mineral
Resources Research Institute

CHANGING SCENE HIGHLIGHTS III

**Ames Laboratory, DOE*, and
Energy and Mineral Resources
Research Institute
Iowa State University
Ames, Iowa 50011**

***Operated for the U.S. Department of Energy
Contract W-7405-eng-82**

Contents

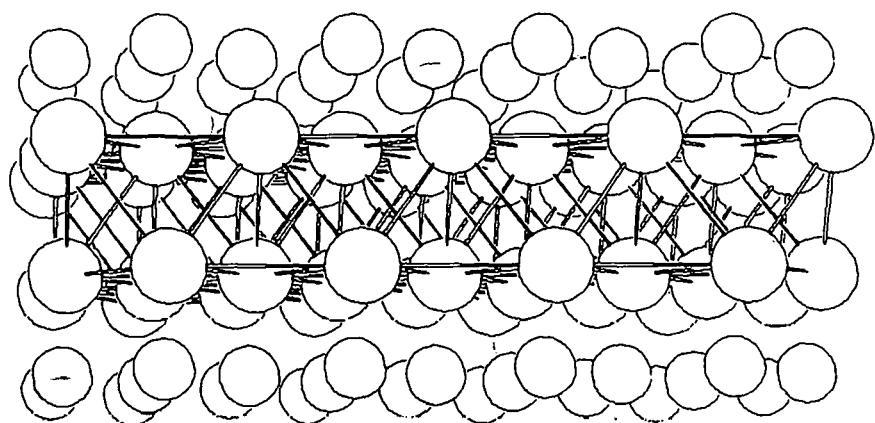
Hydrogen in Our Energy Future	1
Catalysis—Making Chemical Reactions Work	9
Materials—Expanding Their Upper and Lower Limits	14
Water Quality—A Greater Awareness	18
TRISTAN—The Nuances of Nuclear Fission	26
Revitalizing Iowa's Coal Industry	34
Midwest Reclamation Tour	39
Nitinol—Remembers What You Want to Be	40
Neutron Radiography—How Your Garden Grows	42
Fly Ash—A Future Ore Supply	44
The Whys of Grain Dust Explosions	47
Cornstalks for Energy	48
That Fatal Attraction	49
Fingerprinting Coals	50
Perfect Molecular Crystals	51
Beauty, Truth and Life	52
Faculty Activities	58
Recognition	60
Laboratory Developments	62
Patents	63
1977 Group Pictures	64
Publications	65

Hydrogen in Our Energy Future

The hydrogen atom has the most simple atomic structure in the universe; one proton and one electron. Thermonuclear fusion of hydrogen creates the power of the sun and is the first step in the formation of all the rest of the elements. Scientists from the United States and the Soviet Union are collaborating in a massive effort to replicate the solar furnace on earth so that it can be tapped as a heat source for the generation of electric power.

But even in the absence of fusion power devices, hydrogen gas will be a key element in America's fuel future. It might be used as a combustible fuel itself, and is a major aspect in the liquefaction or gasification of coal. The idea of burning hydrogen as a fuel is attractive. The product of its combustion is water—no hydrocarbons, carbon oxides, or sulfur compounds would be released into the air. Nitrogen oxides would be the only pollutants, as these compounds result from high temperature combustion of most fuels with air.

Hydrogen gas is highly volatile, but storage and handling are safer today than in the past, when disastrous fires like that of the Hindenburg caused the abandonment of the great hydrogen lighter-than-air ships. NASA uses hydrogen as a rocket fuel and has developed safe means for its transportation and storage. However, these systems are cumbersome and expensive. Scientists at Ames Laboratory are investigating the diffusion of hydrogen into metals and compounds. On the one hand, this may be the means for more effective storage of the gas, since some metals can absorb and store more hydrogen per unit volume than can a container of the same volume filled with liquid hydrogen. On the other hand, the ease with which hydrogen diffuses into metals can be a serious problem if a metal becomes brittle and fractures as a consequence. Ames Laboratory studies address both sides of the coin.


A number of novel compounds have been evaluated for their tendency to "soak up hydrogen." A compound's ability to readily store hydrogen appears to depend on the presence of conduction electrons it has available for bonding. Salts, which are insulators, do not have these conduction electrons, and will not absorb hydrogen. The group working with Dr. John D. Corbett, assistant program director, materials chemistry, has found that metallic halides, which are both metals and salts at the same time, will react with hydrogen. Of eight metallic halides studied so far, all have formed new hydride phases.

Nearly all of the compounds studied have been synthesized for the first time at the Ames Laboratory and were initially difficult to produce. As an example, zirconium monochloride was first produced by reacting a strip of zirconium with zirconium tetrachloride in a sealed tantalum tube for several weeks at 700 to 800°C. ZrCl crystals produced on the strip were removed and analyzed. Once the formula and some properties of the halide were known, a faster, higher yielding process was developed. Fifty grams of ZrCl are now produced in one or two weeks at 800-850°C. X-ray diffraction studies showed that the structure contains homoatomic layers sequenced Cl-Zr-Zr-Cl so as to generate a series of four-layer sheets. The layers are said to be

A black and white caricature of John O. Barber. He is depicted as an elderly man with a prominent, wavy, receding hairline. He wears dark-rimmed glasses and a mustache. He is dressed in a light-colored shirt and a dark suit jacket. The drawing is done in a loose, sketchy style with heavy shading on the face. Below the caricature, the signature "John O. Barber" is written in a cursive, handwritten font.

"close-packed," similar to the way the layers in a crate of oranges would be—one layer of oranges nesting in the indentations formed by the layer below, (see Figure 1) only here layers of different size occur in pairs, corresponding to zirconium and chlorine atoms.

The four layer sheet structure of $ZrCl_4$ is without precedent. Each zirconium atom has three metal neighbors in the next layer at 3.09 \AA (an angstrom, \AA , is 10^{-8} cm), six metal neighbors in the same layer at 3.42 \AA , and three chlorine neighbors in the opposite layer at 2.63 \AA . The strong metal-metal bonding is the most significant bonding feature of this structure, as

Figure 1. The layered Cl-Zr-Zr-Cl sequence. The small atoms are chlorine and the large atoms are zirconium.

revealed by the short distance between zirconium layers, 3.09 Å, which compares with 3.19 Å for 12 nearest neighbors in zirconium metal. This layered structure classifies $ZrCl$ as a two-dimensional metal, its metal atoms being arranged in a two-dimensional plane rather than in a three-dimensional lattice. This is consistent with the graphitic character of the compound and its tendency to form polycrystalline structures and to flake off in sheets.

$ZrCl$ and similar structures such as zirconium bromide ($ZrBr$) have been shown to readily accept and release hydrogen. The initial prediction was that relative hydride stability is largely determined by the competition between the metal cores and the hydrogen for conduction electrons, and that a partial replacement of conduction electrons by a more stable anion such as halide (Cl or Br) should lead to an increase in hydrogen dissociation pressure. This rather simple prediction has been borne out. It appears that the hydrogen readily passes into and out of the interstices between the zirconium layers. The ease with which these compounds react with hydrogen suggests potential catalytic applications such as in the rearrangement of hydrogen in small hydrocarbon molecules. This sort of rearrangement of hydrocarbons is the basis of such processes as catalytic cracking in the petroleum industry and in the liquefaction or gasification of coal. (See the accompanying story on catalyst research.) The catalytic possibility was an unexpected benefit of the hydrogen storage research.

This work has led to a great deal of interest in other so-called lower dimensional materials. While $ZrCl$ forms two-dimensional layers, $ZrCl_3$ forms one-dimensional infinite chains of Zr atoms contained in hexagonal close-packed chlorine layers (see Figure 2). Strong bonding only in the metal chains makes the material exceedingly fibrous. Zirconium forms similar one-dimensional compounds with the other halides, bromine and iodine. Although very good directional

electrical conductivity, possibly superconductivity might be anticipated with these structures, initial tests have not revealed either behavior. Further work with the compounds has disclosed that they can be seriously nonstoichiometric, i.e. do not rigorously maintain the numerical relationship of one Zr atom to three halogen atoms. This implies that vacancies may occur in the chains upon oxidation, as well as displacement of zirconium ions into the otherwise vacant channels in the chlorine structure either spontaneously or upon reduction. This may provide a clue to the failure to detect the anticipated electrical conductivity and poses the possibility of investigating metal-metal chains of varying length, where macroscopic conductivity measurements would be useless.

Ken Poeppelmeier, graduate student with Corbett's group, recently synthesized totally new types of one-dimensional metallic structures that occur in a most unexpected place, the lower scandium chlorides. Heptascandium dechloride (Sc_7Cl_{10}) is formed of infinite chains of scandium, actually

constructed from two parallel chains of scandium octahedra which are extremely distorted and share a common edge, while pentascandium octachloride (Sc_5Cl_8) contains chains of single octahedra (see Figure 3). Both scandium chains are surrounded by a sheath of chloride atoms that also bridge to and between isolated $Sc(3+)$ metal ions located between the chains. The shortest Sc-Sc distances in the two structures, 3.15 Å and 3.02 Å respectively, are remarkable in comparison with 3.28 Å in scandium metal. These strongly bonded and well-separated metal chains and the resulting physical properties suggest that this compound also can be described as a crystalline analogue to Dr. John Verhoeven's metal fiber composites (see accompanying story on extreme materials).

An important feature of Corbett's investigations is metal-rich compounds that exhibit extensive metal-metal bonding in their structures. The importance of metal-rich compounds is also a major characteristic of Dr. Hugo Franzen's study of materials stable at extreme tem-

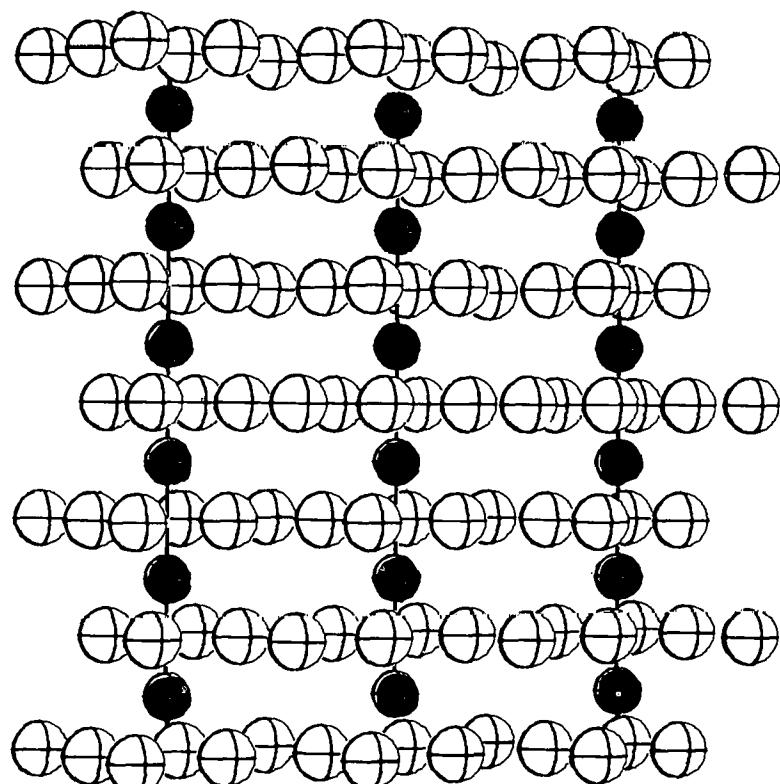


Figure 2. $ZrCl_3$, with proposed one-dimensional metal chains.

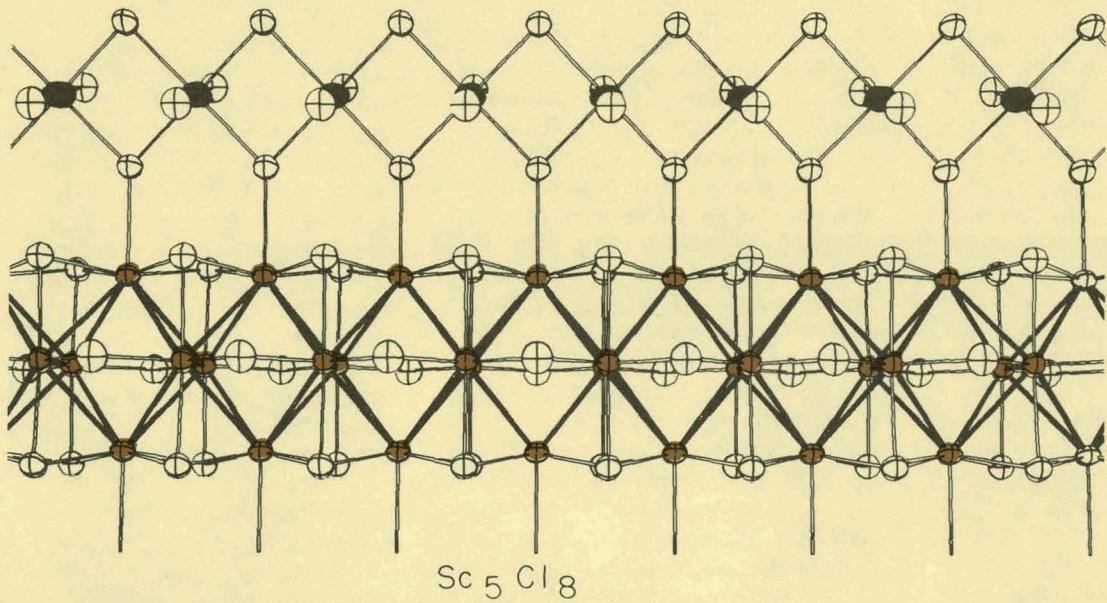
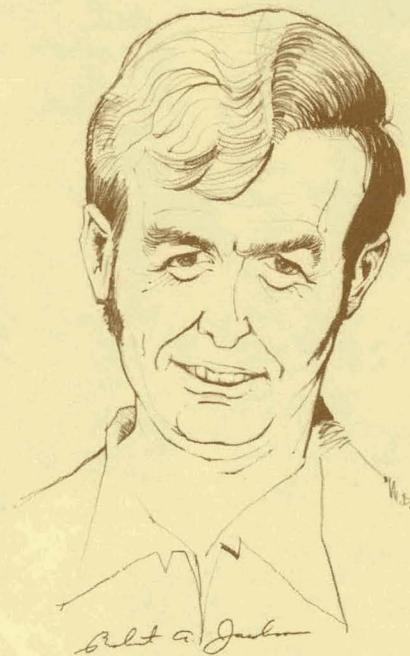


Figure 3. Scandium chains surrounded by a sheath of chloride atoms.


peratures. Likewise, metal-metal bonding is the key to Dr. Robert McCarley's research on compounds of the heavy transition metals. (See the accompanying stories on extreme materials and on catalysis.) Novel materials such as these have been the mainstay of the Ames Laboratory since its founding, and there is considerable cross-fertilization of knowledge from one group of researchers to another. Each group studying a particular class of compounds or particular aspects of chemical behavior relies upon the instrumentation and analytic capabilities of other groups in the Laboratory. This pooling of efforts is necessary to establish thorough characterizations of the materials under study. For example, some of the compounds synthesized by Corbett's group are subjected to x-ray and neutron crystallographic analysis by Dr. Robert A. Jacobson's chemical structures group, to nuclear magnetic resonance (NMR) studies by the researchers working with Dr. Richard G. Barnes, senior physicist, to secondary ion mass spectrometry (SIMS) by Dr. Gordon C. Danielson, senior physicist, and his associates in the Surface Analysis Laboratory, and to theoretical interpretation by Drs. Samuel H. Liu, section chief, theoretical research, and Bruce N. Harmon, associate physicist.

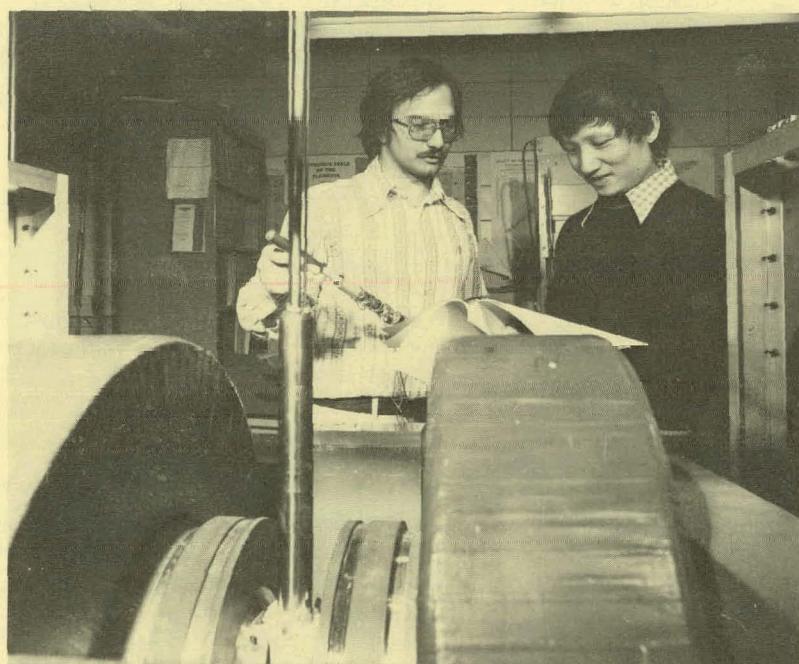
The creative exchange among these various groups is enhanced by the fact that scientists on the Ames Laboratory staff are also members of the Iowa State teaching faculty, and many of the research assistants are graduate students. Science is a learning process, and the need to answer questions, perhaps impertinently posed by students, can often lead to seeing problems in a new light, with subsequent insight. This creative interaction is important for building an understanding of completely new chemical structures in pursuit of the ability to tailor bonding arrangements in synthetic compounds and thus engineer specific properties.

The capabilities for x-ray diffraction characterization of the structures under investigation at Ames Laboratory have been tremendously expanded through the application of computer control and data processing by Jacobson and his co-workers. The system, developed over the last six years, can now do in two days what once required a month. Before the computer technique was perfected, crystallographic studies required time consuming film techniques to determine the orientation and size of the unit cell, the repeating unit in a crystal, and to record the diffraction intensities which carry structural information. The sample would have to be posi-

tioned in various orientations and for each of these the resulting diffraction patterns would have to be recorded on film and the intensities measured. Exposure times of 1½ to 2 hours for each film were typical.

Now with direct computer control of the instrument, the computer oscillates the crystal so that approximately one minute exposures are made on the film. The positions of about a dozen strong diffraction maxima occurring on these pictures are given to the computer. The com-

puter then determines the size and orientation of the unit cell and assigns crystallographic indices—numerical codes—to the diffraction maxima, after which the instrument automatically measures all the intensities.


The computer currently in use can simultaneously control three diffractometers while doing background calculations in a time-sharing mode and controlling another special experimental measurement series on the side. X-ray diffraction is useful for the structure studies of these novel compounds, but determining where the absorbed hydrogen resides in the structure and identifying the atomic environment at those sites requires neutron diffraction. The tiny hydrogen proton is a poor x-ray scatterer, but neutrons radiated on a crystalline solid will briefly form a compound nucleus with hydrogen or other materials in the solid. Neutrons, when re-emitted from each nucleus of the crystalline solid, interfere with each other to form a diffraction pattern which can be analyzed to determine the composition of the material.

While neutron diffraction averages the position of hydrogen in the structure, Barnes and his co-

workers use nuclear magnetic resonance (NMR) to determine the location of hydrogen within the structure. Hydrogen nuclei behave like tiny bar magnets and will line up when placed in a strong d.c. magnetic field. The direction of alignment of the nuclei may be altered by radio frequency electromagnetic radiation if the axis of the RF coil is at a right angle to the magnetic field. The frequency at which energy is absorbed, changing the direction of nuclear alignment, is known as the resonant frequency, and for the hydrogen nucleus in a magnetic field of 14,000 gauss is 60 MHz. The resonant frequencies for identical nuclei in a constant external field vary slightly with the chemical environment of the nucleus (about 1 to 10 ppm for hydrogen). By varying the RF radiation over a small range, e.g., 1000 Hz, an absorption spectrum is obtained from which information about the structure of the material and position of the hydrogen can be deduced. (For a discussion of techniques necessary in applying this method to solids, see the discussion of the application of NMR to structure studies of coal on page 50.)

Richard Barnes

Phil Hornung, graduate assistant, and Tzong Hwang, postdoc, check probe which contains sample for pulsed nuclear magnetic resonance (NMR) tests for hydrogen diffusion in metals. Cylinders in foreground form an electromagnet.

Gordon Danielson

Albert Bevolo

Howard R. Shanks

To develop an understanding of how hydrogen is stored in some of the metals produced at the Ames Laboratory, Danielson, Dr. Albert Bevolo, associate physicist, and Howard Shanks, physicist, are depth profiling materials to determine whether hydrogen storage is a surface effect, or if hydrogen penetrates farther into the material. The profiling will indicate how much hydrogen can be stored by a given material, and will help determine which materials can store the most hydrogen in the smallest weight and volume.

The profiling apparatus is called a secondary ion mass spectrometer (SIMS) which detects hydrogen nuclei (protons) that x-ray detection methods cannot see. A secondary ion is one that is ejected from the material by an incident ion bombarding the surface. The secondary ion is detected, and its energy measured by the mass spectrometry equipment. Each impurity present in a material emits ions having energy levels characteristic to that impurity. Each energy level is recorded, and the impurities present are determined by comparison with known data.

Gordon Danielson (standing) and Albert Bevolo discuss secondary ion mass spectrometer (SIMS) test results.

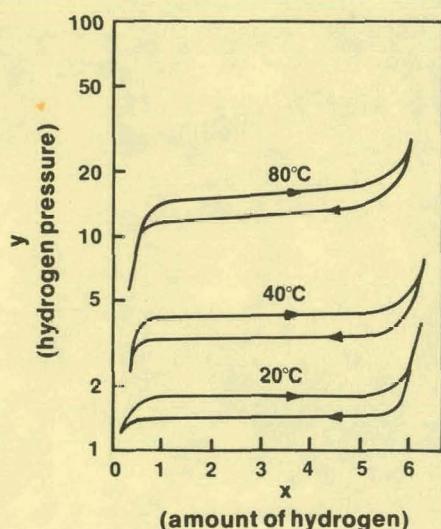
Karl Gschneidner, Jr.

Dr. Karl Gschneidner, assistant program director, metallurgy and ceramics, has discovered that LaNi_5 is one of the more reversible hydrogen pick-up materials. Hydrogen stored in LaNi_5 can be recovered simply by placing the material in a vacuum.

The lanthanum-nickel compound is another material that can gain a greater concentration of hydrogen per volume than is possible by hydrogen alone in a liquid state. It will pick up seven hydrogen atoms

to form the compound LaNi_5H_7 .

Lanthanum and nickel are fairly abundant elements, so cost, not availability, could be a problem with using them for large-scale hydrogen storage. The compound is also too heavy for most transportation fuel storage applications.

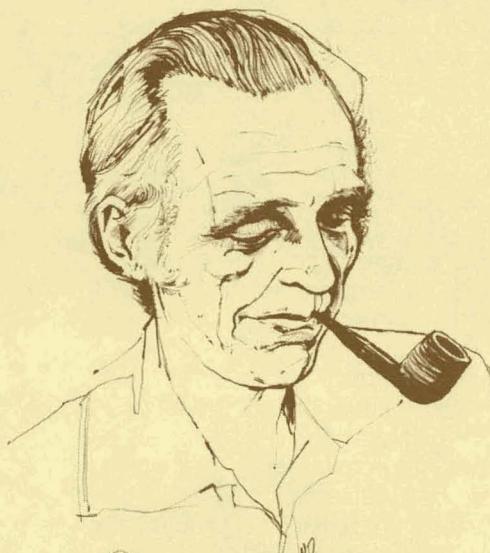

Temperatures are being varied to find the best condition for hydrogen uptake by LaNi_5 . At very low temperatures, the electronic and vibrational characteristics of the compound when it contains hydrogen can be examined. The goal is to find a relationship between these characteristics and the amount of hydrogen that LaNi_5 or other compounds will absorb. From determined relations it may be possible to predict other compounds that will be good hydrogen storage materials. Promising compounds produced are supplied to other Ames Laboratory researchers who analyze their internal structure.

Many of the compounds surveyed have a serious weight disadvantage as storage systems for hydrogen, and a great deal of experience will be necessary before the promising ones admit to easy synthesis. While this work continues, the other side of the coin, metal deterioration, is also an active study. Metal embrittlement is a problem for gaseous hydrogen storage containers and transport systems, for coal gasification and liquefaction, and for solar conversion systems, as well as for fission and fusion nuclear systems.

The only way to eliminate the deleterious effects of hydrogen on metal is to prevent the hydrogen from contacting the metal. Since this is impossible for most energy systems, it is necessary to seek a solution by understanding the mechanism of this effect, and, by studying the influence of composition and structure on the process.

Metal embrittlement is one of the major interests of Dr. Tom Scott, section chief, mechanical properties, and his associates. Special emphasis has been placed on the embrittlement mechanism of vanadium, niobium, and tantalum because these are likely candidates for cladding materials in reactor core tubes containing radioactive

fuel and for containing the reaction zone of a fusion reactor. At elevated temperatures these metals will soak up considerable amounts of hydrogen without destroying the cohesion of the metal lattice. This can create a serious problem if the metal with its "solution" of hydrogen subsequently cools down below a critical temperature. The composition may undergo a phase transition in which a new structure arises; for example the hydrogen may "come out of solution" and form a hydride of the metal. The phase transition may be accompanied by fracturing or even catastrophic collapse of the metal. There is considerable debate over the exact sequence of events in such failures. The formation of the hydride may be the key mechanism, or local de-cohesion of the metal lattice by the hydrogen may induce fractures. Further work is necessary to answer these questions. And these are not just academic questions. Adequate answers are necessary if accurate predictions of the behavior of the metal are to be made, such as whether or not the lining of a nuclear power reactor vessel would survive the stresses induced by sudden cooling consequent to an emergency shutdown.



LaNi_5H_7 : pressure-composition isotherms measured in absorption (\Rightarrow) and in desorption (\Leftarrow).

(Data from F. A. Kuijpers and H. H. van Mal; a slight correction was applied for the absorption capacity.)

Tom E. Scott

David T. Peterson

The role of interstitial impurities in these degradation processes is also poorly understood and is thus an important focus of attention. Work by Dr. David Peterson, senior metallurgist, has led to a method for extracting the interstitial impurities—carbon, oxygen, and nitrogen—from vanadium. A layer of titanium, condensed on the outside of the specimen, reacts with the impurities as they diffuse to the layer (see Figure 4). The inward diffusion of titanium is only one-millionth as fast as the diffusion of the impurities through the lattice of the vanadium, so only a thin layer of the specimen is alloyed with titanium and this can be removed by electropolishing. The resistance ratio of vanadium has been increased from 50 to more than 700 by this method. The interstitial concentrations have been reduced to: oxygen—6 ppm, carbon—2 ppm and nitrogen—1 ppm. This "external gettering" process is being tested on other metals whose properties are affected by interstitials.

Techniques have been developed to study the movement of hydrogen and deuterium (one proton and one neutron) atoms in the metals. Diffusion coefficients can be established for the migration of the "dissolved" H and D in the group V metals (V, Nb, Ta). Such migration has been investigated as a consequence of pressure differentials (squeezing the atoms out of

one end of a sample, forcing them into the other), thermotransport (differential heating), and electrotransport (the H and D atoms are induced to move by an applied electric current). These studies are being extended to investigate the effect of "trapping" of the H or D by both interstitial impurities and by metallic solutes with a high affinity for hydrogen. Trapping by oxygen in vanadium and niobium has been reported to greatly modify diffusion behavior. The thermotransport results should be helpful in understanding and controlling the interactive effect of hydrogen and the other interstitial solutes on embrittlement of these cubic metals at low temperatures. Thermotransport is an important factor when hydrogen or deuterium are present in a material that is subjected to a temperature gradient, such as will exist in most energy conversion devices.

Control over the presence, possibly even the addition to the material, of a solute that traps the hydrogen or deuterium would make it theoretically possible to design alloys in which there would be no tendency for them to migrate to either the higher or lower temperature regions. The "gettering" effect will be an important research tool in establishing this sort of fine control over the "impurity" content of these metals. Nuclear magnetic resonance studies by Barnes and his co-workers are especially useful in these investigations because the

deuteron possesses an electric quadrupole moment; thus, its NMR is sensitive to crystalline symmetry and structural instabilities. This provides a powerful means for determining details of structural changes at the level of single atoms.

Laboratory researchers intend to extend this group of studies to the consideration of tritium (a proton and two neutrons) when techniques to handle the radioactivity of the tritium in such tests are devised. The study of electrotransport will also be extended to other metals such as beta-titanium alloys and the alkaline earth metals to test theories and models for hydrogen in metals over a wider range of matrix properties.

Hydrogen attack is a phenomenon of direct concern in coal gasification and liquefaction—processes in which hydrogen gas will contact materials, especially ferrous metals, at elevated temperatures and pressures. Scott is engaged in a study of the effects on steel of an environment that simulates a "coal dissolver." Various coal liquefaction methods, whether the Synthoil process being developed at the Pittsburgh Energy Research Center (PERC) in Pennsylvania, or the solvent-refined coal (SRC) process pursued by PAMCO (a Gulf Oil subsidiary), use a high pressure, high temperature reaction of coal with hydrogen gas to turn the coal into a liquid or semi-

Figure 4

VANADIUM

TITANIUM AND PRECIPITATES

BAKELITE MOUNTS

solid that has most of the sulfur and ash constituents removed. The Synthoil process uses a coal "slurry," a mixture of crushed coal, oil (produced by the process, reintroduced into the system as a solvent to facilitate the reaction), and hydrogen gas (introduced into the process). The reaction vessels or "dissolvers" and the tubing used to preheat the coal slurry are subjected to temperatures averaging 850°F (range 470° to 1600°F), and hydrogen partial pressures of 2000 to 4000 psig, in combination with a variety of noxious gases, especially H₂S from the hydrogenation of sulfur.

Because liquefaction operations are in their infancy, there is little information available to indicate how well the construction materials for these vessels will withstand the stress. Frequently it has been claimed that experience from the petrochemical industry can be applied to coal liquefaction processes. However, the severe combination of temperature, pressure, and particularly noxious gases involved in liquefaction is not present in petrochemical processes. The integrity of liquefaction vessel

materials must be evaluated under the conditions of their application.

Scott, along with Charles Owen, associate metallurgist, Lester Reed, senior research technician, Charles Wood, graduate student, and Dr. Shen-ann Shei, postdoctoral fellow, is engaged in testing 2½ Cr-1 Mo steel under conditions that simulate the environment of the dissolver. After extensive tests to establish baseline data, steel bars, some notched to induce hydrogen concentration at the stress points replicating fracture processes, will be placed under tensile stress and subjected to temperatures up to 900°F and pressures up to 4000 psig, in vessels containing actual coal slurry obtained from PERC. This project has necessitated the construction of special pressure vessels and safety test facilities located away from the main Iowa State campus. The experience gained should answer the immediate practical question of suitable materials and safety standards for the pilot plant of PERC's Synthoil project, as well as extend our knowledge of hydrogen embrittlement in steel.

Catalysis—Making Chemical Reactions Work

A catalyst is a substance that increases the rate at which a chemical reaction occurs, without itself becoming permanently involved in the reaction or its products. Knowledge and application of catalysts make possible the multitude of modern chemical industries, ranging from the hydrogenation of animal and vegetable fats into edible margarine by a nickel catalyst, to the catalytic cracking of crude petroleum, forming useful hydrocarbons as different in character as paraffin and high octane gasoline. Nearly one-fifth of all the products manufactured in America require a catalyst somewhere in the production cycle. Life itself is based on systems of catalysis, homeostasis being the result of control processes by enzymes—biological catalysts.

While catalysts make possible the activities of high technology, often they are needed to clean up harmful by-products of this technology. An example of the need for thorough understanding of the processes involved in catalytic activity is the recent introduction of "catalytic converters" to automobile engines. Most noble metals will catalyze the reduction of nitric oxide (NO, an undesirable gas) in the presence of hydrogen (H) and carbon monoxide (CO, available in auto exhaust), but produce various amounts of nitrous oxide (N_2O) and ammonia (NH_3) which are themselves undesirable. If platinum is used to catalyze the reaction, the product is mostly ammonia, but ruthenium (Ru) is unique in that it produces NH_3 in one temperature range, and mostly nitrogen gas (N_2) in another range. The N_2 is certainly preferred, inasmuch as N_2 makes up about 80 percent of the air we breathe.

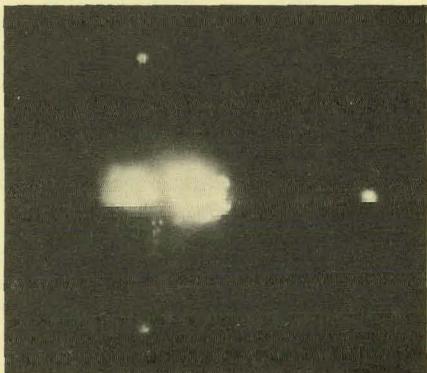
Dr. Robert S. Hansen, director of the Ames Laboratory, and Thomas W. Orent, a graduate student in the surface chemistry program of the Laboratory, have developed an explanation for the two different Ru reactions. This understanding is necessary to the sound application of catalytic reactions, and at the

same time advances our ability to engineer desirable catalytic effects in a fundamental sense. The reaction for reducing the NO to the desired N_2 involves *heterogeneous* catalysis; i.e., the catalyst is in a solid state, while the reactants are in a gaseous state. The term *heterogeneous* merely denotes this difference in physical states. (If the catalyst were in the same state as the reactants, e.g. liquid in a reaction between liquids, the catalysis would be called *homogeneous*.)

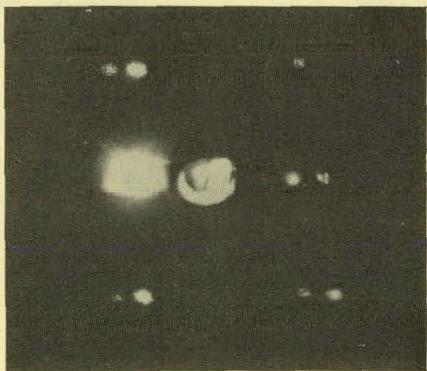
Since the ruthenium is a solid, the catalysis occurs at the surface of the metal. The key to the action of the catalyst is the metal's ability to temporarily trap the reactants at its surface by a process called adsorption. Adsorption means that the substance which has been captured stays on the surface, as distinguished from absorption, which denotes a process of one substance penetrating into the other.

Adsorption occurs because of the unique electrical state of the surface layer of atoms in the metal. Any atom on the surface is surrounded by similar atoms in the same plane or in the plane below, to which it is attracted, but there are none above it. Because of this, solids possess a surface energy akin to, but much

stronger than, the surface tension of a liquid.


Each surface atom has its valency requirements unfulfilled. The force which drives molecules to react with and be adsorbed by solid surfaces is the tendency of this free valency, either covalent or electrostatic, to become saturated. This kind of adsorption, in which new chemical bonds are formed, is generally called *chemisorption*, to distinguish it from a weaker form of adsorption called *physical adsorption*, in which the forces attracting the molecules to the surface are of the same kind as those which hold molecules together in a liquid—van der Waals forces. (Van der Waals forces arise as a fluctuating electric moment in one molecule induces an electric moment in another molecule, and the two moments then interact.)

In somewhat simplistic terms, the heterogeneous catalyst acts by increasing the likelihood that the chemical bonds of the substances in a reaction will be changed by initiating that change, perhaps only slightly, as it attracts one or more of the reactants to its surface. In the case of nitric oxide and ruthenium, the nitrogen and the oxygen separate when the NO molecule attaches to the surface of the Ru, and become independent atoms.

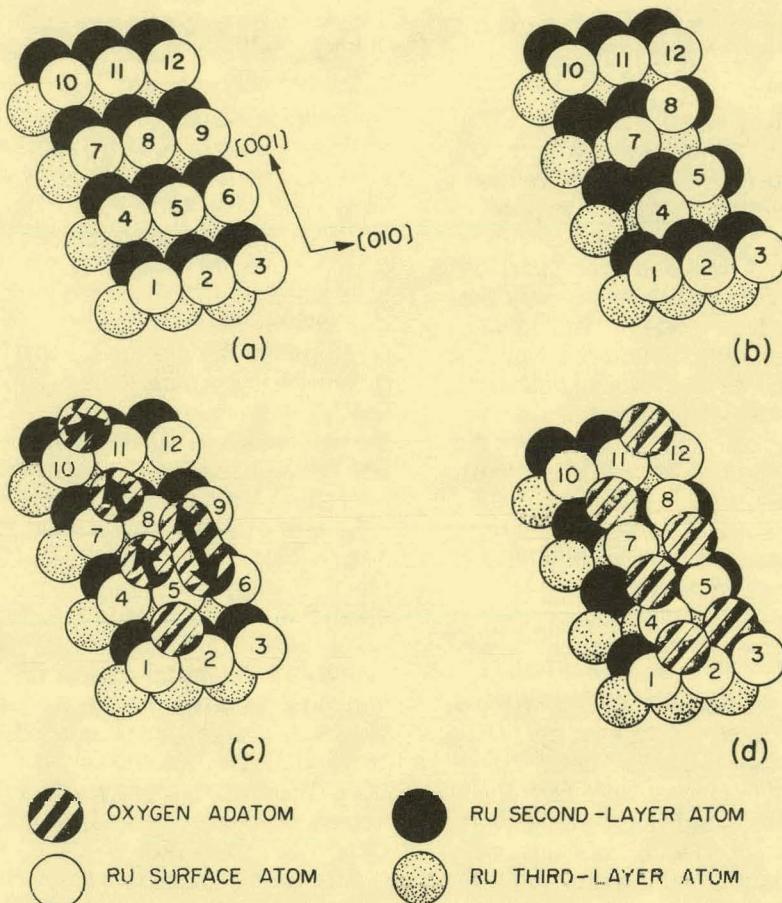

Orent and Hansen have done an extensive study of the behavior of N and O adsorbed on the surface of Ru, and found that the key to the difference between forming desirable N_2 gas, as opposed to undesirable ammonia, is the formation of an oxide that actually disrupts the surface of the metal. They combined data from two separate methods for analyzing the activity at the surface of the Ru crystal with findings from numerous related studies to develop their solution to the puzzle. Low energy electron diffraction (LEED) pictures gave them hints of the physical arrangement of the surface and the atoms adsorbed onto it. LEED is a technique in which electrons of uniform energy in the range of 5 to 500 electron volts (ev) are bounced from the surface of the

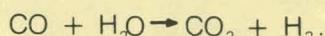
sample, and those electrons which have lost no energy are selected and accelerated to a fluorescent screen where the diffraction pattern from the surface can be observed. Auger electron spectroscopy (AES) was used to find out which atoms were present and giving rise to the surface pattern. An Auger electron is an electron spontaneously emitted from an excited atom; the excitation responsible for the emissions may be produced by x-ray illumination or by electron bombardment. The energy of the Auger electrons can be precisely measured and used to determine the species of atoms from which they were released. LEED and AES make very good complementary methods. In fact, for their investigation, Orent and Hansen used the same electron gun to bounce out the electrons for both the measurement

a

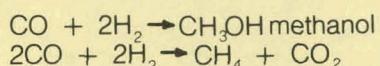
b

Figure 1. Examples of LEED images obtained from Orent and Hansen's study; (a) result from either NO or O₂ adsorbed on ruthenium at temperatures below 200°C, (b) result from either NO or O₂ adsorbed on ruthenium at 950°C.




Figure 2. Oxide overlayer formed by the reconstruction of a Ru surface; (a) unaffected metal, (b) the reconstruction, (c) and (d) the oxygen adatoms in the model.

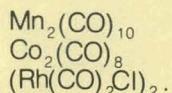
and the pictures. Figures 1a and 1b are examples of the images obtained from the LEED.


It had been noted by other researchers that Ru, when slightly oxidized, was active in decomposing ammonia and forming hydrocarbons from carbon monoxide and H₂ gas, but that Ru in a reduced state did neither. Both forms equally reduced NO to N₂, but no reason for the NH₃ and CO immunity to the reduced catalyst was evident. Orent and Hansen found that at most temperatures nitric oxide (NO) was split upon adsorption and that N quite readily desorbed. The O however, formed different configurations depending upon the temperature. Figure 2 represents their explanation of the difference. At prolonged exposures to temperatures above 400°C the surface of the metal is reconstructed by the activity of the oxygen. Figure 2a shows the unaffected metal. 2b shows the reconstruction. The structure is formed by shifting the surface atoms in the two center rows from the four-fold holes formed by the underlying metal atoms to the adjacent three-fold holes which are only 1.6 Å away. This reconstruction is accomplished without any change in the density of the surface atoms. Figures 2c and 2d show the oxygen adatoms in the model, 2c showing the necessary movement of the oxygen to give rise to the reconstruction. The geometrical configuration and electronic structure of the reconstructed oxide layer shown in 2d are different from those of the bare metal, and these differences change the catalytic activity. Since some of the oxygen adatoms are incorporated in the reconstructed metal, chemisorption may take place on either the metal atoms or the oxygen atoms.

10

A knowledge of catalysis may also give us a fuel alternative to gasoline. Chemical reactions of carbon monoxide with water which are seemingly very simple, can form a number of fuels: methanol, various other hydrocarbons, and even hydrogen gas. When represented theoretically the reaction is very straightforward. The hydrogen producing version is called the water-gas shift reaction:

Additional steps give rise to various hydrocarbons, e.g.

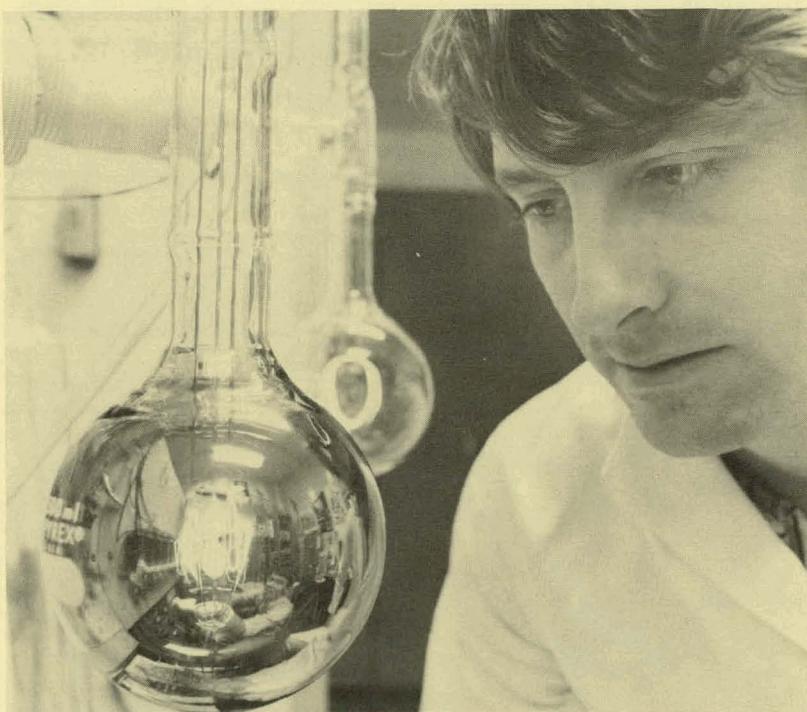


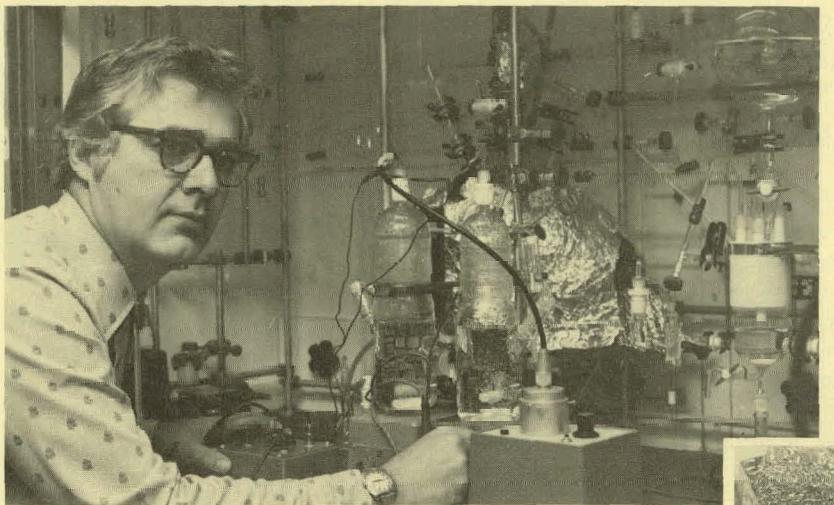
methane and carbon dioxide, etc. The problem is that these reactions occur only at high temperatures and pressures, and frequently give a mixture of products. Finding the right catalyst might increase our ability to perform these reactions,

however, and Dr. Robert J. Angelici is engaged in this search as a part of the Laboratory's Basic Energy Sciences program.

Until recently only heterogeneous catalysts have been reported to catalyze the water-gas shift reaction. However, one study has been reported in which $\text{Ru}_3(\text{CO})_{12}$ was used to homogeneously catalyze this reaction in an organic solvent under mild conditions (100°C and 1 atmosphere CO pressure).

Angelici's studies have shown that several other metal compounds can be used for the reaction:


This suggests that one of these catalysts may allow the large scale preparation of H_2 under mild conditions that would avoid the costly equipment required by the high temperature, high pressure facilities required by a number of proposed


Robert J. Angelici

Department of Energy techniques. These involve heterogeneous catalysts that are poisoned by sulfur. Sulfur poisoning is an important problem, since many of the processes under study involve coal, and sulfur is a major contaminant in coal. For organic reactions, homogeneous catalysts usually give greater product selectivity and proceed under milder conditions. Angelici's work uses dimethoxyethane solvent to coax the process along, and preliminary studies have shown that the addition of amines or potassium hydroxide (KOH) as a co-catalyst significantly improves the yield of H_2 .

Another possible method for producing hydrogen is by the electrolysis of water into oxygen and hydrogen gas. Here again, a good deal of energy is required to split the H_2O molecule into its constituent gases. The use of platinum electrodes considerably increases the rate of the reaction, so much so that the operation is actually called electrocatalysis. The problem with this method is the prohibitive cost of platinum. Substitutes have been proposed for the platinum, and one of the prime candidates has been sodium-tungsten bronze. Contradictory results for this substitution have been bantered back and forth in the literature over the last ten years: a contention that the tungsten bronze was as good as platinum, a counter claim that platinum contamination had led to erroneous results, the subsequent finding of no

Ruthenium thin films are being used by Michael Slaughter, a graduate student with Hansen's catalytic group, to study the methanation reaction ($\text{CO} + 3\text{H}_2 \rightleftharpoons \text{CH}_4 + \text{H}_2\text{O}$). A temperature and pressure region has been found in which only this simple reaction producing methane and water is believed to occur. By developing a mechanism for the methanation reaction on ruthenium, Slaughter and Hansen hope to be able to comment on the possible mechanistic interpretation of more complicated H_2/CO interactions (alcohol, aldehyde, ketone, paraffin, olefin formation). In this photo, a ruthenium film is being deposited by electron bombardment of a polycrystalline ruthenium disc.

Howard Shanks is shown here with the Ames Laboratory-developed fuel cell which incorporates platinum-doped sodium-tungsten bronze as an electrocatalyst.

Crystals of sodium tungsten bronzes, $\text{Na}_x \text{WO}_3$.

catalytic effects even with massive platinum doping on the bronze, and so on back and forth.

Recent work by Howard R. Shanks, Drs. Albert J. Bevolo and Gordon C. Danielson, and graduate assistant, Michael Weber, all physicists in the new Surface Analysis Laboratory, has established that doping the sodium-tungsten bronze ($\text{Na}_{0.7}\text{WO}_3$) with a very small but precisely controlled amount of platinum can produce electrocatalytic activity nearly as well as platinum—at a fraction of the cost. The narrow range of platinum content and the incomplete characterizations of past studies evidently caused the contradictory results that had contributed to the decade-long dispute. Electrodes constructed with the composition established by the physicists should work equally well for producing H_2 by electrolysis of water, or for producing power by the oxidation of H_2 in a fuel cell. *Any catalyst that increases the rate of a reaction must also increase the rate of the reverse reaction, as the more complete definition of a catalyst is any substance that increases the rate at which a chemical reaction approaches equilibrium, without itself becoming permanently involved in the reaction.*

Most metal catalysts act in a heterogeneous manner; they are

usually solids while the reactants are most often liquids or gases. As already noted in the discussion of the water-gas shift reaction, homogeneous catalysts usually have the advantage of working at milder conditions than heterogeneous ones and should have much higher efficiencies.

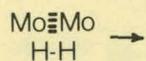
Dr. Robert McCarley, senior chemist, and his co-workers are engaged in synthesizing a class of materials which they anticipate will

Robert E. McCarley

combine a metal-like surface activity with a catalyst that can work in a homogeneous mode. This work is a pioneering investigation of the relationship between molecular and electronic structure and the chemical and physical properties that these structures produce in compounds of the heavy transition metals containing a large proportion of metal-metal bonds.

McCarley's intention is to develop the ability to understand and control synthesis of metal-metal bonds so as to generate compounds with desired properties whether in the simple case of two metal atoms joined to form a discrete molecule or ion, or in the much more complex cases where large clusters, extended chains, or two- and three-dimensional networks are desired. In this aspect his work is similar to the work of Drs. Hugo Franzen and John Corbett. (See the accompanying stories on extreme materials and on hydrogen storage and materials.)

A striking achievement of these investigations is the successful synthesis of a tetranuclear molybdenum halide anion, $\text{Mo}_4\text{I}_{11}^{2-}$. The key to this unique construction is the reaction of the carbonyl anion, $\text{Mo}(\text{CO})_4^-$, which releases carbon monoxide in a non-coordinating solvent so that the hypothetical intermediate Mo_3^- has to react with itself in order to satisfy valence electron and coordination requirements, thus forming the metal cluster species.


The anion cluster could serve as the nucleus for the addition of other metal atoms so that still larger clusters may be formed with good control over the products. Further possibilities arise from inserting different metal atoms to form heteronuclear (mixed-metal) clusters.

The concept of using dimeric species with metal-metal triple or quadruple bonds in a controlled formation of "metal polymers" could lead to a rich variety of new materials, useful not simply for catalysis, but for an entire spectrum of as yet unimagined applications. McCarley has already worked with dimers of the type $\text{Mo}_2\text{Cl}_4(\text{PR}_3)_2\text{L}_2$ that can undergo condensation

which results in the "addition" of two dimers containing Mo=Mo bonds to form the rectangular cluster Mo₄ of the structure

having two Mo-Mo single bonds and two Mo-Mo triple bonds. This process could be repeated to form a ladder polymer of the type — II — II — a one-dimensional chain linked by strong Mo-Mo bonds.


Application of the Mo=Mo complexes to catalytic hydrogen transport can be envisioned by the dissociation of an H₂ molecule:

This type of addition reaction to temporarily form the hydride might then provide the means for hydrogenation of complex hydrocarbon molecules, as in the breaking down of complex coal molecules to simpler structures. The metal-metal multiple bond in these complexes is very electron rich and should constitute a reactive center. Other molecules can be bonded in adjacent sites to facilitate the hydrogenation transfer. Such possibilities point to the use of

these clusters either in homogeneous systems of catalysis at low temperatures or heterogeneous systems at high temperatures. The realization of these objectives require basic chemistry developments, including the control of synthesis of the metal-metal multiple bonds and an understanding of the factors that effect reactivity towards addition of hydrogen and small molecules.

Work on hydrogen storage in metals by John Corbett's group has led to catalytic possibilities similar to those of the metal cluster complexes. The experience with lower-dimensional metal compounds with high affinities for hydrogen such as the layer structure of zirconium bromide (ZrBr) indicates that these compounds may be effective hydrogenation catalysts. The examination of scandium halogen compounds that have extensive hydride forming capabilities suggest applications as isomerization catalysts. Results of this work show that Sc₂Cl₃ polymerizes hexene even more readily than ZrBr does. The creative interchange between these two groups of researchers continually sparks new insights into the amazing possibilities of these entirely new substances.

John O. Corbett

Materials—Expanding Their Upper and Lower Limits

Back in the early nineteenth century, when the French engineer Sadi Carnot first formulated a theoretical statement of the efficiency of heat engines, heat was still considered to be a subtle fluid and human understanding of the forces in nature had not yet been generalized into the unifying concept of energy. Now, in the last quarter of the twentieth century, the production and use of energy has become a critical social issue, but Carnot's statement, that the efficiency of any transformation of heat into work is dependent upon the differential between the temperature of the source of the heat and the temperature of its final destination at the completion of the cycle, still holds true. This means that the design of more efficient power generation systems will demand materials for their construction that can withstand higher temperatures. This is the case whether the heat for the system comes from fossil fuel or fission.

Most of Carnot's contemporaries believed electricity, as well as heat, to be a subtle fluid. The abandonment of that notion was a major step toward a theoretical synthesis of the general concept—energy. And just as we've abandoned the notion of electricity as a subtle fluid, we've also discovered that the key to efficiency with electricity is not high temperatures, as with heat, but rather extremely low temperatures. H. K. Onnes discovered in 1911 that when some substances are cooled to near absolute zero (or, toward the melting point of helium) the electrical resistivity vanishes. Such substances are called superconductors and are being developed for uses in the efficient transmission and storage of electrical power. Superconducting materials are also a key ingredient of the attempt to harness the power of the fusion reaction. The enormous explosive force of hydrogen fusion will require tremendous magnetic fields if these miniature suns are to be held in check; fields only made possible by

the use of superconducting electromagnets.

Materials, then, are a key to future energy development—materials that can withstand very high temperatures and materials fabricated for use at very low temperatures. Both extremes are the subject of research at the Ames Laboratory. Since the Ames Laboratory was instituted at the end of World War II—indeed, even before that, back when the uranium for Fermi's pile at Chicago was extracted under the direction of Frank Spedding and Harley Wilhelm—Ames Laboratory scientists have specialized in the preparation of exotic and complex materials.

Separation techniques developed at Ames Lab have transformed the rare earths from their past behavior of clannish and reclusive hiding among each other into functional materials applied to everyday uses. Uses range from the creation of the vivid red in color televisions to a 30 percent increase in production capacity of petroleum refineries by catalytic application to the cracking processes. Building on the long tradition of innovations in materials research and development, Ames Laboratory scientists are engaged in formulating today's questions from what little was known yesterday about tomorrow's needs.

The establishment of fundamental knowledge on which to base the solution to technical problems is a creative process, and a major characteristic of creative processes is that results often violate expectations; that's what makes the knowledge fundamental. Such is the case with investigations by Dr. Hugo Franzen's high temperature chemistry group. Traditional valence theory would predict that it is impossible to form a compound from titanium and sulfur that contains two atoms of Ti to each atom of S. Working with a premise that compounds which are going to be stable at high temperatures may require high temperatures for their

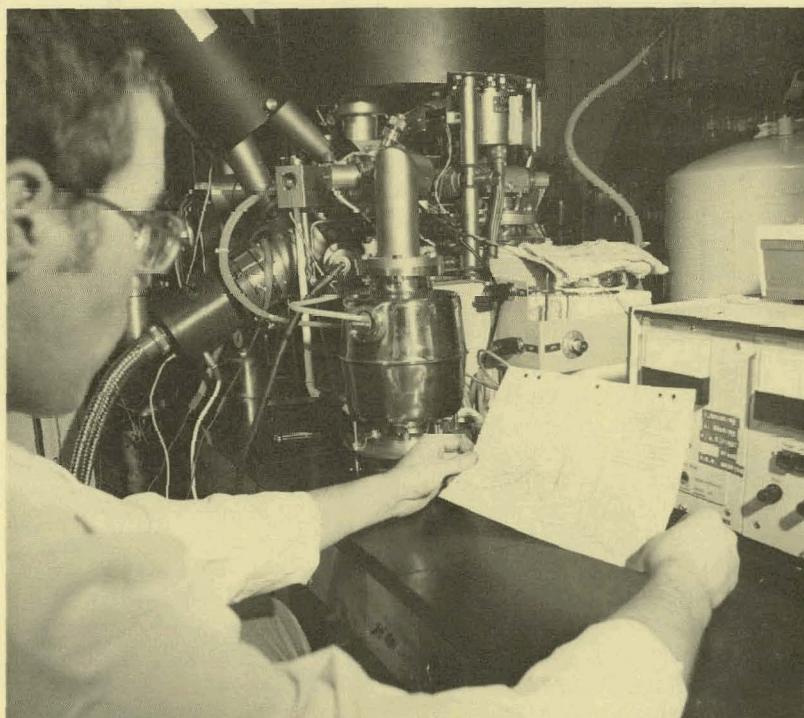
formation, Franzen succeeded in producing Ti_2S_3 . The compound can be created by heating the titanium and sulfur reactants to extremely high temperatures in tungsten crucibles held in a vacuum. Contamination is avoided by driving the reaction with heat by induction from a coil connected to a powerful radio frequency electromagnetic generator.

Franzen's group is engaged in synthesizing and characterizing a broad range of such "metal-rich" compounds in order to determine

Metal-Rich Sulfides and Selenides Prepared in the Ames Laboratory

Ti_8S_3	Hf_2S	Ti_2Se
Ti_2S	$Nb_{21}S_8$	Zr_2Se
Zr_9S_2	$Nb_{14}Sr$	Nb_2Se
Zr_2S	Ta_6S	Hf_2Se
HfS	Ta_2S	Lu_3S_4

stoichiometries (the numerical relationships of components), structures, stabilities, and electronic behaviors in the 1500-2500K range. (To translate to Celsius, subtract 273°.) The compounds are analyzed by means of a wide variety of techniques: x-ray diffraction on solids (both crystals and powders), mass spectrometry of vaporized samples, and x-ray photoelectron spectroscopy. The photoelectron spectroscopy is possible only because the group is both a part of Ames Laboratory and a part of the chemistry department of Iowa State. The National Science Foundation provided the x-ray photoelectron spectrometer through an instrument grant to the chemistry department. Then, DOE contributed additional apparatus used in conjunction with the spectrometer.


The x-ray photoelectron spectrometer works by bombarding the sample with x-rays at known energies until electrons are bounced out of the sample. By measuring the kinetic energy of the liberated electrons, the binding energy can be calculated. Investigations of sulfides of Mg, Ca, Sr, Sn, Ti, V, and Mn indicate that the binding energy shifts of the sulfur inner core levels are different for the compounds in which a metallic d-band is present (the early transition metal monosulfides of Ti, V, and Mn) from those which have no d-band (the alkaline-earth monosulfides of Mg, Ca, and Sr). A band is a restricted range in which the energies of electrons in solids lie as understood in quantum-mechanical terms. The shifts in binding energy in the case of d-band interaction are about 1.5 electron-volts smaller than in the case of the classically ionic compounds. It appears that the d-band formation in the compounds with the transition metals increases the effective electronegativity of the metal relative to the sulfur, producing a covalency rather than an exclusively ionic bonding. This covalency effect stabilizes the compounds in structures which are unusually hard, metallic, and non-volatile at elevated temperatures. This is an important insight for the design and

application of high temperature materials, not only for possible structural use, but especially for electrodes and protective coatings.

Photoelectron spectrometer results for the metal-rich compounds Ti_2S and Ti_2Se suggest that the interaction of the electrons in the p-orbitals of the chalcogens (S & Se) with the metallic d-band formed by the titanium is sufficient to reverse the electron transfer usually occurring in the majority of titanium chalcogenides. That is, these compounds appear to show a net transfer of electrons from the sulfur or selenium to the titanium. This opposes the traditional concept of electronegativity as an elemental property and suggests that electronegativity is more properly considered within the context of all the bonding interactions affecting a given element.

These investigations are being extended to the phosphides and aluminides as part of the effort to

construct a model for the bonding in such compounds. The principal features of the model in these metal-rich compounds are the band which arises from metal-metal interactions, the interactions of the p-orbitals of the non-metal with the metallic band, and the apparent increase of the valence of the non-metal beyond that required to fill the valence shell. This model allows the prediction of properties in the transition-metal compounds such as increased stability from the effects of interaction by p-orbitals with the metallic band. Such a model should increase the ability of chemists to predict the thermal stability and electronic properties of materials which have yet to be prepared. Compounds formed with phosphorus have potential use in solar energy conversion and superconductivity. Highly stable aluminides could provide corrosion resistant coatings for high temperature applications.

James W. Anderegg, assistant chemist, examines a full-scale photoelectrometer scan to determine the elements present.

Doug Finnemore

John Verhoeven

While the high temperature chemists are interested in stability at high temperatures, Senior Metallurgist, Dr. John Verhoeven, and Senior Physicist, Dr. Douglas Finnemore, are interested in electroconductivity at very low temperatures. They are working on a process for producing very fine wires of niobium and tin in a copper matrix. It has been known for several years that Nb_3Sn is one of the best of all superconducting materials. Nb_3Sn has an unusually high critical temperature of 18.3K. The critical temperature is the temperature below which the electrical resistivity falls to zero: niobium alone is 9.09K and tin is 3.72K.

The development of practical high-field superconducting magnets may be said to have started with the discovery in 1961 that Nb_3Sn can carry supercurrents of 10^5 amp/cm^2 at fields of 100,000 oersteds and above. The difficulty with Nb_3Sn is that it is very brittle and cannot be wound into coils in the ordinary way an electromagnet is constructed. In the past it has been produced in the form of very thin layers on ribbons of niobium or stainless steel, and then these were bundled into windings for electromagnets. Recently work has been proceeding at Brookhaven National Laboratory on a process for inserting rods of Nb_3Sn into larger copper rods, then drawing the rods down into wires and bundling them into cables. Verhoeven and Fin-

nemore are working on a method for producing Nb_3Sn directly in the copper wire.

Imbedding the Nb_3Sn in copper has distinct advantages due to the strange properties of superconductivity. The superconducting state involves coordination of the motions of conduction electrons in the material. The microscopic theory of superconductivity is based on the idea that a conduction electron attracts the positive ions that constitute the lattice of the material as it passes through them. This causes the positive ions in the lattice to move temporarily toward the track of the electron. The distortion of the lattice creates a region of relatively low potential energy for any other electron that happens to pass through the track of the first electron at the proper time. Thus, the response of the lattice to electron motion produces an effective interaction between electrons, coordinating their motions. A current induced in a closed loop of a superconductor (for instance, by withdrawing a permanent magnet from within the loop) will persist almost indefinitely, provided that the current is not too large. Persistent currents have been observed with no measurable decay for eighteen months. If the loop were not superconducting, the current would decay in a fraction of a second. This persistence is allowed only by the decreased energy of the

lattice vibrations at the low temperatures of superconductivity.

In a superconducting electromagnet, magnetic flux is forced to penetrate through the windings as the current increases. Because of imperfections in the material, these penetrations occur in abrupt jumps, called flux jumps. Flux jumps heat up the winding material, which may drive a portion of the winding resistive. If this happens, the current flowing through the normal resistive region will cause further heating, which may drive adjacent portions of the winding normal, thus causing an avalanche-type process. This may drive the whole magnet normal, breaking down the magnetic field and causing damage. To avoid these processes, the superconducting windings can be pressed into close contact with a low resistance metal, such as copper. If a portion of the superconductor is driven normal, the current flowing through it is then safely shunted through the lower-resistance copper, thus preventing an avalanche process. When the superconductor cools, the current is again diverted through it.

The goal is to maximize the area of the interface between the copper and the Nb_3Sn , not only to solve the avalanche problem, but also because the supercurrents concentrate within a few millionths of a centimeter from the superconductor's surface. Increasing the surface area of the superconductor thus increases the current-carrying capacity of the material.

The process Verhoeven and Finnemore are working on will use a directional solidification technique to produce a ductile wire of niobium dendrites imbedded in a copper matrix. A homogeneous alloy of Cu-Nb is formed into a wire approximately 70 mil (1.75 mm) diameter. The wire is passed through a tube which can contain the alloy in a molten state at temperatures of approximately 2000°C. The wire is then directionally solidified by a zone heating process in which localized heating causes a molten zone of about 1 cm long to pass down the length of the wire contained in the tube. If the zone moves at the proper speed and the convection currents

are minimized, the niobium in the alloy forms into dendrites of a few microns in cross section. Figure 1 is a longitudinal section of one of the wires after directional solidification, showing the aligned Nb dendrites in the Cu matrix. Figure 2 is a cross section of the same sample, and each little cross is a primary dendrite. The number of dendrites in the 1.75 mm wire is approximately 50,000 and each dendrite is 2 to 3 microns wide. After the dendrites have been formed, the wire will be drawn down to a diameter of approximately 10 mil (0.25 mm) and coated with a layer of tin by drawing it through a molten tin bath. Heat treatment can then diffuse the tin into the alloy and form Nb_3Sn on the Nb dendrite filaments. This process will form a very large area of interface between the Nb_3Sn and the copper as is indicated by the cross section in Figure 2. The cables formed from such wires should be considerably more effective than the mechanically produced cables. When a continuous process of synthesis is developed the directional solidification method should be easier and much more economical. After more experience working with the materials, Verhoeven and Finnenmore intend to develop a process using an alloy of niobium, copper and tin directly, thus avoiding the two steps of tin coating and heat treating to infuse the tin and form the Nb_3Sn .

Prior work with the directional solidification technique has shown that continuous rods of niobium two microns in diameter can be grown in an yttrium matrix as shown in the microphotograph in Figure 3. Similar results have been achieved in a thorium matrix and future development will involve alloying titanium with the niobium rods in the thorium or yttrium matrix. This may have some advantage over the current commercial method of mechanically inserting niobium-titanium alloy into a copper matrix for the production of magnet windings.

Figure 1. A longitudinal section showing aligned Nb dendrites in a Cu matrix. Magnified 238 times.

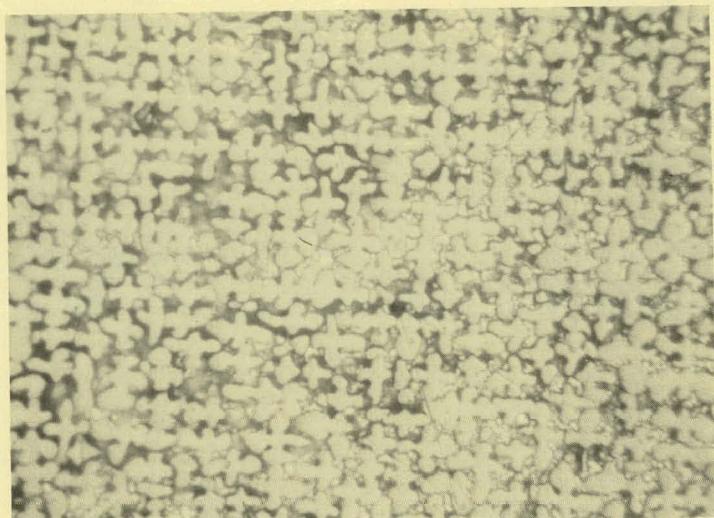


Figure 2. A cross section of the same sample as Figure 1. Magnified 792 times. Each small cross is a niobium dendrite between 2 and 3 microns wide.

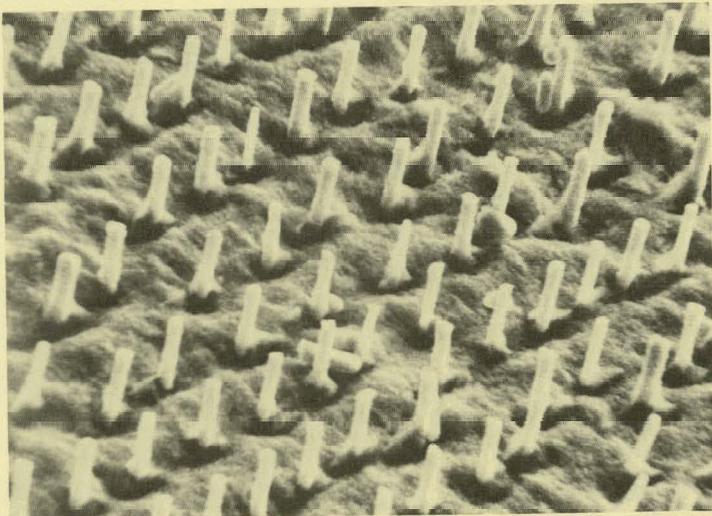


Figure 3. Niobium rods in a yttrium matrix. Each rod is approximately 2 microns in diameter. Magnified 1710 times.

Water Quality—A Greater Awareness

Water, composed of two of the most simple and abundant elements, hydrogen and oxygen, is the closest thing we know to a universal solvent. This characteristic makes it essential to life processes—the great majority of our own body weight is water. However, this same characteristic can also make water a conveyor of death when deadly poisons are dissolved in it. Water transports nutrients from the soil into plants and then dissolves and carries away part of the organic compounds thus formed when the plants later decay. Viewed from the perspective of water's solvency, the world's weather systems are one vast still, ever depositing the solutes of the earth in the oceans.

While some substances, such as common salt, dissolve quite readily in water, others, such as metals and many complex organic compounds, only dissolve slightly, or may only dissolve under special circumstances. In recent years some compounds and metals classically considered to be insoluble in water have been recognized as dangerous pollutants, some at concentrations of a few parts-per-million or only a few parts-per-billion. We actually know very little about the effects of trace organic pollutants, as it is only a few years since we have had techniques available for detecting them at such minute concentrations. In 1970, only ten organic compounds were known to be in drinking water samples taken from all over the world. By the end of 1975, more than 300 organic compounds were identified, and this number is increasing because of the rapid advance of technology for isolating and identifying them.

Researchers at Ames Laboratory became involved in establishing techniques for such trace determinations in the summer of 1970 when Dr. Vince Calder*, Dr. James Fritz, senior chemist, and Dr. Harry Svec, assistant program director, chemical physics, collaborated to solve the problem of an objection-

able odor in Ames, Iowa municipal water. Using a "macroreticular resin" developed by the Rohm and Haas Company, Fritz and Calder managed to extract the offending material, then concentrated the sample. Svec and his associate, Gregor Junk, ran the sample through a makeshift combination gas chromatograph-mass spectrometer they had been working on to study interfacing problems.

From the first preliminary tests, it was clear that some of the compounds in the smelly Ames well were aromatic hydrocarbons. Eventually over 100 compounds were identified in the water from the well, many of which were characteristic of "coal-tar derivatives." These contaminants had been entering the Ames well via an aquifer that flowed beneath a waste disposal pit from an early twentieth century coal-gasification plant.

After using the new combination analytical technique to survey all twelve wells used to supply water to Ames, two of the most badly contaminated wells were taken out of service and the pumping schedules of the other wells were rearranged. There is no longer a taste and odor problem for the city's drinking water.

With support from the City of Ames, the ISU Water Resources Research Institute, the National Science Foundation, and the Department of Energy, these analytical techniques for identifying and quantifying trace organic pollutants were extended and refined. A flow-chart for the Ames Laboratory technique is shown in Figure 1.

A survey of thirty-five American and Canadian cities' drinking water was initiated using the sample collecting apparatus shown in Figure 2. The sample collectors were mailed to friends of the researchers along with detailed instructions on how to take the sample. The survey served to test the method and establish the magnitude of the problem of contaminated drinking water in large cities. The amount of organic pollutants in the drinking water of some of the cities of the survey was very low and indicated little or no potential problem. In a few cities, the amount of organic pollutants was much greater and the kinds of pollutants indicated at least a potential problem.

* Then a physical chemist with Ames Laboratory; currently with Rohm and Haas.

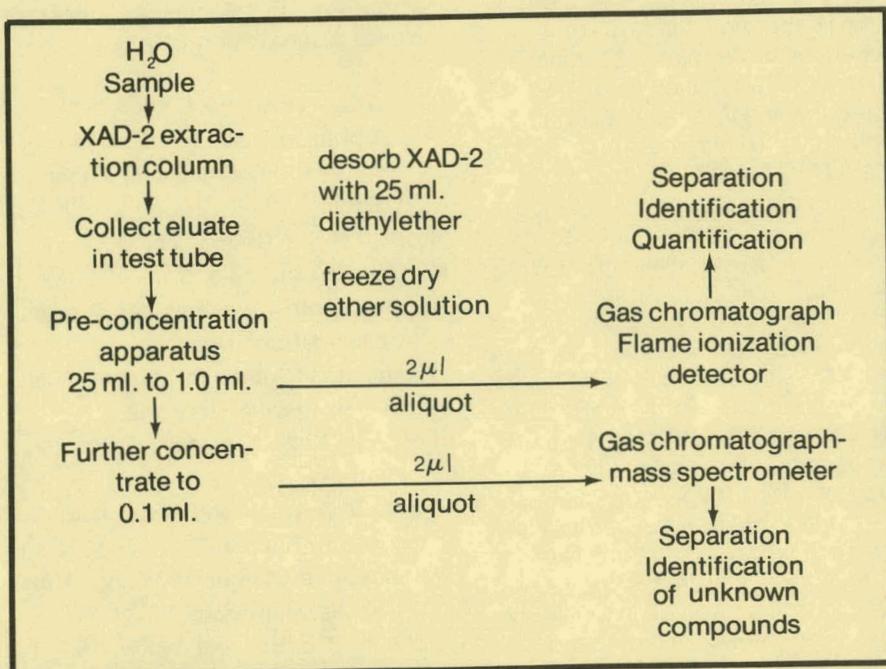


Figure 1. Flow-chart for extraction, separation and identification of unknown organic compounds in water.

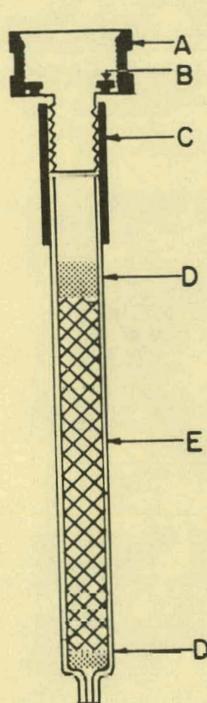


Figure 2. Scale drawing of apparatus for extracting organic solutes from finished drinking water samples. (A) standard garden hose coupling; (B) Teflon washer; (C) ½ inch I.D. Teflon tubing; (D) glass wool plugs; (E) ½ inch O.D. x 4 inch long glass tube packed with 5 ml, 40-60 mesh XAD-2 resin.

(Above) This sampling device with a standard garden hose coupling is used to collect field samples of finished water.

Application of these analytical procedures to a survey of water from rivers and wells at selected locations throughout Iowa from 1972 to 1975 revealed that all the major watersheds in the state are contaminated with varying amounts of agricultural chemicals. The compounds listed in Table 1 were all found in the waters. Their concentrations varied according to season and amount of rainfall.

The survey included three Iowa cities using deep wells as their raw water supply. Chemical contaminants in these waters were hardly detectable. However, water from shallow wells drilled in the flood plains of contaminated rivers contained the same chemicals that were in the rivers. Neither the filtering of water by seepage through the sand and gravel of the flood plain nor ordinary water treatment processes removes the chemicals. Even the use of activated charcoal or carbon, which some propose as a panacea for the problems of organic pollutants, is not always effective. In fact, saturated charcoal has been known to release sorbed pollutants back into the finished water.

Interest sparked by the results of this work led to the participation of Ames Laboratory in the current American Water Works Association Research Foundation study on occurrence and treatment of organic pollutants. The fourteen members of the AWWA listed in Table 2 are funding the study with assistance from EPA. Dr. Charles Oulman of Iowa State University's Engineering Research Institute is project coordinator for the three universities involved and Dr. Michael J. Taras is the AWWA Research Foundation's project manager. Fritz and Svec are the principal investigators for the Ames Laboratory portion of the project, which involves the determination of seasonal variations in the trace organic pollutants from the water supplies of the fourteen AWWA members involved in the study, and a comparison of the macro-reticular resins with an activated charcoal method for removing the pollutants. The water samples are sent to Ames Laboratory in mailer kits like the one shown in Figure 3.

Table 2. Water Utilities Participating in American Water Works Association Study.

City of Santa Barbara, California
Metropolitan Water District of Southern California, Los Angeles, California
North Marion County Water District, Novato, California
Contra Costa County Water District, Concord, California
Washington Suburban Sanitary District, Hyattsville, Maryland
Louisville Water Company, Louisville, Kentucky
Miami-Dade Water and Sewer Authority, Miami, Florida
Minneapolis Water Works, Minneapolis, Minnesota
Pollution Control and Water Departments, Kansas City, Missouri
Owensboro Municipal Utilities, Owensboro, Kentucky
Manchester Water Works, Manchester, New Hampshire
City of Cleveland, Cleveland, Ohio
DeKalb County, Decatur, Georgia
Connecticut Water Company, Clinton, Connecticut

Table 1. Agricultural Chemicals Surveyed in Iowa Watersheds 1972-75.

Chemical	Type	Use
First two years		
atrazine	herbicide	weed control in corn fields
ieldrin	decomposition product of Aldrin (an insecticide)	control root worm and some insects
Additional		
alachlor (Lasso)	insecticide	control root worm and some insects
propachlor (Ramrod)	insecticide	control rootworm and insects
2,4-D	herbicide	control broadleaf weeds and brush
2,4,5T	herbicide	control broadleaf weeds and brush

Figure 3. Steve Sagerian, assistant research helper, fills and labels beakers with water study samples as Mike Arguello, post doc, displays a kit of metal tubes containing samples from a participating water works.

From experience with a bench-scale water treatment plant set up by the University of Illinois group headed by Dr. Vernon L. Snoeyink, it has been decided to establish a pilot plant using one activated carbon and a series combination of two resins. One resin was found to readily adsorb humic acids from water, the other removes chloroform; both resins can be regenerated. Under the supervision of Dr. John T. O'Connor of the University of Missouri, the Pollution Control and Water Departments of Kansas City, Missouri are installing the pilot plant to test these treatment methods.

No one knows the long range consequences of exposure to trace amounts of the combinations of chemicals being found in the drinking waters. There may be amounts below which there are no detectable adverse effects, or perhaps there is no safe level. Most of these compounds have not been closely studied for their health effects and certainly not in the combinations being found here.

The Ames Laboratory researchers have been able to enlist the aid of a colleague in the Department of Food Technology in preliminary tests for the possibility that some of these compounds might induce cancer. Dr. Bonita Glatz can perform an inexpensive test using *Salmonella typhimurium* bacteria to determine if given substances are mutagenic; that is, induce mutations in the bacteria. There is considerable evidence that, with few exceptions, chemicals which are carcinogens (cause cancers) are also mutagens (cause mutations). These tests, which were developed by Dr. Bruce Ames and his co-workers at the University of California at Berkeley, serve as an economical means of screening a large number of compounds for mutagenicity. Compounds that induce mutations can then be further pursued to investigate the possibility that they are also carcinogens. The test for mutagenicity can be performed for a few dollars, while an adequate test to determine if a compound causes cancers might cost several hundred thousand dollars.

The *Salmonella typhimurium* were developed with several mutations already present. The key defect is an inability to produce histidine, so that histidine must normally be added to their culture if the salmonella are to grow. This allows a very simple test to see if a chemical causes a mutation in the bacteria. If, in the presence of the chemical, the salmonella grow, the chemical has caused a mutation back to the ability to produce histidine. If the salmonella do not grow, the chemical is probably not mutagenic, as it has not induced a mutation in the bacteria. Figure 4 is

a photograph showing both a negative and a positive response to the Ames test. The negative response shows a few colonies that have spontaneously reverted. In the positive test results, the sample (a disk that has been saturated with mutagen solution) is surrounded by colonies of bacteria that have been mutated.

In addition to the histidine mutation, each tester strain of the salmonella contains two additional mutations that greatly increase its sensitivity to mutagens: one causes loss of the excision repair system and the other causes loss of the lipopolysaccharide barrier that coats the surface of the bacteria. The first assures that induced mutations will not be negated by repair back to the inability to produce histidine. The second allows large molecules that would be kept out by the coating to get into the DNA (genetic information carriers) of the cell.

Many of the organic compounds found in water in trace amounts by the Ames Laboratory studies are the consequences of human activity. Others occur naturally as water dissolves compounds formed by plant decay. These naturally produced contaminants can be transformed into toxic compounds as a consequence of treating the water for

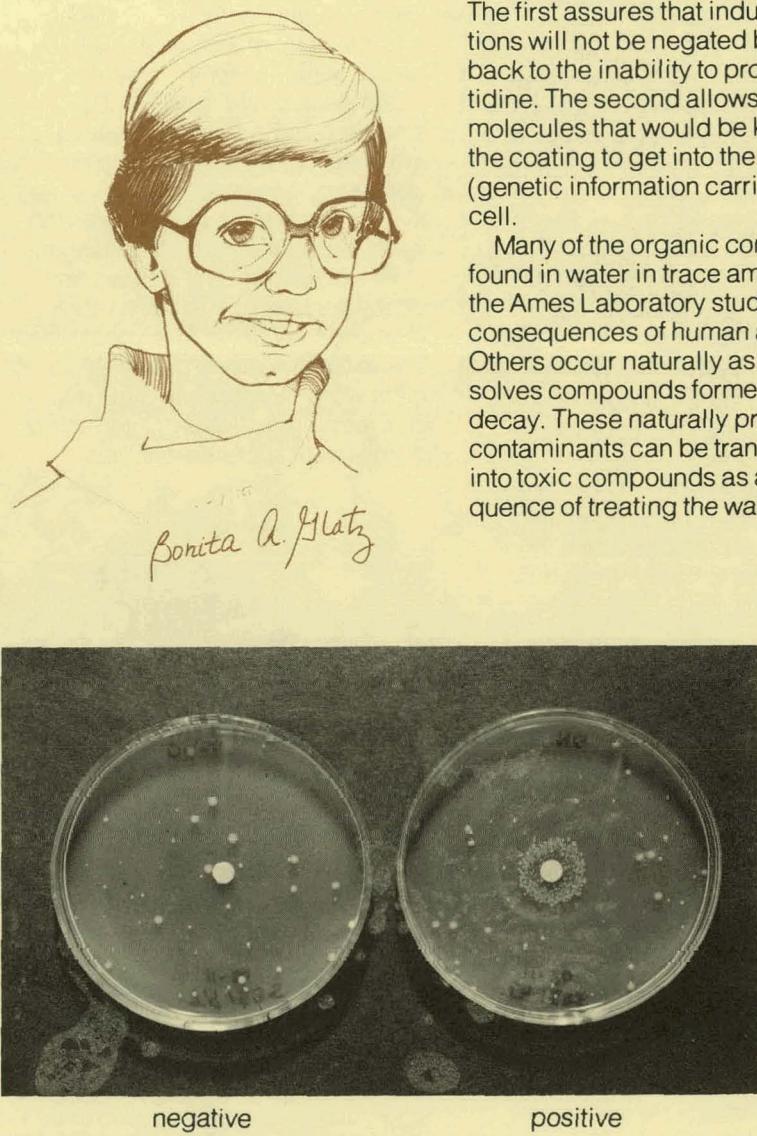


Figure 4. Negative and positive response to the Bruce Ames test.

human use. Chlorination of water that contains humic acids from soil runoff may create chloroform. Not only chloroform (CHCl_3), but also other trihalomethanes, bromodichloromethane (CHCl_2Br), dibromochloromethane (CHClBr_2) and even bromoform (CHBr_3) have been detected in chlorinated drinking water. The National Drinking Water Advisory Council is preparing to recommend that a minimum allowable concentration be established for these toxic compounds.

Ames Laboratory work has also shown that the concentration of various haloforms may change during the time between taking the sample and analyzing it in the laboratory. On one sample the chloroform concentration almost doubled in three days and then by the seventh day had decreased almost to its initial concentration. Similar but not identical fluctuations were found for the other trihalomethanes. For laboratory analysis, a system of stabilizing the sample with ascorbic acid was developed, but awareness of the dynamic nature of the trihalomethane-forming reactions is necessary in setting a pollution standard. Where should drinking water be sampled—at the treatment outlet, after standing in household pipes, or at some other point, in order to most accurately reflect the human consumption of these toxic compounds?

These analytical techniques are not applicable just to drinking waters. The solvency and ubiquity of water make these techniques useful in a wide range of applications. The fact that Ames Laboratory is one of the only two National Laboratories (along with Berkeley) located on a university campus has allowed researchers to participate in an interdisciplinary study to determine safe methods of pesticide disposal. The Energy and Mineral Resources Research Institute (EMRRI), ISU's arm that operates the Ames Laboratory, was one of seven departmental groups from Iowa State chosen by the EPA for the study. Along with the departments of Bacteriology, Entomology, Agronomy, Horticulture,

Agricultural Engineering, and the Agricultural Experiment Station, EMRRI is performing the five year investigation for the Waste Management Division of the EPA. Chemical analysis and bio-assay checks are regularly run on samples taken from pesticide disposal pits at ISU's Agronomy farm and the Horticulture Station. Tests are conducted on persistent pesticides, such as chlorinated hydrocarbons, and non-persistent pesticides—organophosphates and carbamates. Some of the persistent pesticides may last up to twenty years in the environment and are being gradually phased out. The non-persistent pesticides, though more toxic, usually decay within a year. The main aim of the project is to find practical means for the safe disposal of the pesticides. Regular chemical monitoring allows tracking of the decay process and information on the bacteriological activity in the mixture of soil, rock and water contained in the disposal pits.

This entire series of studies has allowed a synergistic increase in the capability of the Analytical Mass Spectroscopy group of the laboratory. Back when Svec and Junk were investigating interfacing problems associated with gas

chromatography and mass spectrometers, there were few GC-MS instruments available commercially. Companies marketing them did not release information on the interfacing system. There are now very good GC-MS systems available commercially that provide adequate information on the interface. Support from the National Science Foundation for the work on trace pollution in water allowed the purchase of a combined GC-MS. DOE Division of Basic Energy Science funds provided a data processing system to facilitate studies using that machine. More recently, application of GC-MS analysis to the study of stack gas from the City of Ames coal and solid waste fired power plant for the Division of Biomedical and Environmental Research of DOE provided funds for a new updated GC-MS system that will be connected to an improved data system supported by NSF through the water pollution studies. These systems will allow the rapid handling of large sampling requirements such as the extensive testing demanded by the AWWA study. The analytical task of such a large study would be prohibitive without these improved facilities.

Gregor Junk, assoc. chemist, and Loras F. Freiburger, Jr., Horticulture grad student, lifting a dirt and rock cover on a test chemical disposal pit at the ISU Horticulture station. Junk is coordinator on the EMRRI analytical chemistry team involved in the EPA financed, five-year, pesticide disposal study.

Application of these analytical techniques to new problems has produced some surprising results. A striking example comes from the analysis of stack gas from the Ames Municipal Power Plant (AMPP). Macroreticular resins, such as XAD-2, a polystyrene-divinyl-benzene porous polymer, are effective not only in removing organics from water but also can sorb these compounds out of gaseous mixtures. It has been established that these resins can adsorb polynuclear aromatic compounds from air at concentrations as low as one part-per-billion. However, when these resins were used to remove the polynuclear aromatics (PNA) from the gases produced in the AMPP furnaces, very few or no PNA's were found. This result is unlike those reported by other workers examining extracts of incinerators and other combustion processes. The beginning of an explanation for this novel situation came only with subsequent attempts to extract PNA's from the fly-ash of the AMPP stack using solvents such as ether, benzene, tetrahydrofuran, n-pentane, etc., all of which were widely recommended in the literature. No PNA's were obtained although tests on soot from gas flames were successful. The clue to these difficulties lies in the nature of the fly-ash. The AMPP burns a mixture of 80 percent coal and 20 percent solid waste. The ash has a high silica content. It had been the practice to sluice the ash pit with water from the badly contaminated Ames well. Analysis of the sluicing water before and after contact with the fly-ash indicated an 80 to 90 percent reduction in organic contaminants (mostly aromatic and polynuclear aromatic compounds). Little or none of these aromatic compounds are recoverable from the ash by solvent extraction methods. It appears that the fly-ash has very strong sorptive properties for organic compounds. Investigations to determine the sorption mechanisms are proceeding. This is a most pertinent problem as additional power plants burning coal and trash combinations are anticipated in response to rising fuel costs.

Not all of the surprises have come from extensions of these techniques, however. An early surprise came during the initial study of the badly contaminated Ames well. Analysis of the extracts by infra-red spectrophotometry indicated a large number of compounds containing carbonyl (-C=O), carboxylate (-C-O-O-), and ester (-C-O-R) groups. This finding was odd because these groups are not normally found with the compounds thought to be present in the smelly water. It was learned that these chemicals were present because of the manner in which the early sampling was done. For convenience, the resin sampler had been connected to a water faucet with a common nylon-reinforced plastic garden hose. Polyvinylchloride (PVC) hoses are made flexible by adding large amounts of "plasticizers." These are high boiling "esters" that are only slightly soluble in water. Yet, when the water from the well flowed through the hose, some of the "ester plasticizers" dissolved and were caught in the resin in the sampler. The plasticizers were responsible for the presence of the carbonyl, carboxylate and ester groups in the samples. These findings led to an expanded research project in which flexible plastic tubing manufactured for a variety of uses was studied to determine what organic compounds "leached" from the tubes when water or other fluids ran through them. The study identified a large variety of "esters" used as plasticizers, and other organic compounds that are added to the plastics to make them resistant to oxygen, ozone and ultraviolet light, to prevent the growth of molds, and to give them better surface characteristics. The additives found in nine different kinds of flexible plastic tubing are shown in Table 3.

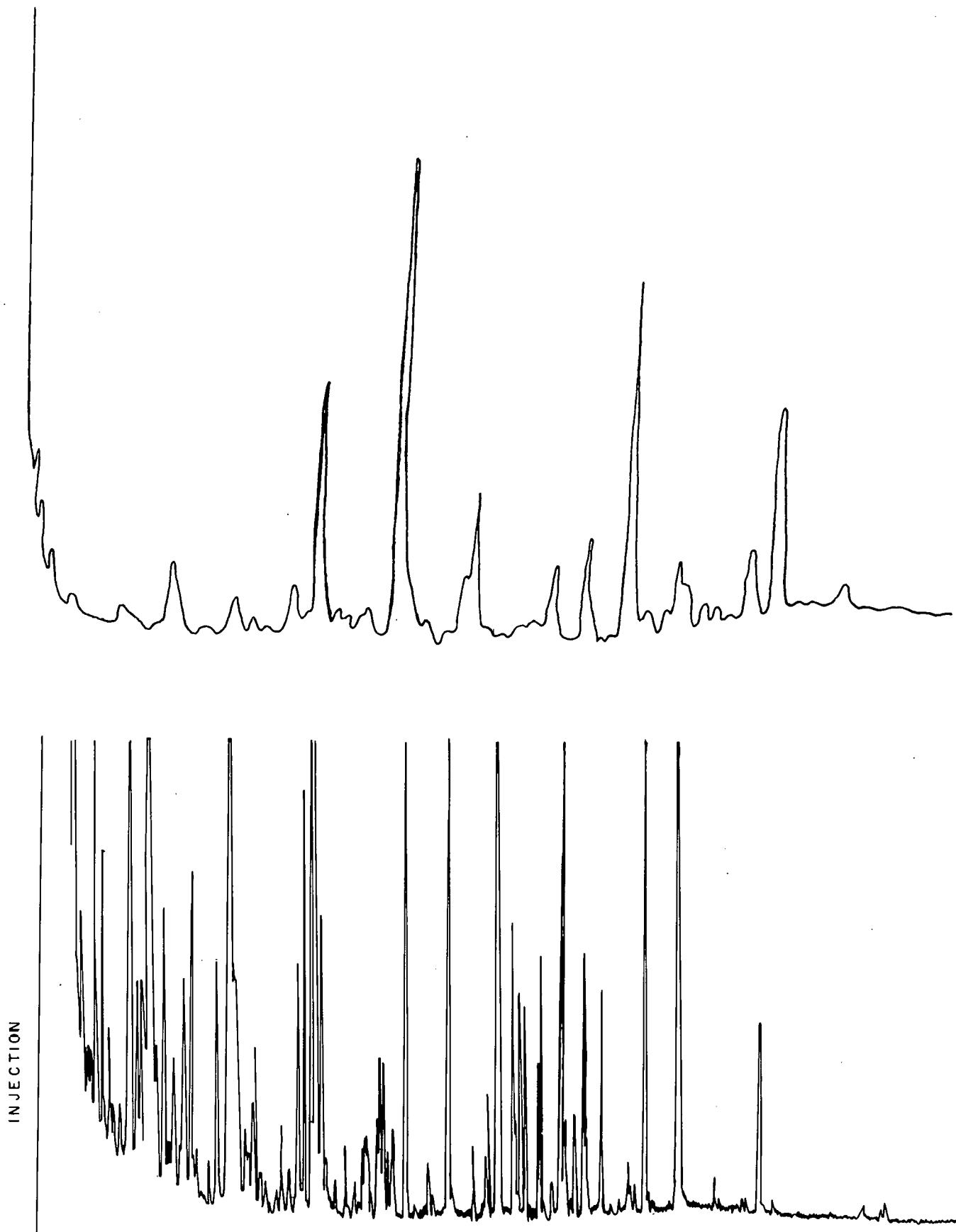

Most of the compounds identified are relatively nontoxic, or no more so than the "fusel oils" present in highly colored or distinctly flavored alcoholic beverages. Some of them, however, have been shown to be highly toxic when ingested in large amounts.

Table 3. Total Amount of Organic Compounds Leached from Flexible Plastic Tubes.

Tubing Type	Concentration parts-per-billion
General Chemical Tygon	11
Laboratory Grade Tygon	4
Processed Milk Tygon	6
Food-Beverage Tygon	5000
FDA-USDA Approved Tygon	9
Hospital-Surgical Tygon	6
Green Plastic Garden Hose	170
Black Latex Rubber	26
Polyethylene	1
Polypropylene	2

It is not known if any of the compounds are toxic at levels found in the water. Awareness of these leaching problems has led a Minnesota plastics company to market a plastic tubing for beverage dispensing and medical uses made from a polyvinylchloride polymer with all the usual additives but with a thin inner lining of ethylene-vinyl acetate that is impervious to the passage of the additives into the fluids carried through the tube. A company representative documents the leaching problem with the Ames Laboratory publication that appeared in *Environmental Science and Technology*, 8 (1974) and indicates that the company cannot keep up with the demand for the tubing by medical facilities.

While the spectroscopy group has been extending its capability, the workers in Dr. Fritz's chemical separations group have been far from idle. Research is proceeding on the refinement of established techniques and the creation of new ones. John Ryan, a graduate student with the group, has been developing a system for using heat to desorb the pollutants from the macroreticular resins. This thermal desorption has some advantages over the use of ether to elute the sample from the resin. Evaporation of the ether during the solution concentration step may boil off some of the more volatile components of the sample. The ether also causes a

Figure 5. Packed column on top; capillary column on bottom. Organic material from Ames municipal water.

large peak that masks gas chromatograph detection of those low-boiling components of the sample that have survived the ether evaporation step. By using heat and helium gas to remove the sample from the XAD resin, and Tenax, a second resin, to assure that the sample enters the chromatograph as a "plug" and that no "noise" is caused by the introduction of water with the sample, the solvent problems are avoided and virtually all of the sorbed compounds are available for analysis. A considerably smaller volume of water can be passed through the XAD resin than in the original sampling procedure. This provides for simplified field sampling techniques using smaller resin chambers, an important consideration in the transportation of the samples from the source back to the laboratory for analysis. The size of the apparatus allows it to be sent through the mails quite economically. While this "miniaturized" version does not provide samples that are large enough for effective initial identification of a large number of unknowns, it is an excellent design for a regular, periodic monitoring program where the main variation is in quantities rather than in constituents of the sample.

Work is also proceeding on the use of capillary columns for the gas chromatographic separations. Ordinary gas chromatographic separation columns are of a large diameter and are packed with the stationary phase that performs the separation as the gas diffuses through it. Columns can be constructed of small enough diameter (hence the term "capillary") that packing is not required. The stationary phase coats the walls of the tube and separation occurs as the gas carrying the mixture of compounds passes through the column. Tremendous increases in resolution are possible this way, as can be seen from Figure 5, showing graphs of the same mixture separated by packed column and by capillary respectively. Packed columns can be made with up to 30,000 theoretical plates and capillary col-

umns with 50,000 to 100,000 theoretical plates are now readily obtainable. Samples are resolved into 100, 200, and sometimes 300 or more chromatographic peaks, each peak representing an individual organic compound. In fact this method is so sensitive that the chromatograms are often too complicated for the average laboratory to identify more than a small fraction of the separated compounds, or to pick out and follow the concentrations of a few compounds of interest.

Such detailed methods are necessary, however, if the complicated mixtures of organic compounds from processes such as the production, refining, and combustion of fossil fuels are to be thoroughly described. The separations group is developing simplified procedures so that the tremendous power of capillary column gas chromatography can be used by an analytical laboratory of rather modest equipment and expertise. Gas chromatographic detectors that are selective for elements such as nitrogen, phosphorus, sulfur or the halogens are available but expensive. Two major approaches to the problem are being followed: first, the development of simple, quick liquid chromatographic fractionation methods so that each fraction will give a relatively uncomplicated chromatogram; and second, the creation of simple sorbent precolumns that will subtract all compounds containing a certain functional group from the final gas chromatogram. An example of the second system is a very short amine abstractor column that removes all amines from the sample.

TRISTAN—The Nuances of Nuclear Fission

Much remains to be learned before our understanding of the atomic nucleus is complete. Currently particles of small mass are theoretically treated as if the nucleons (protons and neutrons) move in orbits about the center of the nucleus, analogous to orbits of electrons in the atom. However, this model (called a shell model) does not adequately describe the behavior of heavier nuclei. Various so-called "collective" models are also used to characterize these heavier structures. These models are "collective" in that they describe coherent motions of the nucleus as a whole. As an example, regularities in the behavior of heavy nuclei in the region of the lanthanide series of elements suggest that the nucleus is deformed from a spherical shape and rotates about a minor axis. Nuclei also appear to be capable of a collective vibration, an in and out oscillation. While the shell model and various collective models are not necessarily mutually exclusive, their differences are an indication that we do not yet fully understand the interactions of nucleons in the nucleus.

While theoretical understanding of the nucleus is in need of further extension, there are also immediate questions of a practical nature created by our continuing use of the fission of ^{235}U or ^{239}Pu as a source of heat to generate electrical power. The design of power reactors that are safe, but are also highly efficient, requires an adequate map of the thermal energy distribution between the various products of the fission reaction. In addition, the design of control systems adequate to smooth out reactor power fluctuations requires a knowledge of the energy intensity and spectra of so-called "delayed" neutrons. A fission reaction releases neutrons that, when sufficiently slowed down by a moderator (such as ordinary water in a light-water reactor), produce further fissions. If additional fissioning were produced only by the fast neutrons that are emitted within a billionth of a second after fission, a

stable reaction would not be possible because the rate of the reaction would fluctuate wildly. However, Nature is not often so unkind; not all the neutrons ultimately released are the immediate consequence of the initial fissions of the fuel. Some neutrons are released from fission products when these species further decay. On the scale of a billionth of a second, these lifetimes are long, varying from seconds to a minute. It is as if these neutrons were temporarily locked up or "delayed" in the unstable reaction products. Further fissions, produced by these delayed neutrons, contribute to a smoothing out of the rate at which the over-all reaction releases its energy.

As with most other specialities within physics, nuclear science develops through the interchange between experimentalists and theorists. Ames Laboratory experimentalists, Drs. John C. Hill and Fred K. Wohr, generate data on the behavior of various nuclear species and alert the theorists to areas of special interest. The theorists, Drs. James P. Vary and Stanley A. Williams, study these data in an attempt to formulate more generally

John C. Hill

Fred K. Wohr

James P. Vary

Stanley A. Williams

applicable explanations of the physics of the nucleus, and in so doing suggest further characteristics of nuclei that can be investigated by the experimentalists. In this respect, nuclear scientists at Ames Laboratory are like all other nuclear scientists. They are unusual however, in that they are attacking both fundamental and practical problems by studying nuclear species so short-lived that special techniques developed at the Ames Laboratory are required to obtain the measurements.

In large part, understanding of the nucleus is derived from characterizing properties of nuclear excited states by measuring the radiations they emit. These excited states can be produced by means of both radioactive decay and charged-particle reactions. Radioactive nuclei near stability with long lifetimes (larger than a few minutes) allow the application of many techniques for the analysis of their properties. Much less is known about very neutron-rich and proton-rich nuclei far from stability, because these isotopes generally have very short lifetimes (a few seconds or less). While fairly easy to produce by thermal-neutron fission, such nuclei do not exist for long enough periods to be studied by the more usual techniques. They are in fact available for study only through such techniques as the on-line mass separator of the TRISTAN* facility at the Ames Laboratory.

The basic principles of on-line mass separation nuclear spectroscopy were developed in Scandinavia in the early 1950's when mass separators were connected to accelerators to study the products of charged particle reactions. Thus when TRISTAN began operation at the Ames Laboratory Research Reactor, under the direction of W. L. Talbert, Jr., ** in October 1966, it was the world's first isotope

separator connected on-line to a reactor. The Scandinavian project resulted in the construction of a mass separator named ISOLDE*** at the European Organization for Nuclear Research, Geneva. The Ames project consequently was dubbed TRISTAN as a companion to it.

TRISTAN was designed to study the radioactive nuclei produced in the fission of uranium-235 after bombardment by neutrons emitted by the Ames Laboratory Research Reactor. A wide variety of neutron-rich nuclei are produced by the fission of ^{235}U as illustrated in Figure 1. This figure is a comprehensive view of the yield (production rate) of these fission products. The profiles shown on the left face of the figure illustrate the chemical nature of the products (as indicated by the proton number, Z). The back face profile relates the masses (indicated by the mass number) of the products. The profile is the sum of the slices

shown separately for each fixed value for the proton number, Z. Each such slice, then, serves to indicate the yield of the various masses (various isotopes) of each different chemical element produced.

For each fission product element, one or more isotopes (different masses) will be stable while the remaining isotopes (parents) will undergo decay into daughters, which are isotopes of other elements. In general, the greater the difference between the mass of an isotope in question and the mass of the stable isotope (of that same element), the shorter the lifetime.

Krypton (Kr) and xenon (Xe) isotopes are easily separated from the remaining fission products, since they occur naturally as gases, and easily escape the ^{235}U sample. For these reasons, TRISTAN was first used to study these species and a long-range program was conducted to develop the techniques needed to study other fission product elements, including the non-gaseous reaction products.

The basic TRISTAN operation involves several steps. First there is need for "chemical" or element separation. This part is easy for the

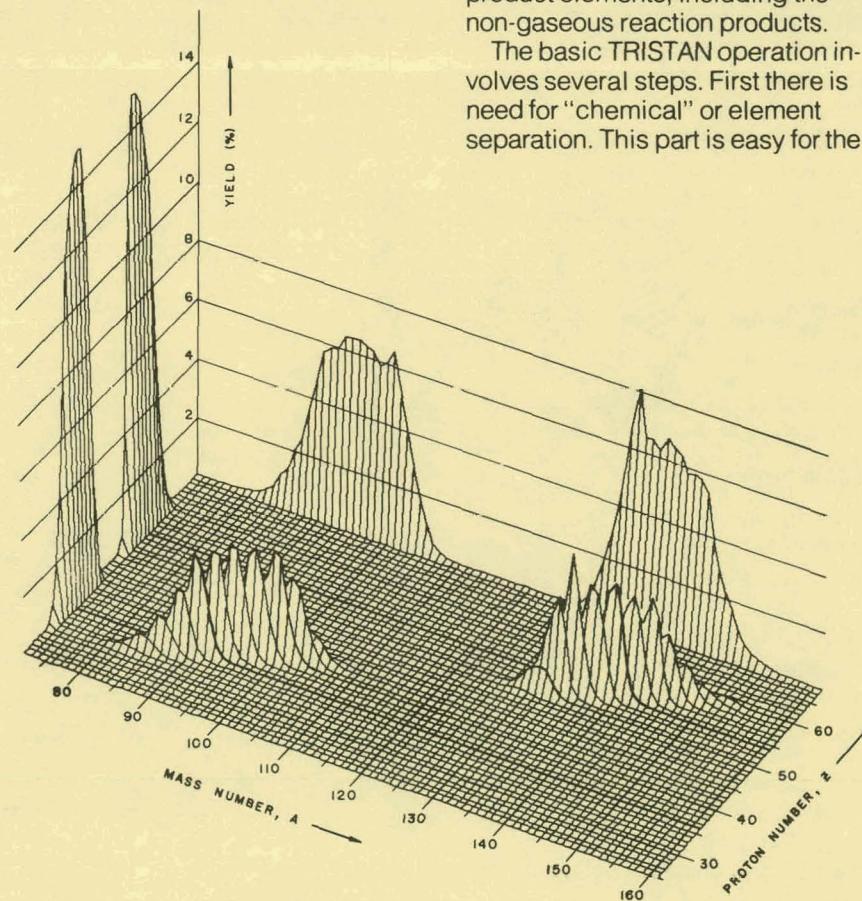


Figure 1. ^{235}U fission yield as a function of mass number and proton number.

*An acronym obtained from **T**errific **R**eactor **I**rradiation **S**ystem **T**o **A**nalize **N**uclei.

**Formerly Program Director, Nuclear Sciences; currently with Los Alamos Scientific Laboratory.

***Isotope Separator On Line, Danish Engineering.

gaseous Kr and Xe, but considerably more difficult for the remaining fission products. The ^{235}U sample is in the form of uranyl stearate which is a yellow, soap-like powder. Neutrons emerge from the reactor via a hole or port (Figure 2) and irradiate this sample from which gaseous Kr and Xe rapidly diffuse.

Once this element separation has been completed, there is further need to separate each isotope of a given element from the other isotopes of the element. This is accomplished by the 90° sector magnet. The atoms of Kr and Xe are ionized in a hot plasma. As the ions pass through the field of the magnet, their paths are altered in proportion to their differing masses. Hence the magnet is referred to as the mass separator. Mass separation is necessary to select a particular isotope among the many isotopes of nearly the same mass. This is the heart of TRISTAN, and

when it is connected directly to the mechanism which produces the radioactive nuclei, it is said to be "on-line" since there is no time-consuming intermediate step of collection and chemical separation.

The mass-separated atoms emerge from the separator in the form of an ion beam which can be directed into a collector placed near an array of detectors. The detailed study of a given isotope can then proceed without further time loss. This is crucial for studying those isotopes whose lifetimes are a few seconds or less. The entire process of fission, element separation, mass separation, and analysis of the products can proceed continuously. The short-lived nature of the nuclei does not deter the experiment, provided of course that the species survives the separation process and arrives at the detector before it decays. A photograph of the TRISTAN system is shown in Figure 3.

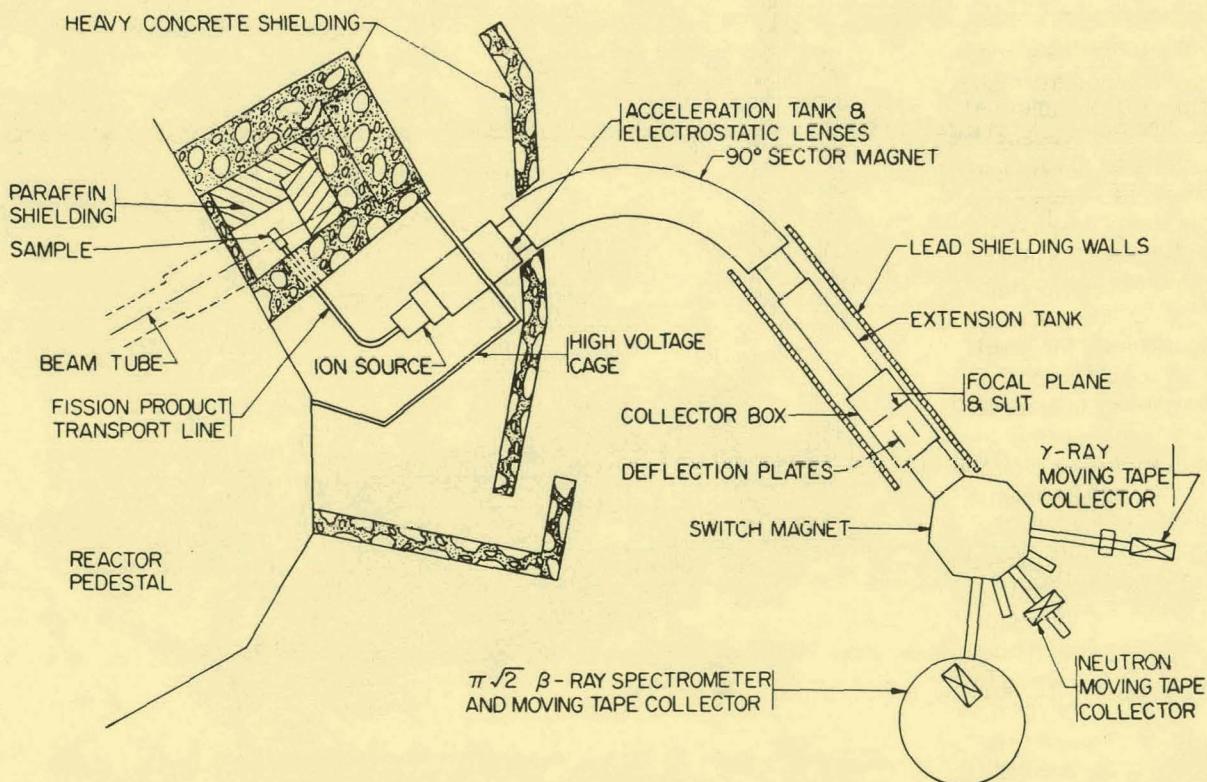


Figure 2. Schematic layout of the TRISTAN isotope separator facility.

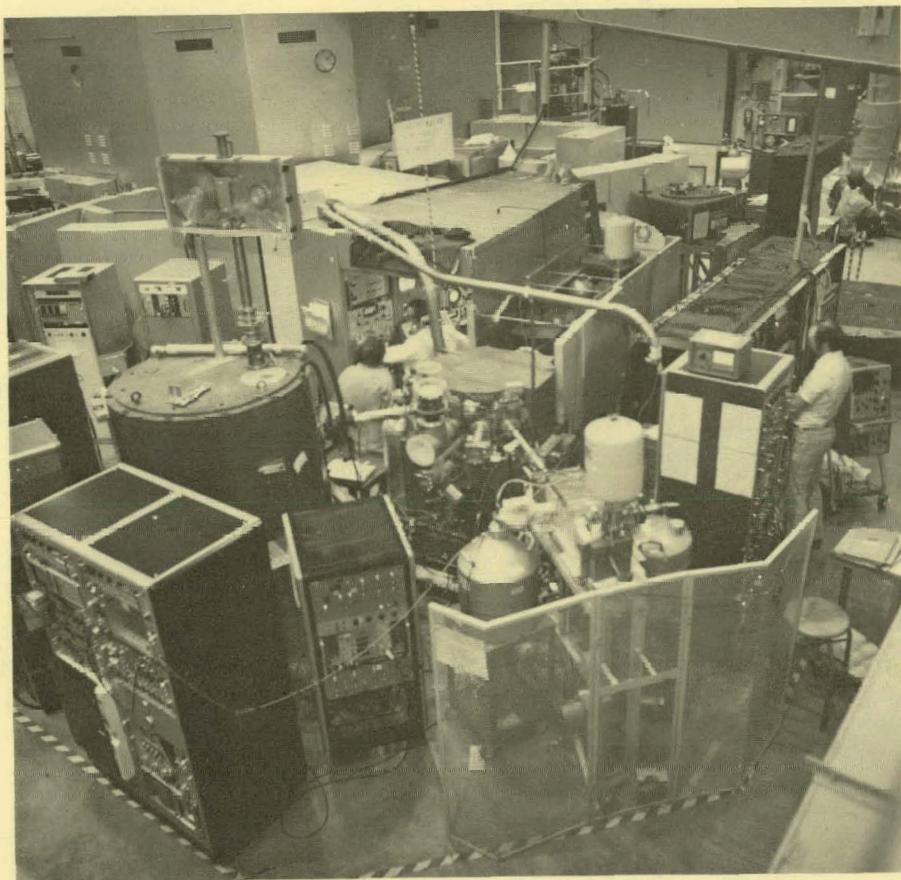


Figure 3. The TRISTAN system at work.

Among many innovations in the TRISTAN system, two of the more notable are the use of a switching magnet in the "on line" configuration to direct the ion beam to any of several detectors, and the use of moving tape collectors at the detectors. Activities of differing lifetimes are collected on the moving tapes. When the collection tape is moved with the correct speed, the short-lived activity recorded on one detector will have essentially all decayed away, leaving only the longer-lived activity to be counted by a second detector as shown in Figure 4.

Two major classes of studies are done at TRISTAN: survey and specific studies. The survey studies cover many nuclei; for each nucleus one measures the lifetime and the modes of its decay (emission of neutrons, electrons, and/or gamma rays). In particular the delayed neutron emission is characterized (this is important to power reactor stability and control) and the decay

heat is measured (this information is important to safe reactor design, especially for calculation of reactor behavior following emergency shutdown).

The specific studies focus on specific nuclei formed in excited states. For each such nucleus quantitative measurements are made to establish what excited states it has, to determine by how much energy each is separated from the lowest energy (ground state), and to establish the angular momentum and parity of each excited state. The resulting energy level diagram provides a crucial test of a theory of internal motion and energetics of that particular nucleus.

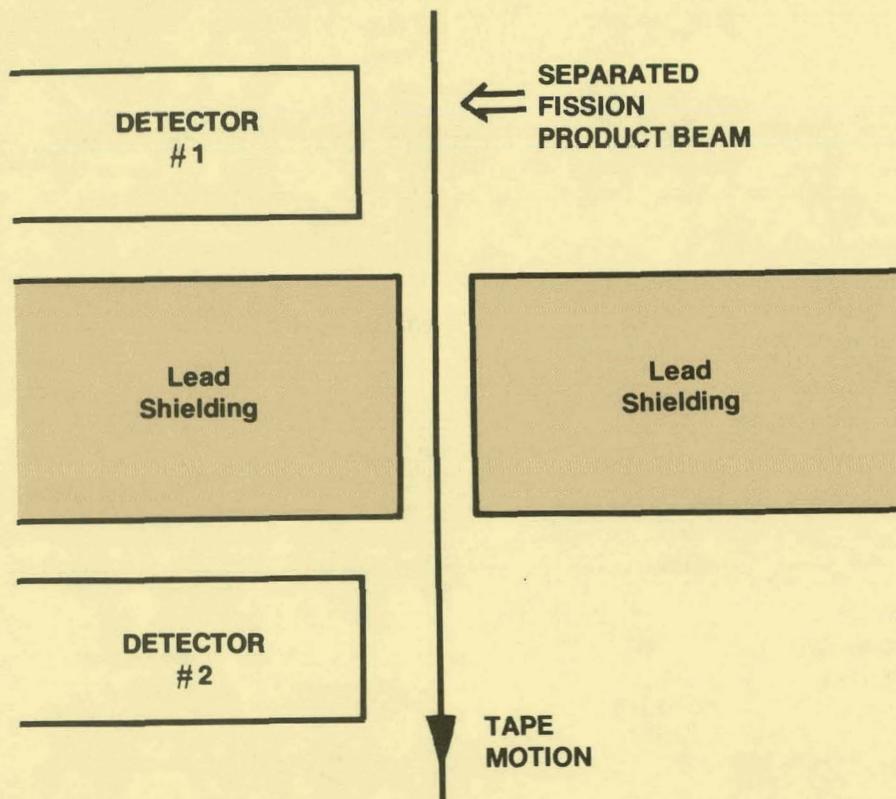


Figure 4. The use of moving tape collectors at the detectors.

The survey and specific studies that were conducted during the first ten years of TRISTAN are given in Table 1. These studies indicate the wide range of capabilities that have been gradually built into TRISTAN.

However, the scope of the original program was limited because only the gaseous fission products were made available in sufficient amounts for detailed studies. Only about 30 percent of the species produced by the fissioning of the sample could be analyzed; therefore a major effort was directed toward making other species available for study. Several techniques were tried over the years and the most successful one was selected.

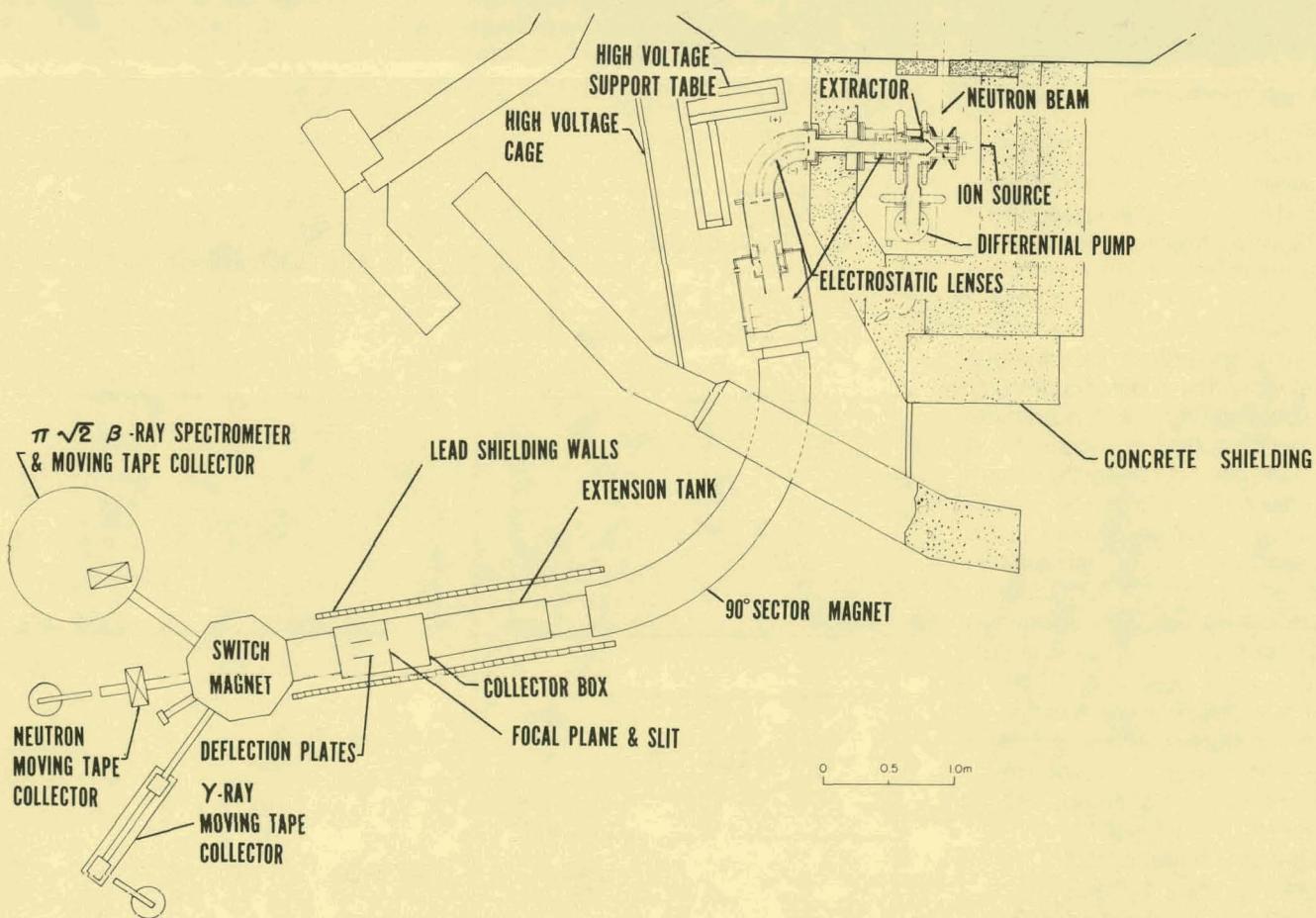

With the introduction of this method, the utilization of an in-beam ion source, the system was rechristened TRISTAN II. The difference between TRISTAN I and TRISTAN II can be seen by comparing Figure 5 with Figure 2.

Table 1. Studies at TRISTAN I

Type of Study	Activities Studied
Survey studies	^{85m}Kr ; ^{87}Kr ; ^{88}Kr , Rb ; ^{89}Kr , Rb , Sr ; ^{90}Kr , Rb , Sr ; ^{91}Kr , Rb , Sr ; ^{92}Kr , Rb , Sr ; ^{93}Kr , Rb ; ^{94}Kr , Rb ; ^{136}I ; ^{137}Xe ; ^{138}I , Xe , Cs ; ^{139}Xe , Cs ; ^{140}Xe , Cs ; ^{141}Xe , Cs , Ba ; ^{142}Xe , Cs , Ba ; ^{143}Ba , La .
Specific studies	^{85}Kr ; ^{87}Kr ; ^{88}Kr , Rb ; ^{89}Kr , Rb ; ^{90}Kr , Rb ; ^{91}Kr , Rb , Sr ; ^{92}Kr , Rb , Sr , Y ; ^{93}Kr , Rb , Sr , Y ; ^{94}Kr , Rb ; ^{136}I ; ^{137}I , Xe ; ^{138}I , Xe , Cs ; ^{139}Xe , Cs ; ^{140}Xe , Cs ; ^{141}Xe , Cs , Ba , La ; ^{142}Xe , Cs , Ba , La ; ^{143}Xe , Cs , Ba , La ; ^{144}Xe , Cs .

Everything from the 90° sector magnet beyond the switching magnet is as before. The important difference is inside the heavy concrete shielding. Recall that in

TRISTAN I a solid target of uranyl stearate was used, and the fission products were forced to find their own way out of the target into the transport line. There they entered

Figure 5. Schematic diagram of TRISTAN II in which uranium embedded in a graphite cloth is the ion source.

the ion source where they were ionized (charged) and accelerated into the mass separator magnet. Only the gases Xe and Kr, from among all the fission products, were able to make the journey on their own in large enough amounts for successful analysis. The "trick" was to create the other, less mobile, fission products directly as ions and to accelerate them out of the target area and into the mass separator.

This was by no means a simple feat, but was accomplished by using uranium imbedded in a graphite cloth as the target ion source. This target is in a chamber which is maintained at a very high temperature (1500°C) so that when the neutrons strike the target and create the fission products, a greater number of different species are released in a gaseous form. These are immediately ionized and accelerated by an extractor into the electrical transport system which bends the ion beam into the mass-separator magnet. From there the ions proceed as before. This new production and ionization system is the key to TRISTAN II.

Table 2 shows what has been accomplished at TRISTAN II in the short time since it came into being in June 1976. In addition to old friends krypton and xenon, there are now twelve different elements available in sufficient quantities for these studies.

The data base needed for efficient design of power reactors is weakest for the non-gaseous fission products, because few facilities can measure their properties and there are many more non-gaseous than gaseous products. The new capabilities of TRISTAN II will allow improvements in the data base where it is weakest. The DOE Nuclear Data Committee is considering increasing the upper limit allowed for the temperatures of the fuel in power reactors. This would improve the Carnot efficiency of power generation, but such decisions are only allowed by more complete knowledge of the distribution of decay heat. This same knowledge is essential for the safe disposal of reactor wastes, as these heat-producing decays continue

long after the wastes have been removed from the reactors.

In addition to the immediate practical utility of these studies, the expansion of measurements on unstable species into new areas of the periodic table has a direct impact on the fundamental questions of nuclear structure identified earlier. The fission products made available by the capabilities of TRISTAN II are in an ideal area of the periodic table to allow comparisons with the nuclear shell models and collective models. For example, the ability to study nuclei near the very neutron-rich ^{132}Sn species (especially stable for such a heavy isotope of tin) allows theorists, Vary and Williams, to test the nuclear shell model in an entirely new area of the

Table 2. Studies at TRISTAN II

Type of Study	New Activities Studied
Survey of emitted species	Zinc (Zn), Gallium (Ga), Germanium (Ge), Arsenic (As), Selenium (Se), Bromine (Br), Rubidium (Rb), Strontium (Sr), Silver (Ag), Cadmium (Cd), Indium (In), Tin (Sn), Antimony (Sb), Tellurium (Te), Iodine (I), Cesium (Cs), Barium (Ba)
First specific studies	^{78}Zn , ^{78}Ga , ^{118}Ag , ^{120}Ag , ^{122}Ag , ^{126}Cd , ^{126}In , ^{128}Cd , ^{128}In

periodic table. A quick reference to the periodic table (Figure 6) shows that the species available for study cover the region from silver (Ag) to lanthanum (La), the beginning of the rare earths. Isotopes of these elements will hopefully reveal crucial information for reconciling and unifying these two important, yet different, models of the nucleus.

While the theorists at Ames Laboratory are working in the traditional areas of nuclear theory in this exciting area of the periodic table, they are also working to bridge the gap between particle physics and traditional nuclear physics by the study of Relativistic Heavy Ions. The data for such studies come from experiments at the Bevalac facility at Lawrence Berkeley Laboratory, where experimentalists are slamming nuclei together at enormous energies. As the ability to perform such actions is quite new, it is not yet known exactly what to expect or what the consequences are. Some theorists suggest the possibility of "collapsed baryonic matter," a very dense complex with ultrahigh binding energies. Others propose the possibility of "pion condensates," a stable pion field existing at higher than normal densities. These studies address fundamental questions of the nature of strong interactions for the nuclear force and on a cosmological scale will provide insight into the nature of neutron stars and the processes of supernovas.

While the theorists give their attention to the minutia of the single nucleus as well as the vastness of stellar processes, a new chapter is about to begin for TRISTAN as experimentalists Hill and Wohr concern themselves with the more concrete details of moving the TRISTAN II facility from Ames to Brookhaven National Laboratory. When the Ames Laboratory Research Reactor ceased operation at the end of 1977, Hill and Wohr already were negotiating a move of TRISTAN II to Brookhaven to operate in what is termed a "users mode." The experiments will be conducted at Brookhaven and the data returned on magnetic tape to Ames Laboratory for analysis. They will establish a permanent users group

TRISTAN I

IA																			VIII A																		
H	II A																				He																
Li	Be																				Ne																
Na	Mg		III B	IV B	VB	VI B	VII B	—VIII—		IB	II B	III A	IVA	VA	VIA	VII A	He																				
K	Ca		Sc	Ti	V	Cr	M	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr																			
Rb	Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe																			
Cs	Ba		La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn																			
Fr	Ra		Ac																																		
																				Re	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu				
																				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	Nc	Lr				

TRISTAN II

IA																			VIII A																			
H	II A																				He																	
Li	Be																				Ne																	
Na	Mg		III B	IV B	VB	VI B	VII B	—VIII—		IB	II B	III A	IVA	VA	VIA	VII A	He																					
K	Ca		Sc	Ti	V	Cr	M	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr																				
Rb	Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe																				
Cs	Ba		La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn																				
Fr	Ra		Ac																																			
																				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu					
																				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr					

TRISTAN I

<input type="checkbox"/>	Separated at TRISTAN	2	14
<input checked="" type="checkbox"/>	Marginally separated at TRISTAN	2	4
<input checked="" type="checkbox"/>	Studied as decay product only	6 10	7 25

TRISTAN II

<input type="checkbox"/>	Separated at TRISTAN	2	14
<input checked="" type="checkbox"/>	Marginally separated at TRISTAN	2	4
<input checked="" type="checkbox"/>	Studied as decay product only	6 10	7 25

Figure 6. Periodic table of the elements, showing elements available with TRISTAN I and TRISTAN II.

32

Examining blueprints for the layout of TRISTAN II at the Brookhaven National Laboratory (BNL) are, from left, John C. Hill and Ron Gill, both of Ames Laboratory, Bob Chrien, BNL, Fred Wohn of Ames Laboratory, and BNL's Stan Ulc. (BNL photo by Rosen)

at Brookhaven so that other laboratories can perform experiments with the facility.

Two notable benefits (besides wider availability to the scientific community) offset the inconvenience of having the facility located away from Ames Laboratory. First, the neutron flux at Brookhaven is nearly twenty times as great as that of the smaller Ames Laboratory Research Reactor, thus the material produced for analysis will be correspondingly increased. Second, the facility will have two beam lines available which will allow two studies to be conducted simultaneously. The second beam

line could be adapted to either delayed-neutron measurements or to dye-laser spectroscopy.

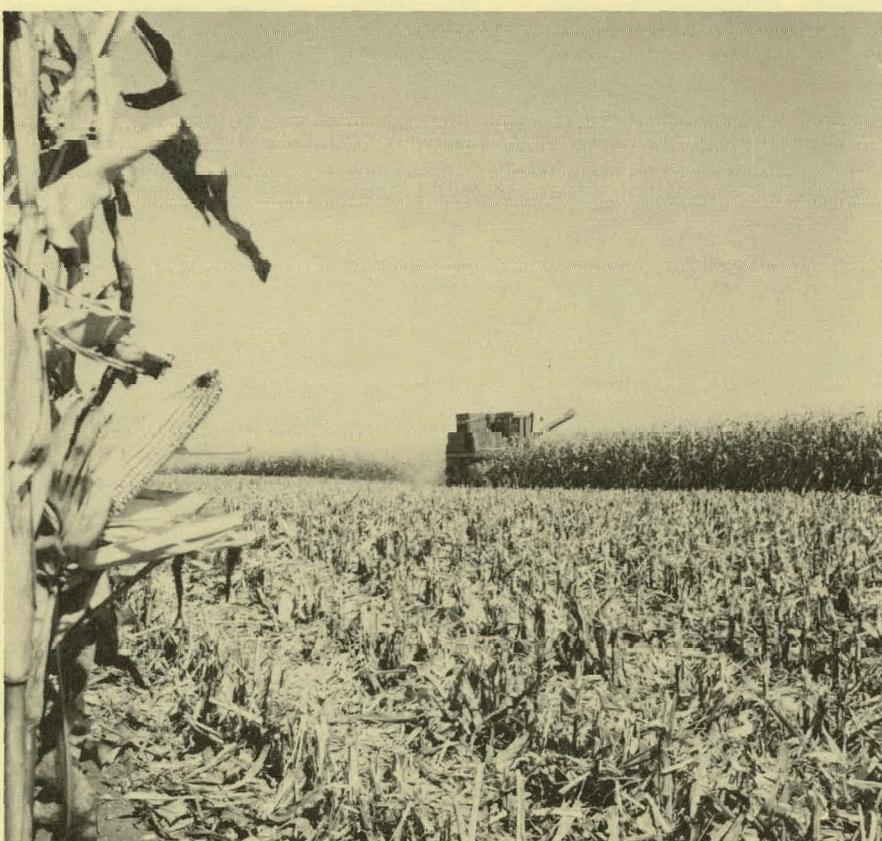
Even though about two-thirds of the elements produced in fission can be ionized and mass separated at TRISTAN, the ultimate goal is to separate all of the fission products. The rare earths and elements zirconium through palladium cannot now be separated because of their refractory nature. A major breakthrough in this field recently occurred with the demonstration at the University of Strasbourg, France, by Wohn, while on leave from the Ames Laboratory, and Dr. J. P. Zirnheld (Strasbourg) that a helium jet ion source can be used to separate all fission products. This ion source will be utilized on TRISTAN II at Brookhaven to greatly enhance the region of the periodic table available for study.

The new TRISTAN program at Brookhaven has been given a high priority by the U.S. Department of Energy and an in-house BNL staff of five new people will assume the responsibility for operating and managing the facility. This arrangement will free the Ames Laboratory Experimental Nuclear Sciences Group to devote their full attention to designing and carrying out new experiments at TRISTAN II in nuclear structure physics.

The Ames Laboratory Group will also be engaged in a new effort using the Bevalac facility at the Lawrence Berkeley Laboratory. This study will have as its goal the understanding of the nature of collisions between heavy nuclei at ultrahigh energies. The Bevalac is unique in that it is the only facility in the world that can accelerate heavy ions to energies as high as 70 GeV.

Recent renewed interest in alternative fuel cycles for power reactors increases the need for measurements of the properties of individual delayed-neutron emitters. Thus the techniques developed at the Ames Laboratory during more than a decade of operation should have a correspondingly greater impact in the future on both the practical and the fundamental questions in nuclear science.

Revitalizing Iowa's Coal Industry

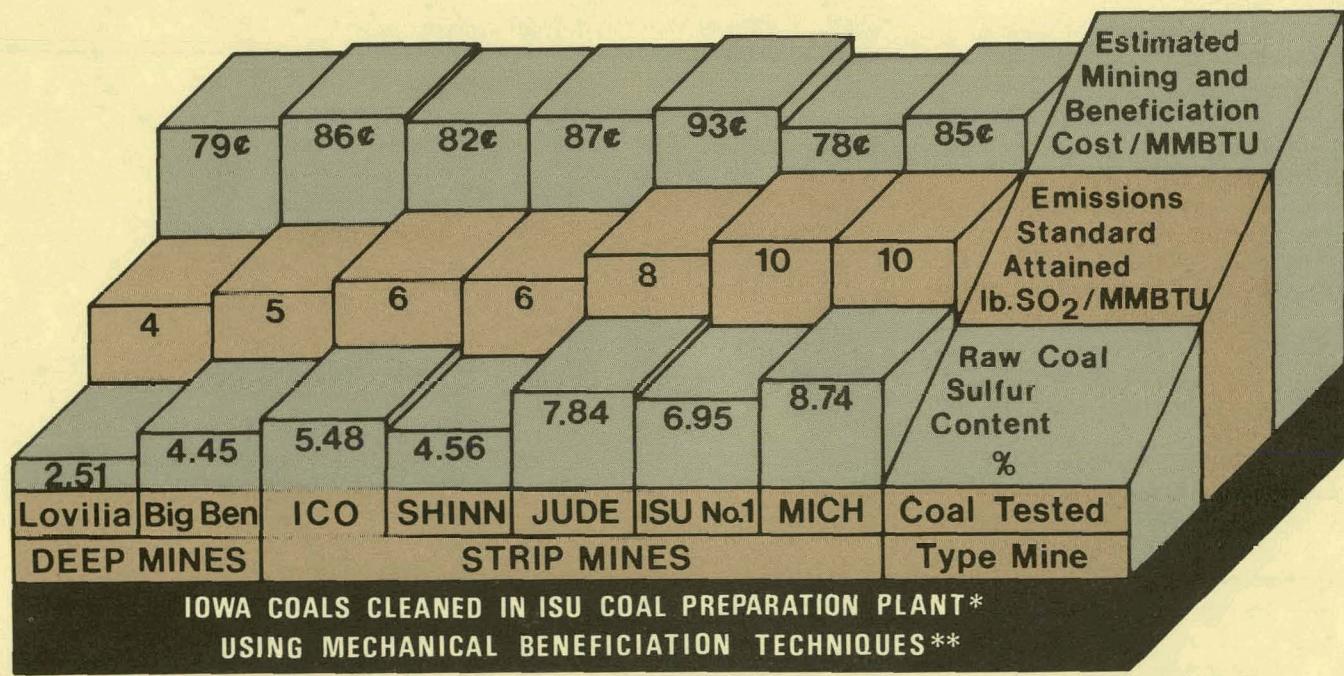

The Iowa Coal Research Project was established by the 1974 Iowa Legislature with a \$3 million, 3-year appropriation to the Energy and Mineral Resources Research Institute (EMRRI) at Iowa State University. The Legislature hoped to provide Iowa with a means of meeting its energy needs and at the same time to revitalize the state's once-thriving coal industry.

At one time coal mining was a prominent industry in Iowa. However, as oil and natural gas became the dominant sources of energy in the U.S., Iowa coal production dropped from 9 million tons per year during the World War I boom when 18,000 miners were employed, to 600,000 tons of coal in 1976, produced by a workforce of less than 100 people.

Iowa currently imports about 96 percent of the energy that it consumes; about 80 percent of the imports are petroleum products and natural gas. As oil and natural gas supplies dwindle, Iowans are taking

another look at the state's coal supplies.

The Iowa Geological Survey estimates that there are almost 20 billion tons of coal within Iowa's borders—enough to meet the state's energy needs for several hundred years. But, Iowa coal is a mixed blessing from an environmental standpoint. Although it has as high a Btu content as any other quality coal, its sulfur content is usually too high for it to meet state and federal environmental quality standards. Another special problem in the economic recovery and use of Iowa coal is that it underlies some of the world's richest agricultural lands. To tap this vast fuel reserve and at the same time preserve valuable farmland poses a unique recovery problem. During the past three years, the Iowa Coal Project has been working on solutions to these problems—not all have been solved, but many accomplishments have been realized.


A coal-cleaning plant capable of processing 70 tons of raw coal per hour was designed and constructed on the Iowa State campus near the University power plant. Approximately 10,000 tons of coal from seven different Iowa mines were processed and evaluated for washability characteristics.

Iowa coal normally falls in the five to eight percent sulfur category. Generally, coals over seven percent sulfur will not meet an 8 lb SO₂ / million Btu input standard. Coal beneficiation results at the plant have shown that coals from Iowa's two existing deep mines can be physically beneficiated to meet emission standards of 5 lbs SO₂ / million Btu, and that coals from two of the five surface mines tested are capable of being physically beneficiated to meet a 6 lb SO₂ / million Btu standard. Eighty-five percent of the coal's heating value remains after processing.

Coal project personnel have determined that beneficiation will be required for the coal industry to develop within the state and be competitive with out-of-state producers.

A front-end loader moves cleaned coal from the stockpile at the end of the conveyor belt of the Iowa State coal-cleaning plant.

* Coals processed at specific gravity producing maximum sulfur reduction with highest possible yield.

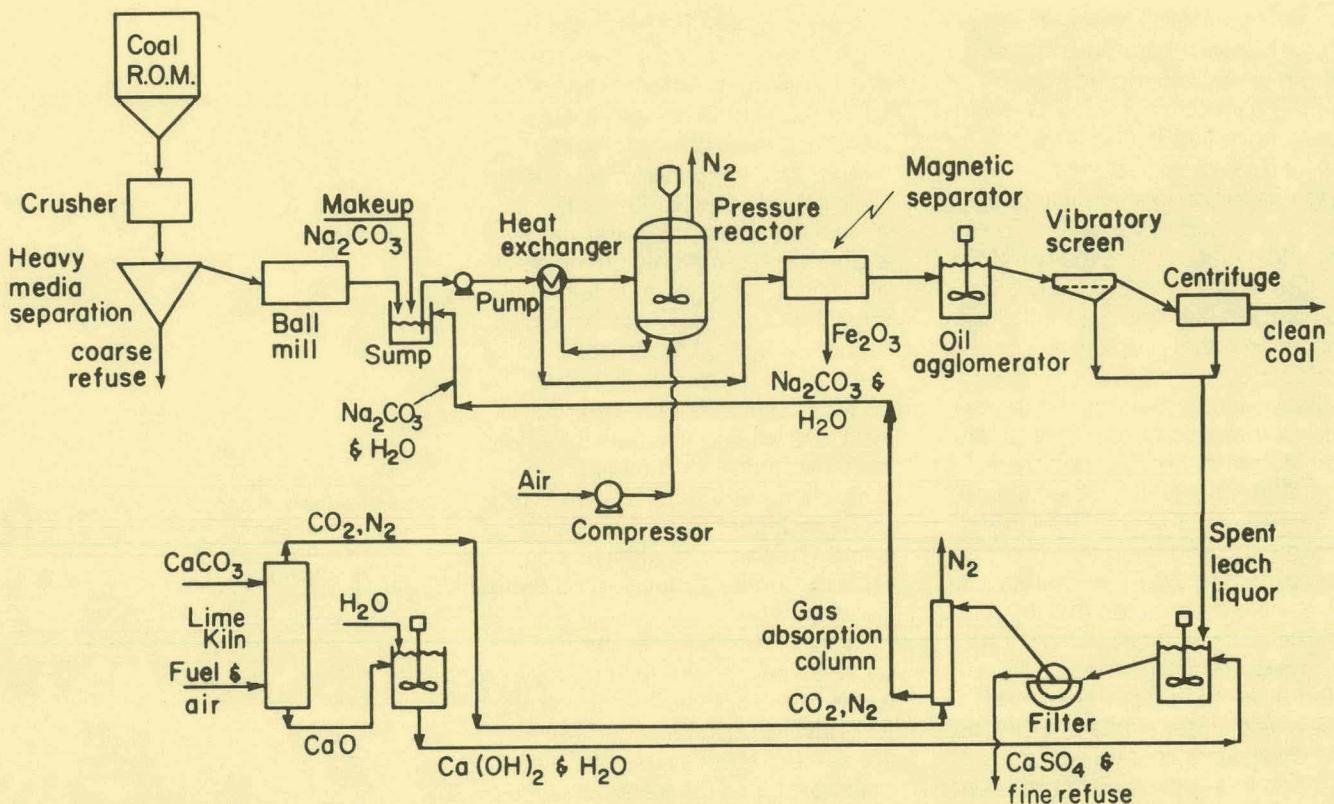
** Heavy media and concentration table separations.

Results are for coal sized between 1 1/2" and 45M.

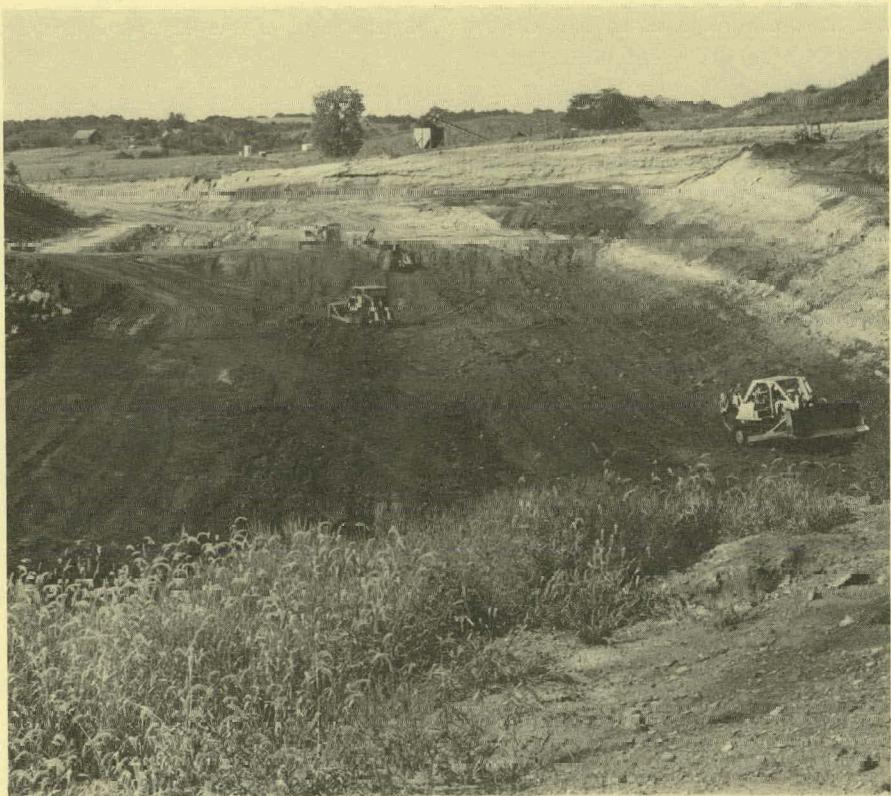
Iowa Governor Robert Ray (center), Iowa State University President W. Robert Parks (left), and Plant Manager Dick Grieve discuss operations of the Iowa Coal Project's \$750,000 experimental coal preparation facility.

The cost of beneficiation would not be a deterrent to industrial development. Based on a per ton basis, the cost of beneficiation is less than the cost of importing coals to existing power plants that cannot be supplied by unit train.

This information has stimulated the establishment of a preparation plant industry in Iowa. Iowa utilities are also entering into contracts to purchase cleaned Iowa coal. However, further development of Iowa's coal industry will depend on improved transportation facilities, and continued research to reduce sulfur levels.


The Ames Laboratory, through its Fossil Energy Division established in 1977, is continuing its research to further reduce the sulfur levels in Iowa coals. Both mechanical and chemical methods are under investigation.

A number of methods for desulfurizing pulverized coal have already been tested: (1) treating coal with various oxidizing and reducing gases at elevated temperatures; (2) chemically extracting sulfur with various alkalis and acids; (3) chemically fracturing coal with liquid anhydrous ammonia; (4) physical cleaning of coal by selective oil agglomeration and froth flotation; and (5) various combinations of these.


The tests revealed that high-sulfur Iowa coals could be cleaned most effectively—as much as 95 percent of the inorganic sulfur was removed—when chemical desulfurization was combined with physical desulfurization methods such as gravity separation. Gravity separation removed a substantial part of the pyritic sulfur and other refuse, and chemical leaching removed most of the remaining inorganic sulfur, both pyritic and sulfate.

K. C. Chuang, graduate assistant, checks the speed of agitator equipment during pyritic sulfur reduction experiments.

Schematic flow chart of the proposed industrial process for desulfurization of coal.

Mining and reclamation go on side-by-side.

The Ames Laboratory beneficiation research has resulted in a proposed industrial process for desulfurization of coal as shown in the accompanying flow chart. Basically, after crushing and gravity separation, the fine-size coal is leached with a hot, dilute alkaline solution, containing oxygen under pressure. After cooling, iron oxides are removed by magnetic separation, and the coal is recovered by oil agglomeration, then de-watered. The alkali is recovered and recycled. The Department of Energy has provided funds for further development of the technique. The laboratory-scale project will be carried out in the State of Iowa's coal-cleaning plant where a portion of the feed stream can be diverted. In addition, various fine coal cleaning and recovery processes will be evaluated on a cost/efficiency basis.

Another Coal Project accomplishment was the integration of economic methods for mining and reclamation at the Iowa Coal Project Demonstration Mine #1 (ICPDM#1). Project reclamation goals included (1) characterization of Iowa over-

burden materials; (2) determination of overburden characteristics required to produce optimum post-mining agricultural production and evaluation of their long-term potential; and (3) development of methods for economically integrating mining and reclamation. To accomplish these goals, many field studies were conducted to evaluate soil erodability, slope stability, and procedures that promote root system development.

Data collected during the mining and reclamation operation indicate that reclamation costs would add approximately \$2.50 to the total cost of a ton of coal mined at ICPDM#1; total mining and restoration cost is approximately \$0.77 per million Btu. It was also determined that the mining methods for the ICPDM#1 project were competitive with alternative mining systems used elsewhere under similar conditions.

A computer program was developed to assist small mining companies with the development of good reclamation plans which comply with both Iowa and Federal reclamation laws. Computer models have also been developed to analyze the cost efficiencies of transportation and handling networks, and the competitive position of Iowa coal to coal from other regions of the Nation.

A multidisciplinary Environmental Team evaluated the environmental impact of surface mining on the ICPDM site to ensure that the mining was conducted in an environmentally acceptable manner. Preliminary results indicate that with proper planning before mining begins, most environmental problems can be prevented.

Agronomy studies were conducted on a restored three-acre site at ICPDM#1. The effect of various tillage techniques on production of row crops such as corn and soybeans, and response of these plants to different levels of nitrogen, phosphorus and potassium were examined. Corn plants grown on deep-tilled plots were up to two feet taller than corn grown on areas that had never been deep tilled.

Although the mining phase is completed at ICPDM#1, agricultural tests will continue until 1985 to develop sound, long-lasting agricultural practices for maximum crop production from reclaimed areas. Researchers will also continue to monitor surface and ground water quality.

Since preliminary research indicates that a shale-till interface at a four to one slope, as specified by Iowa law, is unstable when water saturated, further study will be conducted to see if different specifications are warranted.

A basic accomplishment of the Iowa Coal Project has been the development of a competent, interdisciplinary coal research staff and the facilities to make valuable contributions to the Nation's energy problems.

ICP reclamation worker, Doug Hertz, examines the 1976 soybean crop at the demonstration mine test site.

Midwest Reclamation Tour

The Midwest Reclamation Tour and Review group at the Iowa Coal Project demonstration mine site.

The purpose of a three-day Midwest Reclamation Tour and Review of mine sites in Iowa, Illinois and Missouri during August 1977 was to provide industry, state and federal agencies, and academic institutions the opportunity to review and evaluate reclamation technology at surface-mined coal lands. The group included representatives from the Environmental Protection Agency, the U.S. Bureau of Mines and the U.S. Department of Agriculture. State mine reclamation personnel from Iowa, Illinois and Missouri were also on hand. Other members of the group included representatives from Argonne National Laboratory and several universities.

The tour group visited the Iowa Coal Project (ICP) demonstration mine site near Oskaloosa on August

17. According to Dr. Stanley J. Henning, adjunct assistant professor of Agronomy at ISU and chairman of the tour, the techniques used at the ICP restoration project received many positive comments from the members of the group.

Post-restoration management was an important topic of discussion because federal law requires that mine operators in the midwest and east farm the site, or hire someone to farm it, for five years after the mining operation is closed down. The federal law requires mine operators in the west to farm the land for ten years after the mining operation is closed down.

A final report by the tour group includes topics covering research needs for restoration studies and how to comply with federal law as it applies to mining and restoration.

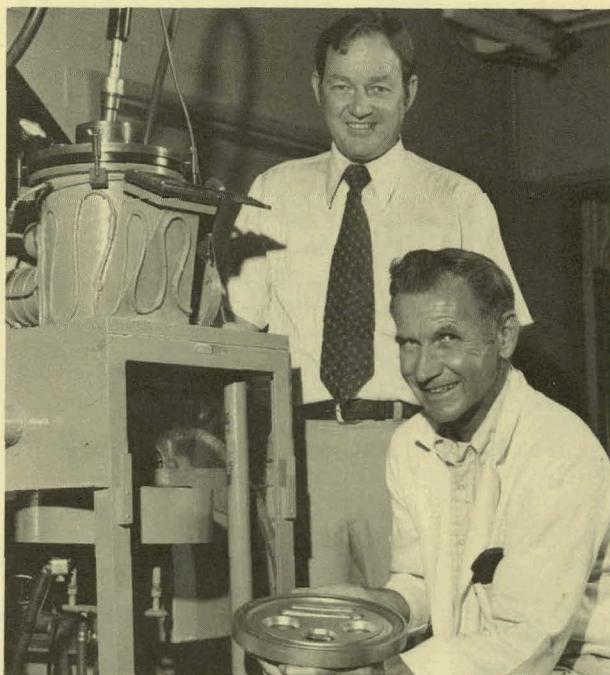
Nitinol—Remembers What You Want to Be

Dr. George Andreasen examines an orthodontic patient.

A revolutionary new orthodontic device that can make orthodontic corrections "from memory" has been developed by Dr. George Andreasen, Professor of Orthodontics at the University of Iowa. The wire orthodontic device is composed of a 55 percent nickel (Ni) and 45 percent titanium (Ti) alloy called 55-Nitinol and is the result of five years of laboratory and clinical research by Dr. Andreasen.

Because of its memory property and elasticity, the Nitinol orthodontic wire exerts a continuous force to move a tooth as far as required. By contrast, a stainless steel wire loses its elasticity or "goes slack" so that it moves a tooth only a portion of the prescribed distance. For this reason stainless steel wires have to be changed frequently as their force diminishes with displacement. Five successive stainless steel wires may be required to move a tooth during the course of treatment whereas a single Nitinol wire would have done the job.

Unitek Corporation of Monrovia, California, under license from the University of Iowa, has prepared the Nitinol orthodontic wire for market and field tested the product.


Unitek's basic schemes for melting, fabrication and quality control of the wire were derived from the initial alloys and procedures developed at Ames Laboratory.

To establish the memory property for a specific shape, the Nitinol wire is first formed into a predetermined shape and then given a memory heat treatment between 800-1100° F depending upon alloy composition. After cooling the alloy to room temperature, it can be distorted into different shapes. With application of its transition temperature (about 90-110° F for an ideal dental alloy), the distorted wire will return to the shape that was established at the higher temperature. A different memory pattern can be established in the very same material by repeating the memory heat treatment for a different shape.

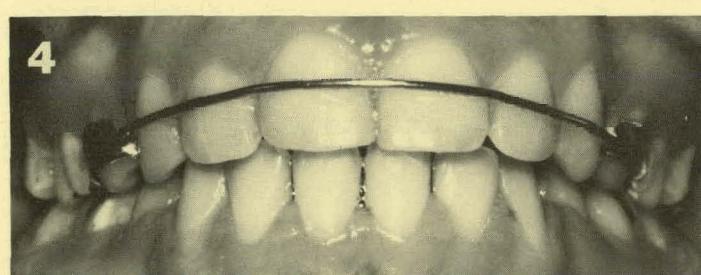
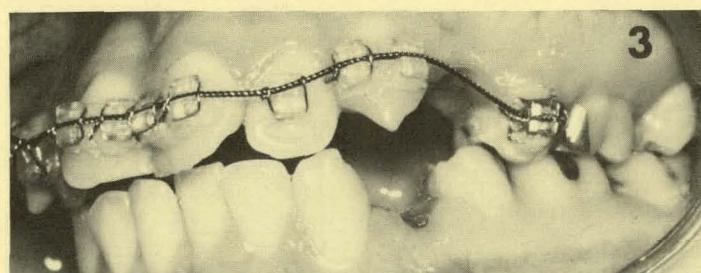
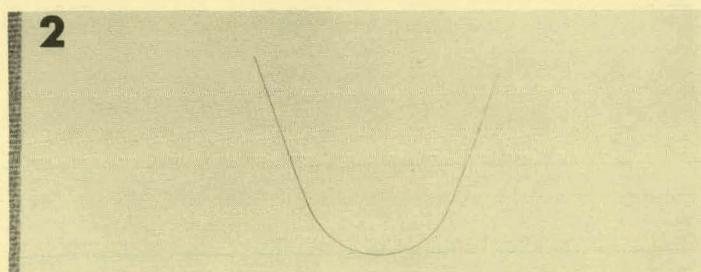
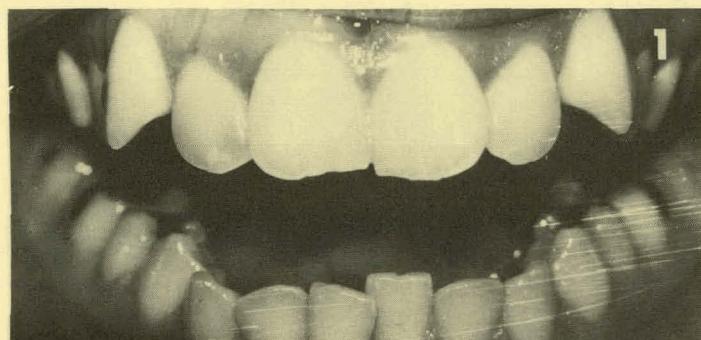
William Buehler of the Naval Ordnance Lab (NOL, now Naval Surface Weapons Center) first discovered the remarkable memory property in the 55-Nitinol material in 1962. As a result of correspondence with Buehler, Andreasen obtained a

sample of one particular batch of the alloy, specifically Heat #9, from NOL. Andreasen experimented with the sample wire and found that it offered significant advantages over stainless steel wire currently used in orthodontics. However, when he had exhausted his supply, he found that he could not obtain additional wire from Heat #9. Other batches of Nitinol at NOL either did not have a memory activation temperature range that was suitable for orthodontic purposes, or did not have the desired elastic properties. Commercial firms were not geared to produce experimental quantities nor could they produce the material in consistent quality.

Unable to obtain the proper alloy commercially, in 1974, Andreasen contacted Frederick Schmidt and Charles Owen of the Materials Science Group at the Ames Laboratory for assistance with his materials problem. He confiscated a piece of the Nitinol wire from the mouth of one of his patients and submitted it to Ames Laboratory for analysis.

Frederick Schmidt (standing) and Charles Owen shown with the non-consumable arc furnace in which the Nitinol ingots were formed.

The analysis revealed that in addition to nickel and titanium, the carbon, oxygen and nitrogen content of the alloy were extremely important. Armed with this data on Heat #9, Ames Laboratory metallurgists prepared seven alloy ingots. Under the direction of Owen, the ingots were then fabricated into wire through a series of treatments whereby the wire was reduced to a final diameter of about 0.0205 inch (about 10 times the thickness of a human hair).





A piece of the Nitinol wire looks like a thin, lightweight plastic wire and to one's touch feels like ceramic material because of an oxide coating. Although the wire may appear to be delicate, it is extremely strong since memory activation causes heat energy to convert to mechanical energy.

Force is the working tool of the orthodontist. Because of the consistent force applied when using Nitinol wire, fewer arch wire changes are needed for the complete treatment. This means that the patient's chair time and frequency of appointments are greatly reduced and less professional time is required.

In general, there is little or no pain for the patient, only a feeling of pressure as the teeth are constantly and gently forced into their prescribed position. Because of the constant force and greater efficiency of the Nitinol wire, length of treatment time is reduced, in many cases to half the time of the earlier stainless steel technique.

Both nickel and titanium are extremely noncorrosive and so resist attack by body fluids. The body, too, is fairly tolerant of the alloy's presence and does not tend to reject it.

The Nitinol orthodontic wire also offers many advantages to the orthodontist. Most important, the orthodontist will have mechanical predictability in his work. In addition, the wire device is convenient and easy to use. Since one or two Nitinol wires do the work of a wide assortment of different sizes of stainless steel wires, the orthodontist will not be required to have a large inventory of wires on hand.

1. Patient's teeth before brackets and wire insertion. 2. Nitinol heat-formed wire after setting "memory" at 800°C in a jig. 3. Patient's teeth with Nitinol wire at time of insertion. 4. Patient—end of treatment with retainer in place.

According to Andreasen, "Nitinol applications are limited only by time and imagination." He has dedicated himself to even further improvement of the orthodontic device on which he and the University of Iowa have filed for a use patent.

Since the quality control work, Ames Laboratory has also used the NiTi alloy in various applications. One of these has been the development of an expansion adapter which enables the resistance heating of

wires and rods to high temperatures without distortion because of the metal's thermal expansion property.

We can expect to see many other applications of Nitinol's memory and elastic properties in the future in medical and surgical devices, heat engines, weldless connectors, expandable structures, railroad hot boxes and any other type of device where mechanical efficiency is affected by heat.

Neutron Radiography—How Your Garden Grows

"How does your garden grow?" At least a partial answer to this fabled question may be provided as a result of Ames Laboratory studies.

Roland Struss, reactor mechanical engineer, Howard Taylor, agronomy, and Steve Willatt, formerly a visiting scientist from Australia, have been working to determine plant root growth rate, direction and concentration in corn and soybeans. Their studies involved neutron radiography techniques using two different sources of neutrons, one the Ames Laboratory Research Reactor (ALRR) and the other a californium source at the Sandia Laboratories in Albuquerque, N.M. Robert Jefferson, manager of Sandia's Nuclear Fuel Cycle Technical Development Department, assisted with equipment setup for the californium experiment.

In neutron radiography, a neutron beam is allowed to pass through an object and strike a metal transfer screen which becomes radioactive. More important, the transfer screen is "imprinted" with a radioactive image of the object. The image is made visible by placing the transfer screen in contact with a sheet of photographic film to expose it and then developing the film in the usual manner.

For the root growth studies, corn or soybeans are planted in rectangular aluminum cans. The higher concentration of water in the plant roots scatters the neutrons more than the soil. Thus, when the neutron beam passes through the aluminum cans in which corn and soybeans are sprouting, the roots show up lighter than the surrounding soil when the image appears on the negative.

Struss explained that with neutron radiography studies, the plants are not destroyed. The traditional methods for determining growth characteristics, he said, are nearly all of a destructive nature. The most common is that of washing the soil away from the roots—of course, this is a one-time test.

"Neutron radiography lets us continue measuring the same set of plants to determine growth characteristics. By using the same genetic material at different time intervals, we get better growth measurements," he said.

Also, because neutrons pass through the three-dimensional growing container, all the roots are seen. By contrast, roots grown under glass are distorted as they grow towards the glass walls of the container. Those against the glass are the only roots available.

Noting that neutron radiography is commonly used as a nondestructive test of industrial products, Struss said that application of the technique to the study of living things is a recent development. Industrial products, composed of solids such as metals and plastics are of much more varying hydrogenous density. As a consequence, neutrons are scattered in varying degrees and high contrast images are possible.

The main drawback in applying the technique to plant material is that water in the soil and the plant roots is the primary medium that scatters the neutrons. Because the plant roots themselves are mostly water and are small, they are only slightly more effective in scattering the neutrons than the surrounding

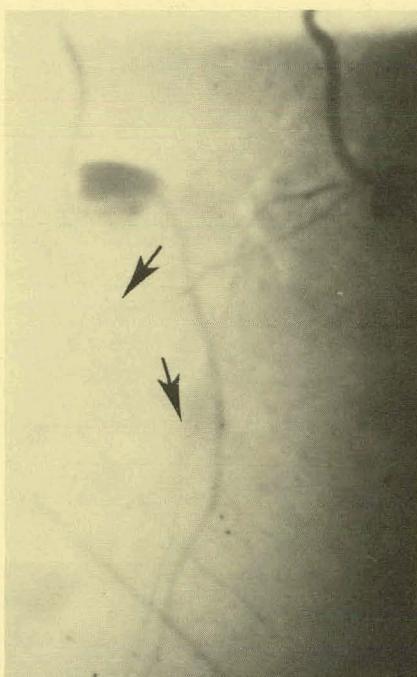
Roland Struss (right) and Steve Willatt study neutron radiographs showing seed development and root growth. The Ames Laboratory Research Reactor was used as a source for these neutron radiographs.

soil, so there is very little contrast in the resulting image.

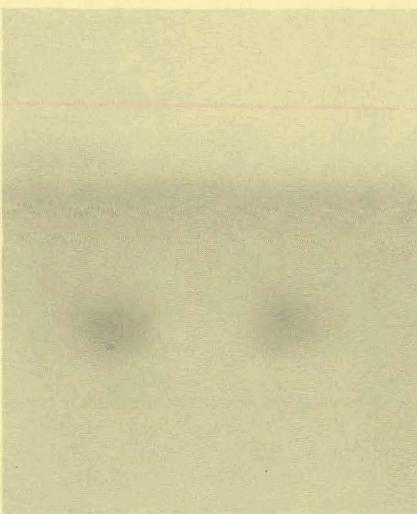
Photograph A shows the image contrast obtained when using the ALRR as a neutron source. Note that the roots on the 2-day old corn seed sprouts follow each other as if they were too "lazy" to find their own paths. Agronomists were aware of this phenomenon, but previously had been unable to watch it happen.

Pictures, as in Photograph B, taken during the californium neutron source experiment show no roots, but do show movement of the seeds. "In order to see the roots, we need either a bigger source of neutrons or better collimation," Struss said.

About six milligrams of californium were used in the experiment, but the test results indicated that 30-50 milligrams would be needed to produce acceptable neutron levels. This amount of californium would cost about \$500,000 and would require 12 tons of shielding. Struss and Willatt had hoped that californium, a synthetic radioactive element, would be acceptable as a portable neutron source, but, obviously, it does not lend itself to field studies.

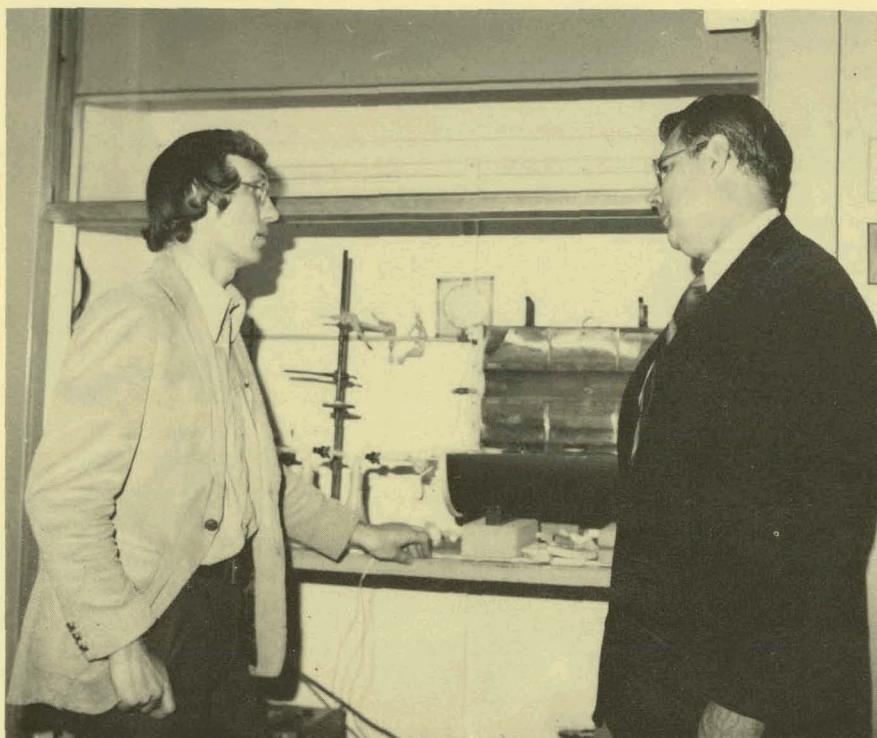

Collimation (reducing neutron scattering by making the beam as parallel as possible) is measured by an angle of divergence. The smaller the angle, the more effective the beam. Since the ALRR provided a beam with an angle of divergence of 6°, while the angle of divergence with Sandia Lab's californium source was 15°, the ALRR is more effective.

Struss and Willatt also varied the positions of the aluminum cans in the neutron beam, allowing a study of various exposure times. They found that the exposure time is limited because of plant growth which, after several hours, would blur the image.


The thrust of the work now is to further refine the neutron source technique and explore different films and photographic papers to gain higher contrast images. "I think we can show that this is an accurate laboratory technique for observing root growth," says Struss. "Right now there is no good way to get the

necessary equipment into the field. The plants have to be grown in the aluminum cans so we can take them to a reactor," he concluded.

Although it is unlikely that scientists will ever use neutron radiography to tell you how your garden grows, the information gained from root growth studies will enable plant scientists to develop better plants that may very well wind up in your garden.



Photograph A. Image contrast obtained when using the Ames Laboratory Research Reactor as a neutron source.

Photograph B. Image contrast obtained when using the californium neutron source.

Fly Ash—A Future Ore Supply

Mike Murtha (left) and George Burnet discuss the Ames Laboratory high-temperature chlorination process for recovery of metals from coal fly ash. The furnace, as seen in the schematic, is open in the background.

With increasing energy demands, it is expected that the use of coal combustion for power will double by 1985, particularly as utilities comply with the 1975 Energy Policy and Conservation Act which requires oil and gas-fired plants to convert to coal. This means that sometime between 1985 to 1990, annual coal consumption could be about one billion tons; proportionately, about 100 million tons of coal fly ash would be produced. Fly ash disposal has plagued power plant personnel for years and could become an even greater problem in the future.

Ames Laboratory chemical engineers, Mike Murtha and Dr. George Burnet, are working on economical processes whereby the total fly ash material would have commercial value. Currently less than 15 percent of the fly ash material is being used primarily for construction and agricultural purposes. The remainder is buried or ponded as waste; both of these methods pose possible environ-

mental hazards due to leaching of toxic elements.

The first step taken by Murtha and Burnet was to collect, from all over the midwest, samples of bituminous coal ash for characterization. Even

though the fly ash composition of the various coals differed, the differences were smaller than anticipated. A representative coal sample was selected for the study.

As shown in Figure 1, U.S. fly ash particles on the average contain approximately 22 percent aluminum oxide and 19 percent iron oxide by weight. Complete recovery of these metals would provide 90 percent of the U.S. aluminum requirements and 10 percent of the iron needs. The silica content of the fly ash can be used for Portland cement and glass. Fly ash aggregate would also be an asset to areas that have coal-fired power facilities, but shortages of natural aggregate materials.

At present, 90 percent of the aluminum ore for U.S. consumption is imported. Several large foreign ore fields have been nationalized and the price of aluminum ore has increased sharply in the past few years. Recovery of the aluminum in coal fly ash would be a conservation measure which would greatly reduce our dependency on ore imports.

Recovered iron could be used for the preparation of high-density media for coal and mineral beneficiation; seed material in high-intensity, high gradient magnetic

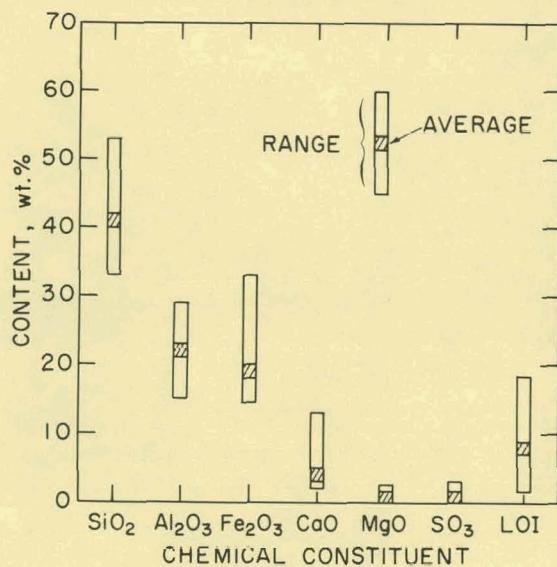


Figure 1. Data for fly ash composition, ranges and averages for a large number of fly ashes from different U.S. coals.

processes for desulfurizing coals; and as iron ore. Demand for these materials and processes will increase as coal is increasingly employed and the need to mine and burn lower quality coal increases.

Murtha and Burnet have investigated two processes for recovering alumina (Al_2O_3) from fly ash—one a high temperature chlorination process; the other a lime-sinter process.

In the Ames Laboratory high-temperature chlorination process, the bulk of the iron oxide is first removed by magnetic methods, then a controlled amount of dry chlorine gas is passed through a bed of the nonmagnetic fly ash portion which is held at a high temperature (a minimum of $700^\circ C$). Solid carbon (C) is mixed with the ash in the bed so that the oxygen (O) from the metal oxides reacts with the carbon to form carbon monoxide (CO). Any iron from the oxide that slipped by the magnetic treatment and the aluminum react with the chlorine to form volatile chloride compounds. Because the chlorine reacts with the metal of greatest affinity first, the metals can be selectively removed; the iron is the most reactive and the silicon in the silica present is the least reactive. Figure 2 is a schematic of the bench scale experimental apparatus.

Recovery of aluminum from aluminum oxide produced from bauxite ore requires a great deal of energy. Only 70 percent of this energy is needed to obtain aluminum from the aluminum chloride formed during the Ames Laboratory high temperature chlorination process.

Line-sinter alumina recovery processes are apparently successful in Poland and Hungary. Murtha and Burnet have improved the sinter process so that as much as 95 percent of the alumina can be recovered. They also have succeeded in cutting the energy required for the process by reducing the sinter furnace temperature from $1380^\circ C$ to $1250^\circ C$.

In the Ames Laboratory lime-soda-sinter process, iron is first magnetically removed from fly ash. Next, limestone ($CaCO_3$) and soda

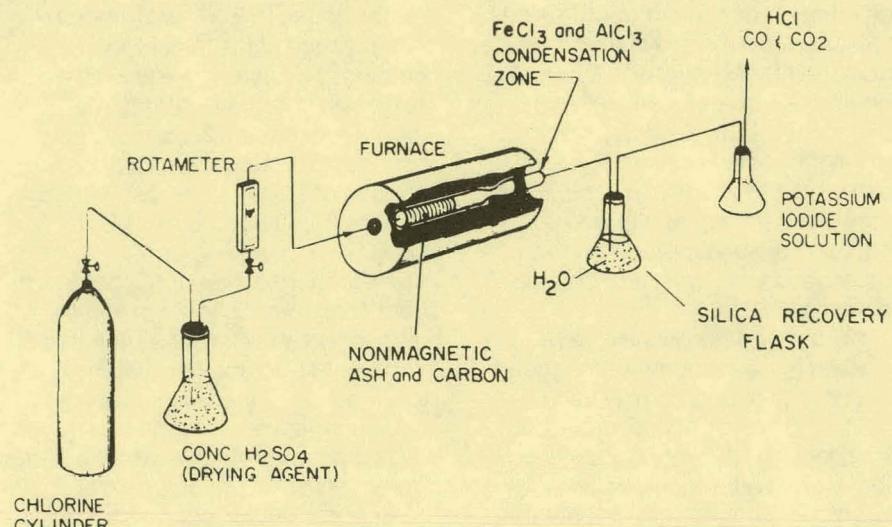


Figure 2. Schematic of the bench scale experimental apparatus used in the Ames Laboratory high temperature chlorination process for recovery of metals from fly ash.

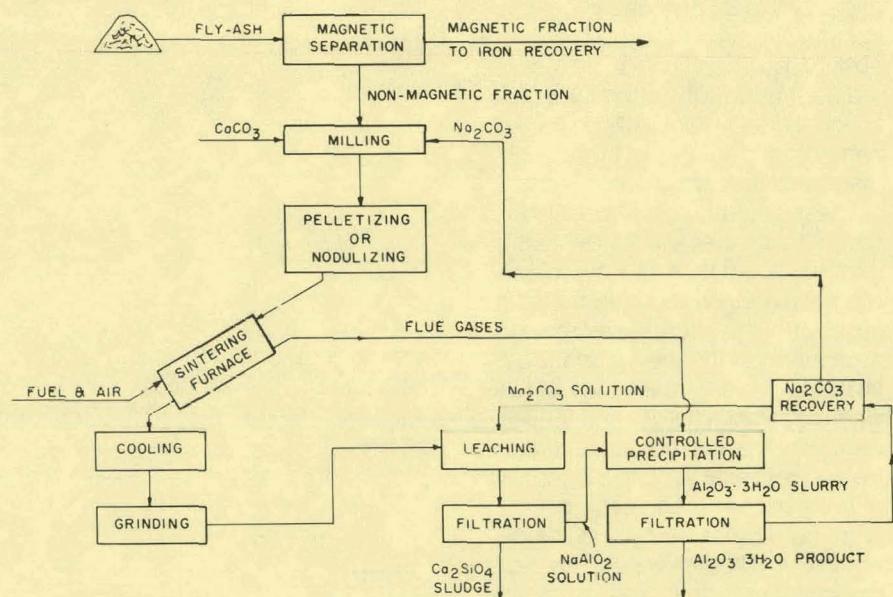


Figure 3. Extraction of alumina from fly ash by the lime-soda-sinter process.

ash (Na_2CO_3) are ground into the remaining non-magnetic portion, and the mixture is formed into pellets. After heating to 1200 to $1300^\circ C$ in a furnace, the sinter mixture is cooled, ground, and leached with a sodium carbonate solution, as shown in Figure 3.

Previous results, both here and elsewhere in the U.S., have indicated that alumina recovery from the lime-sinter process is limited to 50 percent of that originally available in the fly ash. Insoluble calcium aluminum silicates are

formed which reduce the amount of alumina available to be later precipitated as the final product.

By introducing sodium carbonate (Na_2CO_3) into the initial milling of non-magnetic fly ash with calcium carbonate, Murtha and Burnet found that alumina recovery could be increased to 95 percent. However, the calcium silicate sludge may contain too much sodium by this process for use in concrete, and will require additional treatment.

Lignite coals, like those found in Western coal fields, have higher

calcium contents and would be better suited to recovery of alumina from their fly ash than the average bituminous coals because less limestone would have to be added to the process. For bituminous coal ash, about five tons of fly ash, eight tons of limestone, and one ton of sodium carbonate ground together before sintering will yield one ton of alumina.

Murtha and Burnet also have worked toward improved magnetic separation of iron from fly ash. Magnetic separation is important both for iron recovery and as the initial step in aluminum recovery. Harold D. Shank's instrumentation group at Ames Laboratory built a laboratory-size moving field electromagnetic device to be used in the magnetic separation studies.

The electromagnetic device will extract 70 to 80 percent of the iron from fly ash. Typical fly ash contains about 19 percent iron oxide (Fe_2O_3) by weight in the form of finely divided, dense, largely spheroidal particles of high magnetic susceptibility.

To take advantage of the high magnetic susceptibility, dry ash material is fed by a vibrator into the magnetic field where magnetically susceptible particles are drawn to and pulled along the magnetic surface. The magnetically susceptible particles agglomerate and fall into a receiver. The iron content of the extracted material is 55 to 58 percent and the contaminant levels of aluminum oxide and silicon oxide are about 10 percent each. In order to use the magnetic fraction as an iron ore, the combined contaminant levels of aluminum oxide and silicon oxide would have to be reduced to less than 5 percent. A microprobe is being used to find out if the silicon and aluminum oxides are actually separate from the iron particles. If the contaminants are separate from the iron particles, float-separation could easily reduce the contaminant levels.

When a process is developed which will reduce the silicon and aluminum oxides to levels of less than 5 percent, the next step will be to pelletize the product to provide a dust-free, transportable material

ready for use in the blast furnace.

Utilization of the total high-iron fraction of fly ash as ore would reduce iron imports by about one-third. Ten million tons of iron could be recovered from an annual production of 100 million tons of coal fly ash as anticipated by 1985 to 1990.

In addition to the energy obtained from coal combustion, the metals recovery processes for alumina and iron would add another dimension to utilization of the very same coal and minimize ore imports and fly ash disposal problems. Murtha and Burnet envision metal recovery complexes built in conjunction with large coal-fired generating facilities as a common practice in the future.

The Whys of Grain Dust Explosions

Premo Chiotti

The increased frequency and severity of grain dust catastrophes in grain elevators prompted the Iowa Legislature to authorize an investigation, through EMRRI, into the causes of the explosions. A grain dust explosion group, formed in August 1975 under Dr. Premo Chiotti, senior metallurgist, found that three conditions must be present for grain dust explosions: a critical concentration of dust in a confined volume, oxygen, and an ignition source. Modern grain handling and storage methods increase the amount of dust in grain, and concrete elevators do not allow pressure build-ups to dissipate as did the early wood-plank elevators.

Chiotti and Mary Verkade, assistant chemist, compiled a literature survey and statistics on which to base research. Since instantaneous ignition sources have been reduced by good electrical practices and the introduction of inert gases into elevators to reduce atmospheric oxygen content had already been tested, the research group decided to concentrate their efforts on the "dust" component—the major thrust of their study would be to find a way to detect hot surfaces before they became hot enough to ignite grain dust (240° C for corn dust and 290° C for wheat dust).

Grain dust on hot surfaces emits particles ranging in size from invisible aerosols at low temperatures to visible smoke at combustion tem-

peratures. A Pyr-A-Larm (R) smoke detector can detect both visible and invisible particles. To determine the minimum aerosol concentration level needed to trip the smoke detector, Edwin Gibson, associate metallurgist, and Virginia Morris, assistant chemist, used a condensation nuclei detector to measure the number of particles per cubic centimeter. Using a test apparatus which combined the smoke and aerosol concentration detectors, they simulated elevator heat conditions while varying the thickness of dust layers. Morris found that after the initial amount of dust required to produce aerosols, the concentration of aerosols escaping the heated surface drops with increasing dust layer thickness. This is because aerosols emitted at the hot surface stick to the dust particles on top of them. If the dust layer was of uniform temperature throughout, then aerosols would be emitted from the top dust particles, and thickness of the layer would not

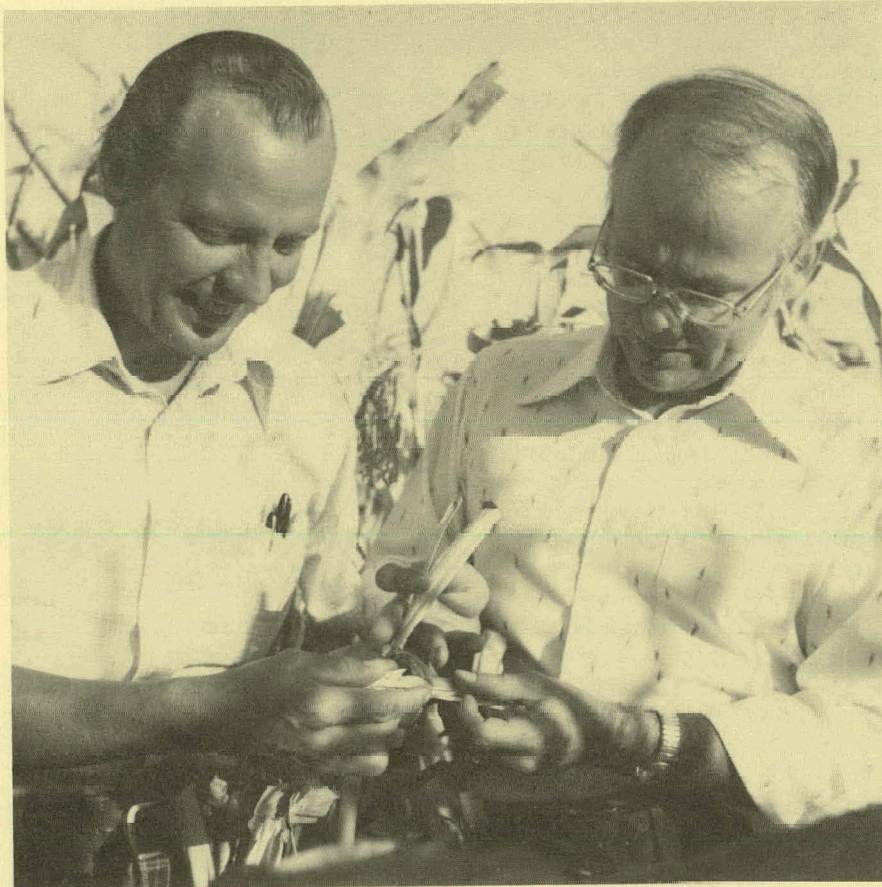
be a factor. Grain dust heated to pre-ignition temperatures also emits combustible gases. The gases can diffuse readily through any thickness of dust layer piled on a heated surface, possibly making them a more reliable indicator of hot surfaces. Gas chromatography tests were initiated to separate and analyze combustible gases given off by different grain dust sizes and types and to determine what part combustible gases play in the explosion mechanism. It is known that some combustible gases are emitted from heated grain dust at temperatures lower than those at which aerosols are involved; the majority of emissions, both gaseous and aerosol, begin in the 125-130° C range. A gas detector could be designed to react to a single gas emitted by hot grain dust, but which is otherwise not normally present in the atmosphere in significant amounts. Possible gases include H_2S , aldehydes, and ketones.

Virginia Morris draws a gas sample produced by heated grain dust. The apparatus is a specially designed tube furnace built in the Glass Shop.

Cornstalks for Energy

A flatbed truck loaded with a stack of corn stalks drives by the coal stockpile on its way to the Ames Power Plant (in background). These corn stalks were burned at the power plant as part of a preliminary study on the feasibility of using agricultural residues as an alternative energy source.

Agricultural residues represent a major unused national energy resource which has potential to form a compatible blend with coal for energy production. The Energy and Mineral Resources Research Institute (EMRRI) and the Engineering Research Institute (ERI) funded the study by Prof. Wesley Buchele, Agricultural Engineering, and Arthur Pohm, distinguished professor, Electrical Engineering, which covered the acquisition, storage and


transportation of corn stalks, burning and determining heating value of the stalks, and studying the effects of stalk burning on stack emissions.

Initial tests at the Ames Power Plant revealed that dry corn stalks have a heating value of approximately 6500 Btu, which is comparable to that of the refuse currently being burned at the Ames Power Plant. The corn stalks shredded easily with no particular associated dust problem and readily moved through the plant system with complete combustion in the furnace. Blending the corn stalks with coal for combustion also dilutes the coal's sulfur emission.

As crop residue burning is envisioned, one-third of the total corn stalks produced in an area would be

used for animal feed (more than enough to meet anticipated needs), another third would be used for fuel and the remaining third would be left in the fields for erosion control and soil enrichment. The researchers believe that as much as 60 percent of the coal burned at a power plant could be replaced by corn stalks and that the one-third portion of corn stalks in a highly developed agricultural area would be sufficient to fire a 500-megawatt facility. The corn stalks would provide a continuous renewable energy source; each farm community would be contributing to its own energy needs as well as reducing local and national energy import requirements.

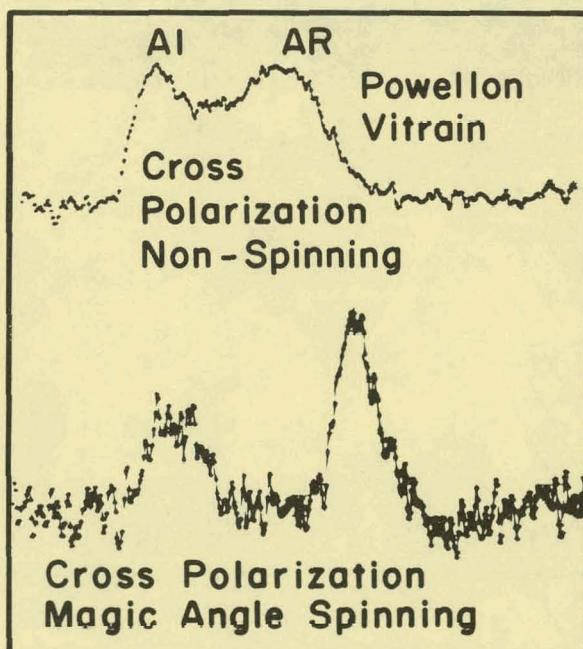
That Fatal Attraction

Gregor Junk (left), Ames Laboratory associate chemist, and Jerome Klun, USDA entomologist, examine corn stalks in the field for evidence of corn borer activity. Klun and Junk are working toward the development of biological controls which could interrupt the insect's life cycle by confusing the sex communication system between adult male and female borer moths. Klun raised the moths and provided samples of the female sex pheromones and Junk and his colleagues used combination gas chromatography-mass spectrometry to assay the samples while using male moth response to emitted fractions as confirmation. They hope to refine the method and extend the study to natural habitat detection of smaller amounts of pheromones from a variety of insects. Crop damage caused by the European corn borer costs U.S. corn growers more than half a billion dollars annually.

Fingerprinting Coals

One important consideration in the types of chemistry which might be attempted in order to produce desired side products from raw coal with maximum efficiency, and, perhaps with minimum production of components such as polynuclear aromatic carcinogens, is the average aromatic ring size in raw coals. Two measurements which can help make this determination are the ratios of aliphatic to aromatic protons, and aliphatic to aromatic carbons in solid coals (a consideration of these ratios for the compounds benzene, naphthalene, and methylnaphthalene will help make this point clear).

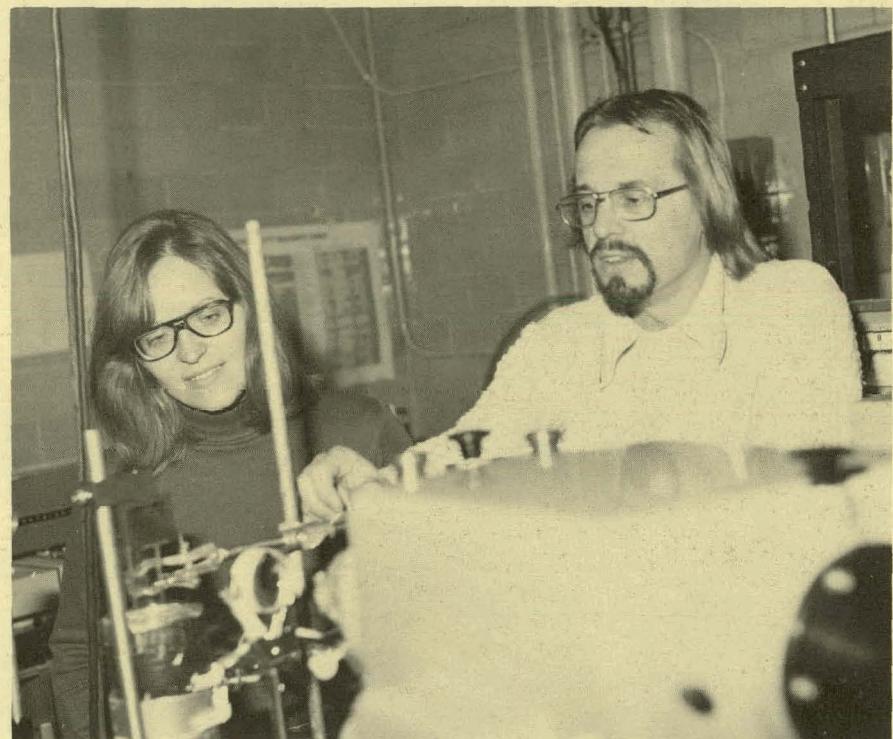
One, and perhaps the only, method of fingerprinting aliphatic and aromatic carbon and hydrogen in solids is nuclear magnetic resonance (NMR). Both ^1H and ^{13}C exhibit absorption of radiofrequency excitation in high magnetic fields, and the frequency of the absorption can characterize the chemical environment of the nucleus in question.


A problem complicating a determination of such "chemical shifts" of NMR frequencies is that coupling with neighboring nuclei broaden resonance lines to the extent that chemical shifts are unobservable. In the case of ^{13}C , coupling to ^1H dipolar fields is the major cause of the broadening. Even when this broadening is removed, however, residual broadening associated with the anisotropy of the chemical environment in solids can still mask chemical information.

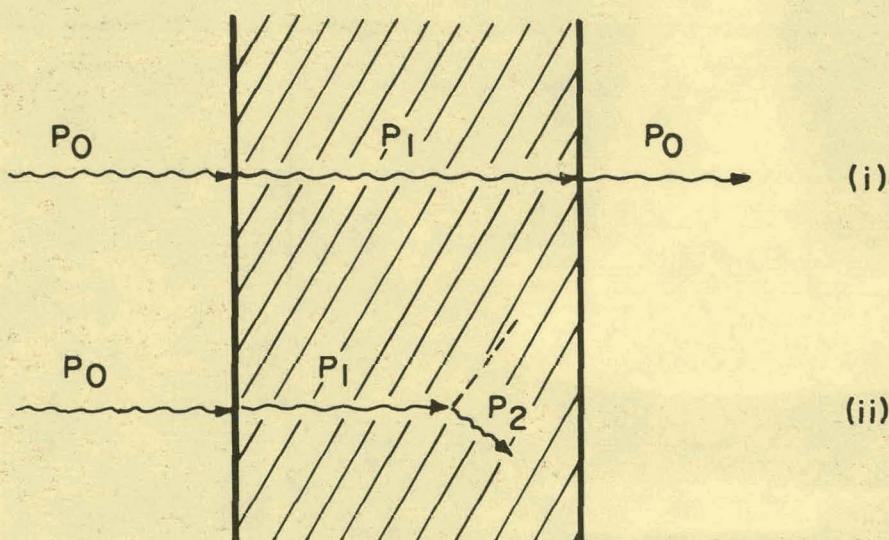
Recent experiments by Dr. Bernard C. Gerstein, Ames Laboratory chemist, have used combined strong heteronuclear decoupling to remove the effect of the ^1H on the ^{13}C NMR line, and magic angle spinning to remove broadening due to anisotropic chemical environments in solids. Resultant ^{13}C NMR spectra of coals show a clear separation of the peaks associated with aromatic and aliphatic carbons in coals, as shown in the accompanying figure, in which strongly decoupled ^{13}C spectra without (top) and with (bottom) magic angle spinning are exhibited.

With this resolution, it will now be possible to follow processes such as hydrogenation of solid coals under relatively gentle treatment utilizing NMR. Additional resolution in similar experiments on ^1H in solid coals will allow a determination of average ring size in such species.

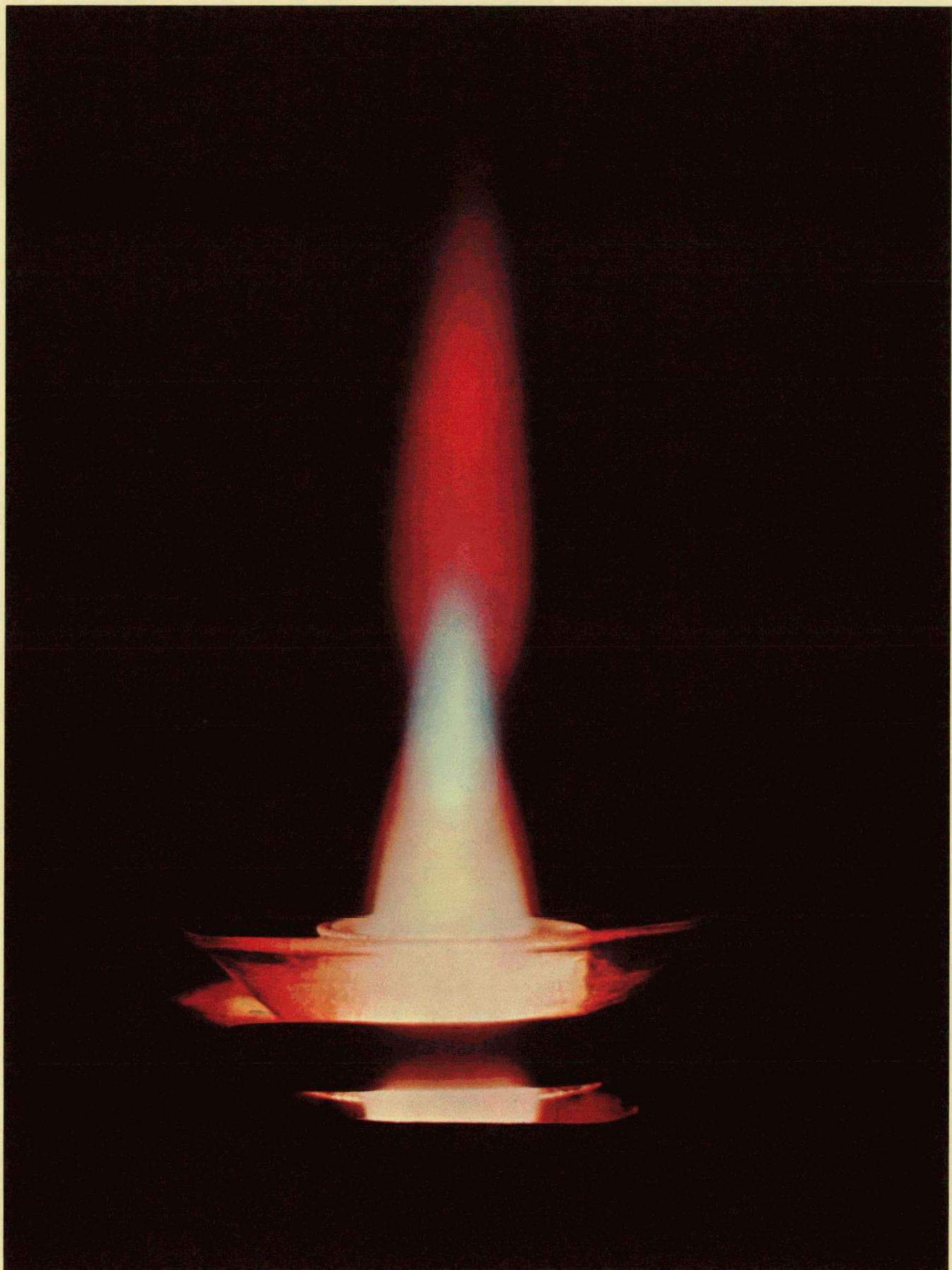
Bernard C. Gerstein



NMR spectrum of carbon 13 in coal; use of combined cross polarization, strong hetero-nuclear decoupling, and magic angle spinning to distinguish aliphatic from aromatic carbons.


Perfect Molecular Crystals

For the first time in this country, Dr. Gerald J. Small, chemist, and Susan Robinette, graduate assistant, have positively confirmed the Hopfield theory for the mechanism of light wave transmission in crystals. In the late 1950's, J. J. Hopfield envisioned light absorption as a two-step process, the second step depending on the excited state of interest evolving into other states of the crystal. This evolution will not occur in a perfect crystal and, consequently, there can be no absorption. (See accompanying diagram.)


Small and Robinette examined all of the conditions for perfect crystal fabrication: absolutely identical, repeating molecular units in three-dimensions; and crystals that are strain-free, vibrationless, and free of defects such as chemical impurities. They found that under proper conditions, naphthalene (common moth crystals) forms nearly perfect crystals. Increasing the crystal's purity and lowering the temperature resulted in less light absorption and a more "perfect" crystal. This knowledge aids in understanding the fundamental light absorption principle for all crystals.

Susan Robinette and Gerald Small are shown with an optical spectrometer that is used in light absorption studies.

Mechanism for transmission of a photon in (i) perfect crystal, (ii) imperfect crystal.
 P_0 = photon; P_1 = polariton; P_2 = scattered polariton.

Luminous vapors from Velmer Fassel's emission spectroscopic work.

Beauty, Truth and Life

by Klaus Ruedenberg

Scientists at the Ames Laboratory are aware of and sensitive to the beauty of nature as they find it in their endeavors, particularly on the atomic scale. In a lecture on Science, Art and Beauty at the Design Center of Iowa State University, the author projected a scientist's view of the relationship between art and science.

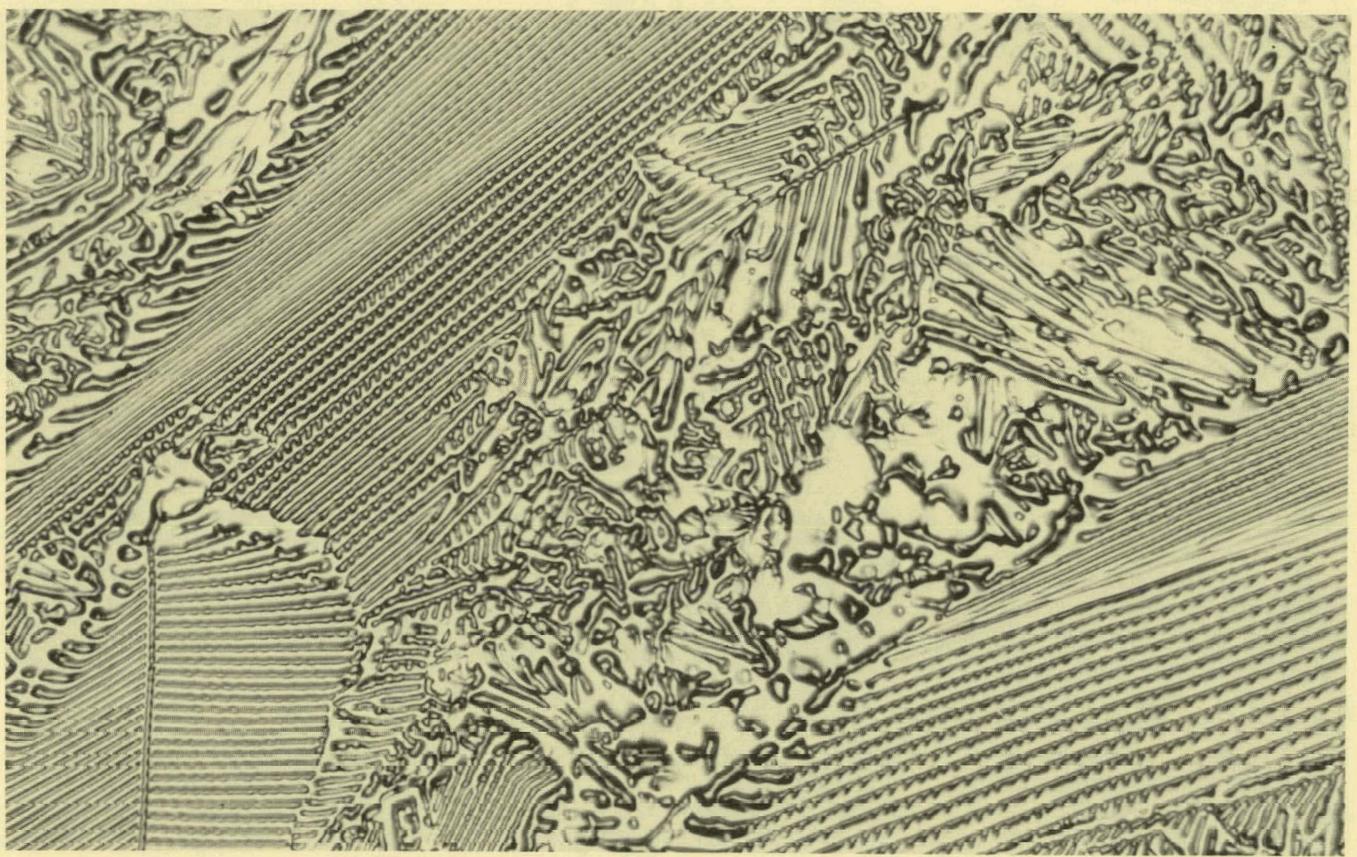
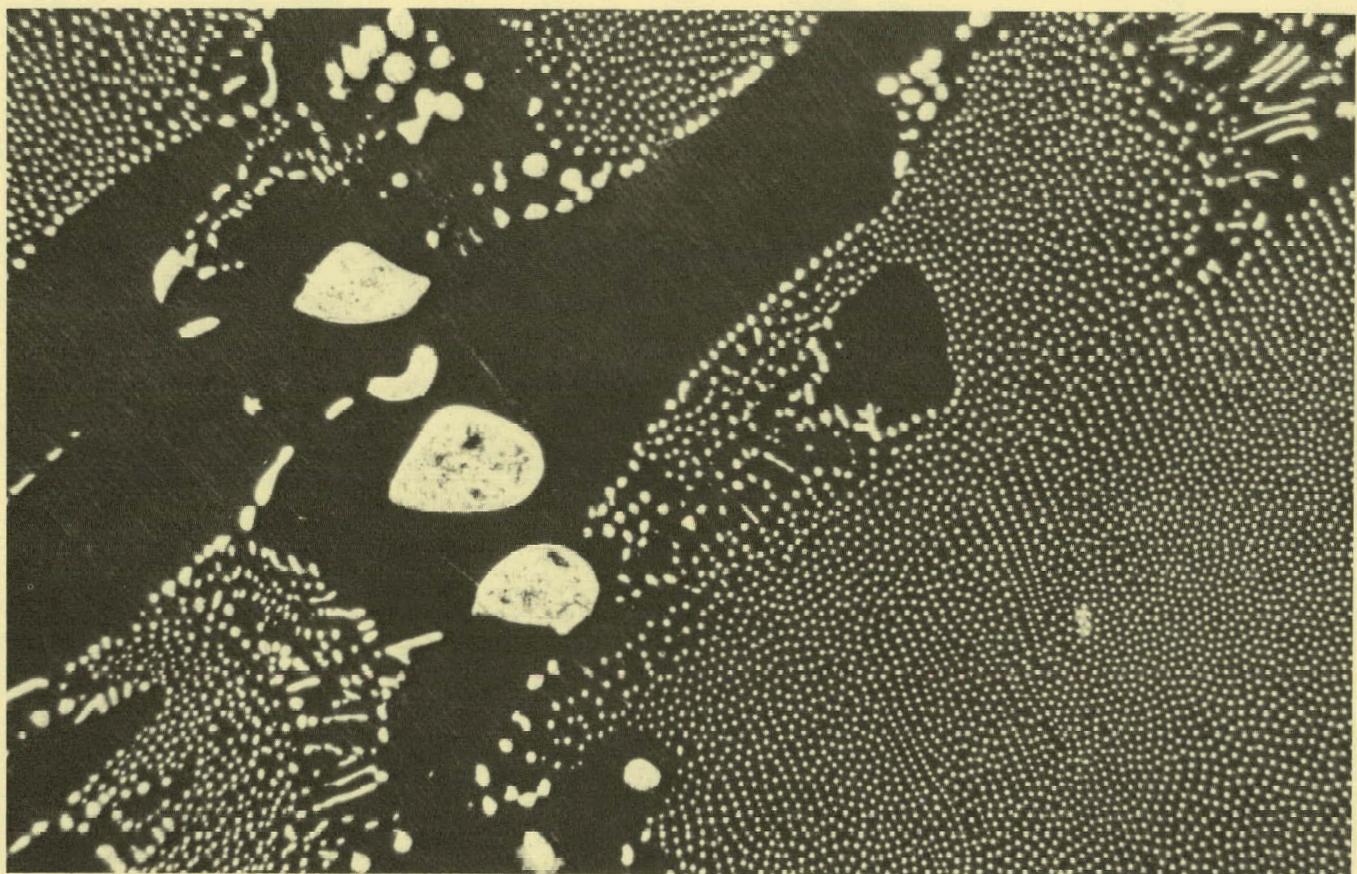
The art-appreciative audience of painters, sculptors, designers, architects and other connoisseurs were surprised and excited by the about sixty slides that accompanied the lecture. They originated from various research groups in the Ames Laboratory. Besides his own computer drawn plots of electron waves in molecules, the speaker showed x-ray structures determined by Drs. Robert A. Jacobson and Jon C. Clardy, field emission microscopic photographs of absorbates on tungsten metal tips from Dr. Robert S. Hansen's surface investigations, crystallized salts from Dr. Bernard C. Gerstein, computer drawings from Dr. John D. Corbett's molecular structure studies, luminous vapors from Dr. Velmer A. Fassel's emission spectroscopic work and photographs of thin solid slices under polarized light from the metallurgical work of Drs. David T. Peterson, John D. Verhoeven and Mr. Harlan H. Baker.

Attempting to find a common ground for artists and scientists, the author developed in his lecture the following ideas.

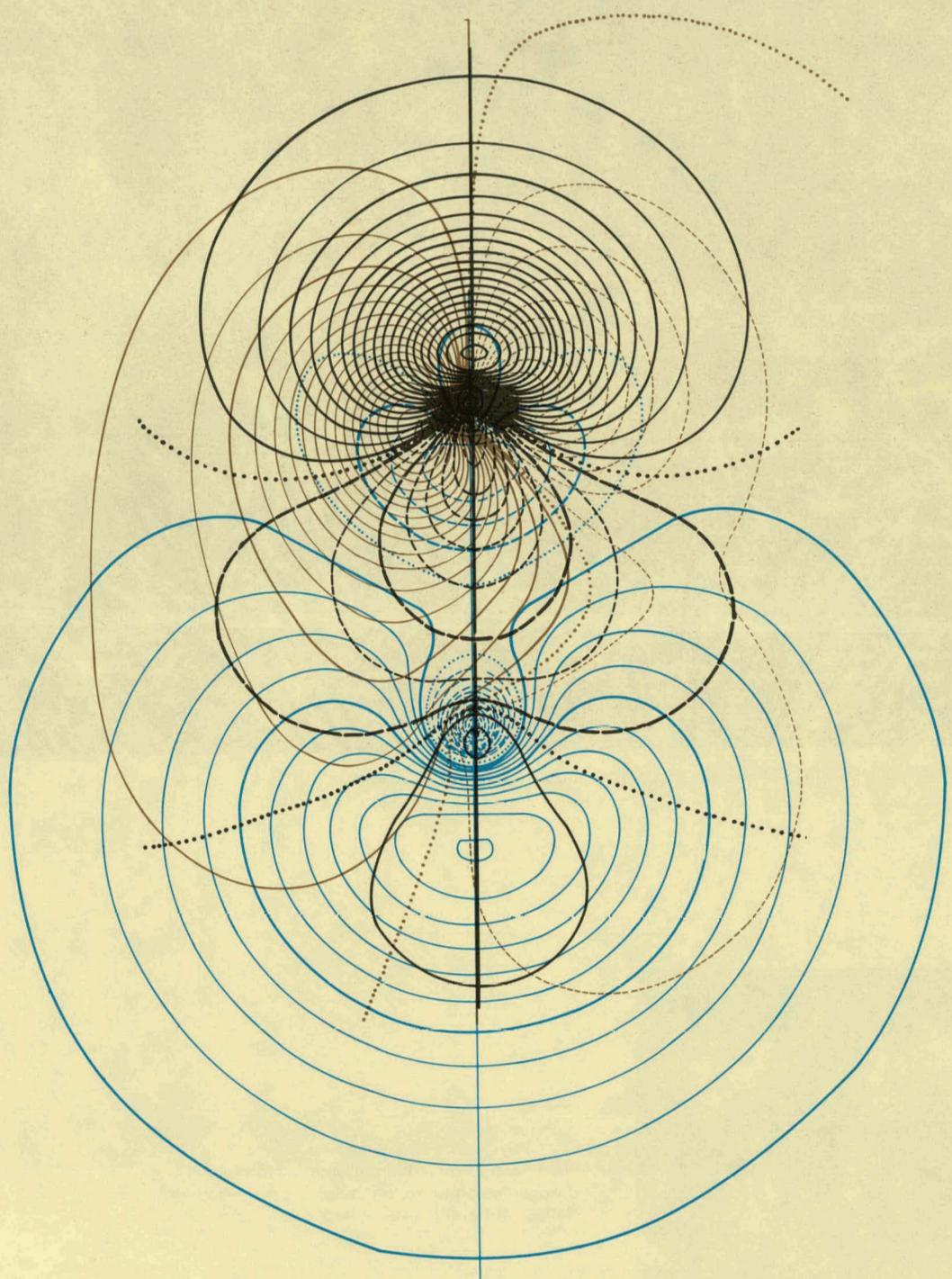
Art is an effort to communicate human experience by means of concrete forms which differ according to the physical medium of the artistic field, such as music, visual arts, and literature. The aim of artistic activity may be the enjoyment and edification of the creator as well as the beholder, or it may be

purification and catharsis. Always, however, it is a deepening of our life senses. Art testifies to the underlying promise of life, it holds out hope in the powers of growth, unfolding and healing in life. It proclaims trust in the constructive aspects of creativity.

This underlying aim is essentially conveyed by means of the beauty and the quality of the *form* whose creation is the object of the artist's efforts. It is particularly poignant when the artist focuses his attention on the destructive aspects of human activity, such as war, poverty, discrimination, and hate. In such cases, there exists a dramatic tension between the depicted human failure and the quality of the artistic form. It is the latter which implies that there exist stronger and deeper forces that work *for life*. In many cases, in the speaker's opinion probably in all cases, it is only through the quality of form and the purity of beauty that art can honestly hold out this hope in a convincing manner.

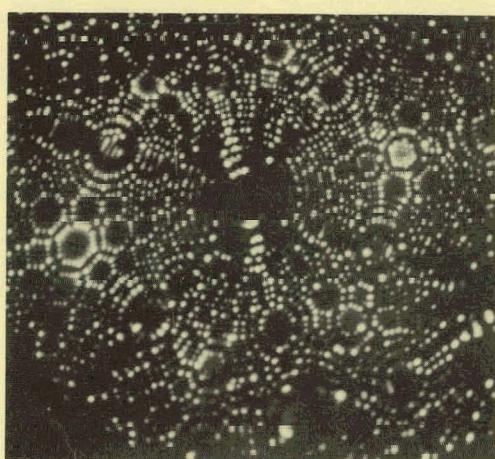


The artist is able to do so by appealing to human resources which lie deeply buried in man's subconscious. Creativity surfaces in the play of children, but is much repressed in the games of adults. The elemental forces of life are tied to the strong emotions of pleasure and pain and therefore often are hidden by fear. The true artist strikes fire from such rock bottom.

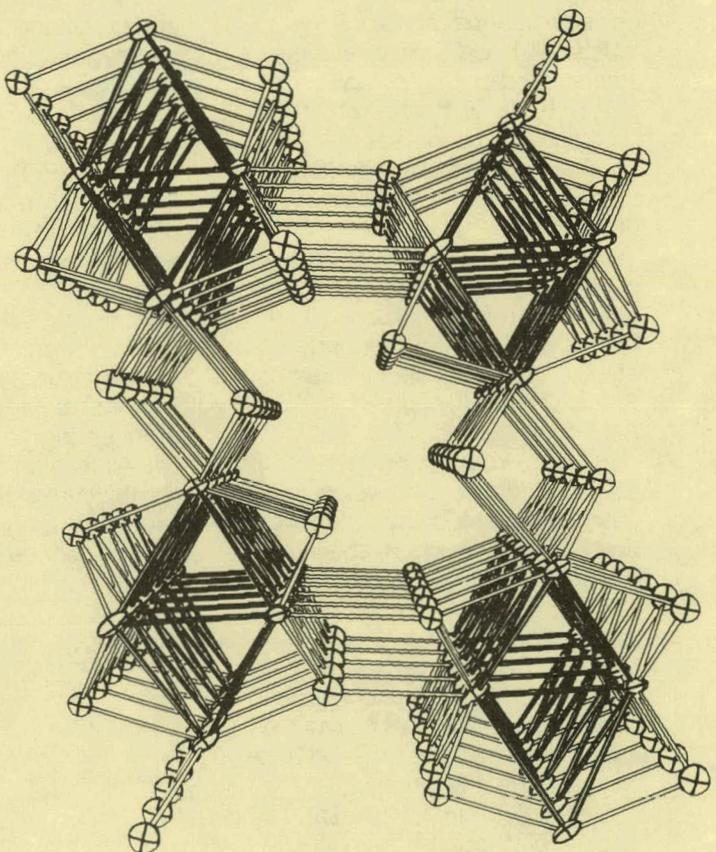
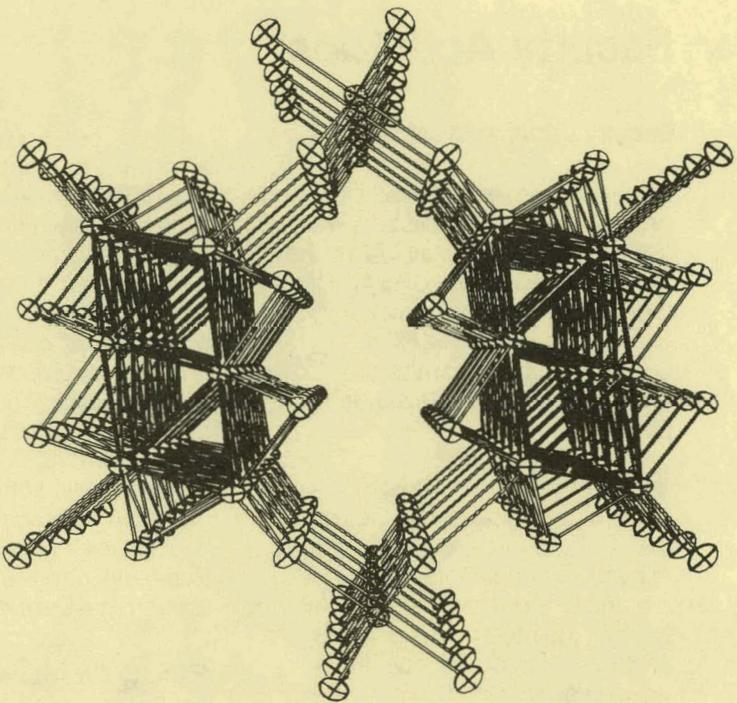
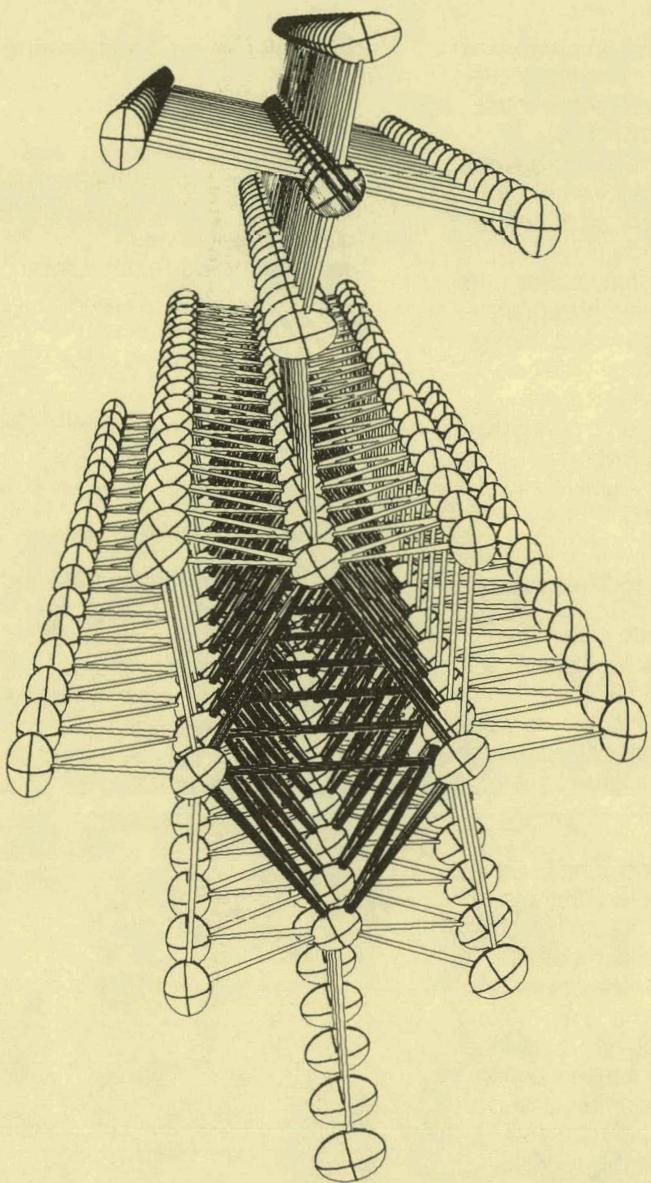
These most vigorous and violent elements of our mental activity are, however, firmly rooted in the biological base layer of our nervous system. It is therefore only natural that those forms which convey the most intense artistic and human emotions are, at heart, biological forms. Biological forms are, however, essentially physicochemical


in nature, and their visual and acoustical shapes are those of specific mathematical functional relationships. Harmonies in music are related to rational proportions. The shapes of the human body, that inspire the sculptor, derive from hydrostatic pressure equilibria inside the skin membrane whose elasticity depends on biochemical equilibria.

It is, therefore, not surprising that a search among the shapes, colors and sounds occurring in chemistry, physics and biology will reveal many forms which are close to those sought by the artist. It is particularly remarkable, however, that there exists resonance between the abstract forms of modern fine arts and those of atomic and molecular phenomena. (Nearly all the artists in the audience volunteered the startled opinion that they would have taken many of the slides shown as works of modern artists, had they not been told otherwise).

The scientist who is truly in touch with nature as well as with himself, cannot help being captivated by the constructive ingenuity through which the whole of nature as well as its minute details have been and still are evolving. In the final analysis, he will have to read nature's shapes, forms and sounds in the same light as the artist: as a message of the hidden promise of life which is still embedded in nature as we know it. He will therefore tell his fellow men not only about his excitement of finding truth and understanding, not only about possible practical applications for practical human use, but also about the essential and fundamental need for preserving and caring for the fabric of nature around us if we wish to survive as humans.


Photographs of thin solid slices under polarized light from the metallurgical work of David T. Peterson, John D. Verhoeven and Harlan H. Baker.




Computer drawn plots of electron waves in molecules, contributed by Klaus Ruedenberg.

Photograph of crystallized salts ($\text{CsCl}-\text{CuCl}_2-\text{H}_2\text{O}$), contributed by Bernard C. Gerstein.

Field emission microscopic photograph of adsorbates on tungsten metal tips from Robert S. Hansen's surface investigations.

Computer drawn representation of several scandium and gadolinium structures, contributed by John D. Corbett.

Faculty Activities

Faculty Improvement Leaves

Faculty improvement leaves for nine Ames Laboratory professors were approved in 1976 and 1977 by the Iowa State Board of Regents. The faculty improvement leave program was authorized by the Iowa Legislature to encourage professional growth of the academic staff.

Those receiving leaves in 1976 included: Michael F. Berard, ceramic engineer and professor of materials science and engineering, to be a visiting scholar in the materials department at UCLA, to work on the electronics division staff of Rockwell International, and to work on developing ceramic fabrication processes.

Laurent Hodges, physicist and associate professor of physics, to assist the congressional committee on science and technology in Washington, D.C. in formulating science and energy policy.

John F. Smith, section chief and professor of materials science and engineering, to study metallurgical thermodynamics in Aachen, West Germany.

Physicist and associate professor of physics Fred K. Wohn, to serve as a visiting professor at Justus Leibig University, Giessen, Germany, and at the Center of Nuclear Research, Service Pile Universitaire, Strasbourg, France.

Bing-Lin Young, physicist and associate professor of physics, to do research and studying at American and European nuclear research laboratories.

Those receiving leaves in 1977 included:

Robert E. McCarley, senior chemist, to investigate construction of new solid state materials at the Max Planck Institute for Solid State Science, West Germany.

Gerald J. Small, chemist and associate professor of chemistry, to work at the University of Stuttgart, West Germany, on developing an understanding of light absorption and biologically related energy transfer processes in crystals.

Senior metallurgist and professor of materials science and engineering, Rohit K. Trivedi, to work at the Technical University of Braunschweig, West Germany, to develop a theoretical model of the role of interface processes on the growth and dissolution of crystals.

Monroe S. Wechsler, section chief and professor of materials science and engineering, to work at the Max Planck Institute in West Germany studying radiation damage of metals, and to work on a new type of heat engine at the Lawrence Berkeley Laboratory, University of California—Berkeley.

Faculty Citations to Three Here

Three Ames Laboratory staff members received Iowa State University Faculty Citations in 1976 and 1977.

Premo Chiotti, senior metallurgist and professor of materials science and engineering, received a 1976 Faculty Citation. He has worked with the Lab since 1949.

Clair G. Maple and John F. Smith received 1977 Faculty Citations. Maple, assistant program director of mathematics and computer sciences, is also director of ISU's Computation Center and a professor of computer science. He joined the ISU faculty in 1950. Smith, section chief, physical properties, and professor of materials science and engineering, joined ISU in 1948.

Faculty citations are awarded by the ISU Alumni Association, and recognize long, outstanding, and inspiring service on the University faculty.

Verhoeven Named Outstanding Teacher

John D. Verhoeven, senior metallurgist, was one of five Iowa State University faculty members named outstanding teachers for the 1975-76 academic year.

The Outstanding Teacher Award includes a plaque and a \$500 honorarium. Recipients are selected by committees in the ISU colleges.

Verhoeven joined Ames Lab and the ISU faculty in 1963.

Teaching Award to Kayser

Francis X. Kayser, metallurgist and associate professor of materials science and engineering, was one of three recipients of Superior Engineering Teaching Awards at a College of Engineering faculty convocation in 1977. Kayser joined Ames Laboratory in 1963.

Michael F. Berard

Premo Chiotti

Laurent Hodges

Francis X. Kayser

Robert E. McCarley

Clair G. Maple

Gerald J. Small

John F. Smith

Rohit K. Trivedi

John D. Verhoeven

Monroe S. Wechsler

Fred K. Wohn

Bing-Lin Young

Recognition

Honorary Doctorate to Ruedenberg

Klaus Ruedenberg, senior chemist, received the Honorary Doctor of Philosophy from the University of Basel, Switzerland, in 1976. The degree was conferred on Ruedenberg for his "fundamental contributions to modern quantum chemistry." While in Europe to receive the degree, Ruedenberg gave technical lectures to the Basel Chemical Society and to the Universities of Basel, Strasbourg, and Zurich.

Distinguished Professorships to Four Here

Three Ames Laboratory scientists and an Iowa Coal Project (ICP) leader were among the nine recipients of Iowa State University Distinguished Professorships awarded during 1976 and 1977.

V. A. Fassel, deputy director of Ames Laboratory, and Clayton A.

Swenson, senior physicist and chairman of the Physics Department, in 1976 were named Distinguished Professors in Sciences and Humanities. Fassel joined Ames Lab in 1942 and Swenson in 1955.

The 1976 Charles F. Curtiss Distinguished Professorship in Agriculture was awarded to Neil E. Harl, ICP project leader and professor of economics.

In 1977, a Distinguished Professorship was awarded to Sam Legvold, senior physicist and professor of physics, who joined Ames Lab in 1947. Legvold was named a distinguished professor in sciences and humanities.

Distinguished Professorships are awarded by the Iowa State University Achievement Fund on the basis of faculty recommendations. The title recognizes teaching and research activities and is accompanied by a \$500 honorarium. Recipients carry the title for the rest of their careers.

V. A. Fassel

Neil E. Harl

Sam Legvold

Klaus Ruedenberg

Clayton A. Swenson

Editorial, Lecture and Awards Posts to Karl Gschneidner

Karl A. Gschneidner, assistant program director, metallurgy and ceramics, in 1976 was appointed to the Board of Editorial Associates of *Semiconductors and Insulators*, a new journal of ionic and covalent solids. He served previously on the editorial board of the *Journal of Nonmetals and Semiconductors*, the forerunner of the new journal. Editorial associates can accept qualifying manuscripts for direct publication without further review.

Gschneidner was also appointed in 1977 to serve as a member of the Institute of Metals Lecture and Robert F. Mehl Award Committee of the Metallurgical Society of AIME (American Institute of Mining, Metallurgical and Petroleum Engineers) for a four year term.

Burnet is AIChE Fellow

George Burnet, senior chemical engineer and head, Department of Chemical Engineering and Nuclear Engineering, was elected a Fellow of the American Institute of Chemical Engineers (AIChE) in 1976.

Burnet is a member of the AIChE's Iowa section, and a former chairman of the American Chemical Society's division of fertilizer and soil chemistry. He joined Ames Laboratory in 1956.

Wildman to AUA Board

Ruth Wildman, Lab associate and assistant dean of sciences and humanities, was elected to the Board of Trustees of the Argonne University Association for a three-year term in 1977. The AUA, sponsored by 30 member universities including Iowa State, fosters scientific research in the Argonne National Laboratory. Wildman, as a representative in the field of biology, was assigned to the Center for Educational Affairs Committee and the Radiological and Environmental Research Committee.

Hansen to Iowa Science Council

Robert S. Hansen, Ames Laboratory director, was appointed by Iowa Governor Robert Ray to the energy panel of the 12-member Governor's Science Advisory Council in 1977. The council is to provide scientific and technological advice to the governor and to state agencies in energy, environmental quality, and natural resource areas.

Division Chiefs Appointed

Two new division chiefs were appointed in 1977 by Ames Laboratory Director Robert S. Hansen. They are Ray W. Fisher, chief, Fossil Energy Division, and Kenneth L. Kliewer, chief, Solar Energy Division.

During 1977, Fisher was charged with management of programs funded through the DOE Division of Fossil Energy, and Kliewer had corresponding management of solar energy programs. Fisher was also manager, Building and Engineering Services, within the Laboratory. Kliewer was the Laboratory's assistant program director for Solid State Physics.

George Burnet

Ray W. Fisher

Karl A. Gschneidner

Robert S. Hansen

Kenneth L. Kliewer

Ruth Wildman

Laboratory Developments

Plant Protection Monitoring System

A mini-computer, a teletype console, and two visual displays which resemble large TV sets make up the heart of the Plant Protection Monitoring System (PPMS) installed at the Ames Laboratory in 1976.

The system is the first within a Department of Energy facility to combine fire surveillance with physical security and environmental monitoring. It is also the first electronic state-of-the-art facility in the United States to meet the requirements and intents of all applicable fire codes.

Designers of the system were Delwyn Bluhm, head, plant engineering, and Wayne Rhinehart, formerly chief design engineer at the Laboratory.

Phase One of the PPMS is now in operation, and monitors nearly 300 points in the Lab complex by means of remote sensors. Included are Lab buildings, the nuclear reactor site, and Iowa State University buildings in which the Laboratory rents space.

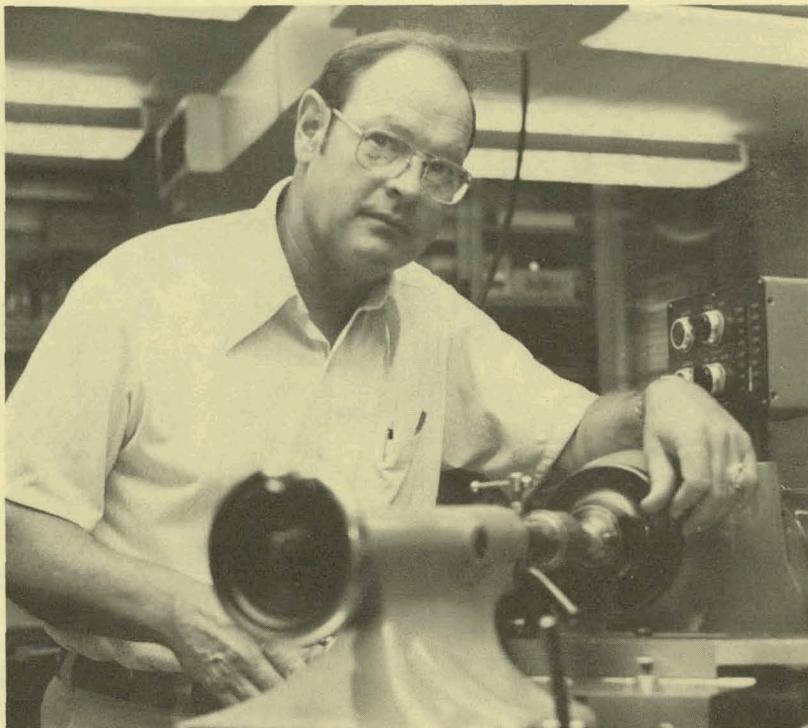
If a sensor such as a smoke detector is activated, the PPMS operator is notified by a printed message on the cathode ray tube display, and by a graphics display which shows a floor plan with the location of the detector. The operator acknowledges the message and can request further information.

The PPMS has several backup systems and self-checking devices to ensure that transmitted information is accurate.

Patrol rounds are programmed into the mini-computer, and if tour stations are not punched by a walking patrolman at correct intervals, the PPMS notifies the supervisor. Radio communication between patrolmen and their supervisor is also maintained.

Phase Two of the PPMS will provide environmental monitoring and control of existing heating and ventilating systems.

Power demands in each Lab building will be continuously



Del Bluhm (standing) gives Rudy Klingseis, plant safety sergeant, some encouragement as he familiarizes himself with the plant monitoring system.

monitored, so that the Laboratory can take steps to reduce power consumption during peak load times. Since utility rates are based on peak demand, the new system will lower total energy costs. Phase Two is scheduled for completion in 1979.

The plan for Phase Three involves monitoring and control of experimental equipment for Lab research groups. These functions will be added to the system as funding becomes available.

The Ames Lab PPMS culminates an effort to update a 20-year-old system which performed only a few of the functions performed now. Installation of the system was done by Building and Engineering Services and Instrumentation Services personnel. System hardware was supplied by Johnson Controls, Inc., Milwaukee, Wisconsin, which built the system to Ames Laboratory specifications.

Garry Wells

Machining Precision Washers

A new punch and die method for making precision washers was developed in 1976 by Garry Wells, manager, Machine Shop Services. The simple, inexpensive process consists of machining a made-to-order punch and die out of available stock, brass or steel, for whatever size washer is desired.

Descriptions of the method have been published in *Machine and Tool Blue Book*, *Manufacturing Engineering*, *Cutting Tool Engineering*, and *Industry Week*.

Patents

Bernard Gerstein, senior chemist, and David Macaulay, formerly a junior chemist at the Laboratory, received a patent in 1976 for a method of removing carbon monoxide from gases.

The method involves passing an atmosphere containing carbon monoxide through a bed of a terbium oxide catalyst, which oxidizes the carbon monoxide to carbon dioxide.

Arthur P. D'Silva, associate chemist, and Velmer A. Fassel, deputy director, were awarded a patent in 1976 on their improved x-ray image intensifier phosphor.

Under x-ray irradiation, the yttrium-gadolinium-terbium

phosphate phosphor emits intense violet-blue light in the wavelength where x-ray film used in medicine and industry is most sensitive.

Widespread use of the phosphor could result in a 10-20% reduction in radiation exposure for people receiving diagnostic medical and dental x-rays.

Premo Chiotti, senior metallurgist, and Mahesh Chandra Jha, Arvada, Colorado, were granted a patent in 1977 for a new method of separating uranium from mixed oxides of thorium and uranium.

The Chiotti-Chandra Jha process employs a molten chloride salt containing thorium tetrachloride and thorium metal, which reduces the uranium oxide to uranium metal.

John D. Verhoeven, senior metallurgist, and Edwin D. Gibson, associate metallurgist, were awarded a patent in 1977 on their techniques for producing and machining the cathodes of electron guns used in the scanning electron microscope (SEM).

The Verhoeven-Gibson process creates high-purity single-crystal cathodes of lanthanum hexaboride, which produce electron beams 15 to 20 times brighter than those of tungsten cathodes. The new cathodes are more reliable over time than conventionally-produced LaB_6 cathodes.

Verhoeven and Gibson also modified the electron gun so the cathode can be easily removed for resharpening, and they developed a simple device for grinding the tips.

1977 Group Pictures

Scientific Group

Administrative and Service Group

Publications

Basic Energy Sciences

Nuclear Science

Alquist, L. J., W. C. Schick, Jr., W. L. Talbert, Jr. and S. A. Williams		Western, W. R., John C. Hill, W. L. Talbert, Jr. and W. C. Schick, Jr.	
On-Line γ - γ Angular Correlations of Transitions in ^{140}Ba		Decay of Mass-Separated ^{137}Xe to Levels in the N=82 Nucleus ^{137}Cs	
<i>Phys. Rev. C</i> 13, 1277 (1976)	3666	<i>Phys. Rev. C</i> 15, 1024 (1977)	4067
Bischof, C. J. and W. L. Talbert, Jr.		Western, W. R., John C. Hill, W. C. Schick, Jr., and W. L. Talbert, Jr.	
Gamma-Ray Decay Schemes for ^{93}Kr , ^{93}Rb and ^{93}Sr		Decay of Mass-Separated ^{138}I	
<i>Phys. Rev. C</i> 15, 1047 (1977)	3929	<i>Phys. Rev. C</i> 14, 275 (1976)	3855
Bunting, R. L., W. L. Talbert, Jr., J. R. McConnell, and R. A. Meyer		Wohn, Fred K.	
Decays of ^{88}Kr and ^{88}Rb		The Study of Nuclei Far From Stability with TRISTAN II at the High Flux Beam Reactor at Brookhaven	IS-4270
<i>Phys. Rev. C</i> 13, 1577 (1976)	3778	Wohn, F. K., M. D. Glascock, W. L. Talbert, Jr., S. T. Hsue and R. J. Hanson	
Carlson, G. H., W. L. Talbert, Jr., and V. SethuRaman		Ground-State β -Branching of Gaseous Fission Products and Their Daughters for $A=88-91$	
Nuclear Data Sheets for $A=118$	3864	<i>Phys. Rev. C</i> 13, 2492 (1976)	3849
<i>Nucl. Data Sheets</i> 17, 1 (1976)			
Glascock, M. D., W. L. Talbert, Jr., and C. L. Duke			
Level Schemes of ^{91}Rb and ^{91}Sr Populated in Beta Decay			
<i>Phys. Rev. C</i> 13, 1630 (1976)	3787		
Hill, John C., D. G. Shirk, R. F. Petry and K. H. Wang			
^{200}Pt - ^{200}Au Decay Chain			
<i>Phys. Rev. C</i> 13, 2484 (1976)	3796		
Hsu, H. H., S. A. Williams, F. K. Wohn and F. J. Margetan			
Collective Structure of the Even-Mass Pd Isotopes			
<i>Phys. Rev. C</i> 16, 1626 (1977)	4099		
Skank, Harold D.			
An Isotope Separator Beam Position Stabilizer of High Sensitivity			
<i>Nucl. Instrum. Meth.</i> 136, 73 (1976)	3862		
Talbert, W. L., Jr., F. K. Wohn, A. R. Landin, J. C. Pacer, R. L. Gill, M. A. Cullison, G. A. Sheppard, K. A. Burke, K. L. Malaby and A. F. Voigt			
Target Developments at TRISTAN			
<i>Nucl. Instrum. Meth.</i> 139, 257 (1976)	IS-M-79		
Voigt, Adolf F.			
Table of Fission Product Nuclides	IS-4025		
Western, W. R., John C. Hill, W. L. Talbert, Jr. and W. C. Schick, Jr.			
Decay of Mass-Separated ^{136}I to Levels in the N=82 Nucleus ^{136}Xe Including Neutron Particle-Hole States			
<i>Phys. Rev. C</i> 15, 1822 (1977)	4078		

Materials Science

Metallurgy and Ceramics

Bajaj, R. and M. S. Wechsler	
Defect Clusters in Neutron-Irradiated Vanadium Containing Oxygen	
<i>Met. Trans. A</i> 7A, 351 (1976)	3710
Bajaj, R., and M. S. Wechsler	
The Influence of Oxygen Impurity Atoms on Defect Clusters and Radiation Hardening in Neutron-Irradiated Vanadium	
<i>Fundamental Aspects of Radiation Damage in Metals</i> Proc. International Conference held Gatlinburg, Tenn., October 6-10, 1975. eds., M. T. Robinson and F. W. Young, Jr., (Oak Ridge, Tennessee: Energy Research and Development Administration, 1976) pp. 1010-1017 (CONF-751006)	

IS-M-49

Carlson, O. N. and F. A. Schmidt	
Electrotransport of Solutes in Rare Earth Metals	
<i>Proceedings of the 12th Rare Earth Research Conference</i> , ed., C. E. Lundin (Denver, Colorado: University of Denver and Denver Research Institute, 1976) Vol. 1, pp. 460-469	IS-M-71
Carlson, O. N., W. N. Weins and F. A. Schmidt	
Diffusion and Electrotransport of Metallic Solutes in Thorium Metal	
<i>Trans. Am. Nucl. Soc.</i> 27, 286 (1977)	IS-M-103

Carlson, O. N., D. G. Alexander and G. Elssner The Effect of Oxygen on the Strength and Ductility of Polycrystalline Vanadium in the Range of 4.2 to 400 K <i>Met. Trans. A</i> 8A, 99 (1977)	3743	Greiner, J. D., D. T. Peterson and J. F. Smith Comparison of the Single Crystal Elastic Constants of Th and a ThC _{0.063} Alloy <i>J. Appl. Phys.</i> 48, 3357 (1977)	4115
Carlson, O. N. and F. A. Schmidt Electrotransport of Solutes in Rare Earth Metals <i>J. Less-Common Metals</i> 53, 73 (1977)	4001	Greiner, J. D., D. M. Schlader, O. D. McMasters, K. A. Gschneidner, Jr., and J. F. Smith Elastic Constants of Neodymium Single Crystals in the Temperature Range 4.2-300 K <i>J. Appl. Phys.</i> 47, 3427 (1976)	3877
Cassidy, M. P., B. C. Muddle, T. E. Scott, C. M. Wayman and J. S. Bowles Experimental Studies of the Crystallography of the Precipitation of β Vanadium Hydride <i>Acta Met.</i> 25, 829 (1977)	4241	Gschneidner, K. A., Jr., P. Burgardt, S. Legvold, J. O. Moorman, T. A. Vrostek and C. Stassis Kondo Scattering in a Pure Metal— β Cerium: I. Experimental <i>J. Phys. F: Metal Phys.</i> 6, 249 (1976)	3592
Chang, C. P. and C. W. Chen An Electron-Microscopy Study of Neutron-Induced Defect Clusters in Niobium <i>J. Crystal Lattice Defects</i> 7, 91 (1977)	4137	Gschneidner, K. A., Jr. Availability and Costs of Rare Earth Metals, Especially the Heavy Lanthanides <i>J. Underwater Acoustics</i> 27, 159 (1977)	3847
Chang, C. P. and C. W. Chen Observations on Interactions of Glissile Dislocations in Niobium by Transmission Electron Microscopy <i>Physica Status Solidi (a)</i> 39, 549 (1977)	4000	Gschneidner, K. A., Jr. Physical Properties and Behavior of Allotropically Pure α -, β -, and γ -Ce R. D. Parks, ed., <i>Valence Instabilities and Related Narrow-Band Phenomena</i> , (Plenum Publishing Corporation, 1977) pp. 89-100. IS-M-88	
Clark, A. E., J. R. Cullen, O. D. McMasters, and E. R. Callen Rhombohedral Distortion in Highly Magnetostrictive Laves Phase Compounds <i>Magnetism and Magnetic Materials—1975</i> , eds., J. J. Becker, G. H. Lander and J. J. Rhyne (New York: American Institute of Physics, 1976) pp. 192-193.	IS-M-92	Gschneidner, K. A., Jr. and B. L. Evans Rare Earth Information Center (RIC) <i>Proceedings of the Materials Information Review</i> , April 16-17, 1974, Gaithersburg, Maryland (National Bureau of Standards Special Publications 463, pp. III 2.1-2.9 issued January 1977).	3359
Dole, S. L., and O. Hunter, Jr. Elastic Properties of Some Gd ₂ O ₃ -HfO ₂ Compositions <i>J. Nucl. Materials</i> 59, 207 (1976)	3660	Houmann, J. G., B. Lebech, A. R. Mackintosh, W. J. L. Buyers, O. D. McMasters and K. A. Gschneidner, Jr. Central Peaks and Soft Modes in Praseodymium <i>Physica</i> 86-88B, 1156 (1977)	4201
Dole, S. L., O. Hunter, Jr., and C. J. Wooge Elastic Properties of Monoclinic Hafnium Oxide at Room Temperature <i>J. Am. Ceram. Soc.</i> 60, 488 (1977)	4075	Hultgren, P. J. and T. E. Scott Proton-Bombardment-Induced Blistering of Vanadium <i>J. Appl. Phys.</i> 47, 4394 (1976)	3876
Dole, S. L., O. Hunter, Jr. and F. W. Calderwood Elastic Properties of Polycrystalline Scandium and Thulium Sesquioxides <i>J. Am. Ceram. Soc.</i> 60, 167 (1977)	3881	Hunter, O., Jr. and George E. Graddy, Jr. Porosity Dependence of Elastic Properties of Polycrystalline Cubic Lu ₂ O ₃ <i>J. Am. Ceram. Soc.</i> 59, 82 (1976)	3727
Gibson, E. D. and J. D. Verhoeven A Device for Precise Alignment of Electron Beam and Sample in the Scanning Electron Microscope <i>J. Physics E: Scientific Instruments</i> 10, 1076 (1977)	4048	Inoue, T., S. G. Sankar, R. S. Craig, W. E. Wallace, and K. A. Gschneidner, Jr. Influence of Crystal Field Interaction on the Thermal Behavior of ErAl ₂ <i>2nd International Conference on Crystal Field Effects in Metals and Alloys</i> , September 1-4, 1976, Zurich, Switzerland IS-M-81	

Inoue, T., S. G. Sankar, R. S. Craig, W. E. Wallace and K. A. Gschneidner, Jr. Low Temperature Heat Capacities and Thermal Properties of $DyAl_2$, $ErAl_2$ and $LuAl_2$. <i>J. Phys. Chem. Solids</i> 38, 487 (1977)	3940	Mayer, V. F. and T. E. Scott Properties of Steels Ausformed by Impact Extrusion <i>Hot Deformation of Austenite</i> November 17, 1975, Cincinnati, Ohio (pub. The Metallurgical Society of AIME, 1977)	IS-M-45
Kayser, F. X. Diffraction Evidence for an FCC \leftrightarrow HCP Transformation in Ytterbium	IS-2629	McMasters, O. D. and K. A. Gschneidner, Jr. The Praseodymium-Lead System <i>J. Less-Common Metals</i> 45, 275 (1976)	3883
Kayser, F. X. and D. E. Diesburg High-Temperature Vacuum-Annealing System	IS-3765	McMasters, O. D. and K. A. Gschneidner, Jr. Phase Boundaries and Thermodynamic Analysis of the Rare-Earth-Rich Alloys in the La-Tl and Pr-In Systems <i>J. Less-Common Metals</i> 44, 281 (1976)	3637
Kayser, F. X. and G. L. Stowe Thermal Processing and Encapsulation of Solids in Metal Tabulations <i>J. Vacuum Science & Tech.</i> 14, 747 (1977)	3681	Mourer, D. P. and J. D. Verhoeven On the Spiral Growth of Pb-Sn Eutectic Alloys <i>J. Crystal Growth</i> 37, 197 (1977)	4047
Kubaschewski, Oswald, John F. Smith and Donald M. Bailey A Thermodynamic Analysis of Phase Relationships in the Iron-Copper System <i>Zeitschrift fur Metallkunde</i> 68, 495 (1977)	4037	Owen, C. V. and T. E. Scott Mechanical Properties of Polycrystalline Cerium from 78 to 525 K <i>J. Less-Common Metals</i> 46, 151 (1976)	3746
Litwinchuk, A., F. X. Kayser, H. H. Baker and A. Henkin The Rockwell C Hardness of Quenched High-Purity Iron-Carbon Alloys Containing 0.09 to 1.91% Carbon <i>J. Materials Sci.</i> 11, 1200 (1976)	3784	Owen, C. V., F. A. Schmidt and O. N. Carlson Effect of Copper, Tin, Nickel and Chromium on Mechanical Properties of Low-Carbon Steel <i>Metals Tech.</i> 90, 441 (1976)	3236
Lunde, B. K. and F. A. Schmidt Precision Sample-and-Hold Stores Voltage for a Week <i>Electronics</i> 49, 120 (1976)	4126*	Owen, C. V. and T. E. Scott Mechanical Properties of Polycrystalline Praseodymium from 78 to 525 K <i>J. Less-Common Metals</i> 51, 117 (1977)	3928
Lunde, B. K. and F. A. Schmidt Light Sensor for Ultrahigh Vacuum Systems Utilizing a Silicon Photovoltaic Cell <i>Appl. Optics</i> 15, 2625 (1976)	3954	Oyinlola, A. K., C. P. Burger and T. E. Scott A Novel Modelling Technique for Hot Forming of Metals <i>Proceedings Second International Conference on Mechanical Behavior of Materials</i> , Boston, Massachusetts, August 16-20, 1976, pp. 1999-2003 (1977)	IS-M-105
Mason, J. T. and P. Chiotti Phase Diagram and Thermodynamic Properties of the Yttrium-Zinc System <i>Met. Trans. A</i> 7A, 287 (1976)	3798	Rahman, S. F. and M. F. Berard Self-Diffusion of Co^{60} in $Co_{1-x}O$ Single Crystals of Controlled Stoichiometry <i>J. Am. Ceram. Soc.</i> 60, 67 (1977)	3887
Mathuni, J., O. N. Carlson, E. Fromm and R. Kirchheim Electrotransport and Thermotransport of Oxygen and Nitrogen in Vanadium Metal <i>Met. Trans. A</i> 7A, 977 (1976)	3711	Rausch, J. B. and F. X. Kayser The Elastic Constants and Electrical Resistivity of Fe_3Si <i>J. Appl. Phys.</i> 48, 487 (1977)	3961
Mattocks, P. G., C. M. Muirhead, D. W. Jones, B. J. Beaudry and K. A. Gschneidner, Jr. Purification of the Rare Earth Metals. IV. Solid State Electrotransport Processing of Neodymium <i>J. Less-Common Metals</i> 53, 253 (1977)	4070	Scheidecker, R. W., D. R. Wilder, and H. Moeller The System Eu_2O_3 - HfO_2 <i>J. Am. Ceram. Soc.</i> 60, 501 (1977)	3956
<i>*no reprints available</i>			
67			

Schirber, J. E., F. A. Schmidt, B. N. Harmon and D. D. Koelling Comment on De Haas-Van Alphen Measurements in Gadolinium <i>Phys. Rev. Lett.</i> 36, 448 (1976)	3880	on the Elastic Properties of Selected Eu ₂ O ₃ -HfO ₂ Compositions <i>J. Am. Ceram. Soc.</i> 59, 207 (1976)	3644
Schlader, D. M. and J. F. Smith Shear Moduli of a Niobium Single Crystal with Hydrogen Additions at Elevated Temperature <i>J. Appl. Phys.</i> 48, 5062 (1977)	4203	Trivedi, R. Crystal Growth with Parabolic Interfaces	IS-3939
Schmidt, F. A., B. K. Lunde and D. E. Williams The Ultra-Purification of Metals by Electrotransport Under Outer Space Environmental Conditions	IS-4125	Tsang, T.-W. E., K. A. Gschneidner, Jr., and F. A. Schmidt Low Temperature Heat Capacity of Scandium and Scandium Alloys <i>Proceedings of the 12th Rare Earth Research Conference</i> , ed., C. E. Lundin (Denver, Colorado: University of Denver and Denver Research Institute, 1976) Vol. II, pp. 847-854.	IS-M-72
Schmidt, F. A. and O. N. Carlson Electrotransport of Carbon in Molybdenum and Uranium <i>Met. Trans. A</i> 7A, 127 (1976)	3619	Tsang, T.-W. E., K. A. Gschneidner, Jr., and F. A. Schmidt Low Temperature Heat Capacity of Electro-Transported Scandium <i>Solid State Comm.</i> 20, 737 (1976)	3879
Schmidt, F. A. and O. N. Carlson Electrotransport of Carbon, Nitrogen and Oxygen in Scandium <i>J. Less-Common Metals</i> 50, 237 (1976)	3885	Verhoeven, J. D. and H. H. Baker A Specimen for Evaluating the Area of SACPs <i>J. Materials Sci.</i> 11, 388 (1976)	3643
Scott, T. E. Calculations Concerning Precipitate Growth During Impact Extrusion	IS-3623	Verhoeven, John D. and Rohit K. Trivedi The Metallurgy of Reticulated Silver Sheet <i>Metallography</i> 9, 367 (1976)	3641
Shaiu, Bin Jenn, P. C. S. Wu and P. Chiotti Thermodynamic Properties of the Double Oxides of Na ₂ O with the Oxides of Cr, Ni and Fe <i>J. Nucl. Materials</i> 67, 13 (1977)	3980	Verhoeven, J. D., E. D. Gibson, M. A. Noack and R. J. Conzemius An Arc Floating Zone Technique for Preparing Single Crystal Lanthanum Hexaboride <i>J. Crystal Growth</i> 36, 115 (1976)	3898
Smith, J. F. Single Crystal Elastic Constants with Inferences Pertinent to Vibrational Behavior and Superconductivity <i>Ferroelectricity</i> 16, 95 (1977)	IS-M-51	Verhoeven, J. D., E. D. Gibson and M. A. Noack Influence of Crystallography and Purity on Brightness of LaB ₆ Cathodes <i>J. Appl. Phys.</i> 47, 5105 (1976)	3913
Smith, J. F. and Z. Moser Thermodynamic Properties of Binary Lithium Systems—A Review <i>J. Nucl. Mater.</i> 59, 158 (1976)	3645	Verhoeven, J. D. and E. D. Gibson Evaluation of a LaB ₆ Cathode Electron Gun <i>J. Phys. E9</i> , 65 (1976)	3714
Sorensen, S. M., Jr. and C. W. Chen The Effect of Carbon on Void Formation in Neutron-Irradiated Nickel <i>Radiation Effects</i> 33, 109 (1977)	4074	Verhoeven, J. D., D. P. Mourer and E. D. Gibson The Morphology and Crystallography of Directionally Solidified Pb-Sn Eutectic Alloys <i>Met. Trans. A</i> 8A, 1239 (1977)	4057
Sorensen, S. M., Jr. and C. W. Chen Suppression of Void Formation in Nickel by a Dynamic Trapping Mechanism CONF-751006-P1, pp. 1213-20 (1976)	IS-M-106	Wechsler, M. S. Radiation Embrittlement of Metals and Alloys <i>Fundamental Aspects of Radiation Damage in Metals</i> , Proc. International Conference held Gatlinburg, Tenn., October 6-10, 1975, eds., M. T. Robinson and F. W. Young, Jr. (Oak Ridge, Tenn.: Energy Research and Development Administration, 1976) pp. 991-1009 (CONF-751006)	IS-M-50
Suchomel, R. R., R. S. Cook, M. F. Berard and O. Hunter, Jr. HfO ₂ and Ta ₂ O ₅ as Grain Growth Inhibitors in Eu ₂ O ₃ <i>J. Nucl. Materials</i> 61, 99 (1976)	3764		
Suchomel, R. R. and O. Hunter, Jr. Effects of Temperature and Microstructure			

Wirkus, C. D. and D. R. Wilder Oxide Grain Growth and the Er_2O_3 -Ta Interface <i>Materials Science and Engineering</i> 30, 89 (1977)	4112	Vacuum-UV Spectral Region <i>J. Appl. Phys.</i> 47, 602 (1976)	3721
Wirkus, C. D., R. W. Scheidecker and D. R. Wilder Refractories Based on $3\text{Er}_2\text{O}_3\text{-Ta}_2\text{O}_5$ <i>Materials Research Bulletin</i> 12, 367 (1977)	4097	Aspnes, D. W., C. G. Olson and D. W. Lynch Temperature Coefficients of Energy Separations Between Ga 3d Core Levels and sp^3 Valence-Conduction Bands in GaP <i>Phys. Rev. Lett.</i> 36, 1563 (1976)	3922
Zerwekh, R. P. and T. E. Scott Strain Rate Sensitivity in Nickel-Copper-Carbon Alloys from 77 K to 523 K <i>Proceedings Second International Conference on Mechanical Behavior of Materials</i> , Boston, Massachusetts, August 16-20, 1976, pp. 1816-20 (1977)	IS-M-104	Aspnes, D. W., C. G. Olson and D. W. Lynch Ordering and Absolute Energies of the L_6^c and X_6^c Conduction Band Minima in GaAs <i>Phys. Rev. Lett.</i> 37, 766 (1976)	3930
Adduci, D. J., P. A. Hornung and D. R. Torgeson An Auto-Increment Circuit for a Digital Pulse Programmer <i>Rev. Scientific Instruments</i> 48, 661 (1977)	3969	Barnes, R. G., K. P. Roenker, and H. R. Brooker Deuteron and Niobium-93 Magnetic Resonance Study of Niobium Deuterides <i>Sonderdruck Zeits: Berichte der Bunsen-Gesellschaft fur Physikalische Chemie (Fruher Zeitschrift fur Elektrochemie)</i> 80, 876 (1976)	3935
Adduci, D. J., P. A. Hornung, and D. R. Torgeson Extremely Fast Recovery Time Receiver for Pulsed NMR <i>Rev. Sci. Instruments</i> 47, 1503 (1976)	3971	Benner, R. E., E. M. Brody and H. R. Shanks Elastic Moduli of ReO_3 by Brillouin Scattering <i>J. Solid State Chem.</i> 22, 361 (1977)	4136
Aspnes, D. E. and D. W. Lynch Optical Instrumentation and Measurement Techniques <i>Proc. Summer School on Synchrotron Radiation Research held Alghero, Italy, 1976</i> . pub. H. Winick and I. F. Quercia, eds., (1977) p. 230	4030	Bevolo, A. J., E. D. Gibson, J. D. Verhoeven and D. K. Finnemore Specific Heat of Composite Superconductors in the Proximity-Effect Regime <i>Phys. Rev. B</i> 14, 114 (1976)	3749
Aspnes, D. E., C. G. Olson and D. W. Lynch Electroreflectance of GaAs and GaP to 27 eV Using Synchrotron Radiation <i>Phys. Rev. B</i> 13, 2527 (1975)	3551	Bevolo, A. J., H. R. Shanks, and D. E. Eckels Molar Heat Capacity of GeTe, SnTe and PbTe from 0.9 to 60 K <i>Phys. Rev. B</i> 13, 3523 (1976)	3652
Aspnes, D. W., C. G. Olson and D. W. Lynch Electroreflectance of GaSb From 0.6 to 26 eV <i>Phys. Rev. B</i> 14, 4450 (1976)	3916	Black, E. S., D. W. Lynch and C. G. Olson Optical Properties (0.1-25 eV) of Nb-Mo and Other Nb-Based Alloys <i>Phys. Rev. B</i> 16, 2337 (1977)	4111
Aspnes, D. W., C. G. Olson and D. W. Lynch Line Shape and Symmetry Analysis of Core-Level Electroreflectance Spectra of GaP <i>Phys. Rev. B</i> 14, 2534 (1976)	3910	Bloom, D., H. R. Shanks, J. Barnes, K. D. McKee, J. E. Ostenson and D. K. Finnemore Pressure Dependence of the Superconducting Transition Temperature in Alkali Tungsten Bronzes <i>J. Low Temp. Phys.</i> 23, 743 (1976)	3716
Aspnes, D. E., C. G. Olson and D. W. Lynch Modulation Spectroscopy at Non-Normal Incidence with Emphasis on the		Bolker, B. F. T. Effects of Temperature and Bias on the Composition of RF Sputtered Te-As-Ge Ternary Films <i>J. Vacuum Science & Tech.</i> 14, 254 (1977)	4043
		Bolker, B. F. T. and P. H. Sidles Thin-Film Platinum Resistance Thermometers: Fabrication and Use <i>J. Vacuum Science & Tech.</i> 14, 205 (1977)	4044

Borsa, F., D. R. Torgeson and H. R. Shanks Charge Density Wave Amplitudes in 2H-NbSe ₂ and 2H-TaSe ₂ Determined by ⁷⁷ Se NMR <i>Phys. Rev. B</i> 15, 4576 (1977)	4013	Clem, John R. On the Establishment of Force-Free Configurations in Type-II Superconductors <i>Phys. Lett.</i> 59A, 401 (1976)	4016
Borsa, F., D. J. Benard, W. C. Walker and A. Baviera NMR and Birefringence Study of Structural Transitions in Disordered Crystals: Rb _x K _{1-x} MnF ₃ <i>Phys. Rev. B</i> 15, 84 (1977)	3964	Creel, R. B., E. D. Von Meerwall and R. G. Barnes Spin-One NMR Theory for Strong Electric Field Gradients, Applied to ¹⁴ N Shift Measurements in Polycrystalline Solids <i>Chem. Phys. Lett.</i> 49, 501 (1977)	3981
Borsa, F. and R. G. Lecander Enhancement of the B ¹¹ Nuclear Relaxation in CrB ₂ Near the Antiferromagnetic Transition <i>Solid State Comm.</i> 20, 389 (1976)	3930	Culp, C. H. and D. E. Eckels A Computer Controlled Data Measurement and Analysis System Used for Measuring Switching Parameters of Semiconductors	IS-3691
Bottka, N., D. L. Johnson and R. Glosser Band Population Interference Phenomena in the Electro-reflectance of Narrow Gap Semiconductors Under Heavy Surface Accumulation <i>Phys. Rev. B</i> 15, 2184 (1977)	3958	Felcher, G. P., G. H. Lander, T. Arai, S. K. Sinha and F. H. Spedding Asphericity in the Magnetization Distribution of Holmium <i>Phys. Rev. B</i> 13, 3034 (1976)	3946
Burgardt, P., K. A. Gschneidner, Jr., D. C. Koskenmaki, D. K. Finnemore, J. O. Moorman, S. Legvold, C. Stassis and T. A. Vrostek Electrical Resistivity and Magnetic Susceptibility of β -Cerium from 2 to 300 K <i>Phys. Rev. B</i> 14, 2995 (1976)	3874	Fields, J. N. and R. A. Klemm Classical Calculation of Correlation Functions in a One-Dimensional Fermi Gas <i>Phys. Rev. B</i> 16, 4841 (1977)	4335
Burgardt, P., S. Legvold, H. J. Queen and K. A. Gschneidner, Jr. Magneto-Resistivity of Beta-Cerium <i>Magnetism and Magnetic Materials—1975</i> , eds., J. J. Becker, G. H. Lander and J. J. Rhyne (New York: American Institute of Physics, 1976) pp. 329-330	IS-M-60	Fuchs, R. and S. H. Liu Sum Rule for the Polarizability of Small Particles <i>Phys. Rev. B</i> 14, 5521 (1976)	3915
Chazalviel, J.-N., M. Campagna, G. K. Wertheim and H. R. Shanks Final-State Effects in the X-Ray Photoelectron Spectra of Cubic Sodium-Tungsten Bronzes <i>Phys. Rev. B</i> 16, 697 (1977)	4243	Furtak, T. E. and D. W. Lynch Bias Potential Effects on the Anisotropic Electroreflectance of Single Crystal Silver <i>J. Electroanal. Chem. & Interfacial Electrochem.</i> 79, 1 (1977)	3825
Chess, N. J., J. G. Traylor, H. R. Shanks and S. K. Sinha Phonon Spectra of Hexagonal Potassium Tungsten Bronzes (K _{0.33} WO ₃) <i>Ferroelectrics</i> 16, 115 (1977)	3785	Furtak, T. E. Cyanide Bonding on AG (110) Investigated by Electro-reflectance <i>Solid State Comm.</i> 23, 373 (1977)	4171
Clem, John R. Spiral Vortex Expansion Instability in Type-II Superconductors <i>Phys. Rev. Lett.</i> 38, 1425 (1977)	4122	Furtak, T. E. and David W. Lynch Electroreflectance in Metals <i>Il Nuovo Cimento</i> 39, 346 (1977)	4018
Clem, John R., H. R. Kerchner and S. T. Sekula ac Permeability of Defect-Free Type-II Superconductors <i>Phys. Rev. B</i> 14, 1893 (1976)	3679	Furtak, T. E. Sinusoidal Radiation Chopper for Modulation of the Maximum Available Light Intensity <i>Appl. Optics</i> 16, 803 (1977)	4035
		Gschneidner, K. A., Jr., P. Burgardt, S. Legvold, J. O. Moorman, T. A. Vrostek and C. Stassis Kondo Scattering in a Pure Metal— β Cerium: I. Experimental <i>J. Phys. F: Metal Phys.</i> 6, L49 (1976)	3592
		Harmon, B. and S. K. Sinha Calculation of the Electron-Photon Spectral Function of Niobium <i>Superconductivity in d- and f-band Metals</i> , ed., D. H. Douglass, (New York: Plenum Publishing Inc., 1976) pp. 391-412	3899

Harmon, B. N., and S. K. Sinha The Electron-Phonon Spectral Function and Mass Enhancement of Niobium <i>Phys. Rev. B</i> 16, 3919 (1977)	4198	Kopp, L., B. N. Harmon and S. H. Liu Band Structure of Cubic $\text{Na}_x \text{WO}_3$ <i>Solid State Comm.</i> 22, 677 (1977)	4143
Harper, W. C. and R. G. Barnes A Useful Nuclear Magnetic Resonance Lineshape Function for Metallic Solids <i>J. Magnetic Resonance</i> 21, 507 (1976)	3670	Krause, J. K. and C. A. Swenson The Melting Curve of Helium from 4 to 25 K <i>Cryogenics</i> p. 413 (1976)	3789
Hwang, Y. S., D. R. Torgeson, A. S. Khan and R. G. Barnes Hydrogen Locations and Motions in the Metallic Hydride System Ta_6SH_x . I. Temperature Dependence of the Proton NMR Linewidth and Second Moment <i>Phys. Rev. B</i> 15, 4564 (1977)	4069	Kroeger, F. R. and C. A. Swenson Absolute Linear Thermal Expansion Measurements on Copper from 5 K to 320 K <i>J. Appl. Phys.</i> 48, 853 (1977)	4009
Hwang, Y. S., D. R. Torgeson and R. G. Barnes ^{93}Nb Knight Shift and Quadrupole Coupling Parameters in the Orthorhombic β Phase Hydride and Deuteride of Niobium <i>Solid State Comm.</i> 24, 773 (1977)	4185	Laucht, H., J. K. Sass, H. J. Lewerenz and K. L. Kliewer Vectorial Volume Effect in Interfacial Photoemission from Cu(111) and Au(111) at Low Photon Energies <i>Surface Science</i> 62, 106 (1977)	4146
Johnson, David Linton and Peter R. Rimbey Aspects of Spatial Dispersion in the Optical Properties of a Vacuum-Dielectric Interface <i>Phys. Rev. B</i> 14, 2398 (1976)	3873	Legvold, S., T. S. Petersen, K. A. Gschneidner, Jr., P. Burgardt and J. O. Moorman Low Temperature Magnetic and Electrical Properties of DHCP Ce-La Alloys <i>Physica</i> 86B & C, Part 1, 55 (1977)	IS-M-82
Jung, W. D., F. A. Schmidt, and G. C. Danielson Thermal Conductivity of High Purity Vanadium <i>Phys. Rev. B</i> 15, 659 (1977)	3777	Legvold, S., P. Burgardt, B. J. Beaudry and K. A. Gschneidner, Jr. Electrical Resistivity of La <i>Phys. Rev. B</i> 16, 2479 (1977)	4087
Khanna, S. M., John R. Clem and M. A. R. LeBlanc Flux-Flow Voltages During Guided Flux Collapse from Hollow Superconducting Cylinders <i>Phys. Rev. B</i> 14, 3989 (1976)	3878	Legvold, S., P. Burgardt and B. J. Beaudry Exchange VS Crystal Fields in Gd-Pr Single Crystal Alloys <i>Proceedings of Second International</i> <i>Conference on Crystal Field Effects in</i> <i>Metals and Alloys</i> , September 1-4, 1976, Zurich, Switzerland, pp. 340-44 (1977)	3984
Kliewer, K. L. Surface Photoeffect for Metals <i>Phys. Rev. B</i> 14, 1412 (1976)	3865	Legvold, S., B. N. Harmon, B. J. Beaudry, P. Burgardt, D. R. Younkin, and H. W. White Magnetic Properties of Gadolinium-Rich Alloys <i>Phys. Rev. B</i> 16, 4986 (1977)	4131
Kliewer, K. L. and K.-H. Bennemann Photoemission from the Drude Absorption <i>Phys. Rev. B</i> 15, 3731 (1977)	3735	Legvold, S., B. J. Beaudry, J. E. Ostenson and B. N. Harmon Superconducting Electron Pair Breaking in DHCP La-Eu and La-Gd <i>Solid State Comm.</i> 21, 1061 (1977)	4066
Kliewer, K. L. The Surface Photoeffect for Metals: Energy and Angular Electron Distributions <i>Phys. Rev. B</i> 15, 3759 (1977)	4056	Legvold, S., R. W. Green, B. J. Beaudry and J. E. Ostenson Superconductivity in Singlet La-Pr and in Non-Magnetic La-Rare Earth Alloys <i>Solid State Comm.</i> 18, 725 (1976)	3707
Koelling, D. D. and B. N. Harmon A Technique for Relativistic Spin Polarised Calculations <i>J. Phys. C</i> 10, 3107 (1977)	4002	Lingard, Per-Anker No Giant Two-Ion Anisotropy in the Heavy-Rare-Earth Metals <i>Phys. Rev. Lett.</i> 36, 385 (1976)	3892
	4091	Liu, S. H. Quasispin Model of Itinerant Magnetism <i>Phys. Rev. B</i> 13, 3962 (1976)	3842

Liu, S. H., P. Burgardt, K. A.		Piacentini, M., D. W. Lynch and C. G. Olson
Gschneidner, Jr. and S. Legvold		Thermorelectance of LiF Between 12 and 30 eV
Kondo Scattering in a Pure Metal— β Cerium: II. Theoretical		<i>Phys. Rev. B</i> 13, 5530 (1976)
<i>J. Phys. F: Metal Phys.</i> 6, L 55 (1976)	3611	3792
Liu, S. H.		Rimbey, Peter R.
Magnetic Excitations Above the Critical Temperature		Additional Boundary Conditions and Surface Exciton Dispersion Relations
<i>Phys. Rev. B</i> 13, 2979 (1976)	3576	<i>Phys. Rev. B</i> 15, 1215 (1977)
		3949
Liu, S. H.		Rimbey, Peter R.
Quasispin Model of Itinerant Magnetism—High Temperature Theory		Polariton Green's Functions for Semi-Infinite Spatially Dispersive Media with Applications to Molecular Crystal Reflectivity Spectra
<i>Phys. Rev. B</i> 15, 4281 (1977)	3972	<i>J. Chem. Phys.</i> 67, 698 (1977)
		4119
Liu, S. H.		Roenker, K. P., R. G. Barnes and H. R. Brooker
Theory of 1/f Noise in Metal Films and Whiskers		A Deuteron Magnetic Resonance Study of Tantalum Deuterides
<i>Phys. Rev. B</i> 16, 4218 (1977)	4195	<i>Sonderdruck Zeits. Berichte der Bunsen-Gesellschaft fur Physikalische Chemie (fruher Zeitschrift fur Elektrochemie)</i> 80, 470 (1976)
		3854
Lyon, K. G., G. L. Salinger, C. A. Swenson and G. K. White		Roeske, F. Jr., H. R. Shanks and D. K. Finnemore
Linear Thermal Expansion Measurements on Silicon from 6 to 340 K		Superconducting and Normal-State Thermal Conductivity of NbSe ₂
<i>J. Appl. Phys.</i> 48, 865 (1977)	4008	<i>Phys. Rev. B</i> 16, 3929 (1977)
		4173
Lynch, David W.		Rouze, Ned C. and John R. Clem
Current Research in Synchrotron Radiation Spectroscopy—Metals		NEDR: A Computer Program for Calculating ac Losses in a Type-II Superconductor with a Field-Dependent Surface Barrier
<i>Proc. Summer School on Synchrotron Radiation Research</i> held Alghero, Italy, 1976 pub. H. Winick and I. F. Quercia, eds., (1977) p. 260	4022	IS-4017
		Schirber, J. E., F. A. Schmidt, B. N. Harmon and D. D. Koelling
Lynch, D. W. and D. E. Aspnes		Comment on De Haas-Van Alphen Measurements in Gadolinium
Linear Optics and Solid-State Processes		<i>Phys. Rev. Lett.</i> 36, 448 (1976)
<i>Proc. Summer School on Synchrotron Radiation Research</i> held Alghero, Italy, 1976 pub. H. Winick and I. F. Quercia, eds., (1977) p. 171	4023	3880
		Schirber, J. E., F. A. Schmidt, B. N. Harmon and D. D. Koelling
Lynch, David W.		Effect of Pressure on the Fermi Surface and Band Structure of Ferromagnetic Gd. I. Experiment
Optical Constants and Their Measurement		<i>Phys. Rev. B</i> 16, 3230 (1977)
<i>J. de Physique</i> 38, 21 (1977)	4194	4321
McClelland, J. F. and D. W. Lynch		Sinha, S. K., G. R. Kline, C. Stassis, N. Chesser and N. Wakabayashi
Electroabsorption of Excitons in f.c.c. TlBr and TlCl		Neutron Scattering Study of Spin Dynamics and Spin-Wave Form Factor of Chromium
<i>Solid State Comm.</i> 20, 265 (1976)	3794	<i>Phys. Rev. B</i> 15, 1414 (1977)
		3925
Oh, K. H., B. N. Harmon, S. H. Liu and S. K. Sinha		Sinha, S. K. and B. N. Harmon
Induced Magnetic Form Factor of Chromium		Phonon Anomalies in d-Band Metals and Their Relationship to Superconductivity
<i>Phys. Rev. B</i> 14, 1282 (1976)	3801	<i>Superconductivity in d- and f-Band Metals</i> , D. H. Douglass, ed., (Plenum Publishing Corp., 1976) pp. 269-96
		IS-M-77
Petersen, T. S., S. Legvold and P. Burgardt		
Kondo Effect in Y-Rich Alloys Containing a Ce Impurity		
<i>Magnetism and Magnetic Materials—1975</i> , eds. J. J. Becker, G. H. Lander and J. J. Rhyne (New York: American Institute of Physics, 1976) pp. 366-367.	IS-M-55	

Smith, R. J., M. Piacentini, J. L. Wolf and D. W. Lynch		Toplicar, J. R. and D. K. Finnemore
Soft X-Ray Appearance Potential Spectra of La and Ce from 0 to 1400 eV		Electron-Phonon Interaction Near a Normal Metal-Superconductor Boundary
<i>Phys. Rev. B</i> 14, 3419 (1976)	3793	<i>Solid State Comm.</i> 19, 859 (1976)
Spedding, G. H., B. J. Beaudry and W. D. Cress		3774
Single Crystal Resistivity of Erbium and Er-Lu Alloys Between 2 and 300 K		Torgeson, D. R. and F. Borsa
<i>Revue de Chimie Minerale</i> 13, 62 (1976)	3705	Temperature Dependence of the Electric Field Gradient in a Quasi-Two-Dimensional Metal: NbSe_2
Stassis, C. and H. W. Deckman		<i>Phys. Rev. Lett.</i> 37, 956 (1976)
Magnetic Scattering of Neutrons by Atoms		3948
<i>J. Phys. C: Solid State Phys.</i> 9, 2241 (1976)	3683	Watson-Yang, T. J., B. N. Harmon and A. J. Freeman
Stassis, C. and H. W. Deckman		Electronic Structure, Field-Induced Magnetization Density and Neutron Magnetic Form Factor of Palladium
Magnetic Scattering of Neutrons by a Relativistic Atom		<i>J. Magnetism & Magnetic Materials</i> 2, 334 (1976)
<i>Phys. Rev. B</i> 13, 4934 (1976)	3734	3837
Stassis, C. and Deckman, H. W.		Weaver, J. H., D. W. Lynch, C. H. Culp and R. Rosei
Magnetic Scattering of Neutrons by a Relativistic Atom in the \mathcal{L}^N Configuration		Thermoreflectance of V, Nb and Paramagnetic Cr
<i>Magnetism and Magnetic Materials—1975</i> , eds. J. J. Becker, G. H. Lander and J. J. Rhyne (New York: American Institute of Physics, 1976) pp. 274-275.	IS-M-54	<i>Phys. Rev. B</i> 14, 459 (1976)
3834	Stassis, C., G. R. Kline, A. J. Freeman and J. P. Desclaux	Weaver, J. H., and C. G. Olson
Polarized-Neutron Study of the Coherent Paramagnetic Scattering Amplitude of Metallic Erbium		Optical Absorption in the 4d Transition Metals from 20 to 250 eV
<i>Phys. Rev. B</i> 13, 3916 (1976)	3750	<i>Phys. Rev. B</i> 14, 3251 (1976)
Stassis, C., G. R. Kline, C. K. Loong and B. N. Harmon		3911
Field-Induced Magnetic Form Factor of Lutetium		Weaver, J. H., J. A. Knapp, D. E. Eastman, D. T. Peterson and C. B. Satterthwaite
<i>Solid State Comm.</i> 23, 159 (1977)	4130	Electron Structure of the Thorium Hydrides ThH_2 and Th_4H_{15}
Stassis, C., H. W. Deckman, B. N. Harmon, J. P. Desclaux, and A. J. Freeman		<i>Phys. Rev. Lett.</i> 39, 639 (1977)
Relativistic Magnetic Form Factors of Tripositive Rare Earth Ions		4193
<i>Phys. Rev. B</i> 15, 369 (1977)	3983	Weaver, J. H. and D. T. Peterson
Swenson, C. A.		The Influence of Hydrogen on the Bulk Band Structure of Nb and Ta: An Optical Study of $\text{NbH}_{0.453}$ and $\text{TaH}_{0.257}$
High Pressures and the Thermodynamics of the Rare Gas Solids		<i>Phys. Lett. A</i> 62, 433 (1977)
M. L. Klein and J. Venables, eds., <i>Rare Gas Solids</i> Chapter 13 (Academic Press, 1977) pp. 823-81	3104	4192
Swenson, C. A.		Weaver, J. H. and C. G. Olson
Time-Dependent and Thermal History Effects in Low Temperature Glass-Ceramic Capacitance Thermometers		Interband Structure and the Role of the 5f Electronic States of Thorium: An Optical Investigation
<i>Rev. of Scientific Instruments</i> 48, 489 (1977)	4068	<i>Phys. Rev. B</i> 15, 4602 (1977)
Toplicar, J. R. and D. K. Finnemore		4073
Electron Tunneling Study of the Superconducting Proximity Effect in Pb-Cd		Weaver, J. H. and C. G. Olson
<i>Phys. Rev. B</i> 16, 2072 (1977)	4020	Optical Absorption of hcp Yttrium
		<i>Phys. Rev. 15</i> , 590 (1977)
		4028
		Weaver, J. H. and C. G. Olson
		Optical Examination of the Electronic Structure of Single Crystal hcp Scandium
		<i>Phys. Rev. B</i> 16, 731 (1977)
		4124
		Weaver, J. H., C. G. Olson and D. W. Lynch
		An Optical Investigation of the Electronic Structure of Bulk Rh and Ir
		<i>Phys. Rev. B</i> 15, 4115 (1977)
		4085

Weber, M. F. and H. R. Shanks Surface and Electrocatalytic Properties of Tungsten Bronzes <i>NBS-455, pp. 297-303 (1976)</i>	IS-M-96	
Wertheim, G. K., M. Campagna, J.-N. Chazalviel and H. R. Shanks Oxidation State of Tungsten in the Na_xWo_3 Bronzes <i>Chem. Phys. Lett. 44, 50 (1976)</i>	4107	
Wertheim, G. K., M. Campagna, J.-N. Chazalviel, D. N. E. Buchanan and H. R. Shanks Electronic Structure of Tetragonal Tungsten Bronzes and Electrochromic Oxides <i>Appl. Phys. 13, 225 (1977)</i>	4050	
White, H. W., B. J. Beaudry, P. Burgardt, S. Legvold and B. N. Harmon Magnetic Moments of Ferromagnetic Gadolinium Alloys <i>Magnetism and Magnetic Materials—1975,</i> eds. J. J. Becker, G. H. Lander and J. J. Rhyne (New York: American Institute of Physics, 1976) pp. 329-330	IS-M-56	
Williams, W., Jr., and J. L. Stanford Antiferromagnetism of the α -Mn System <i>J. Magnetism and Magnetic Materials 1,</i> 271 (1976)	3602	
Wolf, E. L. and J. Zasadzinski On the Observation of Superconducting Phonon Structure in Proximity Tunneling <i>Phys. Lett. 62A, 165 (1977)</i>	4178	
Zacharias, P. and K. L. Kliewer Dispersion Relation for the 3.8 eV Volume Plasmon of Silver <i>Solid State Comm. 18, 23 (1976)</i>	3692	
Materials Chemistry		
Adolphson, Douglas G., John D. Corbett and Don J. Merryman Stable Homopolyatomic Anions of the Post-Transition Metals. "Zintl Ions." The Synthesis and Structure of a Salt Containing the Heptantimonide(3-) Anion <i>J. Am. Chem. Soc. 98, 7234 (1976)</i>	3868	
Adolphson, Douglas G. and John D. Corbett Crystal Structure of Zirconium Monochloride. A Novel Phase Containing Metal-Metal Bonded Sheets <i>Inorg. Chem. 15, 1820 (1976)</i>	3795	
Baikerikar, K. G. and Robert S. Hansen Adsorption of Benzene and Toluene on Mercury <i>J. Colloid & Interface Science 61, 239 (1977)</i>	3934	
Baria, Dorab N., Terry S. King and Renato G. Bautista The Normal Spectral Emittance of Yttrium, Lanthanum, Cerium, Praseodymium and Neodymium Above 1000 K <i>Met. Trans. B 7B, 577 (1976)</i>	3659	
Baughman, Russell G. and Robert A. Jacobson The Crystal and Molecular Structure of Organophosphorus Insecticides. 5. Fospirate <i>J. Ag. & Food Chem. 25, 582 (1977)</i>	4031	
Baughman, Russell G. and Robert A. Jacobson The Crystal and Molecular Structure of Organophosphorus Insecticides, IV. Bromophos <i>J. Agri. Food Chem. 24, 1036 (1976)</i>	3833	
Belin, Claude H. E., John D. Corbett and Alan Cisar Homopolyatomic Anions and Config- urational Questions. Synthesis and Struc- ture of the Nonagermanide (2-) and Non- agermanide (4-) Ions, Ge_9^{2-} and Ge_9^{4-} <i>J. Am. Chem. Soc. 99, 7163 (1977)</i>	4150	
Broadhead, D. E., K. G. Baikerikar, and Robert S. Hansen Application of the Frumkin Equation to Electrocapillary and Capacity Data of Some Aliphatic Compounds <i>J. Phys. Chem. 80, 370 (1976)</i>	3556	
Burkhart, Lawrence, P. W. Weathers and P. C. Sharer Mass Transfer and Internal Circulation in Forming Drops <i>AIChE Journal 22, 1090 (1976)</i>	3997	
Campbell, J. H., G. F. Covert and B. J. Helland <i>ALECS Language Reference Manual</i>	IS-3339	
Caputo, Ruth E., Sue Roberts, Roger D. Willett and Bernard C. Gerstein Crystal Structure and Magnetic Susceptibility of $[(\text{CH}_3)_3\text{NH}]_3\text{Mn}_2\text{Cl}_7$ <i>Inorg. Chem. 15, 820 (1976)</i>	3902	
Chou, D. S., W. A. Klemm, M. J. Murtha and G. Burnet The Lime-Sinter Process for Production of Alumina from Fly Ash <i>Proc. 4th International Ash Utilization</i> <i>Symposium, eds., John H. Faber, Allan W.</i> Babcock and John D. Spencer (ERDA-MERC: Morgantown, West Virginia, 1976) MERC/SP-76/4 pp. 433-449	IS-M-64	

Ciser, Alan and John D. Corbett Polybismuth Anions. Synthesis and Crystal Structure of a Salt of the Tetrabismuthide (2-) Ion, Bi_4^{2-} . A Basis for the Interpretation of the Structure of Some Complex Intermetallic Phases <i>Inorg. Chem.</i> 16, 2482 (1977)	4135	Franzen, H. F., A. S. Khan and D. T. Peterson The Solubility of Hydrogen in Tantalum at High Temperatures <i>J. Less-Common Metals</i> 55, 143 (1977)	4089
Cisar, Alan and John D. Corbett The Synthesis and Crystal Structure of a Salt Containing the Tritelluride (2-) Anion <i>Inorg. Chem.</i> 16, 632 (1977)	3995	Franzen, H. F., Mirtha X. Umana, A. S. Khan, Jean Merrick, D. T. Peterson, J. R. McCreary and R. J. Thorn XPS Spectra and Crystalline Potentials in Alkaline-Earth Chalcogenides and Hydrides <i>J. Electron Spectroscopy & Related Phenomena</i> 11, 439 (1977)	3903
Corbett, John D. and Paul A. Edwards The Nonstannide (4-) Anion Sn_9^{4-} , a Novel Capped Antiprismatic Configuration (C_{4v}^1) <i>J. Am. Chem. Soc.</i> 99, 3313 (1977)	4053	Franzen, Hugo F., Mirtha X. Umana, J. R. McCreary and R. J. Thorn XPS Spectra of Some Transition Metal and Alkaline Earth Monochalcogenides <i>J. Solid State Chem.</i> 18, 363 (1976)	3839
Corbett, John D. Homopolyatomic Ions of the Post-Transition Elements—Synthesis, Structure, and Bonding <i>Chemistry</i> Vol. 21, ed., S. J. Lippard (New York: John Wiley & Sons, 1976) pp. 129-158	3349	Fukutomi, Masao and John D. Corbett An Investigation of the Reduction of Molybdenum (III) Fluoride and Zirconium (IV) Fluoride: A Convenient Method for the Synthesis of Molybdenum (III) Fluoride <i>J. Less-Common Metals</i> 55, 125 (1977)	4059
Corbett, John D. Reduced Halides of the Rare Earth Elements <i>Proceedings 12th Rare Earth Research Conference</i> , ed., C. E. Lundin (Denver, Colorado: University of Denver and Denver Research Institute, 1976) Vol. I pp. 396-399 IS-M-94		Fuller, Charles C. and Robert A. Jacobson Tris(Nitrato)Tetraaquopraseodymium(II) Dihydrate, $\text{Pr}(\text{NO}_3)_3(\text{H}_2\text{O})_4 \cdot 2\text{H}_2\text{O}$ <i>Cryst. Struct. Comm.</i> 5, 349 (1976)	3843
Daake, Richard L. and John D. Corbett Zirconium Monobromide, a Second Double Metal Sheet Structure. Some Physical and Chemical Properties of the Metallic Zirconium Monochloride and Monobromide <i>Inorg. Chem.</i> 16, 2029 (1977)	4120	Gerstein, B. C., R. G. Pembleton, R. C. Wilson and L. M. Ryan High Resolution NMR in Randomly Oriented Solids with Homonuclear Dipolar Broadening: Combined Multiple Pulse NMR and Magic Angle Spinning <i>J. Chem. Phys.</i> 66, 361 (1977)	3978
DeHaven, Patrick W. and Robert A. Jacobson Pyridinium Tetrabromoantimonate(III) $\text{C}_5\text{H}_5\text{NHSb}^{11}\text{Br}_4$ <i>Cryst. Struct. Comm.</i> 5, 31 (1976)	3713	Gerstein, B. C. and R. G. Pembleton Pulsed Nuclear Magnetic Resonance Spectrometry for Non-Destructive Determination of Hydrogen in Coal <i>Anal. Chem.</i> 49, 75 (1977)	3762
DeVore, T. C. Spectroscopic Identification of the Binary Dinitrogen Complexes of Chromium in Low-Temperature Matrices <i>Inorg. Chem.</i> 15, 1315 (1976)	3629	Gerstein, B. C., C. Chow, R. G. Pembleton and R. C. Wilson Utility of Pulse NMR in Studying Protons in Coals <i>J. Phys. Chem.</i> 81, 565 (1977)	3982
DeVore, T. C. and H. F. Franzen Synthesis of Dodecacarbonyldivanadium on Low-Temperature Matrices <i>Inorg. Chem.</i> 15, 1318 (1976)	3663	Gifkins, Michael R., and Robert A. Jacobson Crystal and Molecular Structure of Organo-Phosphorus Insecticides. II. Coroxon <i>J. Agri. Food Chem.</i> 24, 232 (1976)	3662
Edwards, Paul A. and John D. Corbett Stable Homopolyatomic Anions: Synthesis and Crystal Structures of Salts Containing the Pentaplumbide (2-) and Pentastannide (2-) Anions <i>Inorg. Chem.</i> 16, 903 (1977)	3996	Gutman, Ivan and Milan Randic Algebraic Characterization of Skeletal Branching <i>Chem. Phys. Lett.</i> 47, 15 (1977)	4096

Hansen, Robert S. and K. G. Baikerikar Frequency Dependence of Capacitance at the Desorption Potentials of Organic Molecules <i>J. Electroanal. Chem. & Interfacial Electrochem.</i> 82, 403 (1977)	4090	Lochner, U., H. Barnighausen and J. D. Corbett Rare Earth Metal-Metal Halide Systems. 19. Structural Characterization of the Reduced Holmium Chloride Ho_5Cl_{11} <i>Inorg. Chem.</i> 16, 2134 (1977)	4095
Helland, Barbara J., Michael H. Quick, Robert A. Jacobson and Robert J. Angelici Crystal and Molecular Structure of an Organic Thiocyanate Complex: $(CH_3SCN)Cr(CO)_5$ <i>J. Organomet. Chem.</i> 132, 95 (1977)	3826	Mahaffy, Paul, Paul B. Masterson, and Robert S. Hansen Ethylene Hydrogenation on Evaporated Iridium Films <i>J. Chem. Phys.</i> 64, 3911 (1976)	3779
Hubbard, C. R., M. W. Babich and R. A. Jacobson A PL/1 Program System for Generalized Patterson Superpositions	IS-4106	McCarley, R. E., J. L. Templeton, T. J. Colburn, V. Katovic, and R. J. Hoxmeier Some Unusual Dimeric and Cluster Species of the Group VI Transition Metals <i>Inorganic Compounds with Unusual Properties, Advances in Chemistry Series</i> No. 150, ed., Bruce King (Washington, D.C., American Chemical Society, 1976) pp. 318-334.	3522
Jacobson, Robert A. A Single-Crystal Automatic Indexing Procedure <i>J. Appl. Cryst.</i> 9, 115 (1976)	3416	Miller, J. H., J. E. Powell, R. A. Jacobson and S. Kulprathipanja The Crystal and Molecular Structure of Diaquo-bis(2,3-dihydroxy-2- methylpropanato)-Copper(II) <i>Inorg. Chim. Acta</i> 18, 25 (1976)	3680
Karcher, Barbara A. and Robert A. Jacobson Crystal and Molecular Structure of $Cr(CO)_5(SCMe_2)$, a Thioketone Complex <i>J. Organomet. Chem.</i> 132, 387 (1977)	4046	Murtha, M. J. and G. Burnet An Annotated Bibliography for Liquid Metal Surface Tensions of Groups III-A, IV-A and V-A Metals	IS-3829
Katovic, V., J. L. Templeton, R. E. McCarley A Novel Heterometallic Molecule Consisting of a New Triangular Tungsten Cluster Bridged by Oxochromium and Alkoxy Ligands <i>J. Am. Chem. Soc.</i> 98, 5705 (1976)	3905	Murtha, M. J. and G. Burnet Recovery of Alumina from Coal Fly Ash by High Temperature Chlorination <i>Proc. Iowa Acad. Sci.</i> 83, 125 (1976)	3896
King, Terry S., Dorab N. Baria and Renato G. Bautista The Normal Spectral Emittance of Erbium, Dysprosium and Samarium above 1000 K <i>Met. Trans. B</i> 7B, 411 (1976)	3689	Naterstad, Tormod and John D. Corbett The Crystal Structure of Thulium(II) Chloride <i>J. Less-Common Metals</i> 46, 291 (1976)	3769
Kopinga, K., T. De Neff, W. J. M. de Jonge and B. C. Gerstein Magnetic Specific Heat of the Nearly-One-Dimensional System Tetramethyl Ammonium Nickel Trichloride (TMNC) <i>Phys. Rev. B</i> 13, 3953 (1976)	3952	Orent, T. W. and Robert S. Hansen The Interactions of Nitric Oxide with Ru (1010) <i>Surface Science</i> 67, 325 (1977)	4094
Kuntz, Lyle K. and Renato G. Bautista The Heat Capacities and Heat Content of Molten Cerium by Levitation Calorimetry <i>Met. Trans. B</i> 7B, 107 (1976)	3650	Pembleton, R. G., B. C. Gerstein and L. M. Ryan NMR Probe for Combined Heteronuclear Multiple Pulse Decoupling and Magic Angle Spinning <i>Rev. of Scientific Instruments</i> 48, 1286 (1977)	4021
Lindholm, David C. and Renato G. Bautista Scale-Up of a Mixer-Settler Extractor Using a Unit Operations Approach <i>Trans. Soc. Mining Engr., AIME</i> 260, 1, (1976)	3287	Pembleton, R. G., R. C. Wilson and B. C. Gerstein Utility of Multiple-Pulse NMR to Determine the Amorphous Fraction of Polyethylene <i>J. Chem. Phys.</i> 66, 5133 (1977)	4109

Peters, Cary, William P. Jensen, James I. Worman, Robert A. Jacobson and David A. Nelson The Crystal Structure of 3,7-Dihydroxy-1,5-bis- (p-Bromophenyl)Octahydro-1,5-Diazocine Ethanol Solvate, $C_{18}H_{20}Br_2N_2O_2 \cdot C_2H_6O$ <i>Cryst. Struct. Comm.</i> 5, 905 (1976)	3987	Organophosphorus Insecticides. 6. Amidithion <i>J. Ag. & Food Chem.</i> 25, 588 (1977)	4034
Poeppelmeier, Kenneth R. and John D. Corbett Metal-Metal Bonding in Reduced Scandium Halides. The Synthesis and Characterization of Heptascandium Decachloride (Sc_7Cl_{10}). A Novel Metal Chain Structure <i>Inorg. Chem.</i> 16, 1107 (1977)	4079	Rohrbaugh, Wayne J. and Robert A. Jacobson Tris(ethylenediamine)cobalt(III) Tetrakis(isothiocyanato)-cobaltate(II) Nitrate <i>Acta Cryst. B33</i> , 3254 (1977)	4015
Poeppelmeier, Kenneth R. and John D. Corbett Metal-Metal Bonding in Reduced Scandium Halides. The Synthesis and Crystal Structure of Scandium Monochloride <i>Inorg. Chem.</i> 16, 294 (1977)	3975	Ryan L. M., R. C. Wilson and B. C. Gerstein The Chemical Shift Anisotropies of 1H in $H_2O(s)$ and $H_2S(s)$ <i>Chem. Phys. Lett.</i> 52, 341 (1977)	4144
Randic, Milan Conjugated Circuits and Resonance Energies of Benzenoid Hydrocarbons <i>Chem. Phys. Lett.</i> 38, 68 (1976)	IS-EMRRI-1	Ryan, L. M., R. C. Wilson and B. C. Gerstein The Proton Magnetic Shielding Anisotropy in Benzene <i>J. Chem. Phys.</i> 67, 4310 (1977)	4204
Randic, Milan On Discerning Symmetry Properties of Graphs <i>Chem. Phys. Lett.</i> 42, 283 (1976)	IS-EMRRI-3	Stadel, Paul, William Jensen, James Worman and Robert Jacobson The Crystal Structure of N,N'-bis-p-Bromophenyl-2,2,4,4-tetramethyl-1,3-Cyclobutane-1,3-di-imine <i>J. Chem. Soc. (Dalton Trans.)</i> 5, 536 (1976)	3555
Randic, Milan Aromaticity and Conjugation <i>J. Am. Chem. Soc.</i> 99, 444 (1977)	4065	Stretz, Lawrence A. and Renato G. Bautista Liquid Praseodymium Heat Content by Levitation Calorimetry <i>J. Chem. Eng. Data</i> 21, 13 (1976)	3569
Randic, Milan On Canonical Numbering of Atoms in a Molecule and Graph Isomorphism <i>J. Chem. Information and Computer Sciences</i> 17, 171 (1977)	4133	Struss, Arthur W. and John D. Corbett Reaction of Hydrogen with the Metallic Zirconium Monohalides <i>Inorg. Chem.</i> 16, 360 (1977)	3976
Randic, Milan A Graph Theoretical Approach to Conjugation and Resonance Energies of Hydrocarbons <i>Tetrahedron</i> 33, 1905 (1977)	4114	Takusagawa, Fusao and Robert A. Jacobson The Crystal and Molecular Structure of Carbamate Insecticides 1. Mesurol <i>J. Ag. Food and Chem.</i> 25, 329 (1977)	3938
Randic, Milan On the Parity of Kekule' Structures <i>Molecular Physics</i> 34, 849 (1977)	4086	Takusagawa, Fusao and Robert A. Jacobson The Crystal and Molecular Structure of Carbamate Insecticides 2. Aldicarb <i>J. Ag. Food Chem.</i> 25, 333 (1977)	3943
Rohrbaugh, Wayne J., Elaine K. Meyers and Robert A. Jacobson Crystal and Molecular Structure of Organophosphorus Insecticides. III. Azinphos-Methyl <i>J. Agri. Food Chem.</i> 24, 713 (1976)	3831	Takusagawa, Fusao and Robert A. Jacobson Crystal Structure Studies of Tetragonal Sodium Tungsten Bronzes, $Na_xWC_3 \cdot I \cdot Na_{0.33}WO_3$ and $Na_{0.48}WO_3$ <i>J. Solid State Chem.</i> 18, 163 (1976)	3776
Rohrbaugh, Wayne J. and Robert A. Jacobson The Crystal and Molecular Structure of		Takusagawa, Fusao, Robert A. Jacobson, Walter S. Trahanovsky and M. Dwight Robbins Phenyltritylium Fluoroborate-Triphenylmethyl Fluoride, $C_{32}H_{26}BF_5$ <i>Cryst. Struct. Comm.</i> 5, 753 (1976)	3918

Takusagawa, Fusao and Robert A. Jacobson The Crystal and Molecular Structure of Carbamate Insecticides 3. Methoyl <i>J. Ag. Food Chem.</i> 25, 577 (1977)	3990	Spectroscopic Study of the $Tc_2Cl_8^{3-}$ Ion <i>J. Am. Chem. Soc.</i> 99, 5642 (1977)	4129
Templeton, Joseph L., Robert A. Jacobson and Robert McCarley Synthesis and Structure of Bis(tetrapropylammonium) Tri-u-bromohexabromoditungstate(2-). A Novel Odd-Electron Dimeric Anion Showing Evidence of Jahn-Teller Distortion <i>Inorg. Chem.</i> 16, 3320 (1977)	4010	Electronic Spectra of Crystals of Dimolybdenum Tetraformate and the Tetrasulfatodimolybdenum(II) Ion <i>J. Am. Chem. Soc.</i> 98, 4681 (1976)	3859
Tuenge, R. T., F. Laabs and H. F. Franzen The High Temperature Vaporization of Defect Scandium Monosulfide <i>J. Chem. Phys.</i> 65, 2400 (1976)	3791	Cotton, F. A., Don S. Martin, Phillip E. Fanwick, Timothy J. Peters and Thomas R. Webb Investigations of Quadruple Bonds by Polarized Crystal Spectra. 2. Quadruply Bonded Tetra- μ -Glycine-Dimolybdenum(II) Sulfate Tetrahydrate <i>Inorg. Chem.</i> 15, 1199 (1976)	3757
Warner, Philip M., Shih-Lai Lu, Elaine Myers, Patrick DeHaven and Robert A. Jacobson Propellanes XVII. Bridgehead Olefins Via Solvolysis of 10, 10-Dibromo(4.3.1) Propellanes <i>J. Am. Chem. Soc.</i> 99, 5102 (1977)	4158	Fanwick, Phillip E., Don S. Martin, F. Albert Cotton and Thomas R. Webb Crystal Absorption Spectra for Potassium Octachlorodimolybdate(II) Dihydrate <i>Inorg. Chem.</i> 16, 2103 (1977)	4100
Woodard, Scott S., Robert A. Jacobson and Robert J. Angelici Structure of <i>trans</i> -W(CO) ₄ (CNC ₆ H ₁₁)(CS) and a Correlation of ν (CS) Frequencies with C-S Bond Distances in Metal Thiocarbonyl Complexes <i>J. Organometallic Chem.</i> 117, C75 (1976)	3919	Lee, Kenneth W. and Don S. Martin The Szilard-Chalmers Effect in Solid State Systems Containing Octa- μ_3 -Chloro-Octahedro-Hexamolybdenum(II) Clusters <i>J. Inorg. Nucl. Chem.</i> 39, 679 (1977)	3942
Molecular, Mathematical and Geoscience		Lee, K. W. and D. S. Martin, Jr. Cis-Dichlorodiammineplatinum(II) Aquation Equilibria and Isotopic Exchange of Chloride Ligands with Free Chloride and Tetrachloro-platinato(II) <i>Inorg. Chim. Acta</i> 17, 105 (1976)	3708
Radiation Science		Martin, Don S., Jr., Rhonda M. Rush and Timothy J. Peters Polarized Crystal Absorption Spectra and Electronic States of Tetraethylammonium Hexabromodiplatinato(II) <i>Inorg. Chem.</i> 15, 669 (1976)	3620
Beckman, R. L., J. M. Hayes and G. J. Small Neat and Mixed Crystal and Glass Optical Spectra of the Anthracene-Trinitrobenzene Complex <i>Chem. Phys.</i> 21, 135 (1977)	3992	Robinette, Susan L. and Gerald J. Small Polaritons and Perfect Crystal Behavior of Naphthalene <i>J. Chem. Phys.</i> 65, 837 (1976)	3828
Bonte, John L. and Don S. Martin Szilard-Chalmers and Thermal Annealing Processes in D-Tris(ethylenediamine)-Cobalt(III) Nitrate <i>J. Inorg. & Nucl. Chem.</i> 39, 1481 (1977)	4061	SethuRaman, V. and G. J. Small Resonant Absorption in Stationary and Nonstationary Fields <i>J. Chem. Phys.</i> 64, 3359 (1976)	3697
Clark, Roger and Gerald J. Small Vibronic Perturbations in the Electric Field Spectra of 1,3-Diazaazulene and Azulene <i>J. Chem. Phys.</i> 66, 1779 (1977)	4003	Small, G. J. and F. P. Burke Mixed Crystal Spectroscopy of 1,3-Diazaazulene <i>J. Chem. Phys.</i> 66, 1767 (1977)	4004
Cotton, F. Albert, Phillip E. Fanwick, Larry D. Gage, Barbara Kalbacher and Don S. Martin		Struve, W. S. Emission from the $^1(n, \pi^*)$ State of Azobenzene: Spectrum and Ultrashort Decay Time <i>Chem. Phys. Lett.</i> 46, 15 (1977)	4058

Struve, W. S.			
Picosecond Excitation of I_2 $B \rightarrow X$ Emission in $NaCl_4$ Solution: Ultrafast Decay and Spectrum		Crossed Beams. Reactions of $Hg(6^3P_{0,2}) +$ Alkali Halides	
<i>Chem. Phys. Lett. 51, 603 (1977)</i>	4228	<i>Chem. Phys. Lett. 38, 263 (1976)</i>	3758
Struve, W. S.		Parr, T. P.	
Time Resolution of the CS_2 Optical Shutter: Effects of Group Velocity Dispersion and Beam Geometry		Crossed-Molecular Beam Apparatus Time-of-Flight Computer Interface	IS-4033
<i>Optics Comm. 21, 215 (1977)</i>	4152	Parr, Timothy P., Andrew Freedman, Richard Behrens, Jr. and Ronald R. Herm	
Chemical Physics		Crossed Molecular Beams Kinetics: BaO Recoil Velocity Spectra from $Ba + N_2O$	
Behrens, Richard, Jr., Ronald R. Herm and Charlotte M. Sholeen		<i>J. Chem. Phys. 67, 2181 (1977)</i>	4141
Product Magnetic Deflection Slotted Disk Velocity Analysis Molecular Beams		Reeher, John R., Gerald D. Flesch and Harry J. Svec	
Kinetics: $Li + SnCl_4$, PCl_3 , and SF_6	3989	The Mass Spectra and Ionization Potentials of the Neutral Fragments Produced During the Electron Bombardment of Aromatic Compounds	
<i>J. Chem. Phys. 65, 4791 (1976)</i>		<i>Organic Mass Spectrometry 11, 154 (1976)</i>	3646
Behrens, R., Jr., A. Freedman, R. R. Herm, and T. P. Parr		Reeher, John R., Gerald D. Flesch and Harry J. Svec	
Crossed Beams Chemistry: $Ba(^1S) + SO_2(^1A) \rightarrow BaO(^1\Sigma^+) + SO(^3\Sigma^-)$	3699	A Mass Spectrometer for the Characterization of Neutral Species Produced in the Electron Bombardment of Gases	
<i>J. Am. Chem. Soc. 98, 294 (1976)</i>		<i>International J. Mass Spectrometry Ion Phys. 19, 351 (1976)</i>	3642
J. Capellen, H. J. Svec and C. R. Sage		Ruedenberg, Klaus	
Bibliography of Mass Spectroscopy Literature for 1973 Compiled by a Computer Method	IS-3830	An Approximate Relation Between Orbital SCF Energies and Total SCF Energy in Molecules	
<i>Anal. Chem. 48, 1647 (1976)</i>	3824	<i>J. Chem. Phys. 66, 375 (1977)</i>	3968
Freedman, Andrew, Richard Behrens, Jr., Timothy P. Parr, and Ronald R. Herm		Ruedenberg, Klaus and Kenneth R. Sundberg	
Crossed Molecular Beam Metathesis: Alkaline Earth Dihalides + Cl_2 and HCl	3986	MCSCF Studies of Chemical Reactions: Natural Reaction Orbitals and Localized Reaction Orbitals	
<i>J. Chem. Phys. 65, 4739 (1976)</i>		<i>Quantum Science</i> , eds., Jean-Louis Calais, Osualdo Goscinski, Jan Linderberg and Yngve Ohrn (New York: Plenum Publishing Corp., 1976) pp. 505-115	
Freedman, A.		Sholeen, Charlotte M. and Ronald R. Herm	
Crossed Molecular Beams: Apparatus and Data Analysis	IS-4038	Product Magnetic Deflection Slotted Disk Velocity Analysis Molecular Beams	
Hoffman, D. K., K. Ruedenberg and J. G. Verkade		Kinetics: $LiO(X^2)$ and $LiO(A^2\Sigma)$ From $Li + NO_2$	
A Novel Pictorial Approach to Teaching MO Concepts in Polyatomic Molecules	4229	<i>J. Chem. Phys. 64, 5261 (1976)</i>	3869
<i>J. Chem. Education 54, 590 (1977)</i>		Sholeen, Charlotte M., and Ronald R. Herm	
Hoffman, David K.		Product Magnetic Deflection Slotted Disk Velocity Analysis Molecular Beams	
On the Nonequilibrium Distribution of Adatoms Resulting from Dissociative Adsorption of a Diatomic Gas	3766	Kinetics: $Li + CH_3NO_2$, CCl_4 , and CH_3I	
<i>J. Chem. Phys. 65, 95 (1976)</i>		<i>J. Chem. Phys. 65, 5398 (1976)</i>	3988
Loh, Lambert C.-H. and Ronald R. Herm			
Alkali Atom Chemiluminescence from			

Sholeen, Charlotte M., Lara A. Gundel, and Ronald R. Herm Product Magnetic Deflection Slotted Disk Velocity Analysis Molecular Beams Kinetics: Li + Cl ₂ , Br ₂ , and ICl <i>J. Chem. Phys.</i> 65, 3223 (1976)	3960	Felcher, G. P., G. H. Lander, T. Arai, S. K. Sinha and F. H. Spedding Asphericity in the Magnetization Distribution of Holmium <i>Phys. Rev. B13</i> , 3034 (1976)	3946
Chemical Energy		Franzen, H. F., A. S. Khan and D. T. Peterson Thermodynamics of Solid Solution of Hydrogen in M_2C Type Carbides of Vanadium and Niobium <i>J. Solid State Chem.</i> 19, 81 (1976)	3872
Barnes, R. G., W. C. Harper, S. O. Nelson, D. K. Thome and D. R. Torgeson Investigation of the Systems LaNi ₅ H _x and LaNi ₅ D _x by Proton and Deuteron Nuclear Magnetic Resonance <i>J. Less-Common Metals</i> 49, 483 (1976)	3797	Franzen, H. F., A. S. Khan and D. T. Peterson Thermodynamics of Solid Solution of Hydrogen in Ta ₆ S and Nb ₂₁ S ₈ <i>J. Solid State Chem.</i> 17, 283 (1976)	3690
Bushey, William R. and James H. Espenson Trans Effects in Octahedral Complexes: Substitution of Chloromethyl- and Dichloromethyl Pentaquaquochromium (III) Ions by Thiocyanate Ion <i>Inorg. Chem.</i> 16, 2772 (1977)	4138	Habenschuss, Anton and Frank H. Spedding Densities and Thermal Expansion of Some Aqueous Rare Earth Chloride Solutions Between 5° and 80°C. II. SmCl ₃ , GdCl ₃ , DyCl ₃ , ErCl ₃ , and YbCl ₃ <i>J. Chem. Eng. Data</i> 21, 95 (1976)	3609
Espenson, James H. and John P. Leslie, II. Chlorine Atom Abstraction Reaction of Dichloro-methylchromium(III) Ions with Chromium(II). Kinetics and Radiotracer Determinations <i>Inorg. Chem.</i> 15, 1886 (1976)	3780	Hyde, Michael R. and James H. Espenson Kinetics and Mechanism of the Formation of Organo-chromium(III) Complexes in the Reactions of Organic Peroxides with Chromium(II) <i>J. Am. Chem. Soc.</i> 98, 4463 (1976)	3752
Espenson, James H. and George J. Samuels Reaction of Organochromium Cations with Iodine Monobromide <i>J. Organometallic Chem.</i> 113, 143 (1976)	3783	Kaufmann, Edward J. and James H. Espenson Kinetics of Electron Transfer Between Vitamin B ₁₂ Compounds <i>J. Am. Chem. Soc.</i> 99, 7051 (1977)	4127
Espenson, James H., Herbert L. Fritz, Roger A. Heckman and Claudio Nicolini Reactions of bis(organo)(Chelate)Cobalt Complexes with Electrophiles <i>Inorg. Chem.</i> 15, 906 (1976)	3695	Khan, A. S., T. C. DeVore and Wilfred F. Reed Growth of the Transition Metal Oxalates in Gels <i>J. Crystal Growth</i> 35, 337 (1976)	3875
Espenson, James H. and Tai-Hsiang Chao Kinetics of the Formation and Bond Cleavage Reactions of an Alkyl-bridged Dicobalt Organocobaloxime <i>Inorg. Chem.</i> 16, 2553 (1977)	4145	Leslie, John P., II, and James H. Espenson Kinetics and Mechanism of the Reactions of Organochromium Complexes with Mercury(II) and Methyl-Mercury(II) Ions <i>J. Am. Chem. Soc.</i> 98, 4839 (1976)	3745
Espenson, James H. and Richard J. Christensen Kinetics and Mechanism of the Demetalation of Iron(III) Porphyrins Catalyzed by Iron (II) <i>Inorg. Chem.</i> 16, 2561 (1977)	3790	Miller, J. H., J. E. Powell, R. A. Jacobson and S. Kulprathipanja The Crystal and Molecular Structure of Diaquobis(2,3-Dihydroxy-2- Methylpropanoato)-Copper(II) <i>Inorg. Chim Acta</i> 18, 25 (1976)	3680
Espenson, James H. and Albert H. Martin Kinetics and Mechanism of the Formation of Alkylcobalt (chelate) Complexes from Organic Peroxides and Cobalt (II) <i>J. Am. Chem. Soc.</i> 99, 5953 (1977)	4076		

Powell, J. E. and S. Kulprathipanja Formation Constants of (α , β)-3-Dihydroxy-2-Hydroxymethyl Propanoato (α , β , β' -Trihydroxy-isobutyrate) Rare Earth Chelate Species <i>Inorg. Chem.</i> 15, 493 (1976)	3676	Spedding, F. H., C. W. DeKock, G. W. Pepple and A. Habenschuss Heats of Dilution of Some Aqueous Rare Earth Electrolyte Solutions at 25°. III. Rare Earth Chlorides <i>J. Chem. Eng. Data</i> 22, 58 (1977)	3870
Rard, Joseph A., Anton Habenschuss and Frank H. Spedding A Review of the Osmotic Coefficients of Aqueous H_2SO_4 at 25°C <i>J. Chem. Eng. Data</i> 21, 374 (1976)	3615	Spedding, F. H. Some Remarks on the Rare Earths by a Fifty-Year Student of the Subject <i>Proceedings Eleventh Rare Earth Research</i> <i>Conference</i> , Traverse City, Michigan, October 7-10, 1974, Vol. I, pp. 266-77. (1977)	IS-M-107
Rard, Joseph A., Herman O. Weber and Frank H. Spedding Isopiestic Determination of the Activity Coefficients of Some Aqueous Rare Earth Electrolyte Solutions at 25°C. II. The Rare Earth Perchlorates <i>J. Chem. & Eng. Data</i> 22, 187 (1977)	3950	Spedding, Frank H., Joseph A. Rard and Anton Habenschuss Standard State Entropies of the Aqueous Rare Earth Ions <i>J. Phys. Chem.</i> 81, 1069 (1977)	4092
Rard, Joseph A., Loren E. Shiers, David J. Heiser and Frank H. Spedding Isopiestic Determination of the Activity Coefficients of Some Aqueous Rare Earth Electrolyte Solutions at 25°C. III. The Rare Earth Nitrates <i>J. Chem. & Eng. Data</i> 22, 337 (1977)	4062	Analysis Arguello, Michael D. and James S. Fritz Ion-Exchange Separation and Determination of Calcium and Magnesium <i>Anal. Chem.</i> 49, 1595 (1977)	4172
Rard, Joseph A. and Frank H. Spedding Isopiestic Determination of the Osmotic Coefficients of Aqueous $CaCl_2$ Solutions at 25°C. <i>J. Chem. Eng. Data</i> 22, 56 (1977)	3888	Chen, Kuo-Mei, I.C. Khoo, Larry E. Steenhoek and Edward S. Yeung Doppler-free Two-photon Absorption Spectroscopy of Naphthalene <i>Optics Comm.</i> 23, 90 (1977)	4175
Rard, Joseph A., Anton Habenschuss and Frank H. Spedding A Review of the Osmotic Coefficients of Aqueous $CaCl_2$ at 25°C <i>J. Chem. Eng. Data</i> 22, 180 (1977)	3923	Chriswell, Colin Removal of Gas Chromatographable Organic Compounds from Water by a Spray Vaporization Technique <i>J. of Chromatography</i> 132, 537 (1977)	3926
Spedding, Frank H., Michael A. Mohs, John L. Derer and Anton Habenschuss Heats of Dilution of Some Aqueous Rare Earth Electrolyte Solutions at 25°C. I. Rare Earth Perchlorates <i>J. Chem. Eng. Data</i> 22, 142 (1977)	3845	Chriswell, Colin D., Rhonda L. Ericson, Gregor A. Junk, Kenneth W. Lee, James S. Fritz and Harry J. Svec Comparison of Macroreticular Resin and Activated Carbon as Sorbents <i>J. Am. Water Works Assn.</i> 69, 669 (1977)	4060
Spedding, Frank H., John L. Derer, Michael A. Mohs, and Joseph A. Rard Heats of Dilution of Some Aqueous Rare Earth Electrolyte Solutions at 25°C. 2. Rare Earth Nitrates <i>J. Chem. Eng. Data</i> 21, 474 (1976)	3850	Chriswell, Colin D. and James S. Fritz Selective Concentration of Amines from Aqueous Solutions by a Gas Purging Technique <i>J. Chromatography</i> 136, 371 (1977)	3848
Spedding, Frank H., Herman O. Weber, Victor W. Saeger, Harry H. Petheram, Joseph A. Rard and Anton Habenschuss Isopiestic Determination of the Activity Coefficients of Some Aqueous Rare Earth Electrolyte Solutions at 25°C. 1. The Rare Earth Chlorides <i>J. Chem. Eng. Data</i> 21, 341 (1976)	3756	Chriswell, Colin D., Larry D. Kissinger and James S. Fritz Copper(II) Salts as Amine Abstractors in Gas Chromatography <i>Anal. Chem.</i> 48, 1123 (1976)	3748
		Conzemius, R. J. and G. A. Sleege An Automatic Electrometer Ranging Circuit for a Spark-Source Mass-Spectrometer <i>Talanta</i> 23, 556 (1976)	3688

Conzemius, R. J., D. J. Adduci, G. O.		
Foss, and H. J. Svec		
Microphotometer Modification for		
Automatic Recording of Spark-Source Mass		
Spectra		
<i>Anal. Chem.</i> 48, 1647 (1976)	3824	
D'Silva, A. P., G. J. Oestreich and V. A.		
Fassel		
X-Ray Excited Optical Luminescence of		
Polynuclear Aromatic Hydrocarbons		
<i>Anal. Chem.</i> 48, 915 (1976)	3669	
D'Silva, Arthur P. and Velmer A. Fassel		
Determination of Uranium in Ores by an		
X-Ray Excited Optical Luminescence		
Technique		
<i>Anal. Chem.</i> 49, 638 (1977)	4032	
Fassel, V. A., E. M. Layton, C. Peterson		
and R. N. Kniseley		
Potential Applications of the New		
Inductively Coupled Plasma-Optical		
Emission Spectrometric Technique to the		
Simultaneous Determination of Trace		
Metals in Liquid Fuels Derived from Coal		
<i>A Workshop on the Analytical Needs of the</i>		
<i>Future as Applied to Coal Liquefaction</i> , eds.		
G. A. Muccini and R. A. Culp (Washington,		
D.C., National Science Foundation, 1976)		
pp. 271-295	IS-M-43	
Fassel, Velmer A., Charlie A. Peterson,		
Frank N. Abercrombie and Richard N.		
Kniseley		
Simultaneous Determination of Wear		
Metals in Lubricating Oils by		
Inductively-Coupled Plasma Atomic		
Emission Spectroscopy (ICP-AES)		
<i>Anal. Chem.</i> 48, 516 (1976)	3703	
Fassel, Velmer A.		
Current and Potential Applications of		
Inductively Coupled Plasma (ICP)-Atomic		
Emission Spectroscopy (AES) in the		
Exploration, Mining and Processing of		
Materials		
<i>Pure and Appl. Chem.</i> 49, 1533 (1977)	IS-M-85	
Fassel, Velmer A.		
Inductively Coupled Plasma-Atomic		
Emission Spectroscopy: An Alternative		
Approach to "Flameless" Atomic Absorption		
<i>American Soc. for Testing & Materials</i>		
<i>Special Technical Publication 618</i> , pp.		
22-42 (1977)	IS-M-62	
Fritz, James S.		
Applications of Chromatography in the		
Analysis of Inorganic Materials		
<i>Pure and Appl. Chem.</i> 49, 1547 (1977)	4308	
Fritz, James S.		
Concentration of Solutes from Aqueous		
Solution		
<i>Accounts of Chemical Research</i> 10, 67		
(1977)		3994
Fritz, James S. and Elizabeth M. Moyers		
Concentration and Separation of Trace		
Metals with an Arsonic Acid Resin		
<i>Talanta</i> 23, 590 (1976)		3759
Fritz, James S. and Jeffrey N. King		
Removal of Copper and Iron Prior to Water		
Hardness Titration		
<i>Anal. Chem.</i> 48, 570 (1976)		3747
Janes, Joseph M., John T. McCall and		
Richard N. Kniseley		
Osteogenic Sarcoma: Influence of Trace		
Metals in Experimental Induction		
<i>Mayo Clinic Proc.</i> 51, 433 (1976)		3931
Junk, G. A., J. J. Richard, H. J. Svec,		
and J. S. Fritz		
Simplified Resin Sorption for Measuring		
Selected Contaminants		
<i>J. Am. Water Works Assn.</i> 68, #4 (April,		
1976)		3772
Junk, G. A., C. D. Chriswell, R. C.		
Chang, L. D. Kissinger, J. J. Richard, J.		
S. Fritz and H. J. Svec		
Applications of Resins for Extracting		
Organic Components from Water		
<i>Z. Anal. Chem.</i> 282, 331 (1976)		3921
Junk, G. A., J. J. Richard, J. S. Fritz and		
H. J. Svec		
Resin Sorption Methods for Monitoring		
Selected Contaminants in Water		
<i>Identification and Analysis of Organic</i>		
<i>Pollutants in Water</i> , ed., L. H. Keith, (Ann		
Arbor, Michigan: Ann Arbor Science, 1976)		
pp. 135-153		3771
Junk, Gregor A.		
Organic Contaminants in Water		
<i>Proceedings International Forum on Water</i>		
<i>Quality</i> , Washington, D.C., September 1975,		
pp. 137-41 (1977)		IS-M-120
Kalnicky, D. J., V. A. Fassel and R. N.		
Kniseley		
Excitation Temperatures and Electron		
Number Densities Experienced by Analyte		
Species in Inductively Coupled Plasmas		
with and without the Presence of an Easily		
Ionized Element		
<i>Appl. Spectroscopy</i> 31, 137 (1977)		3991
Khoo, I. C. and Edward S. Yeung		
The Possibility of Studying Molecular		
Homogeneous Line-width Using Coherent		
Anti-Stokes Raman Scattering		
<i>Optics Comm.</i> 22, 83 (1977)		4160

Khoo, I. C.		Propylene-diaminetetraacetic Acid Resin	
Two-Atom Interaction in the Dynamical		<i>Anal. Chem.</i> 49, 418 (1977)	3985
Operator Treatment			
<i>Optics Comm.</i> 20, 330 (1977)	4040		
Khoo, I. C. and J. H. Eberly		Olson, K. W., W. J. Haas, Jr., and V. A.	
Emission Rate of a Multilevel Atom and Its		Fassel	
Quantum Beats		Multielement Detection Limits and Sample	
<i>Phys. Rev. A</i> 14, 2174 (1976)	4005	Nebulization Efficiencies of an Improved	
Kissinger, Larry D. and James S. Fritz		Ultrasonic Nebulizer and a Conventional	
Analysis of Drinking Water for Haloforms		Pneumatic Nebulizer in Inductively	
<i>J. Am. Water Works Assoc.</i> 68, #8 (August		Coupled Plasma-Atomic Emission	
1976)	3917	Spectroscopy	
Klun, Jerome A. and Gregor A. Junk		<i>Anal. Chem.</i> 49, 632 (1977)	3884
Iowa European Corn Borer Sex Pheromone:			
Isolation and Identification of Four C ₁₄			
Acetate Esters			
<i>J. Chem. Ecology</i> 3, 447 (1977)	3973	Pruiksma, Richard, James Ziemer and	
Larson, G. F., V. A. Fassel, R. K. Winge		Edward S. Yeung	
and R. N. Kniseley		Application of Interferometry to	
Ultratrace Analyses by Optical Emission		Simultaneous Multielement Atomic	
Spectroscopy: The Stray Light Problem		Emission Spectroscopy	
<i>Appl. Spectroscopy</i> 30, 384 (1976)	3767	<i>Anal. Chem.</i> 48, 667 (1976)	3725
Larson, George F. and Velmer A. Fassel		Reif, Isaac, Velmer A. Fassel and	
Comparison of Interelement Effects in a		Richard N. Kniseley	
Microwave Single Electrode Plasma and in		Spectroscopic Flame Temperature	
a Radiofrequency Inductively Coupled		Measurements and Their Physical	
Plasma		Significance—IV. Importance of the	
<i>Anal. Chem.</i> 48, 1161 (1976)	3543	Transition Probability Factor	
McClelland, John F. and Richard N.		<i>Spectrochim Acta</i> 31B, 377 (1976)	3219
Kniseley			
Scattered Light Effects in Photoacoustic		Reif, Isaac, Velmer A. Fassel and	
Spectroscopy		Richard N. Kniseley	
<i>Appl. Optics</i> 15, 2967 (1976)	3957	Spectroscopic Slope Temperature	
McClelland, John F. and Richard N.		Measurements Using a Noncalibrated	
Kniseley		Tungsten Lamp as a Reference Light Source	
Signal Saturation Effects in Photoacoustic		<i>J. Quant. Spectrosc. Radiat. Transfer</i> 16,	3557
Spectroscopy with Applicability to Solid and		471 (1976)	
Liquid Samples			
<i>Appl. Phys. Lett.</i> 28, 467 (1976)	3781	Richard, John J. and Gregor A. Junk	
McClelland, John F. and Richard N.		Liquid Extraction for the Rapid	
Kniseley		Determination of Halomethanes in Water	
Photoacoustic Spectroscopy with Condensed		<i>J. Am. Water Works Assoc.</i> pp. 62 (1977)	3944
Samples			
<i>Appl. Optics</i> 15, 2658 (1976)	3846	Rosenberg, Arieh and Kuo-Mei Chen	
Montaser, Akbar and Velmer A. Fassel		Theory of Pure Rotational Raman	
Inductively Coupled Plasmas as		Transitions in the Vibronic Ground State of	
Atomization Cells for Atomic Fluorescence		a Tetrahedral Molecule	
Spectrometry		<i>J. Chem. Phys.</i> 64, 5304 (1976)	
<i>Anal. Chem.</i> 48, 1490 (1976)	3633	Rosenberg, Arieh and Irving Ozier	
Moyers, Elizabeth M. and James S. Fritz		Collision-Induced Absorption of Gaseous	
Separation of Metal Ions Using a		Silane in the Far Infrared	
Hexylthioglycolate Resin		<i>J. Chem. Phys.</i> 65, 418 (1976)	3866
<i>Anal. Chem.</i> 48, 1117 (1976)	3836	Seifert, K. E., A. F. Voigt, M. F. Smith	
Moyers, Elizabeth M. and James S. Fritz		and W. A. Stensland	
Preparation and Analytical Applications of		Rare Earths in the Marcy and Morin	
		Anorthosite Complexes	
		<i>Canadian J. of Earth Science</i> 14, 1033	
		(1977)	4261
		Sepaniak, Michael J. and Edward S.	
		Yeung	
		Laser Two-Photon Excited Fluorescence for	
		High Pressure Liquid Chromatography	
		<i>Anal. Chem.</i> 49, 1554 (1977)	4142

SethuRaman, V., G. J. Small and E. S. Yeung		Crouse, Kenneth R. and Dennis V. Jensen
Two-Photon Spectrometer Based on Flashlamp-Pumped Dye Lasers		The ALECS Numerical Subroutine Library IS-3937
<i>Rev. of Scientific Instruments</i> 48, 1436 (1977)	4227	Georg, D. D. and R. F. Keller
Calculated Pressure-Broadened Linewidths of H ₂ CO	IS-4081	Subspace Selection Algorithms to be Used with the Nonlinear Projection Methods in Solving Systems of Nonlinear Equations
Calculated Pressure-Broadened Linewidths of HNO ₃	IS-4256	<i>Comp. & Math. with Applications</i> 2, 225 (1976)
Calculated Pressure-Broadened Linewidths of Formaldehyde		Keller, Roy F
<i>J. Chem. Phys.</i> 66, 4915 (1977)	4103	On Control Constructs for Constructing Programs
Pressure-Broadened Linewidths of Hydrogen Sulfide		<i>SIGPLAN Notices</i> 36 (1977)
<i>J. of Quantitative Spectroscopy and Radiative Transfer</i> 17, 323 (1977)	3924	Moon, Leonard C.
Pressure-Broadened Linewidths of Hydrogen Sulfide		Operation and Maintenance of the Rare-Earth Information Center's Information Retrieval System (RICIRS) Version 2
<i>J. of Quantitative Spectroscopy and Radiative Transfer</i> 17, 323 (1977)		Moon, Leonard C.
Pressure-Broadened Linewidths of Nitric Oxide		Systems Analysis Guide for the Rare-Earth Information Center's Information Retrieval System (RICIRS)
<i>J. Chem. Phys.</i> 65, 5110 (1976)	3963	Moon, Leonard C. and Anthony P. Lucido
Systems Analysis Guide for OS-910 Version 2, A Real-Time Operating System for the SDS-910 Computer		Systems Analysis Guide for OS-910 Version 2, A Real-Time Operating System for the SDS-910 Computer
Mathematical Sciences		Moon, Leonard
Carlson, B. C.		Users Manual for OS-910, the SDS-910 Operating System
Elliptic Integrals of the First Kind		Peterson, William C. and Robert J. Lambert
<i>SIAM J. for Math. Anal.</i> 8, 231 (1977)	3701	An Iterative Method for Volterra Integral Equations of the First Kind
Carlson, B. C.		Pinter, Thomas G. and Elaine M. Notis
A Singular Integral Equation (Solution of Problem 75-9)		Users Guide to Finger, Thumb, and Triple Axis Real Time Experiment Control Programs
<i>SIAM Rev.</i> 18, 494 (1976)	3704	Smith, Carol
<i>SIAM J. Math Anal.</i> 7, 291 (1976)	3504	A Survey of Semantic Modeling Techniques IS-3951
Carlson, B. C.		Strasburger, Martin J. and Harold D. Skank
Quadratic Transformations of Appell Functions		The Numerical Solution of a Model for Nuclear Reactor Safety Analysis
<i>SIAM J. Math Anal.</i> 7, 291 (1976)		Wainwright, Roger L. and Roy F. Keller
Carlson, B. C.		Algorithms for the Projection Methods for Solving Linear Systems of Equations
The Need for a New Classification of Double Hypergeometric Series		<i>Computers and Mathematics with Applications</i> 3, 235 (1977)
<i>Proc. Am. Math. Soc.</i> 56, 321 (1976)	3581	3418
Computer Sciences		
Brobst, Kent R., Leonard C. Moon and Thomas Ekberg		
Users Manual for DISKORG, the Disk Organization Subsystem for the PDP-15 Computer	IS-4105	
Brobst, Kent R., Leonard C. Moon and Barbara Helland		
Reference Manual for the SDS-910 Cross Assembler	IS-3800	

Basic Sciences

High Energy Physics

Anderson, E. W., H. B. Crawley, A.		Firestone, A., E. W. Anderson, V.	
Firestone, W. J. Kernan, D. L. Parker, B. -L. Young, R. G. Glasser, D. G. Hill, M. Kazuno, G. McClellan, H. Price, B.		Chang, H. B. Crawley, W. J. Kernan, D. L. Parker, R. G. Glasser, D. G. Hill, M.	
Sechi-Zorn, G. A. Snow, F. Svrcek, B. Y. Oh, M. Pratap, G. Sionakides, G. A.		Kazuno, G. McClellan, H. Price, B.	
Smith, J. Whitmore, N. N. Biswas, R. L. Bolduc, P. D. Higgins, J. M. Bishop, N. M. Cason, V. P. Kenney, D. S. Rhines, and W. D. Shephard		Sechi-Zorn, G. A. Snow, F. Svrcek, B. Y.	
Direct $e^+ e^-$ Pair Production by 360 GeV/c in Hydrogen	4026	Oh, M. Pratap, G. Sionakides, G. A.	
<i>Phys. Rev. Lett.</i> 37, 1593 (1976)		Smith, J. Whitmore, N. N. Biswas, R. L.	
Buttram, M., H. B. Crawley, D. W. Duke, R. C. Lamb, R. J. Leeper and F. C. Peterson	3706	Bolduc, P. D. Higgins, J. M. Bishop, N. M. Cason, V. P. Kenney, D. S. Rhines and W. D. Shephard	
Observation of S^* Production at 1.98 GeV/c		$\pi^- p$ Interactions at 360 GeV/c: Measurement of the Total and Elastic Cross Sections and the Charged-Particle Multiplicity Distribution	
<i>Phys. Rev. D</i> 13, 1153 (1976)		<i>Phys. Rev. D</i> 14, 2902 (1976)	3955
Chang, Van, N. W. Dean and K. E. Lassila		Hammer, C. L., V. S. Zidell, R. W. Reimer and T. A. Weber	
Parton Picture Unitary Impact-Parameter Model for Multicenter Production		The Pion Charge Radius and the Pion Form Factor	
<i>Phys. Rev. D</i> 16, 3271 (1977)	4217	<i>Phys. Rev. D</i> 15, 696 (1977)	3999
Dean, N. W.		Hammer, C. L., T. A. Weber and V. S. Zidell	
Structure of the Pomeron	4154	Time-Dependent Scattering of Wave Packets in One Dimension	
<i>Phys. Rev. D</i> 16, 1348 (1977)		<i>Am. J. Phys.</i> 45, 933 (1977)	2866
Dean, N. W. and V. Chang		Hammer, C. L., E. Shrauner and B. DeFacio	
Simple Explanation of the Up-Down Ambiguity in $\pi\pi$ and $K\pi s$ -Wave Phase Shifts	3673	The Vanishing Norm of Faddeev-Popov Ghost Fields	
<i>Lett. Il Nuovo Cimento</i> 16, 233 (1976)		<i>Phys. Lett. B</i> 71, 355 (1977)	4278
DeFacio, B.		Kuroda, Masaaki and Bing-Lin Young	
Quantum Measurements and Algebraic Quantum Field Theories	3341	Regge Spectra, Symmetry-Breaking Effects, and Decays of Old and New Mesons in Dual Resonance Amplitudes	
<i>Foundations of Physics</i> 6, 185 (1976)		<i>Phys. Rev. D</i> 16, 204 (1977)	4117
DeFacio, B. and C. L. Hammer		Lassila, K. E. and E. P. Pietilainen	
Bilinear Quantum Field Theories and Their Coherent States	3674	KK*Mass Enhancement in $\pi^+ p \rightarrow (K^+ K^- \pi^+ \pi^-) p$	
<i>J. Math. Phys.</i> 17, 267 (1976)		<i>Lettere Il Nuovo Cimento</i> 18, 111 (1977)	4027
DeFacio, B. and C. L. Hammer	3962	Lassila, K. E. and E. P. Pietilainen	
Symmetries of Ultralocal Quantum Field Theories		Pion Diffraction Dissociation into Heavy Mass States	
<i>J. Math. Phys.</i> 18, 1216 (1977)		<i>Particles and Fields</i> —1976, ed. R. Pierls (American Institute of Physics: New York, 1976) pp	
Erickson, R. A., R. K. Fickle and R. C. Lamb	3751	IS-M-86	
Search for Pulsed Gamma Rays of $\sim 10^{13}$ eV from NP 0532		Leeper, R. J., M. Buttram, H. B. Crawley, D. W. Duke, R. C. Lamb and F. C. Peterson	
<i>Astrophys. J.</i> 210, 539 (1976)		Study of the Reactions $\pi^- p \rightarrow \pi^+ \pi^- n$ and $\pi^- p \rightarrow K^+ K^- n$ at 1.98 and 2.41 GeV/c	
		<i>Phys. Rev. D</i> 16, 2054 (1977)	4134
		McKay, Douglas W. and Bing-Lin Young	
		Charmed Meson Production and Decay Using Vector Meson Dominance and Dual Amplitude Analysis	
		<i>Phys. Rev. D</i> 15, 1282 (1977)	4006

Oh, B. Y., M. Pratap, G. Sionakides, G. A. Smith, J. Whitmore, R. J. Miller, J. J. Phelan, P. F. Schultz, L. Voyvodic, R. J. Walker, E. W. Anderson, H. B. Crawley, A. Firestone, W. J. Kernan, F. Ogino, D. L. Parker, D. G. Hill, M. Kazuno, G. McClellan, H. L. Price, B. Sechi-Zorn, G. A. Snow and F. Svrcek Semi-Inclusive π^- Cross Sections in pp Interactions <i>Nucl. Phys. B116, 13 (1976)</i>	4156	H. Harvey, R. J. Loveless and M. A. Thompson Comparison of Inclusive Charged-Pion Production in $\pi \pm p$ Interactions at 100 GeV/c <i>Phys. Rev. D 16, 3137 (1977)</i>	4355
Pietilainen, E. P. and K. E. Lassila Kinematical Enhancements Due to Pion Diffraction Dissociation into KK^* and K^*K : Spineless Treatment <i>Phys. Rev. D 16, 2803 (1977)</i>	3953	Auerbach, N. and J. P. Vary Surface-Restricted Effective Interactions in a Shell Model Application to ^{88}Sr <i>Phys. Rev. C 13, 1709 (1976)</i>	3754
Pratap, M., B. Y. Oh, G. Sionakides, G. A. Smith, J. Whitmore, R. J. Miller, J. J. Phelan, P. F. Schultz, L. Voyvodic, R. Walker, E. W. Anderson, H. B. Crawley, A. Firestone, W. J. Kernan, F. Ogino, D. L. Parker, D. G. Hill, M. Kazuno, G. McClellan, H. L. Price, B. Sechi-Zorn, G. A. Snow and F. Svrcek Three and Higher Order Rapidity Distributions in pp Collisions at 200 GeV/c <i>Nucl. Phys. B116, 1 (1976)</i>	4155	Baldridge, W. J. and J. P. Vary Semirealistic Shell-Model Interaction for Neutron Hold States in ^{208}Pb <i>Phys. Rev. C 14, 2246 (1976)</i>	3959
Tornqvist, N. A. Composite Structure of Hadrons and Why Data Lie Near an Isospin Bound <i>Phys. Rev. D 13, 1947 (1976)</i>	3886	Corrigan, T. M., F. J. Margetan and S. A. Williams Exact Solution of the Quadrupole Surface Vibration Hamiltonian in Body-Fixed Coordinates <i>Phys. Rev. C 14, 2279 (1976)</i>	3933
Weber, T. A. and C. L. Hammer Wave Packet Scattering in Potential Theory <i>J. Math. Phys. 18, 1562 (1977)</i>	4082	Dalton, B. J., J. P. Vary and W. J. Baldridge Binding Energies of sd Shell Nuclei with a Realistic Effective Hamiltonian <i>Phys. Rev. Lett. 38, 1348 (1977)</i>	4121
Weingarten, D., E. W. Anderson, H. B. Crawley, A. Firestone, W. J. Kernan, D. L. Parker, B. Y. Oh, M. Pratap, G. Sionakides, G. A. Smith, J. Whitmore, D. G. Hill, M. Kazuno, G. McClellan, H. L. Price, B. Sechi-Zorn, G. A. Snow, F. Svrcek, R. J. Miller, J. J. Phelan, P. F. Schultz, L. Voyvodic and R. Walker Evidence for Local Compensation of Transverse Momentum in pp Collisions at 200 and 300 GeV/c <i>Phys. Rev. Lett. 37, 1717 (1976)</i>	4012	Goodman, A. L., J. P. Vary and R. A. Sorensen Ground State Properties of Medium-Heavy Nuclei with a Realistic Interaction <i>Phys. Rev. C 13, 1674 (1976)</i>	3722
Whitmore, J., B. Y. Oh, M. Pratap, G. Sionakides, G. A. Smith, V. E. Barnes, D. D. Carmony, R. S. Christian, A. F. Garfinkel, W. M. Morse, L. K. Rangan, L. Voyvodic, R. W. Walker, E. W. Anderson, H. B. Crawley, A. Firestone, W. J. Kernan, D. L. Parker, R. G. Glasser, D. G. Hill, M. Kazuno, G. McClellan, H. O. Price, B. Sechi-Zorn, G. A. Snow, F. Svrcek, A. R. Erwin, E.		Moffa, P. J., C. B. Dover and J. P. Vary Localization in Heavy-Ion Elastic, Inelastic, and Transfer Reactions <i>Phys. Rev. C 13, 147 (1976)</i>	3740
		Moffa, P. J., C. B. Dover and J. P. Vary Folding Model Description of Heavy Ion Inelastic Scattering <i>Phys. Rev. C 16, 1857 (1977)</i>	4140
		Stassis, C. and S. A. Williams Comment on the Reduction of an Important 9- <i>j</i> Symbol <i>J. Math. Phys. 17, 480 (1976)</i>	3717
		Vary, J. P. and S. N. Yang Effective Shell-Model Interaction Through Second Order for the sd Shell <i>Phys. Rev. C 15, 1545 (1977)</i>	3907
		Vary, J. P. Tables of the Effective Shell-Model Interaction Through Second Order for the sd Shell	IS-3941
		Williams, S. A. and D. L. Pursey Particle Permutation Symmetry of Multishell States I. Two Shells <i>J. Math. Phys. 17, 1383 (1976)</i>	3822

Fossil Energy

Greer, Raymond T. Coal Microstructure and Pyrite Distribution ed. Thomas D. Wheelock, <i>Coal Desulfurization</i> (American Chemical Society Symposium Series No. 64, 1977)	IS-M-130	Albright, J. O., J. C. Clardy and J. G. Verkade Crystal and Molecular Structure of Pentakis (4-methyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]octane) cobalt(I) (acetonitrile) trinitratocobalt(II), $\{Co[P(OCH_2)_3CMe]_5\} \cdot [Co(NO_3)_3NCMe]$ <i>Inorg. Chem.</i> 16, 1575 (1977)	4163
Greer, Raymond T. Evaluation of Pyrite Particle Size, Shape and Distribution Factors for Coal Channel Samples <i>Proceedings of the 35th Annual Electron Microscopy Society of America</i> , pp. 150-51 (1977)	4251	Brassfield, H. A., J. C. Clardy and J. G. Verkade 2-Oxo-2-(bis- β -Chloroethylamino)-1- β -Chloro-ethylamino-1,3,2-Aza-Ozaphosphorinane, $C_9H_{18}O_2PN_2Cl_3$ <i>Cryst. Struct. Comm.</i> 5, 417 (1976)	3912
Huang, Edmund Tao Kang and Allen H. Pulsifer Coal Desulfurization During Gaseous Treatment Thomas D. Wheelock, ed., <i>Coal Desulfurization</i> (American Chemical Society Symposium Series No. 64, 1977) pp. 290-304.	4226	Burke, B. A., W. R. Chan, E. C. Prince, P. S. Manchand, Nancy Eickman and Jon Clardy The Structure of Corylifuran, a Clerodune-Type Diterpene from Croton Corylifolius Lam <i>Tetrahedron</i> 32, 1881 (1976)	4025
Wheelock, Thomas D. and Ray W. Fisher Advanced Development of Fine Coal Desulfurization and Recovery Technology	IS-4210	Chexal, K. K., James P. Springer, Jon Clardy, Richard J. Cole, Jerry W. Kirksey, Joe W. Dorner, Horace G. Cutler and William J. Strawter Austin, A Novel Polyisoprenoid Mycotoxin from <i>Aspergillus ustus</i> <i>J. Am. Chem. Soc.</i> 98, 6748 (1976)	4014
Wheelock, Thomas D., Raymond T. Greer, Richard Markuszewski and Ray W. Fisher Advanced Development of Fine Coal Desulfurization and Recovery Technology	IS-4281	Chriswell, Colin D. Even a Part Per Billion Is Quite a Bit <i>Chemecology</i> 2 (November 1977)	4201
Woods, C. M. and T. E. Scott Alloy Evaluation for Fossil Fuel Process Plants (Liquefaction)	IS-4252	Clardy, J. C., D. S. Milbrath and J. G. Verkade Characterization and Molecular Structure of $S=P(OCH_2CH_2)_3N$ Trigonal Planarity of Nitrogen	4071
Woods, C. M. and T. E. Scott Alloy Evaluation for Fossil Fuel Process Plants (Liquefaction)	IS-4310	<i>J. Am. Chem. Soc.</i> 99, 631 (1977)	
Woods, C. M. and T. E. Scott Alloy Evaluation for Fossil Fuel Process Plants (Liquefaction)	IS-4311	Clardy, J. C., D. S. Milbrath and J. G. Verkade Unusual Phosphorus Basicity of $P(OCH_2CH_2)_3N$ and the Molecular Structure of $H_3BP(OCH_2CH_2)_3N$ <i>Inorg. Chem.</i> 16, 2135 (1977)	4166

Environmental R & D

Ahmad, Yusuf, Kaniz Fatima, Atta-ur-Rahman, John L. Occolowitz, Barbara A. Solheim, Jon Clardy, Robert L. Garnick and Philip W. LeQuesne Structure and Absolute Configuration of Strictamine and Strictalamine from <i>Rhazya stricta</i> . Stereochemistry of the <i>Picralima</i> Alkaloids <i>J. Am. Chem. Soc.</i> 99, 1943 (1977)	4367	D'Silva, A. P., G. J. Oestreich and V. A. Fassel X-Ray Excited Optical Luminescence of Polynuclear Aromatic Hydrocarbons <i>Anal. Chem.</i> 48, 915 (1976)	3669
		Dunker, Jan W., Janet S. Finer, Jon Clardy and Robert J. Angelici Synthesis and Structure of Dicarbonyl- η -Cyclopentadienylbis (μ Thiocarbonyl) Diiron, a Thiocarbonyl Analog of the Dicarbonyl- η -Cyclopentadienyliron Dimer <i>J. Organometallic Chem.</i> 114, C49 (1976)	3947

Faulkner, D. John, B. N. Ravi, Janet Finer and Jon Clardy Diterpenes from <i>Dictyota Dichotoma</i> <i>Phytochemistry</i> 16, 991 (1977)	4362	Richard, John J., Raymond D. Vick and Gregor A. Junk Determination of Elemental Sulfur by Gas Chromatography <i>Environ. Sci. & Tech.</i> 11, 1084 (1977)	4084
Fenical, William, Janet Finer and Jon Clardy Sphaerococcenol A; A New Rearranged Bromo-Diterpene from the Red Alga <i>Sphaerococcus Coronopifolius</i> <i>Tet. Lett.</i> 10, 731 (1976)	3802	Springer, James P., Jon Clardy, John M. Wells, Richard J. Cole, Jerry W. Kirksey, R. D. Macfarlane and D. F. Torgeson Isolation and Structure Determination of the Mycotoxin Chaetoglobosin C, A New (13) Cytochalasin <i>Tet. Lett.</i> 17, 1355 (1976)	3871
Hall, J. L., A. W. Joensen and H. R. Shanks Environmental Effects of Solid Waste as a Supplemental Fuel	IS-3852	Sun, H. H., S. M. Waraszkiewicz, K. L. Erickson, Janet Finer and Jon Clardy Dictyoxepin and Dictyolene, Two New Diterpenes from the Marine Alga <i>Dictyota acutiloba</i> (phaeophyta) <i>J. Am. Chem. Soc.</i> 99, 3516 (1977)	4045
Ireland, Chris, D. J. Faulkner, Janet Finer and Jon Clardy A Novel Diterpene from <i>Dollabella Californica</i> <i>J. Am. Chem. Soc.</i> 98, 4664 (1976)	3901	Waraszkiewicz, S. M., K. L. Erickson, Janet Finer and Jon Clardy Nidifocene: A Reassignment of Structure <i>Tet. Lett.</i> 27, 2311 (1977)	4205
Kadooka, Mavis M., Mildred Y. Chang, Hiroshi Fukami, P. J. Scheuer, Jon Clardy, Barbara A. Solheim and James P. Springer Mamanine and Pohakuline, Two Unprecedented Quinolizidine Alkaloids from <i>Sophora Chrysophylla</i> <i>Tetrahedron</i> 32, 919 (1976)	3977	Beaudry, B. J., P. E. Palmer and K. A. Gschneidner, Jr. The Preparation of Gadolinium Metal for Thermoelectric Devices <i>11th Intersociety Energy Conversion Engineering Conference</i> (New York: American Institute of Chemical Engineers; 1976) pp. 1556-1560	IS-M-78
Milbrath, D. S., J. P. Springer, J. C. Clardy, and J. G. Verkade Phosphorus Ester Basicity Dependence on Constraint. Crystal and Molecular Structures of $P(OCH_2)_3CCH_2Br$ and $O=P(OCH_2)_2C(CH_3)O$ <i>J. Am. Chem. Soc.</i> 98, 5493 (1976)	3967	Gschneidner, Karl A., Jr. Commercial Rare Earth Metals and Alloys Covered by the Unified Numbering System (UNS) <i>Proceedings of the 12th Rare Earth Research Conference</i> , ed. C. E. Lundin (Denver, Colorado: University of Denver and Denver Research Institute, 1976) Vol. I, p. 470-479	IS-M-73
Nagai, Hiroshi, B. J. Beaudry and K. A. Gschneidner, Jr. A Study of the Purification of Gd by Electrorefining Proceedings of the 12th Rare Earth Research Conference, ed. C. E. Lundin (Denver, Colorado: University of Denver and Denver Research Institute, 1976) Vol. I, pp. 470-479	IS-M-70	Gschneidner, Karl A., Jr. Commercial Rare Earth Metals and Alloys Covered by the Unified Numbering System (UNS) <i>Proceedings of the 12th Rare Earth Research Conference</i> , ed. C. E. Lundin (Denver, Colorado: University of Denver and Denver Research Institute, 1976) Vol. II, p. 688	IS-RIC-8
Paquette, Leo A., Thomas G. Wallis, Ken Hirotsu and Jon Clardy Stereospecific [3,3] Shift of a Cyclobutene Ring Involving Photofragmentation of a 1,8-Bishomocubane as the Relay <i>J. Am. Chem. Soc.</i> 99, 2815 (1977)	4234	Takel, E. S., R. H. Shaw and H. C. Vaughan Low-Level Stability and Pollutant-Trapping Potential for a Rural Area <i>J. Appl. Meteorology</i> 15, 36 (1976)	3702
Prestwich, Glenn D., Steven P. Tanis, James P. Springer and Jon Clardy Nasute Termite Soldier Frontal Gland Secretions. I. Structure of Trinervi-2 β , 3 α , 9 α -Triol 9-O-Acetate, A Novel Diterpene from <i>Trinervitermes</i> Soldiers <i>J. Am. Chem. Soc.</i> 98, 6061 (1976)	4049	Voss, Milo D. Environmental Monitoring at Ames Laboratory: Calendar Year 1975	IS-3856

Related Publications

Beaudry, B. J., P. E. Palmer and K. A.

Gschneidner, Jr.

The Preparation of Gadolinium Metal for Thermoelectric Devices

11th Intersociety Energy Conversion Engineering Conference(New York: American Institute of Chemical Engineers; 1976) pp. 1556-1560

IS-M-78

Gschneidner, Karl A., Jr.

Commercial Rare Earth Metals and Alloys Covered by the Unified Numbering System (UNS)

Proceedings of the 12th Rare Earth Research Conference, ed. C. E. Lundin (Denver, Colorado: University of Denver and Denver Research Institute, 1976) Vol. II, p. 688

IS-M-73

Gschneidner, K. A., Jr.

Commercial Rare Earth Metals and Alloys Covered by the Unified Numbering System (UNS)

IS-RIC-8

Takel, E. S., R. H. Shaw and H. C.

Vaughan

Low-Level Stability and Pollutant-Trapping Potential for a Rural Area

J. Appl. Meteorology 15, 36 (1976)

3702

Voss, Milo D.

Environmental Monitoring at Ames Laboratory: Calendar Year 1975

IS-3856

Iowa Coal Project

Anderson, Carl E., Thomas S. Colvin and J. Martin Briggs	
Reclamation Costs at the Iowa Coal Project Demonstration Coal Surface Mine	
<i>Mid-Central Region 1977 Annual Meeting, American Society of Agricultural Engineers, St. Joseph, Missouri, March 25-26, 1977.</i>	IS-ICP-42
Barrett, Florence I. and Robert J. Muncy	
Potential Effects on Aquatic Resources of Processing and/or Conversion of Iowa Coal	IS-ICP-32
Boehlje, Michael and James D. Libbin	
Economics of Mining Coal in Iowa	IS-ICP-46
Charlier, James B.	
Handbook of Iowa Mining Statutes	IS-ICP-7
Cody, R. D. and G. L. Thompson	
Quantitative X-Ray Diffraction Analyses of Clays Using an Orienting Internal Standard and Pressed Disks of Bulk Shale Samples	IS-ICP-18
Fay, Gregory and David C. Glenn-Lewin	
Legislative Regulation of the Environmental Impact of Strip Mining	IS-ICP-17
Glenn-Lewin, David C., Gregory Fay and Steven D. Cecil	
Bibliography of Strip Mine Ecology	IS-ICP-20
Glenn-Lewin, David C. and Janet Voight	
Vertebrates (Excluding Fish) in the Coal Strip-Mining Region of Southeast Iowa	IS-ICP-34
Greer, Raymond T.	
Coal Microstructure and the Significance of Pyrite Inclusions	
Scanning Electron Microscopy Symposium, April 1, 1977 in Chicago, Illinois, <i>Scanning Electron Microscopy/1977</i> Vol. I, pp. 79-94 (1977)	IS-ICP-43
Greer, Raymond T.	
Colloidal Pyrite Growth in Coal	
<i>Colloid and Interface Science</i> V, 411 (1976)	IS-ICP-38
Greer, Raymond T.	
Nature and Distribution of Pyrite in Iowa Coal	
<i>Proceedings of the Electron Microscopy Society of America</i> , pp. 620-21 (1977)	IS-ICP-40
Greer, R. T.	
Significance of Colloidal Pyrite Distribution for Improving Sulfur Determination in Coal	IS-ICP-39
Gulliford, James B. and Michael M. Crow	
Environmental Analysis Concerning ICP Coal Beneficiation Plant for Iowa Coal Research Project	IS-ICP-25
Haldipur, Gaurang Bhalchandra	
Desulfurization of Coal in a Fluidized Bed Reactor at Elevated Temperatures	IS-ICP-31
Huang, Edmund Tao Kang	
Devolatilization and Desulfurization of Iowa Coal	IS-ICP-33
Iowa Coal Project Staff	
Iowa Coal Research Project. Interim Report, January 15, 1977	IS-ICP-37
Iowa Coal Project Staff	
2nd Annual Iowa Coal Research Project Progress Report	IS-ICP-14
Iowa Coal Project Staff	
Iowa Coal Research Project Interim Report, July 15, 1976	IS-ICP-30
Laros, T. J.	
Physical Desulfurization of Iowa Coal by Flotation	IS-ICP-47
Levins, Richard A., Michael D. Boehlje, John A. Otte and Gordon C. Rausser	
The Economic Impact of EPA SO ₂ Standards on the U.S. Coal Industry	
<i>Society of Mining Engineers, AIME Transactions</i> , Vol. 262, 65 (1977)	IS-ICP-45
Levins, R. A., John Otte and Mike Boehlje	
The Feasibility of Mining Coal in Iowa: An Economic Evaluation	IS-ICP-6
Min, Seongwoo	
Physical Desulfurization of Iowa Coal	IS-ICP-35
Otte, John A. and Michael Boehlje	
A Model to Analyze the Costs of Strip Mining and Reclamation	IS-ICP-3
Sendlein, Lyle V. A. and Peter R. Johnson	
Report on the Location and Distribution of Coal Strip Mines in Iowa and Implications for Future Coal Explorations	IS-ICP-26
Sendlein, L. V. A.	
Evaluation of Mine Water Effluent from Iowa Coal Project Demonstration Mine #1 and Environmental Ramifications	IS-ICP-36
Stolp, Richard N. and Frederick P. DeLuca	
Perspectives on Iowa Coal	IS-ICP-8

Grain Dust Studies

Gibson, Ed, V. Morris and P. Chiotti
Thermal Decomposition of Grain Dust; An Early Warning for Incipient Fire or Explosion
Trans. Am. Soc. Ag. Engr. 20, 380 (1977) IS-EMRRI-4

Verkade, M. and P. Chiotti
Bibliography of Grain-Dust Fire and Explosions IS-EMRRI-5

Theses

Anderegg, James W.
Sodium Tungsten Bronze Thin Films by rf Sputtering IS-T-753

Baughman, Russell George
The Crystal and Molecular Structure of Organo-Phosphorus Insecticides IS-T-782

Beardsley, Marcus
Stress Induced Reorientation of Vanadium Hydride IS-T-771

Beckman, Robert Lee
Electronic Transitions of Some Pi-Molecular Charge Transfer Complexes IS-T-788

Bischof, C. J.
Gamma-Ray Decay Schemes for ^{93}Kr , ^{93}Rb and ^{93}Sr IS-T-707

Bonte, John L.
Szilard-Chalmers and Thermal Annealing Processes in D-tris (Ethylenediamine)Cobalt(III) Nitrate IS-T-725

Burns, H. A.
Calculation of the Second Virial Coefficient for Dipolar and Quadrupolar Polyatomic Gases IS-T-703

Carr, Patricia Ann, Roy F. Keller and Charles Wright, Jr.
Name Management in the Construction of Large Programs IS-T-734

Chang, Chung-Ping
The Dislocation Morphology in Deformed and Irradiated Niobium IS-T-763

Chang, Richard
Concentration and Determination of Trace Organic Pollutants in Water IS-T-730

Chao, T. H.
Kinetics and Mechanism of Dealkylation of the Alkyl-Bridged Dimetallic Cobaloximes and the Acid Decomposition of Hydridocobaloxime IS-T-774

Chou, K. S.
A Study of the Extractability of Alumina from Fly Ash by the Lime-Sinter Process IS-T-716

Chou, Yu-Chia Terry
Adsorption of Lead from Liquid Bismuth IS-T-745

Corrigan, Thomas Michael
Unified Model Studies of $N=84$ and $N=80$ Nuclei IS-T-793

Courtney, Dallas Ray
The Thermal Conductivity of Hydrogen Doped High Purity Vanadium IS-T-752

Culp, Charles H., III
Threshold Switching in the Amorphous Semiconductor $\text{As}_{15}\text{Te}_{70}\text{Ge}_{15}$ and in the Organic Semiconductor Melanin IS-T-709

Daake, Richard Lynn
Synthesis and Characterization of Some Reduced Zirconium Halides IS-T-736

Deckman, Harry William
Magnetic Form Factors of Rare Earth Ions IS-T-729

Dehaven, Patrick William
Investigation of Metal Hydrides Using Multiple Wavelength Neutron Powder Diffraction and the Crystal Structure Determinations of the 2,4-dinitrophenyl-hydrazone Derivative of 5-bromomethylidenecyclononanone and the 1-hydroxy-6-acetoxy-10 α -bromo-bicyclo(4.3.1) deca-3-ene IS-T-748

Dolejsi, Duane Arnold
The Thermal Expansion of Gadolinium in the Vicinity of the Curie Point IS-T-750

Dombek, Mary Gilbert
Multiconfigurational Electronic Wavefunctions in the Full Optimized Reaction Space: The Isomerization of Nitrosyl Hydride to Nitrogen Hydroxide in the Lowest Singlet and Triplet States IS-T-791

Eckels, David E.
Electrical Switching in Bulk Samples of 0.15 As-0.12 Ge-0.73 Te Glass IS-T-724

Ellison, Thomas
Evaluation of Self-Interaction Parameters from Binary Phase Diagrams IS-T-772

Fanwick, Philip
Single Crystal Electronic Spectra for the Compounds Potassium Octachlorodimolybdate(II)-dihydrate, Potassium Tetra- μ -Sulfatodimolybdate(II)-dihydrate and Potassium Tetra- μ -Sulfatodimolybdate(II, III)-3,5 Hydrate IS-T-765

Franklin, David Jansen
Effect of a Hydrogen Environment on the Creep Properties of Polycrystalline Vanadium Metal IS-T-722

Galt, Jesse Andrew
The Valence Bands of Cr-Rich, Fe-Cr Alloys Determined by X-ray Photoelectron Spectroscopy IS-T-794

Golden, Bruce M.		McComas, John G.	
Analytical Lines for Long-Path Infrared		Determination of Nitrate by Anion	
Absorption Spectrometry of Air Pollutants		Exchange with Ultraviolet Detection	IS-T-713
Using Diode Lasers	IS-T-708		
Gregersen, Alan Wayne		Michel, John Byrne	
Comparison Between Phase Shift Derived		Synthesis of Two Mercaptide-Substituted	
and Exactly Calculated Nucleon-Nucleon		Hexa-Nuclear Molybdenum Halide	
Interaction Matrix Elements	IS-T-775	Clusters	IS-T-748
Haag, Gary Lee		Miller, James Henry	
Kinetics of the Hydrolysis of $MgCl_2$ and the		Lanthanide Extraction with	
Chlorination of Magnesia	IS-T-742	2,5-Dimethyl-2-Hydroxy-Hexanoic Acid	IS-T-789
Hoh, Ying-Chu		Morris, Rex Neil	
Predictive Thermodynamic Models for		Use of a Semiconductor Laser in Infrared	
Liquid-Liquid Extraction of Single, Binary		Spectroscopy	IS-T-786
and Ternary Lanthanides and Actinides	IS-T-747	Mourer, David Paul	
Hultgren, Paul John		Crystallography of Preferred Growth in	
Proton Irradiation of Vanadium	IS-T-714	Lead-Tin Alloys	IS-T-718
Jensen, Craig Leebens		Nixon, David Edward	
Electromigration of Hydrogen and		The Determination of Ultratrace Quantities	
Deuterium in Vanadium, Niobium and		of the Toxic Metals in Biomedical and	
Tantalum	IS-T-778	Environmental Samples	IS-T-719
Kalnicky, Dennis James		Ogino, F.	
Excitation Temperature and Electron		Proton-Proton Interactions at 200 and 300	
Number Density Distributions Experienced		GeV/c	IS-T-705
by Analyte Species in an Inductively		Opioen, James Wayne	
Coupled Argon Plasma	IS-T-737	The High Energy Behavior of	
Lai, Yuet Fan		Fermion-Meson and Meson-Meson	
The Synthesis and Characterization of the		Scattering in a Supersymmetric Field	
$N_2(2\text{-hydroxyethyl})\text{-ethylenediamine}$ -		Theory	IS-T-797
triacetic Acid Resin	IS-T-770	Orent, Thomas William	
Larson, George Frederick		The Interaction of Nitric Oxide with the	
Investigations of Several Interference		(1010) Face of Ruthenium	IS-T-749
Effects in High Frequency Plasmas of		Orf, Gene Michael	
Analytical Importance	IS-T-737	Analytical Applications of Resins	
Le, Huu Van		Containing Amide and Polyamide	
Floatability of Coal and Pyrite	IS-T-779	Functional Groups	IS-T-784
Lee, Kenneth W.		Oyinlola, Adeyinka Kofoworola	
cis-Dichlorodiammineplatinum(II).		Strain Distribution Analysis in Ring Upset	
Aquation Equilibria and Isotopic Exchange		Forging and Hot-Rolling by Photo-	
of Chloride Ligands with Free Chloride and		plasticity	IS-T-723
Tetrachloro-platinate(II). II. The		Pearson, David Dwight	
Szilard-Chalmers Effect in Solid State		Directional Growth of Pearlite in	
Systems containing the		Iron-Carbon Eutectoid Alloys	IS-T-731
Octa-U ₃ -Chloro-Octahedro-		Peters, Timothy Joseph	
Hexamolybdenum(II)	IS-T-712	Polarized Electronic Spectra for the	
Leeper, R. J.		Crystals of Three Compounds, Potassium	
Study of the Neutral Meson Spectrum Near		Tetrabromoplatinate(II) Dihydrate,	
1000 MeV	IS-T-711	Tetraethylammonium Hexabromodi-	
Mahaffy, Paul Robert		platinate(II) and Tetra- μ -Glycine-	
The Interactions of Hydrogen with Ethylene		Dimolybdenum(II) Sulfate	
and Ethane on Iridium	IS-T-758	Tetrahydrate	IS-T-765
McClelland, John Frederick		Peterson, Charlie Albert	
Electromodulation Spectroscopy of sc and		Inductively Coupled Plasma-Atomic	
fcc Phase TlCl and TlBr	IS-T-721	Emission Spectrometry: Trace Elements in	
		Oil Matrices	IS-T-790

Poonawalla Fakhri F.	
Interfacial Flow Patterns on a Static Liquid Drop with Forced Internal Circulation	IS-T-754
Rausch, John Bernard	
The Lattice Parameters and Structures of Iron-Silicon Single Crystals and the Elastic Constants of Fe_3Si	IS-T-710
Reimer, Ronald Wayne	
The Charge Radius of the Pion	IS-T-728
Robinette, Susan Louise	
Polariton Effects in Naphthalene Crystals	IS-T-768
Roeske, Franklin, Jr.	
Thermal Conductivity of Niobium Diselenide	IS-T-740
Rohrbaugh, Wayne Joseph	
The Relationship of Structure to Effectiveness of Some Organophosphorus Insecticides and the Crystal and Molecular Structures of Tris(bicarbonato)Tetra-aquoholmium(III) Dihydrate and Tris(ethylenediamine)-Cobalt(III) Tetrakis (Isothiocyanato) Cobaltate(II) Nitrate	IS-T-760
Ryan, Larry Michael	
The Chemical Shift Anisotropies of 1H in $H_2O(s)$, $H_2S(s)$, and $C_6H_6(s)$	IS-T-783
Schlader, Daniel Michael	
The Effects of Hydrogen on the Single Crystalline Elastic Constants of Niobium	IS-T-759
Schiavi, William	
Interdiffusion in the Er_2O_3 -HfO System	IS-T-727
Sepaniak, Michael J.	
Laser Two-Photon Excited Fluorometric Detection for High Pressure Liquid Chromatography	IS-T-792
Rahman, S. F.	
Self-Diffusion of Co^{60} in Crystals of $Co_{1-x}O$	IS-T-691
Severin, C. Sherman	
Magnetic Properties of MnPt	IS-T-766
Shaiu, Bin-Jenn	
Thermodynamic Properties of Compounds of Na_2O with the Oxides of Chromium, Nickel and Iron	IS-T-735
Sheppard, Gregory Alan	
The Connection of a He-Jet Recoil Transport System to an Ion Source	IS-T-739
Shih, Lynn Ling-Ling	
Decay of Mass-Separated ^{122}Ag to Levels in ^{122}Cd	IS-T-795
Silber, Michael Lawrence	
Magnetic Behavior of Current-Carrying Type-II Superconducting Cylinders	IS-T-751
Sloat, Sharon Sue	
Development and Evaluation of a Hydride Technique for As, Sb and Se Determinations by Inductively Coupled Plasma-Atomic Emission Spectroscopy	IS-T-776
Sorenson, Sigurd Martin	
The Effect of Carbon on Void Formation in Neutron-Irradiated Nickel	IS-T-720
Springer, James Patrick	
Structural Studies of Naturally Occurring Toxicogenic Compounds	IS-T-757
Sundberg, K. R.	
Separated-Pair Independent Particle Model and the Generalized Brillouin Theorem: Ab initio Calculations on the Dissociation of Polyatomic Molecules	IS-T-699
Tang, Jiang-Taur	
Resistivity Recovery of Neutron-Irradiated and Cold-Worked Thorium	IS-T-744
Thome, David K.	
Low Temperature Heat Capacity of Lutetium and Lutetium Hydrogen Alloys	IS-T-769
Toplicar, James R.	
Electron Tunneling and the Proximity Effect in Pb-Cd Thin Films	IS-T-738
Tsang, Tsun-Wah Edmund	
Low Temperature Heat Capacity of Scandium and Alloys of Scandium	IS-T-780
Tuenge, R. T.	
High Temperature Vaporization and Thermodynamic Study of the Scandium-Sulfur System	IS-T-702
Verlin, J. D.	
Prediction of Transport Properties of Gases Using Classical Nonspherical Models	IS-T-701
Weber, Michael Francis	
Electrocatalytic Activity and Surface Properties of Tungsten Bronzes	IS-T-798
Western, Warren Ralph	
Decay Schemes for Mass Separated ^{136}I , ^{138}I and ^{137}Xe	IS-T-743
Wijatno, Hendra	
Aluminum Recovery from Coal Fly Ash by High Temperature Chlorination	IS-T-777
Yeh, Yu-Sung	
Preliminary Kinetics of High-Temperature Reactions of Chlorine and Steam	IS-T-717
Zidell, V. A.	
Electromagnetic Form Factors of Hadrons	IS-T-706