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ABSTRACT

NODEX is a multigroup nodal diffusion theory code based on a high order
version of the Nodal Expansion Method (NEM) - one of the modern transverse
integrated methods. Nodal schemes of this type are formulated by transverse
integrating the multi-dimensional diffusion equation within each node volume
in order to obtain a set of one-dimensional equations for the node. In the
NEM, these equations are solved by expanding the transverse integrated flux
in a series of polynomials and then solving for the expansion coefficients.
This process has the attractive feature that it allows the energy groups to
be solved for cne at a time - thus facilitating implementation in a computer
code that permits the use of an arbitrary number of energy groups. The cost
of this flexibility, however, is an error component due to the truncation of
the polynomial expansion. In order to mitigate this difficulty, NODEX uses a
fifth order polynomial expansion which has been found to result in negligible
truncation errors for typical applications. The use of such a high order
expansion requires some care in the development of the algorithm, however, as
schemes greater than fourth order can become computationally quite intensive.

The NODEX algorithm somewhat resembles the nonlinear algorithm f£irst sug-
gested by Smith and Wagner and Koebke. This procedure involves scurce iter-
ations using a low order coarse mesh finite difference (CMFD) method in which
the coupling coefficients may be modified so as to force agreement with a
higher order method. The nonlinearity arises as the source iterations are
periodically interrupted and the coupling coefficients recomputed using the
NEM while holding the eigenvalue, node averaged fluxes, and leakages con-
stant. The source iterations are accelerated by using a variant of Wielandt's
method that precludes the need for solving for all energy groups simultane-
ously. Acceleration by this scheme has been found in practice to be essen-
tially as gocd as when the usual Wielandt scheme is used and all groups are
solved for simultaneously.

In addition to the source iterations, the other major portion of the algo-
rithm is the computation of successively improved values of the coupling
terms. This is accomplished by solving - for each ncde interface - the NEM
equations for a two-node problem comprised of the nodes on either side of the
interface. For a fifth order method there are thus ten unknown expansion
coefficients per group for each ¢f these problems. The corresponding ten
eguations per group that are solved are: one for the net leakage in the lon-
gitudinal direction for each of the nodes, one for the continuity of current
and heterogeneocus flux at the interface, and three weighted residual
eqguations for each node. The transverse and longitudinal leakages, the node
averaged fluxes, and the problem eigenvalue are assumed known from the latest
source iteration for the purpose of solving for the expansion coefficients.
The longitudinal leakage and continuity equations are used to eliminate the
first and second order coefficients, thus leaving six equations per group for
the higher order coefficients. These degenerate into two GxG matrix systems
and one 4Gx4G system which are then solved by Gaussian elimination using a
variation of the SAXPY-KJI method with partial pivoting. This method
produces quite good' solution times on the Cray-XMP. The resulting expansion
coefficients are then used to compute an NEM value for the interface group
currents, from which coupling terms for that interface may be determined.
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NODEX: A High Order NEM-Based Multigroup Nodal Code

T. M. Sutton

I. Introduction

NODEX is a multigroup nodal diffusion theory code.for general three-
dimensional reactor analysis. The nodal sclution procedure used in the code
is based on a high order version of the Nodal Expansion Method (NEM)!. This
transverse integrated nodal method? is capable of obtaining extremely accu-
rate solutions to the node-wise homogeneous diffusion equation on a very
coarse computational mesh. NODEX uses a nonlinear iteration stategy in which
the source iterations are performed using the low order Coarse Mesh Finite
Difference (CMFD) method. The coupling coefficients used during this phase of
the calculaticn are periodically recomputed using the NEM in order to cause
the CMFD solution to match that of the higher order method. Source acceler-
ation is achieved using a version of Wielandt's method that permits the
group-wise computation of the node averaged flux values. Unlike many ncdal
codes that are limited to a one-and-a~half or two group energy treatment,
NODEX has the ability to handle an arbitrary number of energy groups. When
combined with an advanced homogenization scheme based on Generalized Equiv-
alence Theory? (GET), the code has the potential to solve heterogeneous reac-
tor problems in a small fraction of the time required by a detailed finite
difference or finite element calculation.

In Section II of this report the NODEX solution algorithm is described in
detail, including a discussion of the source acceleration scheme. Section III
presents a method of using NODEX, or any other advanced nodal code, for accu-
rate three-dimensional depletion calculations. Finally, Section IV briefly
mentions some of the directions that NODEX development may take.

II. The NODEX Algorithm

The NODEX algorithm is somewhat similar to the nonlinear algorithm ori-
ginally suggested by Smith¢ and Wagner and Koebke®. These schemes employ an
outer iterative loop that alternates between a sequence of several source
iterations performed using a simple low order method, such as the CMFD
method, and a higher order nocdal calculation used to compute increasingly
more accurate coupling coefficients for use during the next sequence of
source iterations. This outermost loop is commonly called the nonlinear iter-
ation as the eigenvalue, node averaged fluxes, and leakages from the latest
sequence of source iterations are used in computing the coupling coeffi-
cients. In the original nonlinear scheme the coupling adjustment is imple-
mented by applying discontinuity factors to the CMFD equations. NODEX,
however, employs an alternative method - also due to Smith - that has proved
to be more numerically stable for many applications. This method of formu-
lating CMFD equations with adjustable coupling coefficients will be described
next. Following that is a discussion of how the NEM is used to compute the
updated values for the coupling coefficients. To end this section, the scheme
used to accelerate the source iterations is presented.

1 KAPL~4708



Before beginning the development of the NODEX eguations, it is necessary
to explain the notational system employed (see also Reference 3). To avoid
the need to derive separate equations for each of the three directions, a
generic coordinate system is introduced with directional variables u, v, and
w and their corresponding indices 4, m, and n. Each of these directional var-
iables and associated indices.may represent any of the three physical
directions x, y, or z and their corresponding indices i, j, or k, with the
other two variables then representlng the other two directions. Hence, Ay, ...,
represents Al j,x , A,,.k , and A“wx‘.- Integer subscripts are used to denote
quantities defined for node volumes, while half-integer subscripts are used
to denote quantities defined on node interfaces.

II.A. The CMFD Formulation
The usual mesh-centered finite difference expression for the u-component

of the group g current averaged over the interface between nodes («£,m,n) and
(£+1,m,n) is given by¢

B 3 -I -~ -
L @ _[ , weE X g E * (1)

X+i.ma ’

g«u
S

5 [
sig,mn hi /DI-TM.N * LJN/DLH ”on

where h; is the node spacing and ¢;
into the nodal balance equation,
Tus - —‘:,5 9-|ﬂg = o X’ " 33'

Z el mn Lot/ mn 25 2 s X J/§

2 =
¢ 5 win . £ w A,
U= xx"‘.f k: ' T2, 2 mn 0, 2, 3 A "R, m, " , (2>

is the node averaged flux. Substitution

)

results in the standard seven point equations for the node averaged flux. (It
is assumed here for simplicity that ‘scattering is to the next lowest group
only; the extension to a general downscattering treatment is easily accom—
plished.)

In NODEX, the expression for the interface current is modified to be

—

wd . 2 [ £ 9 - T a
Jl"'n“"'" ).,‘i /D;.m'- + l";,: /Dli"mm ®1.v—m qpl Y,

w?d g 3
' C,?un.-,n ( ai'"‘ "’ ¢1"""-">]
e (3)

where c;ﬁuﬂmn is the coupling correction factor that is to be determined from
the solution of the NEM equations. Note that there is only one such factor
per node interface and energy group in this scheme as opposed to the two fac-
tors required by the discontinuity factor-based scheme. Note also that the
coupling correction factor is used to multiply the sum of - rather than the
difference between - the flux values in the two adjacent nodes. The reason
for this is to avoid the numerical difficulty that would arise if the flux
difference scheme were used, the flux values in the two nodes were equal (or
nearly equal), and the NEM solution yielded a non-zero interface current.
Such a situation would lead to an infinite (or extremely large) value for the
corresponding coupling factor.
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The NODEX form of the CMFD equation is then obtained by substituting
Eg. (3) into Eg. (2), yielding

2/h% (l wd
- -C (D n
H’le'}'?z' hl‘é*' /D}ﬂ.m.n ,.LU /D}?mm L+l mn ) A+nmon
2y -
9 ) [ % s )
* {Zrl-»m.n *U"n?,} h:““ /Dlid-»mm ’k: /D‘z‘m,n ( ‘ t C,L+lf1.,m.n

27k R IL
¥ h4 /D2 * by, /D28 (’ C,z-m.,mn 1,,...

F 1) )

2/hY -
P Z E} (’ ) a-lmn
usx, gy @ hu /D9 e + L\“ /D“_"m ,(-1/1_ e Z=1m,
9-1 b 7(5 57 = g7
: 'simn ¢}‘m'h " SZ' > yzﬁl.n«.—\ @X,m "
. (4)

It is the solution of this seven stripe matrix equation for the nodal fluxes
and the eigenvalue that comprises the source iteration loop of the nonlinear
algorithm.

II.B. The Coupling Coefficient Calculations

In order for Eg. (4) to converge to an accurate solution, the coupling
coefficients must be computed so as to cause the CMFD internodal current
values to match those of a high order, solution. In NODEX, the high order sol-
ution is obtained using the NEM. This method, along with the other trans-
verse integrated nodal methods, is formulated by integrating - for each
direction - the three-dimensional diffusion equation within the volume of a
node over the two transverse directions. This results in a set of three one-
dimensional equations of the form

3 O!z _u.ﬂ U- U, 9 w3 -y
-p2 2 Lu) . s oy
2m.n Lmn " hY Ao hi

. 9-1+3 1,9’ (u-ué) 2 2 3 uﬂ u-y -
= + ’ u U1
Zs,!, e, @/”“'” b 3 A Y Z‘fj,u,.\ Ly ) "Zyrn )

¢ (5)

where Qmmn((u-q )/h%) is the transverse averaged flux and LAM“((u u/)/hy) is
the transverse leakage term defined by

, D:.m.[fw"”‘ & d Lo |Vmrhmn
“ - o ——— O’W —
A,m,n L\t; h‘: W, ~ Y2 oU Thmun - ".”.. /2
Vb /2 Wyt hW/q
*f dv 2 D, J ’ }
v L]
-WY oW Flmn W~ hYA . (6)

The solution of these one-dimensional equations is used to obtain a relation-

ship between the internodal current and the node averaged flux values, with
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the method of solution being the key feature that distinguishes one trans-
verse integrated method from another. The particular technique utilized by
the NEM involves expanding the transverse integrated flux in a series of
polynomials and then solving for the expansion coefficients. The disadvan-
tage of this method is the introduction of an error component due to the
necessity of truncating the polynomial expansion. Another of the transverse
integrated methods, the Analytic Nodal Method (ANM)’, does not suffer from
this type of error as it solves the one-dimensional equations exactly. Unfor-
tunately, however, it is rather unwieldy in a general multigroup formulation.
Thus, in order to obtain the accuracy of the ANM yet retain the multigroup
capability, NODEX uses a fifth order polynomial expansion of the form

Bimn (52 - 53...,[“5 g B O )]

¢ (1)

where P is a polynomial of order t. The use of a £ifth order expansion has
been found to be sufficiently accurate so as to result in negligible trun-
cation errors for typical applications.

Before discussing the details of how the NEM equations are solved, it is
necessary to specify the form that the transverse leakage term, ji‘ , is to
take. NODEX generally uses the quadratic leakage approximation?! in which the
transverse leakage is represented by

ge L u-u -\ 2
ud [.4 w) . Lu: +/L-43___A - Lu’a (_._.._..

\ 7] n
2mn hf: 01)"""' - J'Z,»-.n hd( 1(:""" "1 . (8)

NODEX also allows the use of the flat and buckling approximations’, but for
simplicity these will not be discussed here. It should be emphasized that
the quadratic leakage approximation presented here is not rigorously deriva-
ble from the three-dimensional diffusion equation. Its use is justified by
many observations that it gives acceptable accuracy, and that errors incurred
during the homogenization step are typically much more severe that those
attributable to this leakage approximation. The method of determining the
guadratic transverse leakage expansion coefficients employed by NODEX is a
common one® in which Eq. (8) is integrated over

u,, - (he,/2) Su < uy + (W, /2), uy = (hf/2) Su s u; + (h{/2), and

U, — (h&./Z) < u < ug,, + (h4,,/2) in order to obtain three equations for the
expansion coefficients in terms of the net transverse leakages from nodes
(£4-1,m,n), (£{,m,n), and (4+1,m,n), respectively. Solving these equations for
the coefficients yields

Lu! = [(L - «l )ZAU"’ u _(-“5 N Ju? ku+21'lu
Uy wan P H-“ +hi Lrtionn E o hd o bl ) A=l J-”'--" Y., +hY
u? 3(L‘1 )z [ “3 ) ~_._.__l
2 A Y (/-fw.m - >k“+l.' + (LG Lx.m»)h“-, +hy
})wv,n h}-l ;l} L‘,{n ‘, Xad y 2 ys
Lu’ . Tud o 4 us
OI:M.V\ Limmn 12 2 L,mn ' (9a)

where the net transverse leakages are simply given by
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£, “x hb'\’/ . (Qb)

Note that even though integrals over three adjacent nodes are used in obtain-
ing the quadratic expansion coefficients, a given quadratic is defined only
within the middle node when used in Eq. (5).

In NODEX, the coupling terms are computed by using the NEM to solve a
local problem for each node interface of the original global reactor problem.
Each of these local problems is composed of two nodes; specifically, the ones
on either side of the interface. Taking the node averaged fluxes, leakages,
and eigenvalue to be known from the previous sequence of source iterations,
the local problems are then solved for the NEM values of the group currents
at the interface between the two nodes. Then, by rearranging Eqg. (3) to get

-

Tus Za > a
L,i/Ds y PLvu /D"h”m>jl+lll,m.n - ®£,M,n + ¢,Z¢I,M,H

Ry =
Ao wz.w.n + ¢1e+|,m,n , (10)

these interface currents are used to cbtain the improved coupling factors for
the next sequence of source iteratioms.

In deriving the NEM equations for the two-node problems, it is convenient
to employ the explicit form of the flux expansion polynomials used by NODEX.
They are: P, (f)=f, P,(§)=(*-1/12, P,(f)=t*-§/4, P,(E)=f+-3§2/10+1/80, and
Py (E)=Es-§2 /3+E/48 These are chosen1 such that P,(*1/2)=0 for t>2, and also
such that consecutive polynomials are orthogonal over the range [-1/2,1/2].

The quantities to be determined are the NEM vaules of the interface cur-
rents, but to get them one must first compute the five flux expansion coeffi-
cients for each of the two nodes and each of the energy groups. Ten equations
per energy group in the expansion coefficients are thus required in order to
completely specify the unknowns. Two of these ten equations are obtained by
constraining the NEM value of the longitudinal leakage in each node to match
that of the global solution. To derive these equations, one applies the flux
expansion of Eq. (7) to a transverse average of Fick's Law to obtain

- - U-u
J u? Lg’-‘) = - ——.__DB’”"'” ¢ . O«L-"'s Pé J)
Limn h¢ h}; Lyman £z A, mm . (1)

Evaluation of this expression at each of the two u-directed faces of node
(4,m,n) results in

=ud = Tul +1) -
Jli\l;‘m,,\ JZ..M,n (‘ Z)
- Dfm m Ta wd + wl uld d '
= = e + + <
L,U CD/C)"""" Olae)'“nh - a"ﬂ,mm z a3 2mn=3 a ,!,M,n v Ix3 QJ;“z”
o,
. (12)

so that the longitudinal leakage in the u-direction,
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may thus be given in terms of the even order expansion coefficients as
D3 = -
ud _ Ay, g [ uS _I. ul ]
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There is one of these expressions for each of the two nodes in the local
problem. An additional equation may be obtained from the continuity of cur-
rent condition at the node interface by using Eq. (12) to evaluate the cur-
rent at the interface in terms of both the node («4,m,n) quantities and the
node (£+1,m,n) quantities and then equating the two expressions to get

D 5,_,, = w9 wd L Aud ' a | w4 ]
- y,h ) + - a 1 oud 4
"ET;_‘ 2, 'a'l,M.n a?‘l.m.n 2 3t ty Q“,L,m.n T er»"""
4 ol
D? . Y™ .a
T . s @3 al” - a;a - ?' ‘;'
h¢ A+ im,n 1‘“;"‘:" 241, m.n - A=l n

< O“‘: s 2 Q":
T ¥ mn IZ " Sgasmn

- . (14)

Similarly, the discontinuity condition on the homogeneous flux3 may be
obtained by evaluating Egqg. (7) at the node interface

| b ! 3 Ll
¢3 1 ’ * .Z a'u + é azﬂlm;"]

guﬁ"’ L, myn Limr,n
Limn .
) = ‘ a
o e— 3 ] w 9 _’ “o
= - - = += a
ul A+ hm,n [ ' z a.ae“")mbn 6 214’)”’"” ]
,Q*H,m,n

, (15)

where :Z:i is the node (4,m,n) discontinuity factor for the surface at u,,,,, .

The two longitudinal leakage equations along with the conditions on the
flux and current at the interface between the two nodes represent only four
of the ten expressions needed per energy group. The six additional equations
are obtained by applying the weighted residual method to the transverse inte~
grated diffusion equation!. Each weighted residual equation is obtained by
substituting Eqs. (7) and (8) into Egq. (5), multiplying through by a weight-
ing function, and then integrating over the range {-1/2,1/2]. In NODEX, the
three weighting functions P,, P,, and P, are used, thus resulting in the
expressions
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There is one set of these equations for each of the two nodes, thereby pro-
viding the 6:G expressions needed to complete the system.

At this point, all 10-G unknowns could be computed by the numerical sol-
ution of the 10:G simultaneous equations just derived. A more efficient algo-
rithm may be obtained, however, by taking advantage of the fact that each of
the non-weighted residual equations (Egs. (13b), (14), and (15)) contain
expansion coefficients for but a single group. By solving these equations for
the two lowest order coefficients in each of the two nodes and substituting
the results into Egs. (l6a-c) yields a system of 6-G equations for the 6-G
higher order expansion coefficients. A further simplification may be achieved
by noting that the use of Eg. (13b) to eliminate the second order coefficient
in Eq. (16b) produces a system of equations for just the fourth order coeffi-
cients in a single node. These two systems - each consisting of G equations
~ are solved numerically. With the fourth order coefficients thus known, the
system of 6-G equations reduces to a system of 4-G equations for the third
and fifth order coefficients.

A ghe solution of each of the local problems for-the coupling factors,
c;:n»qv is thus achieved in the following manner. First, the CMFD values of
the surface averaged current are obtained for each node interface using
Eq. (3). The values of the node averaged fluxes used for these calculations
are taken from the latest sequence of source iterations, and the coupling
factor values are those of the previous nonlinear iteration. Next, these sur-
face averaged currents are used to compute the longitudinal leakage and the
transverse leakage expansion coefficients according to Egs. (9a), (9b), and
(l3a). At this point, one has everything needed to compute the coefficients
and right-hand-side terms of the G simultaneous equations for the fourth
order flux expansion coefficients in each of the two nodes in the local prob-
7 KAPL-4708



lem. By solving these equations numerically, one may then use the results to
compute the coefficients and right-hand-side terms of the system of eguations
for the third and fifth order coefficients. This system is also solved numer-
ically. Next, with the high order flux expansion coefficients now known, the
first and second order coefficients are determined from Eqs (13b), (14), and
(15). Updated NEM values for the group currents at the interface between the
two nodes of the local problem are then obtained using Eq. (12), and finally
the updated coupling factors computed using Eg. (10). This process is
repeated for each interface in the nodal model.

For the algorithm just described to be effective, an efficient routine for
solving the simultaneous equations for the flux expansion coefficients is
essential. This is particularly true if the number of energy groups is large,
as the number of unknowns increases with the square of the number of groups.
NODEX uses a routine based on the SAXPY-KJI variant® of Gaussian elimination
with partial pivoting. This seems to be the most effective method for appli-
cation on the CRAY-XMP.

When the CMFD coupling terms have been computed for every interface in the
model, another sequence of source iterations is begun. These proceed until
some source iteration convergence criterion is met, at which time the coupl-
ing terms are once again recomputed. The nonlinear algorithm is considered
converged when two consecutive sequences of source iterations yield the same
solution to within some overall convergence criterion. It is important that
this overall convergence criterion be somewhat lcoser than that used to for
the source iterations, elsé the overall criteria may never be satisfied.

II.C. Acceleration of the Source Iterations

The source iterations in NODEX are performed using the inverse power
method?®. The convergence rate of this method is determined by the dominance
ratio IX,/kol - the ratio of the first harmonic eigenvalue to the fundamental
eigenvalue. This quantity is always between zero and unity, with convergence
being slower the closer the value is to unity. Wielandt's method?® is a
means of accelerating the convergence by altering the problem so as to reduce
the dominance ratio while leaving the eigenvector unchanged. This is
achieved by subtracting
xS 9’ = s,
A 52: Y E“I"‘»” ¢1’Mn
from both sides of the seven point equations for the node averaged flux,
where A’ is an estimate of the eigenvalue. Since the same quantity is sub-
tracted from both sides, the eigenvector is identical to that of the original
problem. The dominance ratio for the altered problem, however, is now given
by |(1/xe=1/X")/(1/A,=1/N")|. If A" > (A,;+X,)/2, then the dominance ratio
will be smaller than it was in the unaltered problem thus increasing the con-
vergence rate.

The disadvantage of this method is that it introduces a coupling to the
higher energy groups on the left-hand side of the seven point equations, thus
preventing the group-wise solution of the equations that is normally possible
if there is no upscattering. To address this problem, Wielandt's method is
KAPL-4708 8



modifiedi! for use in NODEX by changing the quantity that is subtracted from
both sides of the seven point equations to

y > 97
_.5[2 vE Phirn ]
’ Lrvwnn E] .

¢,¢,m,u

The ratios ng,/¢1_,,are computed based on the results of the latest source
iteration and then treated as constants for use in the next source iteration,
thereby regaining the group-wise solution capability. As the source iter-
ations converge, this modified method approaches the original Wielandt
method.

Wielandt's method is most effective if the estimated eigenvalue, A', is
close to the true eigenvalue of the matrix equation. Since the true
eigenvalue is not generally known in advance, however, a means of estimating
it during the course of the problem solution is required. Some caution must
be exercised during this process as Wielandt's method will cause convergence
toward whatever harmonic solution has an eigenvalue nearest to the estimate.
A sufficient condition for assuring that convergence is to the fundamental
mode is to always choose the estimated eigenvalue such that it is greater
than the fundamental eigenvalue. The formula used by NODEX to compute an
estimated eigenvalue for use in iteration t+l,

" ' (&) \Ce-n)
X/(r+> - é(é) +-/o<3, A - A } , (18)

is an attempt to achieve this condition while still providing rapid conver-
gence. This method of source acceleration has proved to be both reliable and
extremely easy to implement.

III. Depletion Using NODEX

NODEX is a general purpose nodal code that can be utilized in a wide vari-
ety of ways. Recently, a NODEX-based procedure has been developed by the
author that provides a highly accurate three-dimensional depletion capabil-
ity. In contrast to conventional methods? that rely on single or extended
assembly homogenization schemes, the current NODEX procedure obtains node
averaged cross sections and discontinuity factors from heterogeneous planar
calculations of one or more radial slices through the three-dimensional
model. The advantage of this type of homogenization procedure is that it
completely avoids the need for developing special schemes for nodes that are
not adequately handled by a single or extended assembly homogenization
method. The disadvantage, of course, is that the planar slice calculations
are generally much more computationally intensive than are single or extended
assembly calculations. If, however, the only sufficiently accurate alterna-
tive is a heterogeneous three~dimensional calculation, then nodal calcu-
lations using data from this planar homogenization procedure are clearly
preferred.

The three-dimensional nodal model used for the depletion calculations is
constructed with the same radial nodal definition as is used in the planar
homogenization calculations. The node spacing in the z-direction is chosen
such as to allow any axial heterogeneities to be modeled (e.g., BWR shutdown
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zones!?), and also small enough to yield sufficient accuracy. At beginning-
of-life (BOL) in a xenon-free condition, the method of assigning the appro-
priate planar homogenization parameters to the three-dimensional ncdal mesh
is straightforward. One simply performs a separate planar calculation for
each unique axially uniform region of the reactor; then applies the resulting
homogenization parameters for each two—dimensional node to the corresponding
radial location of each axial slice in the three-dimensional model comprising
that region. Unity discontinuity factors are used for node surfaces perpen-
dicular to the z-direction. -

The situation becomes much more complicated for depletion calculations.
In this case, the heterogeneous planes corresponding to each of the regions
that are axially uniform at BOL are depleted at a prescribed power level. The
fraction of fuel remaining in each two-dimensional node at each of the planar
depletion timesteps is tabulated along with the homogenization parameters for
that node. Each node in the three-dimensional model is then depleted by first
computing the fraction of fuel remaining in the node following a timestep
based on the node averaged flux, the node averaged fission cross section, and
the duration of the timestep. One then refers to the tabulation of
homogenization parameters versus fraction of fuel remaining obtained from the
planar depletion calculation appropriate to the axial slice containing the
node. By performing a linear or quadratic interpolation based on the frac-
tion of fuel remaining in the node in the three-dimensional model, one thus
determines the homogenization parameters to be used for that node for the
next flux calculation. The homogenized macroscopic node averaged cross
sections obtained in this way do not contain a contribution due to xenon.
This is handled separately on a microscopic cross section basis.

The effect of temperature feedback on the three-dimensional power distrib-
ution is treated by performing each O0f the planar depletion calculations at
more than one temperature. This allows the homogenization parameters to be
tabulated versus temperature, thus permitting interpolation on this quantity
as well as on the fraction of the fuel remaining on a node-by-ncde basis.

Iv. Summary
NODEX has proved to be a very useful reactor analysis tool when used as

described in Section III. Many additional applications of and enhancements
to the code will undoubtedly be developed in the future.
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