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SPECIFIC HEAT OF (uo.97Th0.03)Be13 o m E R PRESSURE* 

R. A, Fisher, S. E. Lacy, C. Marcenat, J. A. Olsen, N. E. Phillips, Z. 
FlslJ and J. L. Smith' 

Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, 
Berkeley, CA 94720, U. S. A.; Los Alamos National Laboratory, Los 
Alamos, m 87545, U. S. A. 

The specific heat, C, of (Uo.97''n0.03^e13 ^ a s o e e t> measured for 0.1«T<1K 
and 1.6<!P<7.7 kbar, and for 0.1<T<20K with P-0. For T>8K both the pure and 
Th substituted samples have essentially the same C. The peaks in C/T at 
0.33 and 0.54K for P-0 are suppressed and shifted to lower T by pressure. 
Anomalies in C/T can be correlated to corresponding rapid changes in 
magnetic susceptibility, x« Rapid suppression of the peaks and shift of 
T c to lower values is in marked contrast to the behavior found for pure 
BBej3 whose single peak amplitude decreases approximately linearly with 
P to about 60% at 9.3 kbar. The broad "shoulder" in C/T near 2K that is 
found for UBej3, but not for any other heavy-fermion compound, HFC, is 
completely suppressed in the Th substituted sample. 

Substitution of non-magnetic Th on U sites in UBe^, (Uj_xThx)Bej3> produces 
unexpected and complex behavior in the superconducting region below IK. In 
addition to the anomalous nonmonotonic decrease of the superconducting transi­
tion temperature, T c, with Increasing Th content, there is the appearance of 
a second peak in C for 0.0!75<x<0.04 which is not due to a second phase or 
inhomogeneities [1]. For this range of x, T c is nearly constant at 0.6K. 
Substitution of other impurities for U and Be produces a monotonic decrease 
of T c, with no special depression of T c associated with a magnetic moment 
on the impurity [2-4]. The unique effect of Th substitution on UBej3 over 
a limited range of x has been interpreted both as an antiferromagnetic transition 
[5] and as a transition between two anisotropic superconducting states [6]. 
Several attempts to confirm the presence of magnetic ordering in the (Ui_xThx)Bei3 
system have failed [7,8], while the effect on T c of magnetic Gd substituted 
for U (x«0.03) supports the suggestion of two different superconducting 
phases [2]. 

Measurements of the properties of materials as a function of pressure, P, 
provides an additional dimension in which Co make comparisons with model cal­
culations or theory. They also provide a straightforward basis for establishing 
correlations between superconductivity and magnetism without the complications 
of interpretation associated with measurements on a series of structurally and 
chemically different compounds. Measurements of Che P-dependence of properties 
is a particularly fruitful approach for an HFC because the extreme pressure 
sensitivity of the 4f and 5f-electrons involved In Che phenomena produces 
large effects at readily attainable pressures. 

Recently x of the (Uj_xThx)Bei3 system has been measured in the 
range 0<P<12 kbar below IK for 0<x<0.06 [9). Two distinct regions of 
superconductivity are present for P>9 kbar, which are separated by a 
range of x where superconductivity does not occur. Except for x=0.06, 
T c, determined from changes in x> decreases monotonically as P 
increases. 
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weighed 1.673g and consisted of five right circular cylinders {approx­
imately 6.4rara dia. x 2.4mm long) sparkcut from the center of an arc-aelted, 
unannealed, polycrystalline "button" prepared as described previously 
[10]. They were placed in a pressure cell [11] and surrounded by AgCl 
to act as a pressure transmitting medium. A thin Sn plate on top of 
the sample stack and a Pb plate on the bottom served as superconducting 
manometers. The pressure gradient across the stack was » 15%. For all 
T and P in the range of the measurements, the heat capacity of the sample 
was >50% of the total. 

Figure 1 is a plot of C/T vs T below IK in the range 0<P<7.7 kbar. 
A vertical bar for a particular P in Fig. 1 indicates T at the midpoint 
of the rapid change in x 19), and is interpreted as T c. At P»0, C/T 
has a finite intercept at T-0, which in the case of UBei3 has been 
shown [12] to be sample dependent rather than an intrinsic property 
of this material. For 0.6<T<1K, C(P)/C(0) varies by a relatively 
small amount. Over some of this range C(P) Increases with respect to 
C(0) for P<3.9 kbar, while at higher P, C(P) decreases over the entire 
range. The peaks in C/T at 0.33 and 0.54K for P»0 are strongly sup­
pressed, broadened, and shifted to lower T for P>0. At 1.6 kbar the 
peaks are barely resolved at 0.26 and 0.43K. Only a single broad max­
imum is observed for P-3.9 kbar with an onset of the anomaly near 0.4K. 
For P-6.7 kbar only a very small anomaly remains, near 0.15K. At 7.7 
kbar an apparently new feature develops — a small maximum centeied 
near 0.I7K. This anomaly may be present at lower pressures but is ob­
scured by the other anomalies, and it could be an impurity effect. 

Figure 2 is a plot of T c vs P. Values of T c from Ref. [9] are the 
midpoints of the changes in x taken from Fig. I and are displayed as 
filled circles. From the C measurements, T c is taken as the midpoint of 
the rise in C/T at the anomaly and is graphed as an open square. During 
the present measurements, x w a s measured at 1.6 kbar. The T c derived 
from it is shown as a filled square with the vertical bar indicating the 
transition width, and is comparable to other data [9]. A satisfactory 
correlation exists between T c determined by x end C. Variation of the 
temperature of the lower temperature peak with P is more difficult to 
define. Except for 0 and 1.6 kbar there is no obvious indication of an 
anomaly and for P>3.9 kbar it is presumably below the range of T In­
vestigated, and/or obscured by broadening and superposition of the two 
anomalies. If the maximum of the lower peak In C/T is used to mark the 
second transition, it is represented by open triangles in Fig. 2. (The 
dashed curve is drawn parallel to the solid curve.) The average dTc/dP 
between 0 and 1 kbar is -40mK/kbar for both transitions. dTe/dP increases 
to -80nK/kbar at 4 kbar where it remains essentially constant to 8 kbar 
for the higher T transition. These rates of decrease of T c with P are in 
contrast Co the constant and lower rate of -24mK/kbar for UBej3, and the 
60% decrease in peak amplitude from 0 to 9.3 kbar. 

In Fig. 3, C is plotted vs log T for both UBei3 and (Un.97Tn0.03)Be13-
The broad maximum near 2K for UBej3 has been completely suppressed by 
the Th substitution. Substitution of Th, Lu and Sc for U gave similar 
results in an earlier investigation [4]. This feature in C has been 
interpreted as due to development of coherence in a Kondo lattice [13]. 
Suppression of the anomaly by a non-magnetic impurity is consistent with 
this idea. Above ~8K, C for both the pure and substituted samples are 
essentially identical as found previously [4]. 
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FIGURE CAPTIONS 

FiE- 1. C/T vs T for (Uo.97Th0.03)Be13* 
Fig. 2. T c vs P for (Uo.97'ThQ>Q3)Bei3 as determined from x and C 

measurements. 

Fig. 3. C vs log T for UBei3 and (Bo.97Th0.03Be13 a t p " ° * 
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• Lambert et al. (X) 
• Present results (X) 
a Present results (c) 
A Present results (c) 

FIGURE 2 



o ID m 

(a|ouj.»/p)o 

X> 


