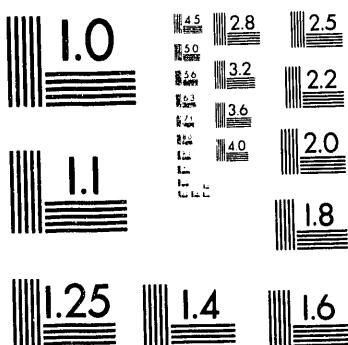


AIM


Association for Information and Image Management

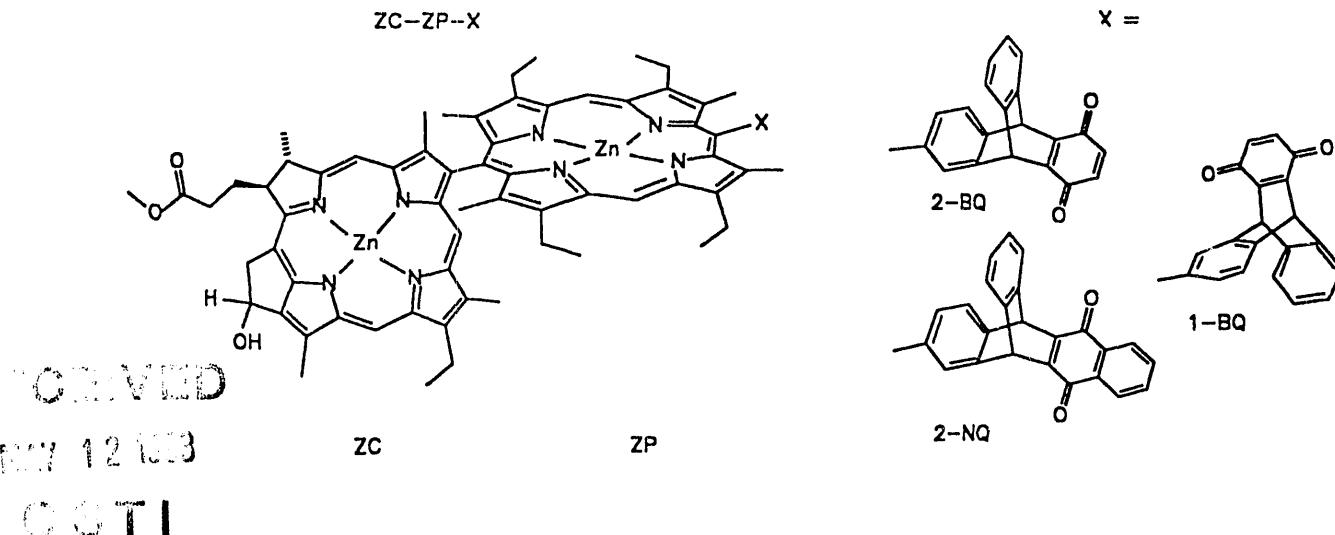
1100 Wayne Avenue, Suite 1100
Silver Spring, Maryland 20910
301/587-8202

Centimeter

Inches

MANUFACTURED TO 4IIM STANDARDS
BY APPLIED IMAGE, INC.

1 of 1


ULTRAFAST PHOTOINDUCED ELECTRON TRANSFER REACTIONS IN SUPRAMOLECULAR ARRAYS: STUDIES OF ELECTRONIC COUPLING AND SOLVATION

Michael R. Wasielewski, Gary P. Wiederrecht, and Walter A. Svec

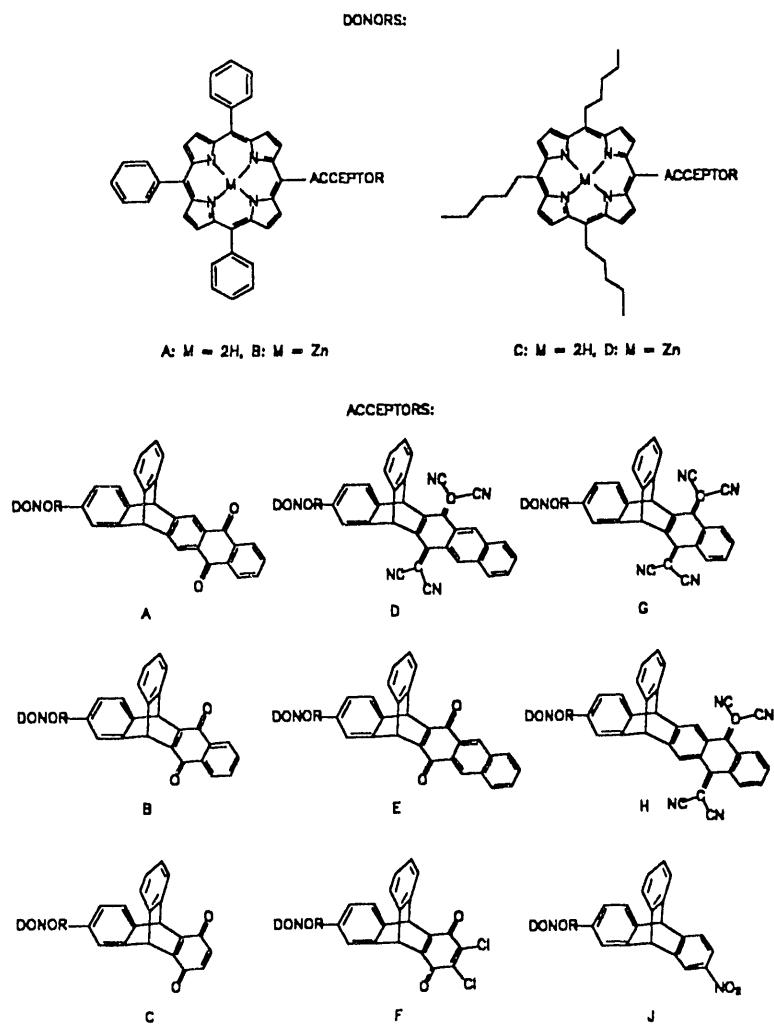
Chemistry Division, Argonne National Laboratory, Argonne, IL 60439

Photoinduced charge separation reactions form the basis for energy storage processes in both natural and artificial photosynthesis. Recent research in our laboratory focuses on developing supramolecular arrays that produce long-lived charge separation by limiting the electronic coupling between the separated charges, and on the role of solvation in determining the rates and energetics of photoinitiated electron transfer reactions.

Over the past two years we have developed a unique series of supramolecular arrays that for the first time closely mimic the electronic coupling that up until now was observed only for long-lived radical pairs that are produced in photosynthetic systems in glassy solids. At long distances the electron-electron exchange interaction, $2J$, between radicals within a charge separated ion pair is sufficiently weak that differences in local magnetic fields surrounding each radical result in $S-T_0$ mixing of the radical pair spin sublevels. This mixing produces a non-Boltzmann population of the spin sublevels of the radical pair, which results in the appearance of spin-polarized EPR spectra. Photoexcitation of the ZC-ZP-X molecules illustrated below initiates single-step charge separation reactions: $^1\text{ZC-ZP-XQ} \rightarrow \text{ZC}^+ \text{-ZP-XQ}^-$, with $\tau < 10$ ps and 90+% quantum yields in glassy solids at cryogenic temperatures. There is no evidence for formation of intermediates involving the porphyrin on time scales > 200 fs. The radical ions of the pairs are about 18 Å apart, which results in long-lived radical pairs, $\tau = 1-4$ ms. Moreover, the radical pairs retain a memory of the singlet spin state in which they were born by exhibiting spin-polarization as indicated by EPR.

Spin polarization within $\text{ZC}^+ \text{-ZP-XQ}^-$ results from weak spin-spin coupling. $S-T_0$ mixing in $\text{ZC}^+ \text{-ZP-XQ}^-$ is driven principally by the anisotropic dipolar spin-spin interaction, D . The exchange interaction $2J$ is close to 0. Since both the distance and orientation of the two radicals within each pair are known, the spin-polarized EPR spectra can be modeled using reasonable values for the exchange and dipolar interactions, in addition to the anisotropic g -tensors of the radicals. Thus, these molecules can be used as structural probes for systems such as green plant PS I and PS II, which exhibit radical pair EPR spectra, but have unknown donor-acceptor orientations and distances. The critical balance of energetics and electronic interactions necessary to produce spin-polarization in the solid state demonstrates that the charge

This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences under contract W-31-109-Eng-38.


MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

The submitted manuscript has been authored by a contractor of the U. S. Government under contract No. W 31 109 ENG 38. Accordingly, the U. S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U. S. Government purposes.

separation and storage process is highly optimized in these molecules. Molecules of this type are being used as prototype systems for developing the basic concepts necessary to produce efficient solar energy conversion and storage devices.

A series of 36 fixed-distance donor-acceptor molecules using porphyrin donors, triptycene spacers, and 9 different acceptors has been prepared. These molecules are used to probe the dependence of photoinduced charge separation rates on free energy of reaction as a function of solvent both in liquid and solid solution. Data has been obtained on the rates of charge separation in dioxane, 2-methyltetrahydrofuran, butyronitrile, toluene, chlorobenzene, and benzonitrile. The range of free energies explored spans three-quarters of the total energy available from excitation of the porphyrin to its lowest excited singlet state. The rate constant vs free energy relationships obtained show that 1) the energy of the ion-pair state is very sensitive to solvent polarity, 2) restricting solvent motion results in destabilization of the ion pair by 0.8 eV as predicted by the dielectric continuum model of solvation, 3) rate constants for nonadiabatic electron transfer at large free energies of reaction remain large when $-\Delta G > \lambda$, 4) the total reorganization energy for the donor-acceptor molecules containing zinc porphyrin donors is 0.3 eV larger than that for the donor-acceptor molecules containing the corresponding free base porphyrin donors, 5) the electronic coupling for photoinduced charge separation from the lowest excited singlet state of the ZnP-acceptor molecules is about 5 x larger than that for the corresponding H₂P-acceptor molecules, and 6) semi-classical electron transfer theories can be used to model the results obtained.

Publications 1991-1993

Michael R. Wasielewski

1. SPIN-POLARIZED RADICAL ION PAIR FORMATION RESULTING FROM TWO-STEP ELECTRON TRANSFER FROM THE LOWEST EXCITED SINGLET STATE OF A FIXED-DISTANCE PHOTOSYNTHETIC MODEL SYSTEM AT 5 K.
M. R. Wasielewski, G. L. Gaines, M. P. O'Neil, W. A. Svec,
and M. P. Niemczyk
Mol. Cryst. Liq. Cryst. 194, 201-207 (1991).
2. PHOTOINDUCED ELECTRON TRANSFER REACTIONS IN THE SOLID STATE: RATE vs. FREE ENERGY DEPENDENCE IN FIXED-DISTANCE PORPHYRIN-ACCEPTOR MOLECULES.
G. L. Gaines, III, M. P. O'Neil, W. A. Svec, M. P. Niemczyk,
and M. R. Wasielewski
J. Am. Chem. Soc. 113, 719-721 (1991).
3. SPECTROMETRIC CHARACTERIZATION OF PURIFIED C_{60} AND C_{70} .
K. R. Lykke, M. J. Pellin, P. Wurz, D. M. Gruen, J. E. Hunt,
and M. R. Wasielewski
Materials Research Society Symposium Proceedings, 206, 679-686, 1991.
4. ENERGY AND ELECTRON TRANSFER IN COVALENTLY-LINKED CHLOROPHYLL CONTAINING DONOR-ACCEPTOR MOLECULES
M. R. Wasielewski
in "Chlorophylls", H. Scheer, ed. CRC Press, Boca Raton, 1991
pp 269-286.
5. SOLVENT DEPENDENT PHOTOPHYSICS OF FIXED -DISTANCE CHLOROPHYLL-PORPHYRIN MOLECULES: THE POSSIBLE ROLE OF LOW-LYING CHARGE TRANSFER STATES.
M. R. Wasielewski, G. L. Gaines, M. P. O'Neil, W. A. Svec,
and M. P. Niemczyk
in "Electron Transfer in Inorganic, Organic, and Biological Systems", G. McLendon, J. Bolton, and N. Mataga, eds.
ACS Symposium Series, 1991, pp. 134-148.
6. MODELLING THE PRIMARY ELECTRON TRANSFER EVENTS OF PHOTOSYNTHESIS
M. R. Wasielewski
in "Metal Ions in Biological Systems", H. Sigel, Ed.,
Marcel Dekker, New York, Vol. 27, 1991, pp. 361-430.
7. TRIPLET STATES OF FULLERENES C_{60} AND C_{70} : EPR SPECTRA, PHOTOPHYSICS, AND ELECTRONIC STRUCTURES.
M. R. Wasielewski, M. P. O'Neil, K. R. Lykke, M. J. Pellin,
and D. M. Gruen
J. Am. Chem. Soc. 113, 2774-2776 (1991).

8. SUB-PICOSECOND PHOTOINDUCED ELECTRON TRANSFER IN WATER SOLUBLE PORPHYRIN DIMERS.
F. J. Vergeldt, R. B. M. Koehorst, T. J. Schaafsma,
J.-C. Lambry, J.-L. Martin, D. G. Johnson, and
M. R. Wasielewski
Chem. Phys. Lett. 182, 107-113, (1991).
9. SOLVENT AND TEMPERATURE DEPENDENCE OF THE LOWEST EXCITED SINGLET STATE LIFETIME OF 7',7'-DICYANO-7'- β -APOCAROTENE
M. P. O'Neil, M. R. Wasielewski, M. M. Khaled, and L. D. Kispert
J. Chem. Phys. 95, 7212-7218 (1991).
10. FOURIER-TRANSFORM ESR ON MODEL SYSTEMS OF THE PRIMARY CHARGE SEPARATION IN PHOTOSYNTHESIS
A. Angerhofer, M. R. Wasielewski, G. L. Gaines, III, M. P. O'Neil,
W. A. Svec, and M. P. Niemczyk
Z. Phys. Chem. 172, 17-30 (1991).
11. SOLVENT EFFECTS ON THE RATE vs FREE ENERGY DEPENDENCE OF PHOTOINDUCED CHARGE SEPARATION IN FIXED-DISTANCE DONOR-ACCEPTOR MOLECULES
M. R. Wasielewski, G. L. Gaines, III, M. P. O'Neil, W. A. Svec,
M. P. Niemczyk, L. Prodi, and D. Gosztola
in "Dynamics and Mechanisms of Photoinduced Electron Transfer and Related Phenomena", N. Mataga, T. Okada, and H. Masuhara, Eds., Elsevier, Amsterdam (1992) pp 87-103.
12. PHOTOINDUCED ELECTRON TRANSFER IN SUPRAMOLECULAR SYSTEMS FOR ARTIFICIAL PHOTOSYNTHESIS
M. R. Wasielewski
Chem. Rev. 92, 435-461 (1992).
13. SUPRAMOLECULAR ARRAYS FOR THE EFFICIENT CONVERSION OF LIGHT INTO CHEMICAL ENERGY IN THE SOLID STATE
M. R. Wasielewski, G. L. Gaines, III, M. P. O'Neil,
M. P. Niemczyk, and W. A. Svec
in "Supramolecular Chemistry", V. Balzani and L. DeCola, Eds.
Kluwer, Dordrecht, The Netherlands, 1992, pp. 201-218.
14. ULTRAFAST PHOTOINDUCED ELECTRON TRANSFER REACTIONS IN SUPRAMOLECULAR ARRAYS: FROM CHARGE SEPARATION AND STORAGE TO MOLECULAR SWITCHES.
M. R. Wasielewski, M. P. O'Neil, D. Gosztola,
M. P. Niemczyk, and W. A. Svec
Pure and Applied Chemistry 64, 1319-1325 (1992).

15. NONLINEAR OPTICAL PARAMETERS OF 7',7'-DICYANO-7'-APO- β -CAROTENE IN HEXANE BY SELF-ACTION TECHNIQUES
H. A. Abdeldayem, W. Sheng, P. Venkateswarlu, W. K. Witherow,
D. O. Frazier, P. Chandra Sekhar, M. C. George, L. Kispert,
and M. R. Wasielewski
Optics Comm. 95, 295-300 (1993).
16. MODELING PRIMARY ELECTRON TRANSFER EVENTS IN PHOTOSYNTHESIS USING SUPRAMOLECULAR STRUCTURES
M. R. Wasielewski
in "The Photosynthetic Reaction Center", J. Deisenhofer
and J. Norris, Eds. Academic, New York, 1993 (in press).
17. PHOTOCHEMICAL ELECTRON TRANSFER IN CHLOROPHYLL-PORPHYRIN-QUINONE TRIADS:
THE ROLE OF THE PORPHYRIN BRIDGING MOLECULE.
D. G. Johnson, M. P. Niemczyk, D. W. Minsek,
G. P. Wiederrecht, W. A. Svec, G. L. Gaines, III,
and M. R. Wasielewski
J. Am. Chem. Soc. (in press).
18. PRIMARY CHARGE SEPARATION IN ISOLATED PHOTOSYSTEM II REACTION CENTERS
M. Seibert, S. Toon, Govindjee, M. P. O'Neil,
and M. R. Wasielewski
Current Research in Photosynthesis
N. Murata, Ed.
Kluwer Academic Publishers, Dordrecht (in press).
19. SUPRAMOLECULAR STRUCTURES FOR MODELING PHOTOSYNTHETIC REACTION CENTER STRUCTURES.
M. R. Wasielewski, G. L. Gaines, III, D. Gosztola,
M. P. Niemczyk, and W. A. Svec
Current Research in Photosynthesis
N. Murata, Ed.
Kluwer Academic Publishers, Dordrecht (in press).
20. INTRAMOLECULAR PHOTOINDUCED ELECTRON TRANSFER IN A RIGID ANTHRACENE-N,N-DIMETHYLANILINE SYSTEM. POSSIBLE ROLE OF EDA COMPLEX FORMATION.
D. W. Minsek, N. C. Yang, M. P. Niemczyk, W. A. Svec,
and M. R. Wasielewski
Photochemical Energy Conversion (in press)
21. THE DYNAMICS OF THE S₁ EXCITED STATES OF CAROTENOIDS.
H. A. Frank, R. Farhoosh, R. Gebhard, J. Lugtenburg,
D. Gosztola, and M. R. Wasielewski
Chem. Phys. Lett. (in press)

22. RESONANCE RAMAN SPECTROSCOPY OF A CHLOROPHYLL-PORPHYRIN HETERODIMER: EXCITATION PROFILE IN THE 400-450 nm REGION.
D. Gosztola and M. R. Wasielewski
J. Phys. Chem. (submitted)
23. ULTRAFAST SOLVATION DYNAMICS AND ELECTRON TRANSFER IN CHLOROPHYLL-PORPHYRIN-ACCEPTOR TRIADS.
G. P. Wiederrecht, S. Watanabe, and M. R. Wasielewski
Chem. Phys. (submitted).

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

**DATE
FILMED**

7 / 27 / 93

END

