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INTRODUCTION 
, ~ !  .. <,- . , .  . 

. -. The underlying science of  themchemical conversion of biomass materials 
. . 

t o  useful gaseous fuels I s  poorly understood. Recent experimental research i n  

the U.S .A. and  wede en(') has offered new and important insights into the 

gasification process. The two research teams independently concluded that  biomass 

gasification occurs i n  three steps: (1) pyrolysis, producing volat i le  matter and 

char; (2) secondary reactions of the evolved volat i le  matter i n  the gas phase; 

and (3) char gasification via the water gas reaction. Detailed understanding of 

the rates and products of these three steps offers important guidance for  the 

- ,  improved design of biomass gasif iers .  
*r r -  

Pyrolysis of biomass materials occurs under normal conditions a t  relatively 
1 

low temperatures (300' to 500°C), producing volat i le  matter and char. Very rapid / 
heating causes pyrolytic weight loss to occur a t  somewhat higher temperatures. In 

general, the volat i le  matter content o f  cellulosic materials 'approximates 90% of 

the dry weight of the i n i t i a l  feedstock. Woody materials contain between 70% and 

80% volat i le  matter, and manures contain 60% volat i le  matter. However, i t  is 
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known(3) t h a t  c e l l u l o s i c  mater ia ls  can be completely v o l a t i l i z e d  when subject  

t o  very r a p i d  heat ing (>lO,OOO°C/sec). 

V o l a t i l e  matter produced by pyro lys is  of  the  biomass begins t o  pa r t i c i pa te  

i n  secondary, gas phase react ions a t  temperatures exceeding 600°C. These re-  

act ions occur very r a p i d l y  and y i e l d  a hydrocarbon r i c h  syngas product. As 

recognized by ~i ebol d(4), these react ions resemble t he  hydrocarbon cracking re -  

act ions employed i n  the manufacture o f  ethylene and propylene by the petrochemical 

i ndus t r y  (5,6) . The secondary, gas phase react ions dominate the gas i f i ca t i on  

chemistry o f  biomass. 

A t  s t i l l  h igher temperatures (>700°C) p y r o l y t i c  char reacts w i t h  steam t o  

produce hydrogen, carbon monoxide and carbon dioxide. Rates o f  gas i f i ca t i on  o f  

(21. biomass der ived chars are known t o  be higher than coal derived chars , 
however much higher temperatures are requi red to achieve char gas i f i ca t i on  than 

were i n i t i a l l y  required f o r  the pyro lys is  reactions. Catalysis o f  char g a s i f i -  

ca t ion  has been reported ('B~), wi th  1 i m i  ted success. 

Research descri bed f n t h i s  paper focuses on the  second step o f  the g a s i f i -  

ca t ion  process, and d e t a i l s  the e f f ec t s  o f  temperature and residence time on 

product gas formation. Cel lu lose i s  used as a feedstock f o r  p y r o l y t i c  v o l a t i l e  

formation. E a r l i e r  papers (9*10) have discussed the e f f ec t s  o f  steam on ce l lu lose  

pyro lys is  k i ne t i cs  . Two recent papers (I1 presented e a r l y  resu l t s  on pe l l e t i zed  

r e d  a lde r  wood pyro lys is /gas i f i  ca t ion  i n  steam. Future papers w i l l  discuss resu l t s  

using o ther  woody mater ia ls,  crop residues and manures. Research t o  date ind ica tes  

t h a t  a l l  biomass mater ia ls  produce q u a l i t a t i v e l y  s i m i l a r  r e s u l t s  i n  the gasi fi- 

ca t i on  reactor  described i n  the  fo l low ing  sect ion o f  t h i s  paper. E f fec ts  o f  

pressure on the  heat o f  py ro lys is  o f  ce l lu lose  a re  a lso discussed as a prelude 

to fu tu re  papers d e t a i l i n g  the more general e f f ec t s  o f  pressure on reac t ion  ra tes  



EFFECTS OF TEMPERATURE AND RESIDENCE TIME ON THE 
SECONDARY, GAS PHASE REACTIONS 

Experimental Procedure 
'' 

For the experiments described below dry, Whatman #I f i l  t 'er paper s tored i n  a 
I 

d i s s i  cant b o t t l e  was used as feedstock mater ia l .  The use o f  an oven t o  ob ta i n  

"bone dry" mater ia l  was found t o  be f u t i l e  due t o  the hygroscopic nature o f  the 

ce l lu lose .  The ce l l u l ose  was assumed t o  have the chemical composition 0.444 C, 

0.062 H, 0.494 0 on a mass f r a c t i o n  basis, and the char composition was determined 

t o  be 0.7835 C, 0.04 H, and 0.1765 0 by an independent laboratory .  

I, A spec ia l l y  designed quartz, tubu lar  p lug f low reac to r  was fabr i ca ted  a t  

I1 Pr inceton t o  study the gas phase react ions.  Rates o f  gas formation by species 

can be measured using the reac to r  e i t h e r  i n  a d i f f e r e n t i a l  o r  an i n t e g r a l  mode. 

Results described here emphasize the i n t e g r a l  aspects o f  the tubu lar  reac to r  s ince 

I they are the eas iest  t o  i n t e r p r e t .  

A schematic o f  the experimental l ayou t  i s  given i n  Figure 1 . A t yp i ca l  

I experiment using the reac to r  fo l lows the procedure. out1 ined below: 

1). With a l l  th ree furnaces cold, a small (0.1 to 0.59) sample 

o f  the mater ia l  to be pyrolyzed i s  placed i n  the center o f  the p'yrolysis 

reactor .  

2) An i n e r t  gas i s  b led  through por ts  D and E to cool the sample 

and purge the reactor ,  wh i l e  furnaces 1 and 3 b r i n g  the steam super- 

heater and the, gas phase reac to r  t o  the  desired temperature. 

3) The p e r i s t a l  t i c  pump i s  actuated and begins t o  pump water 

into the steam generator a t  a measured ra te .  Concurrently, a small 



amount o f  i n e r t  t r ace r  gas (argon) i s  cont inuously i n j e c t e d  through 

p o r t  A i n t o  the rea r  o f  the reactor .  

4) when condensed water f i r s t  begins t o  appear i n  the py ro lys is  

reactor ,  Furnace 2 (which was preheated t o  t h e  desired py ro lys is  

': temperature) i s  moved i n t o  place around the py ro lys is  zone o f  the 

reactor .  

5)  When py ro lys is  temperatures are  reached the s i x  p o r t  Valco 

valve i s  switched and the  34 p o r t  Valco valve automat ica l ly  takes 

15 samples o f  the  gas stream f o r  l a t e r  'analysis i n  the Hewlett 

Packard 5834a Gas Chromatograph (HPGC) . Unsampl ed gas i s  co l l ec ted  

i n  a  ~ e f l o n  bag f o r  l a t e r  ana lys is .  

6) When a l l  15 samples have been taken, the s i x  p o r t  valve 

i s  switched again and the samples are automat ica l ly  analyzed by 

. t h e  HPGC. Gases co l lec ted  i n  the Tef lon bag. are sampled usi,ng a  

gas t i g h t  syr inge and analyzed by the HPGC. 

7) The char and t a r s  produced .dur ing  the experiment are  

.. co l l ec ted  and weighed. Water co l l ec ted  i n  the condenser i s  a1 so 

wei ghed. 

Temperatures w i t h i n  the  reac to r  are  con t ro l l ed  by various temperature con- 

t r o l l e r s  and monitored by type K thermocouples w i t h  continuous record ing on cha r t  

recorders. Measured temperature va r i a t i ons  along the leng th  of the  gas phase 

(1 r eac to r  have been described i n  an e a r l i e r  pub l i ca t i on  . 
The evolved gas composition was observed t o  undergo considerable v a r i a t i o n  

dur ing  the course o f  the experiment; consequently 'ten, gas standards were acquired 

t o  c a l i b r a t e  the HPGC f o r  q u a n t i t a t i v e  ana lys is  o f  the f o l l ow ing  gases: Ar, N2, 

H2 , t o s  CO2, CH4, C2H4, C2H6s C3H6 , C4H8. C4H1 0, C5H1 2, and CSH1 4. I d e n t i  fi ca t i on  



o f  the higher hydrocarbons (>Cg) I s  obscured by the f a c t  t h a t  some other  py ro lys is  

products have s i m i l a r  r e ten t i on  times. Analyses given i n  t h i s  paper f o r  l i g h t  

hydrocarbons (<Cg) - have been checked using a  mass spectrometer. The HPGC uses 

a  Porbpak QS i n  ser ies  w i t h  a  Poros i l  column operat ing between -50°C (cryogenic) 

and 200°C f o r  gas analysis w i t h  a  thermal conduc t i v i t y  detector  (TCD). The 

c a r r i e r  gas i s  a  8 ' / 2 %  Hz, 91 He mixture. A t y p i c a l  gas ana lys is  takes 14 
! 

m i  nutes . 
The complete recovery o f  moisture and t a r s  from the  reac to r  sometimes poses 

d i f f i c u l t i e s .  The moisture i s  absorbed on d ry  paper towels and weighed; whereas .. ,*I; 

the t a r s  condense on a  r o l l e d  piece o f  aluminum f o i l  i n se r t ed  i n  the condenser. 

Mass balances are always b e t t e r  than 0.8, bu t  can be mis leading because much more 

water i s  used dur ing the course o f  an experiment than s o l i d  reactant .  .! -i.*: 

> . e,',' 
The carbon balance i s  a  b e t t e r  measure o f  the experiment's qua l i t y ,  and '.,. :,..A.,,d2:,2 

customari ly  ranges between 0.7 and 1.0 f o r  the r e s u l t s  repor ted here. Our i n -  .I.- .a,;. 

a b i l i t y  t o  c lose the carbon balance i n  p a r t  r e f l e c t s  the format ion o f  water 

so lub le  carbonaceous compounds which are no t  sub ject  t o  ana lys is  by our e x i s t i n g  

instrumentat ion.  The i r  presence i s  manifested by the c o l o r  and smell o f  the 

co l lec ted  water, which ranges from c l ea r  w i t h  an odor resembl i ng automobi 1  e  exhaust, 

t o  deep amber w i t h  a  stronger, more noxious odor. 

As designed the reac to r  bears some resemblence t o  a  d i l u t e  phase t ranspor t  

reactor  i n  t h a t  the so l i ds  and v o l a t i l e  py ro lys is  products a re  present o n l y  i n  low 

concentrat ions i n  the steam reactant .  During py ro l ys i s  t he  composition o f  gas i n  the 

gas phase reactor  using the lowest steam f low and a 0.1 g sample i s  nominal ly  68% 

steam, 28% vo la t i l e s ,  and 4% argon c a r r i e r  (on a  volume percent basis) .  Some- 

what l a r g e r  samples, 1  eading t o  an increase i n  v o l a t i l e  concentrat ions, do no t  



markedly a f fec t  the resul t s  reported here. 

Rates of gas production can be measured using the reactor i n  e i ther  a 

d i f ferent ia l  o r  an integral mode. The different ial  mode employs the Valco valve 

system to  obtain f i f teen  0.6 ml samples of gas evolved during the course of the 

expei-iment. W i t h  ' ~ r  t racer  gas injected a t  a measured ra t e ,  the di lut ion of 

the t racer  gas sample can be- d i rec t ly  related to the "instantaneous" r a t e  of 

vola t i le  gas production i n  the reactor.  For example, w i t h  a t racer  gas flow 

of 5 ml per min., a di lut ion of 50% in the gas sample would correspond to an 

"instantaneous" vola t i le  gas production r a t e  of 5 m l  per m i  n .  Unfortunately, 

departures from true plug flow of gas flow within the reactor (primarily due to 

the e f fec t  of the condenser on gas flow) make the d i f ferent ia l  mode experimental 

data more di f f i  cu l t  t o  i nterpret than indicated above. Research reported here 

emphasizes the integral aspects of the reactor design. 

When used i n  the integral mode total  gas production by species i s  measured 

using teflon bags t o  col lec t  a l l  the reactor eff luent .  The dependence of to ta l  

gas production on gas phase residence time in  the gas phase zone of the reactor 

i s  determined using the combined data of many experiments. This data can be used 

t o  infer  rates  of gas production within the gas phase reactor.  Kinetic models 

of  gaseous species formation can be obtained through a study of the ef fec ts  ,of 

both temperature and residence time on species production. Work i n  t h i s  exciting 

area i s  only now beginning a t  Princeton. 

Results and Discussion 

Figures 2 ,  3 and 4 display the dependence of gas production ( 9 gas per g 

cel lulose)  by species on gas phase residence t i m e '  for various gas phase reactor 

temperatures. For these experiments the steam superheater was maintained a t  

350°C, and the pyrolysis furnace a t  500°C. This l a t t e r  se t t ing  gave r i s e  t o  a 

-6- 



measured sample hea t ing  r a t e  o f  100°C/min. Residence time was var ied by vary ing 

the p e r i s t a l t i c  pump's water f l ow r a t e  between 0.06 and 0.34 g/min., and by 

l n s e r t i n g  a c losed quar tz  cy l i nde r  i n t o  the gas phase reac to r  t o  reduce i t s  

apparent volume. 

Data po in ts  repor ted i n  Figures 2-5 were accumulated over a per iod  o f  s i x  

months using experimental techniques which evolved and improved dur ing t h a t  t ime 

period. Data po in ts  w i t h  residence times o f  s i x  seconds o r  less represent our 

"best" r esu l t s .  These data were obtained using a water f low r a t e  o f  0.34, g/min. 

for  a 0.25 g sample t o  ob ta i n  residence times o f  2 t o  3 sec. Shorter  residence 
-; ' ,  . .;\ 

,.u . 
times were obtained using a quar tz  i n s e r t  t o  reduce the gas phase reac to r ' s  apparent 7 - ,  ',': 

a ... . .. :., 
; '1 ..: 

vol me .  Longer residence times were obtained by reducing the water f low r a t e  and a ,  

',;&;:, ',I 
c e l l  ulose sample s i ze  propor t ionate ly .  Thus, data w i t h  residence times o f  s i x  

; :I' 

seconds o r  less  represents the same steam f low/cel lu lose weight r a t i o .  . ) \. 

,.: < ,,h 
Since ce l l u l ose  py ro l ys i s  occurs i n  about one minute w i t h  a heat ing r a t e  o f  

. . !. 

',,.'! -.< 

100°C/min., the "best" data corresponds t o  a steam d i l u t i o n  r a t i o  o f  about 1.4 g steam 

pe r  1 g ce l lu lose  feed. Ava i lab le  evidence suggests t h a t  h igher steam d i l u t i o n  

r a t i o s  have l i t t l e  e f f e c t  on the gasi f i c a t i o n  r e s u l t s  . E f f o r t s  are present ly  being 

made t o  more f u l l y  e l uc i da te  the e f f e c t s  o f  d i l u t i o n  r a t i o  on steam g a s i f i c a t i o n  

products. 

Of the various gases represented i n  Figures 2-4 the behavior o f  carbon d iox ide 

i s  s implest  t o  i n t e r p r e t ,  s ince i t  shows the l e a s t  dependence on gas phase residence 

t ime o r  temperature. Apparently the primary mechanism f o r  C02 formation r e s t s  i n  

the i n i  ti a1 py ro l ys i s  process. Secondary, gas phase react ions a t  temperatures 

above 500°C con t r ibu te  less  t o  Cot formation. I n  order t o  increase g a s i f i c a t i o n  

e f f i c i ency  by reducing C02 format ion (each molecule o f  C02 formed represents a n e t  

loss  of carbon from the  combustible products o f  the process), the condi t ions 



a f f e c t i n g  t h e  p y r o l y s i s  s t e p  o f  g a s i f i c a t i o n  must be c a r e f u l l y  exami ned. For 

example, t he  use o f  h i g h  s o l i d s  h e a t i n g  r a t e  may reduce Cop formation. 

Methane fo rmat ion  i s  a l so  r e l a t i v e l y  easy t o  i n t e r p r e t .  I n c r e a s i n g  temper- 

a tures  and i ncreasi  ng residence times r e s u l  t i n  increased methane format ion.  The 

slope- o f  the  dashed l i n e s  i n  ~i gure 3 g ives t h e  apparent r a t e  o f  methane pro- 
- .  

duc t i on  a t  t he  var ious  temperatures s tud ied.  The dependence o f  t h i s  p roduct ion  

r a t e  on temperature can be used t o  est imate the  a c t i v a t i o n  energy f o r  methane 

format ion.  E f f o r t s  t o  e l  uc ida te  the  mechanism o f  methane fo rmat ion  (most probably 

the  py ro l ys i s lhyd rogena t ion  o f  h ighe r  hydrocarbons) and d e r i  ve k i n e t i c  parameters 

are  p r e s e n t l y  underway. 

Carbon monoxide and hydrogen p roduc t ion  data behave s i m i l a r l y ,  and reach 

a maximum a t  about 5 seconds res idence t ime arid 700" t o  750°C. Future experiments 

are  a n t i c i p a t e d  t o  show some increase i n  product ion  o f  these gases w i t h  longer  

res idence times due t o  improved experimental procedures. 

Data f o r  CZH6 p roduct ion  shows some s i m i l a r i t y  t o  t h a t  o f  CH4; however 

CZH6 product ion  reaches a maximum a t  temperatures o f  650' t o  700°C and residence 

times o f  about 2 seconds. Compet i t ive r a t e s  o f  fo rmat ion  by p y r o l y s i s  and 

consumption by p y r o l y s i s  o r  dehydrogenation reac t i ons  probably e x p l a i n  t h i s  

observed behavior.  

Ethylene product ion  i s  maximi zed by temperatures o f  700' t o  750°C and 

res idence times o f  about 4 seconds; whereas propylene fo rmat ion  i s  favored by 

lower  temperatures (650°C) and s h o r t e r  res idence times ( 2  seconds). 

I n  general,  these r e s u l t s  i n d i c a t e  t h a t  t he  gas. phase r e a c t i o n  temperature 

most s i g n i f i c a n t l y  a f f e c t s  g a s i f i c a t i o n  r e s u l t s .  The r o l e  o f  p r imary  p y r o l y s i s  

condi t i o n s  and gas phase res idence t imes are  much l e s s  s i  gni  f i c a n t  . Moreover, f o r '  

temperatures above 650°C t h e  i n i t i a l  r a t e s  o f  species fo rmat ion  a r e  ve ry  h igh,  so 

t h a t  much o f  t he  gas fo rmat ion  i s  complete i n  l e s s  than 0.5 sec. These very  h i g h  

- 8- 



r e a c t o r  desi  gn. 

I The preceding conclus ions are  subs tan t ia ted  by F igure  5, which shows t h e  

e f f e c t  o f  gas phase temperature and residence t ime on the  carbon, hydrogen and 

oxygen g a s i f i c a t i o n  e f f i c i e n c i e s  (carbon e f f i c i e n c y  = carbon i n  gas + feedstock 

carbon). Again, t he  gas phase r e a c t o r  temperature most s i g n i f i c a n t l y  a f f e c t s  the  

carbon and hydrogen e f f i c i e n c i e s  o f  t he  system. 

Under the  bes t '  condi t i o n s  examined t o  date, 83% o f  t h e  feedstock 's  energy 

I was c a r r i e d  by the  gaseous products o f  the  process, and t a r  p roduct ion  was r e -  
. . 

duced t o  2% o f  the  feedstock weight.  The gas had a  hea t ing  value o f  490. B t u l s c f .  
,;,:.. ..$.$, . .. 

Other p e r t i n e n t  s t a t i s t i c s  are  g iven i n  Table 1. 
5 .  ,,-. ,,. ,.. .. 

I n i t i a l  experiments i n  f l o w i n g  argon w i t h  no steam present  y i e l d  e s s e n t i a l l y  
$, 

t h e  same r e s u l t s  as t h e  comparable steam runs. From t h i s  i t  appears t h a t  t he  
:: ,:;;. 

g a s i f i c a t i o n  process . i s  dominated by c rack ing  reac t i ons  and n o t  steam re forming 
:",I?,. !.< ,,.i'{. 

I r eac t i ons .  Va r ia t i ons  i n  hea t ing '  r a t e  o f  t h e  c e l l  u lose from 50°C/min. t o  200°C/mi n. 

I do n o t  markedly a f f e c t  r e s u l t s .  

~ EFFECTS OF PRESSURE ON THE PYROLYSIS HEAT OF REACTION 

I A comprehensive experimental research program t o  i n v e s t i g a t e  t h e  e f f e c t s  o f  
I 

pressure on t h e  products o f  steam g a s i f i c a t i o n  o f  biomass i s  c u r r e n t l y  underway a t  

Pr inceton.  A  s t a i n l e s s  s t e e l ,  t u b u l a r  micro  r e a c t o r  designed t o  p a t t e r n  t h e  quar t z  

r e a c t o r  descr ibed e a r l i e r  has been f a b r i c a t e d  and i s  now be ing used i n  shakedown 

experiments. The p y r o l y s i s  furnace used w i t h  t h e  quar t z  r e a c t o r  system has been r e -  

p laced i n  the  pressur ized steam system by a  Setaram D i f f e r e n t i a l  Scanning C a l o r i -  

meter (DSC). The DSC provides f o r  q u a n t i t a t i v e  determinat ion  o f  t h e  e f f e c t s  o f  
b 

-9- . 



pressure on p y r o l y s i s  k i n e t i c s  and heats o f  reac t i on .  A more complete d e s c r i p t i o n  

o f  t h i s  i ns t rumen ta t i on  and experimental r e s u l t s  w i l l  be g iven i n  f u t u r e  p u b l i c a t i o n s .  

F igure 6 presents the  r e s u l t s  o f  th ree measurements o f  t h e  heat  o f  p y r o l y s i s  

o f  e l  1 u l  ose a t  d i f f e r e n t  pressures. A t  e levated pressures the  p y r o l y s i s  r e -  

a c t i o n  becomes exothermic, and char product ion  increases from about 12% by weight  

o f  t h e  c e l l u l o s e  feedstock a t  1 bar  t o  16% a t  6 bars pressure. Future research 

i s  expected t o  considerably r e f i n e  t h i s  i n i t i a l  data and extend i t  over  a broader 

range o f  pressures. 

CONCLUSIONS 

Gas'phase, steam crack ing reac t i ons  dominate t h e  chemistry  of biomass g a s i f i c a t i o n .  

A t  temperatures above 650°C these reac t i ons  proceed very  r a p i d l y  and generate a 

hydrocarbon r i c h  syngas con ta in ing  commercial ly i n t e r e s t i n g  amounts o f  ethy lene,  

propylene and methane. Increased pressure appears t o  i nhi  b i  t the  gasi f i c a t i o n  

process. 

These resu l  t s  i nd ica te  t h a t  biomass gasi f i e rs  should be designed t o  p rov ide  

f o r  h igh  hea t ing  r a t e s  and s h o r t  residence times w i t h  gas phase temperatures 

exceeding 650°C. Transport  reac tors ,  charac ter ized by l a r g e  throughputs, h i g h  

h e a t i n g  ra tes ,  modest pressures and s h o r t  residence times appear t o  be i d e a l l y  

s u i t e d  f o r  t h i s  purpose. Future biomass gasi f i e r s  should r e l y  on steam c rack ing  

t o  produce f u e l s  and chemicals ; thereby resembling t h e  technologies p r e s e n t l y  

employed f o r  ethy lene product ion.  
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TABLE 1 

SELECTED GAS1 FICATION RESULTS FOR CELLULOSE 

Steam Superheater Temperature 
P y r o l y s i s  Reactor Temperature 
Gas Phase Reactor Temperature 
Gas Phase Reactor Residence Time 

Sampe Weight 

350°C 
500°C . 

700°C 
3.5 sec 

Char Residue Weight 0.012 g 
,Char Residue Weight Percent 10% 
Tar Residue Weight 0.003.  

2 X Tar Residue Weight- Percent 

Gas Vol ume Produced 
Gas Heat ing  Value 

C a l o r i f i c  Value o f  Gases 
C a l o r i  f i c  Val ue o f  Char 
C a l o r i f i c  Value o f  Tars 

Mass Balance 
Carbon Balance 

Gas Ana lys is  (Vol %) 

C2H6 
C 3H 6 

o t h e r  . . 

13.7 MM B t u l t o n  
2.8 MM B t u l t o n  
0.5 MM B t u l t o n  
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SCHEMATIC OF THE TUBULAR QUARTZ REACTOR EXPERIMENT 
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Figure 6 

CELLULOSE AHpyROLYSIS VS. PRESSURE 
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