LA-UR -90-3541

CoNE-90102.] . X

Los Alamos National taboratory 1s operated by the Uriversity of Calforma for the United Stales Department of Energy under contract W-7405-ENG-36

TITLE A CLOS IMPLEMENTATION ON TOP OF KEE

AUTHOR(S
Y HARRY W. EGDORF, A-7

SUBMITTED TO

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation. or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

AL IN DOE CONFERENCE, OCTOBER 1990

LA-UR--90-3541
DE91 001957

B, acceprance ot tn s artcie the pubisner recognizes that the U S Government retains a nonexclusive royatty-lree license to publish or reproduce

the putisneg form 0o tns conteichion or g aliow others to du so. for US Government purposes

Tre Los Aamus fatona Latoralor, requests that the pybhsher .dentfy this article as work performed under the auspices of the U S Department of Energy

Los Al Nati | Laborat
0S A\ ISIFAOS LosAamos NationalLaboratory

FOEM N BIE RS

)
S w0 26234 8- CHSTRIBUTION OF THIS DOCUMENT 1S .iNx.iMlTEDQW

A CLOS Implementation on top of KEE

by

H. W. Egdorf{
Los Alamos National Laboratory
October 11, 1990

Abstract

IntelliCorp’s Knowledge Engineering Environment (KEE)! is a popular Al shell running on top of Com-
mon Lisp. KEE inplements a message-passing style of object-oriented programming. Common Lisp has
adopted the different style of the Common Lisp Object System (CLOS) as the standard object-oriented
programming style.

This paper describes an implementation of a subset of CLOS on top of KEE that uses the CLOS-style of
programming to construct and manipulate KEE objects. The subset has been used to construct a
moderate-sized discrete-event simulation of some facilities at the Rocky Flats Piant in Colorado. Experi-
ences constructing this model will be discussed.

Several reasons are examined for use of such a system. Programmers may have to maintain and extend
an existing KEE application, but wish to do so using the newer CLOS style of programming while stay-
ing within the KEE environment. A requirement may exist for support of a mixed CLOS/KEE system
where CLOS is not available. Progrzuﬁu:rs may wish to begin developing in CLOS with a view toward
migration from KEE when CLOS becomes more available.

1. KEE Strengths and Weaknesses

IntelliCorp’s Knowledge Engineering Environment (KEE) is one of the more full-
featured and long-lived Al shells available commercially. It has been the basis for
many important projects at Los Alamos in the area (amongst others) of large discrete-
event simulations.

KEE provides a frame-based knowledge representation facility that allows many
different styles of use and many different features. It provides an excellent rapid proto-
typing environment with a mouse-and-menu style of interface and good graphics sup-
port. The object-oriented programming paradigm provided is built upon the frame sys-
tem. This object system is a message-passing system in the style of Smalltalk or the
original Flavors system.

KEE is not, however, without problems. The system is beginning to be phased out by
IntelliCorp in favor of a new series of products. While the end-of-life for KEE has not
yet been announced, the latest versions are available on a more limited number of plat-
forms than previously and IntelliCorp is providing a number of migration aids to its
new Kappa series of products.

It has been determined that for some projects it is more appropriate to use a source-
code based progrmmatic interface to KEE rather than the more traditional rapid-

! KEE is a trademark of IntelliCorp, Mountain View, CA.

prototyping interface emphasized by the IntelliCorp documentation and training. The
use of this programmatic interface leads to some implementation difficulties. KEE
provides a single level of programming interface to the features of the system. This
interface is at a uniform low level. No higher-level toolkits or programming abstrac-
tions are provided upon this low-level programming interface.

2. Programming Toolkit Requirements

" The issues reccgnized above contribute to the requirements driving the design of a
high-level programming toolkit for use with the object-oriented features of KEE. The
users of such a toolkit are the designers and programmers who wish to build systems
upon the KEE package. Those users have certain requirements that arise from the
intenued use of the KEE programming environment.

The user-level requirements fall roughly into the following categories.

(1) Programmatic requirements dictate the use of KEE for development, but there is a
desire to migrate from the proprietary package to the new Common Lisp Object
System (CLOS) in the future. This migration should rake the form of an evolu-
tion of the design rather than a revolution requiring a complete re-design and
implementation.

(2) An existing KEE system needs to be maintained and extended, but the program-
mers wish to use the more modern CLOS programming style rather than the older
message-passing style of KEE along with a more directed object creation system
than the (sometimes too general) low-level unit creation facilities of KEE.

(3) The desigrers of a system wish to use CLOS for object-oriented facilities and
KEE for other knowledge-representational facilities, but need a bridge for
development until solid CLOS implementations are available along with KEE.

(4) Programmers familiar with KEE wish to have a system for learning CLOS while
maintaining their familiar environment.

The toolkit described here addresses these issues. It provides one high-level object-
oriented abstraction for use by programmers within KEE while in no way limiting any
other use of KEE by programmers or users.

3. Programming Toolkit Design
The design of this toolkit arose from three observations.

(1) The work and experience that has gone into development of CLOS has been
extensive and productive in gathering a most complete and up-to-date view of
those facilities that should be in an object-oriented programming system. The
toolkit should provide a programming interface compliant with CLOS.

(2) The object-oriented programming facilities provided by KEE, particularly the
method inheritance and method combination mechanisms, are very similar to
those provided by CLOS.

(3) The general frame mechanism upon which KEE’s object system is based com-
bined witn the single fully-general procedure provided for creation of such frames
leads to a system where programmers can easily violate principles of object-

oriented design by inappropriate use of the full generality of the frame system.

The design of this toolkit primarily provides a CLOS-compatible syntax for object-
oriented programming operations while allowing KEE to provide all functionality
involved with method combination and inheritance. The decision to utilize KEE’s
mechanisms in these areas rather than develop them independently leads to the major
limitations on just how much of CLOS can be implemented within this toolkit. These
limitations reflect those places where KEE’s object-oriented programming system is
incompatible with CLOS. The rational for this decision is that if a more complete
implementation independent of KEE is desired then use should be made of either a
vendor’s CLOS implementation or a public CLOS package such as PCL from Xerox.

The rest of this section describes the details of the toolkit’s design. Familiarity with
both KEE and CLOS is assumed.

Meta-Objects

A small part of the proposed Meta-Object protocol is implemented. Meta-Objects are
implemented in a KEE knowledge base called CLOS-On-KEE. Two Meta-Objzects are
implemented.

Standard-object is a superclass of every class except itself. Any class created by the
user with no defined superclasses is made a direct subclass of standard-object. A pri-
mary method for the generic function initialize-instance is inherited from this class by
every instance created in the system. Initialize-instance may be modified to provide
specific initialization at object creation time.

Every class created by the system is not only a subclass of its superclasses, allowing
the normal inheritance of slots and the other functions normally associated with classes
in an object-oriented system, but is also an instance of some class. The purpose for
this parent (known as the metaclass) is to allow capabilities to be associated with the
class rather than just the instances of the class. Every class is an instance of the meta-
class standard-class. Subclasses of standard-class may be defined and specified as the
metaclass of a class.

Primary methods for the generic functions make-instance and aliocate-instance are
inherited by every class from standard-class but none of the rest of the instance crea-
tion structure defined in the CLOS specification is implemented.

Class Creation
Classes are implemented as KEE units with particular parent links.

Defclass creates a class. The class is implemented as a KEE unit with class-parent
links to the superclasses specified in the defclass form (or to standard-object if none
are specified) and a single member-parent link to the specified 1 .ctaclass (or standard-
class if none is specified). Slots defined by the defclass form are implemented as
member slots in the KEE unit.

Some CLOS defclass slot options ire not supported at all or are only partially sup-
ported.

e allocation :class is not supported due to there being no KEE inheritance mechan-
ism that maps to this particular type of storage.

e initargs is not implemented. This lack does not reflect any fundamental limitation
of KEE, rather no mechanism for storage and use of the initargs has yet been
added to the system.

e The functions defined by .reader :writer, and :accessor arc implemented as
defuns rather than generic functions. The reason for this is that these functions
map into KEE put.value and get.value calls and it was believed that the overhead
of method invocation would be unacceptable. The main limitation is that method
modification cannot be performed on the accessor functions. If this is desired, two
facilities can be used. The designer may use KEE active values for the desired
behavior modification, or a separate generic function can be defined that performs
the slot access and that can be wraoped.

Slot-value and its associated setf method are implemented to allow the programmer the
ability to define true (wrapable) generic functions as slot accessors.

One CLOS defclass class option is not implemented.

e The :default-initargs class option is not implemented for the same reasons
described above regarding the :initargs slot option.

Instance Creation

The generic function make-instance is provided by the metaclass standard-class and is
used to create an instance of a class.

This generic function may be modified in the normal way with wrappers, but does not
implement the detailed behavior of the CLOS specification.

Generic Function and Method Creation

Generic functions are created by defgeneric. These generic functions are defuns that
simply perform an appropriate KEE unitmsg call. Generic functions are very simple
due to the use of KEE for all method combination.

Unlike CLOS, this package will not automatically create the generic function if it does
not exist at method definition time. The use of defgeneric is not required if the pro-
grammer wishes to use unitmsg cells directly. However, experience with this package
indicates that the use of a functional style rather than use of unitmsg is preferred.

Only the following defgeneric options are allowed.

e documentation provides the appropriate documentation string to the generic func-
tion.

e method may be used to include methods.

Methods of generic funcons are defined with defmethod. Methods simply add Lisp
forms to method slots of a KEE unit representing the class upon which the first
method argument is specialized. This leads to the following limitations.

e Only the first parameter may be specialized. This reflects the KEE notion that
methods are attached to classes. Multiple specialized parameters can be

implemented within KEE as a class that inherits from the proper classes to spe-
cialize all the desired parameters, with the method specializing upon this new
class. Experience with both KEE and CLOS indicates that the CLOS multiple-
parameter specialization is a nicer structure within which to work.

e Eql specializers are not supported. This limitation reflects the fact that KEE does
not support all Lisp objects. It would not be difficult to add method modification
to specific KEE instances, but the common use of eq! specializers is to specialize
on symbols or numbers rather than just instances of CLOS user-defined classes.

e (seff symbol) methods are not supported. This reflects both the fact that accessors
on slots are implemented as defuns rather than generic functions, and the fact that
the (setf symbol) notation is not yet a part of delivered Common Lisp Implemen-
tations. ‘

e Call-next-method may not pass modified arguments to the next method, may not
have a return value, and may only be used in :around methods rather than in pri-
mary methods as allowed by CLOS. These limitations reflect the implementation
of call-next-method by use of the KEE wrapperbody form.

4. Experience

Despite the limitations of this CLOS subset, (with the lack of :initargs being the most
severe,) the experience with the system has been positive.

The system succeeds in providing a programming toolkit that appropriately limits the
full use of the KEE frame system to a subset of features needed just for object-
oriented programming, This limitation of features is accomplished without either los-
ing the features needed to develop object-oriented programs within KEE or limiting in
any way other use of KEE from outside the package.

Code developed within this package is easily moved to a true CLOS implementation.
While this has only been done for simple test cases, experience indicates that use of
this package should provide an evolutionary bridge to a CLOS environment.

A major disadvantage of this package is that very little of the CLOS specification
regarding class and instance modification and redefinition have been implemented. In
particular, a change to a method cannot be incrementally reloaded because there is no
mechanism to determine just what portions of a KEE method the new changed code
should replace. This is due to a difference in KEE’s method combination vs. CLOS’s
method combination where KEE builds the final method at the time the method is
defined rather than the time at which the method is invoked. This means that incre-
mental changes to source code during development require reloading of ail of the
source code onto a clean environment. In practice, this has not proven to be a prob-
lem. It does, however, prevent use of some Lisp development environment’s incremen-
tal compilation and loading features.

The greatest unexpected benefit of the use of this package has been in the reduction of
code size due to both the simpler programming constructs and the use of accessor
functions and their associated setf methods. KEE normally uses two reader and writer
functions, ger.value and put.value, for slot access. The ability to make use of all of the

normal Common Lisp functions that operate with setf methods (as provided by the
raccessor slot option) such as push, pop, incf, and decf has drastically improved the
code of systems built with this package compared to the normal KEE slot accessors.

5. Conclusions

The use of the CLOS package with KEE will continue. The benefits of programmer
productivity and evolution away from KEE far outweigh the limitations of having only
a subset of CLOS (and the programmer training required to recognize that subset) and
the loss of certain incremental development tools in the Lisp development envirou-
ment.

A

-

iy

r
]
|
\

/

)

03

=
)
]
|
\

/

1
)

|

e g~ G~~~ - g ——
-

|

