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Object-Oriented Inventory Classes:
Comparison of Implementations in KEE and CLOS

Richard R. Silbar and H. W. Egdorf

Los Alamos National Laboratory, University of California,
Los Alamos, New Mexico 87545

ABSTRACT

The modeling of manufacturing processes can be
cast in a form which relies heavily on stores to and
draws from object-oriented inventories, which contain
the functionalities imposed on them by the other ob-
jects (including other inventories) in the model. These
concepts have been implemented, but with some dif-
ficulties, for the particular case of pyrochemical oper-
ations at the DOE's Rocky Flats Plant using KEE, a
frame-oriented expert system shell. An alternative im-
plementation approach using CLOS (the now-standard
Common Lisp Objecc System) has been briefly ex-
plored and was found to give significant simplifications.
In preparation for a more extensive migration toward
CLOS programming, we have implemented a useful
subset of CLOS on top of the KEE shell.

I. INTRODUCTION AND BACKGROUND

A manufacturing process involves draws from a
number of inventories of different types—inventories
for materials and resources—and it eventually stores
products and residues to appropriate inventories and
returns resources to their inventories. The inventories
may be concrete (e.g., a supply of chemical beakers)
or abstract (e.g., a recording of operator exposure to
hazardous materials).

Inventories can play an even greater role in process
modeling when one allows them to carry their own
functionality. For example, one task that might be
performed by an inventory is keeping a history of its
draws and stores. Or, a draw request on some inven-
tory might trigger other actions, such as calling for a
draw from another, related inventory or for starting up
a whole new, related production process.

Placing functionality in inventories is an object-
oriented programming (OOP) approach (e.g., COX

1987) to the simulation of the manufacturing processes.
The general OOP description of a manufacturing plant
might also involve objects representing a foreman (for
decision-making), a controller queue, workcenters and
parts, as well as inventories. In a working simulation
there would be generic class-objects which would be
fleshed out with member-instances, such as particular
inventories or workcenters. The instance-objects com-
municate with one another by passing messages; an
object receiving a message chooses to deal with that
request according to coded methods incorporated in
the data structure for the object itself.

At LANL we have undertaken a discrete-event sim-
ulation of the pyrochemical manufacturing processcs
at the DOE’s Rocky Flats Complex (HODGE, SILBAR
and KNUDSEN 1990a). In this work we worked in
the OOP paradigm (HODGE, SILBAR and KNUDSEN
1990a), testing the concept of object-oriented invento-
ries discussed above (SILBAR et al. 1990). Our initial
prototype was implemented using Sun-4 workstations
running the KEE expert system shell (INTELLICORP
1989).

In the following, Section II gives a brief discussion
the general types of inventories needed for process sim-
ulation. Section III goes into the KEE implementation
of the generic inventory classes in more detail, laying
out functionalities, slots, and inherited behaviors and
some of the implementation issues we addressed. Scc-
tion IV describes how many of the problems found in
our KEE implementation can be avoided using CLOS.
The last major section discusses how we implemented
a substantial subset of the CLOS standard within the
KEE environment. This provides a programmer the
option of developing his or her model simulations in
a higher level, more disciplined language. The paper
closes with a summary and notes some questions to be
addressed in future work.
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Fig. 1. Hierarchy of inventory classes. (Tangle graph created using KEE.)

II. GENERIC INVENTORY CLASSES

In brief, inventories should inherit their behavior
from the following set of inventory classes. More de-
tails, along with examples, are given elsewhere (SILBAR
et al. 1990).

Simple Draws and Stores — These inventories sim-
ply contain some bulk amount of a material or re-
source, and a draw or a store just decrements or
increments the inventory level (a number). These
simple inventories have no limits on the quanti-
ties drawn or stored. We need to distinguish a
draw function from a “negative store” because a
given inventory often needs to differentiate be-
tween these two functions and because they can
involve different arguments and side-effects (see
below).

Sub-Inventories - Inventories for which, say, a store
must also increment some parent inventory. In
fact, there might be a whole hierarchy of sub-
inventories contained by higher-level inventories.

Item inventories — Inventories which track individ-
ual parts (which might be complicated structures
in their own right) rather than a bulk amount.

Limited inventories -~ Inventories which have un-
derflow or overflow functions which are invoked
when a draw or store request bumps into a floor
or ceiling. One cannot store more than there is

capacity to store, nor can one draw more items
than there are.

Waiting-List inventories - For certain critical
resources—such as a particular kind of equip-
ment, material, or storage space—a process may
have to wait until that resource becomes avail-
able. Such inventories maintain waiting lists for
those processes which have made unsatisfied re-
quests. When a subsequent store or draw makes
the resource available, the (oldest waiting) pro-
cess is informed to make its request again.

Partial inventories - Inventories that accumulate
a bulk amount that will eventually form a com-
plete unit (e.g., residues which are packed in a
drum). Such inventories typically pass the com-
pleted unit along to a parent item-inventory and
re-initialize themselves to start a new unit.

Trigger inventories - Inventories which invoke some
special actior when a threshold is reached. There
may well be several such thresholds and response
functions for such an inventory.

On top of all these inventories is a generic top-level
object, of which all inventories are subclasses. Figure
1 shows the class hierarchy for these general classes
of inventories and how they inherit functionality from
one another. Note the doubling of types for draws and
stores.



Functionalities are not only inherited by, but can be
compounded by subclass inventories. As a result, be-
havior tends to become more complex the lower down
the hierarchical tree one goes. Figure 1 shows the mul-
tiple parentage of the generic inventory classes; Store-
Partial, e.g., is a subclass of the Store, Partial and Sub
inventory classes. Inheritance of behavior from muiti-
ple parents allows us to exploit the existing technology
of flavor-mixing and/or wrappers.

Not shown in this hierarchical diagram are any in-
ventory instances. In the RFP pyrochemistry model,
there are about 75 different inventory instances. Many
(if not most) of these inventory instances are a miz of
some number of the generic inventory classes shown
in Fig. 1. For example, the inventory named MSE-
FURNACES is an example of a Draw-Limited-Waiting
inventory (of an equipment resource) which inherits
behavior from the Draw-Item, Draw-Limited, Draw,
Item, and Waiting classes. It is also a Store inventory;
otherwise there is no sense waiting for a furnace to be-
come available. It happens in fact to be a Store-Item
inventory.

III. THE KEE IMPLEMENTATION

The functionality of an inventory, in our model of
the RFP manufacturing processes, is largely assembled
through inheritance of behavior filtering down through
the hierarchy of class objects to the member instances.
That is, a given inventory is usually completely speci-
fied by assigning it as a member instance of some set of
parent inventory classes (although, in principle, n given
functionality for zu inventory instance could have its
primary method overwritten with its own special func-
tion). The following describes some details of how this
was done in the framework of the KEE software.

First, OBJECT provides two accessor methods, GET~-
ATTRIBUTE and SET-ATTRIBUTE, for reading and writ-
ing slot values. These methods are also available to any
child of OF JECT. (In practice, only those attributes that
have been declared “public” can be accessed this way.
This allows the programmer to reserve some “private”
slots for internal use.) Further down the hierarchical
inventory tree there are methods for other functional-
ities, such as GET-AVAILABLE~INVENTORY, DRAW, etc.

In KEE, methods are stored in special “method
slots™, either as named LISP procedures or as explicit
lambda forms. We chose to store all our methods in
LISP files, which we compile, rather thar in the KEE
knowledge base itself. This allows us to have use of

documentation strings, comment>, and ease of main-
tenance and transportability. There is a draw-back to
this, however; we were unable to take advantage of the
KEE “wrapper-body macros™. Because we were work-
ing with compiled defuns, it was necessary to restrict
our coding to “before” and “after” wrappers. These
consisted of a few lines of code (containing compiled
defuns) that were then inserted with the proper KEE
syntax in the respective method slot. The lack of KEE
wrapper-bodies led to some complexity in the logic of
storing to and drawing from inventories.

Store and Draw inventories were treated in a paral-
lel fashion, except that the store method may require,
as an argument, a list of items to be stored and that
the draw method may return, in addition to a keyword
:SUCCESS and the quantity drawn, a list of the itemns
drawn. To simplify the following discussion, we dis-
cuss only the case of drawing. Storing to an inventory
is handled in a similar way.

Consider the case of a draw-inventory instance
which is a member of several different inventory classes,
i.e., an inventory which has a “wrapped” draw func-
tion. There are two major methods involved in draw-
ing from such an inventory, a predicate called DRAW-
FAILS? and the DRAW function itself. As the namcs
imply, the first method checks to see if a draw is pos-
sible and the other actually performs the draw.

The DRAW-FAILS? method consists of a basic func-
tion that is performed by every invocation of the
method plus some “before-wrappers” for handling the
mix of constraints that must be checked before a draw
can occur. (DRAW-FAILS? is, in fact, always called ev-
ery time DRAW is called.) To simplify program logic
(within the constraints of the KEE software), DRAW-
FAILS? has, by fiat, no after-wrappers. The method
returns nil if it is all right to draw, i.e., all the con-
straints on this inventory can be met, Otherwise,
DRAW-FAILS? returns a list of keywords which indicate
where the draw would fail and why. For example, the
returu value might indicate a failure to draw because
the inventory's parent inventory is of the Draw-Liniited
type and the draw would drop that parent’s inventory
level below a floor. These keywords can be very use-
ful for development and debugging purposes, as well as
for the planning that other objects in the simulation
model might undertake in the case of a failure.

The DRAW-FAILS? method has an optional argu-
ment SIDE-EFFECTS, which, if nil (the default value),
means that DRAW-FAILS? acts as a pure, standalonc
predicate. If SIDE-EFFECTS is set to t, however, the



F

method accumulates a list of side-effect actions that
will be performed by the generic DRAW method if and
only if all the DRAW-FAILS? before-wrappersreturnnil
(i.e., there are no failures). That list is stored in a pri-
vate slot (in each inventory involved), A-TO-EVALUATE~
IF-0K, so those side-effect actions will be available to
the subsequent DRAW message.

As an example, a Draw-Sub inventory will put a
message on A-TO-EVALUATE-IF-0K to carry out the
draw from its parent inventory. Similarly, a Draw-Item
inventory puts on A-TO-EVALUATE-IF-OK a function
which removes an item from the inventory item-list,
checking that the number of items in that list is con-
sistent with the inventory level (the number of items).

On the other hand, the DRAW method is often just
the generic version and contains only after-wrappers,
if any. There are in fact only two cases:

For Trigger inventories, the after-wrapper checks to
see if a threshold has been reached or passed. If so,
it then carries out the particular response function
(defined separately in the methods file) associated
with that threshold.

For a Draw-Limited-Waiting inventory, a successful
store may allow some waiting process to have its
draw request serviced. If so, that waiting item is
removed from the list and a “run” message is sent
to the waiting process. The sleeping process awakes
and attempts another draw (which should now be
successful}).

After decrementing the inventory level, the main
DRAW method evaluates each side-effect function put in
the A-TO-EVALUATE-IF-UK list by DRAW-FAILS?. On
exit, DRAW also resets A~TO-EVALUATE-IF-0K to nil in
preparation for the next draw request.

For calls to DRAW from parents of sub-inventories,
which must be handled with some care, an optional
boolean argument FAILURE-CHECK (which is t by de-
fault) can be set to nil to avoid re-invoking the DRAW-
FAILS? method with its SIDE-EFFECTS argument set
to t. This avoids over-drawing grandparent invento-
ries.

Most of the above complication involving private
slots and boolean arguments results from the inability
to use KEE WRAPPERBODYs programmatically, that is
to say, with compiled defuns defined in a methods file.
This was a disappointment to us, since the ability to
do so would have been very useful for checking, e.g.,
whether the conditions to be satisfied for a successful

draw held, and if so, completing that draw. However,
a WRAPPERBODY in KEE is not a true function but a
special marker which is replaced by the KEE method
combination mechanism. One therefore cannot siinply
replace it with a defun name and have the arguments
for the composed method come out properly. (WRAP-
PERBODY gets evaluated twice.) This is not a prob-
lem for BEFORE and AFTER wrappers in KEE, just for
WRAPPERBODYs. In fact WRAPPERBODYs work well when
the coding is eatered directly into the method slots of
a KEE knowledge base as lambda forms. Having to
“handcraft” wrapped methods, however, does not lit
well into our design decision to use compiled methods
files and to build and load the KEE knowledge bascs
programmatically. This is, to a large extent, why we
decided to use two methods, DRAW-FAILS? and DRAWV,
as described above.

Another complication of the KEE software forced us
to keep the inheritance tree for methods relatively shal-
low. This was for the following two reasons. The DRAW-
FAILS? before-wrapper for Draw-Limited- Waiting, for
example, will be performed before that of its parcnt,
Draw-Limited. This may not be what the program-
mer/developer always wants. Also, having most uest-
ing go to only two levels, as in Fig. 1, gives the pro-
grammer better control over what is being donc and
when. (At an earlier stage of our development, we had
considered Draw-Partial to be a subclass of Draw-Sub.)

IV, A CLOS IMPLEMENTATION

As we have seen in the last section, the problem with
the present KEE implementation is that the inability
to use KEE WRAPPERBODYs programatically forces ue
to write an an extra method, CAN-DRAW?. This func-
tion checks the constraints that a particular inventory
instance has to satisfy, such as whether it can draw
from a parent inventory or hits a floor or ceiling. CAN-
DRAW? writes out, to private slots, error messages if it
can not draw and, if it can, the side-effects that arc to
be evaluated.

It appears there can be considerable simplifications
in the coding of the inventory class hierarchy using
CLOS (e.g., BOBROW et al. 1988, STEELE 1990) over
the present version written using the frame architec-
ture of the KEE shell. As an experiment, we tricd to
see how things would look in a CL.OS implementation
of inventory classes. The test code included definition
of the Inventory, Limited-Inventory, and Sub-Inventory
classes and the draws and stores to/from them. (e



did not bother trying to include functionality for recov-
ering histories and the like; there should be no prob-
lems in doing so, if desired.)

The basic point is that, because of the ability in
CLOS to invoke call-next-method, things become
much cleaner and easier to read. There is no need to in-
voke a DRAW-FAILS? sub-call at all (although one might
wish one in any case). Nor is there any need for the pri-
vate slots A-FAILURE-LIST and A-TO-EVALUATE-IF-
0K. These simplifications are illustrated by the follow-
ing code fragments for the DRAW generic function:

(defgeneric draw (inv amt))

(defmethod drawv
((inv inventory) amt)
(dect? (level inv) amt)

‘(:success ,(name inv) drawv ,amt))

(defmethod draw
((inv limited-inventory) amt)
(if (< (- (level inv) amt) (inv-floor inv))
‘(:failure :drav-hit-floor ,(name inv))

(call-next-method)))

(defmethod draw
((inv sub-inventory) amt)
(let* ((drew-parent (draw (parent inv) amt))
(retpar (car drau-parent))
(restpar (cdr draw-parent)))
(i (eql retpar :failure)
‘(:failure :cannot-drav-parent
,(name inv) ,restpar)

(call-next-method))))

where the functions level, inv-floor, and parent
are CLOS accessors for those slot-values (defined in
the appropriate defclass statements).

The simplicity of the above code, compared with
the KEE version we implemented first and discussed
at length above, suggests that generic inventory classes
implemented in CLOS would be both simpler to ex-
plain and to maintain.

V. IMPLEMENTING CLOS ON KEE

Motivated to some extent by the desire tu use
the newer CLOS syntax, we came to consider how
one might integrate it with KEE. Eventually we re-
alized that, because they had similar approaches to
method inheritance and to method combination, the
two different-appearing programming styles could in-
deed be largely reconciled. This line of thinking then
evolved into an implementation of the CLOS language
and syntax on top of the KEE shell (EGDORF 1990).
This has the obvious advantage of retaining all the
other useful features of KEE, such as the graphics and
rule-reasoning capabilities. It is also optional; the pro-
grammer need only use the CLOS super-structure if lie
desires to.

We now describe briefly how the CLOS syntax is
mapped onto the KEE core-functions, indicating some
of the limitations of our KEE implementation.

First, a subset of the CLOS meta-object protocol
is defined. Every class (defined by the CLOS func-
tion defclass) is an instance (i.e., a member-child) of
Standard-Class or one of its subclasses. Morcover,
every such class is also a subclass of Standard-Object.

The CLOS construct (defclass ...) is built on top
of KEE'S core-function (create.unit ...). CLOS
slots are slots in the KEE unit representing a class
which will have instances (member units) defined latcr.
The :accessor functions are limited, being built as
defuns rather than true generic functions. also, onc
class option, :default-initargs, and some slot op-
tions, “:allocation :class” and “:initargs”, arc
not supported in the present implementation.

The CLOS (defgeneric ...) construction simply
turns into KEE's (unitmsg ...). KEE does all the
work of the method combination. A generic function
is not automatically created, however, by this version
of (defmethod ...); the programmer must explicitly
define the (defgeneric ...) beforehand. The CLOS
options :documentation and :method are supported.

The (defmethod ...) is defined as a macro which
adds LISP forms to the corresponding method slot in a
KEE unit. KEE performs the task of method combina-
tion in its own way. In contrast to full CLOS, only the
first parameter is specialized. This reflects KEE's owu-
ership of methods by a class. Because the implementa-
tion does not try to compile the (combined) methiods,
(call-next-method) is simple, being implemented as
a KEE WRAPPERBODY.



Two other CLOS functions that are indispensible
are make-instance and slot-value. These are de-
fined using KEE's create.unit and get.value (or
put.value in the case of a setf function), respectively.

We have recently reformulated our RFP model us-
ing this CLOS implementation on top of KEE. (In
the process we have de-emphasized the central role
of inventories and given more emphasis to an event-
architecture style for the discrete-event simulation.)
Our experience has been quite positive. The lack of
:initargs and other parts of CLOS not in our im-
plementation is not crippling. As a benefit, the code
size of the model is much smaller than that using KEE
core-functions and, perhaps, the learning time for a
newcorner to the programming style is shorter. The im-
plementation certainly “works” in the small test cases
we have built to now. And, at the least, use of this en-
hancement now should ease any future migration from
KEE, a proprietary product nearing the end of its sup-
ported life, to a more standard CLOS programming
environment.

VI. Sumrary

The main conclusion of this paper is that an im-
plementation of our object-oriented inventory classes
would have been much easier in CLOS than in KEE.
However, there are many other reasons, e.g., the graph-
ics capabilities, why we use KEE for our model simu-
lations besides object-oriented programming. We are
not yet ready to abandon our use of this richly fea-
tured expert system shell. In fact, as we have shown
in the last section, it is possible to extend KEE so it
implements a significant subset CLOS. This, we feel,

is a very useful enhancement of KEE that may be of
interest to the community at large.
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