
nl SANDIA REPORT
SAND88 —0796 • UC- f3 IC’S
Unlimited Release
Printed March 1989

A Review of User Interface Design
Techniques With Applications to the
Crypto Algorithm Message Processor (CAMP)

Betty P. Chao

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico B7185 and Livermore, California 94S50
for the United States Department of Energy
under Contract DE-AC04-76DP00789

MASTER
distribution of this document is unlimitedSr 2900Qi8-81 !

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image

products. Images are produced from the best available

original document.

SAND—88-0796
DE89 010527

SAND88-0796

A Review of User Interface Design Techniques
With Applications to the Crypto Algorithm Message Processor (CAMP)

Betty P. Chao
Digital Subsystems Software Division

Sandia National Laboratories
Albuquerque, NM 87185

ABSTRACT
This report presents a historical perspective of the difficulties
associated with user interface design and a review of interface design
techniques. Included in the report is an application using rapid-
interface -prototyping to t^he development of CAMP's user interface.

MASTER „
-3 * DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

ACKNOWLEDGEMENTS

The author wishes to thank Dr. Douglas J. Riley, Dr. Margaret Hug, Dr.
Melissa J. Smartt, and Mr. Mark H. Price for their suggestions and
conunents on earlier drafts of this report. The author also gratefully
acknowledges the support of Ms. Anne M. Chavez in preparation and
revision of the report and the tables contained therein.

-4-

CONTENTS
Page

1. INTRODUCTION... 7
1.1 Scope.. 7
1.2 Organization of Report............................... 7

2. INTERFACE DESIGN AND THE SOFTWARE LIFE CYCLE......... 9
2.1 Difficulties of Interface Development in the Software

Cycle.. 9
2.1.1 Requirements Analysis and Specification.............. 9
2.1.2 Design... 9
2.1.3 Implementation....................................... 10
2.1.4 Testing.. 10
2.1.5 Release.. 10
2.1.6 Maintenance.. 11
2.1.7 Retirement... 11
2.2 Software Engineering Techniques for Specifying User

Interfaces...................................... 11
2.2.1 Story Boards... 11
2.2.2 Formal Specification Techniques...................... 12
2.2.3 The Wizard of Oz Technique........................... 13
2.2.4 User Interface Management System (UIMS).............. 13
2.3 The Interface Design Problem......................... 14

3. RAPID INTERFACE PROTOTYPING (RIP) METHODOLOGY........ 15
3.1 Features of RIP Methodology.......................... 15
3.1.1 Nonprogramming Interface Author...................... 15
3.1.2 Multiple Dialogue Modes.............................. 16
3.1.3 Multiple Input Devices............................... 17
3.1.4 On-Line Data Collection.............................. 17
3.1.5 Transportability..................................... 18
3.1.6 Code Generation...................................... 18
3.2 Benefits of RIP...................................... 18
3.3 Limitations of RIP................................... 19

4. TOOLS AVAILABLE FOR IMPLEMENTING RIP................. 21
4.1 UIMS-Like Tools...................................... 21
4.2 Microprocessor Based Tools........................... 21

5. AN APPLICATION: RAPID PROTOTYPING THE USER INTERFACE FOR
CAMP.. 24

5.1 Requirements.. 24
5.1.1 System Requirements.................................. 24
5.1.2 User Requirements.................................... 24
5.2 Design and Evaluation of the CAMP Interface.......... 25
5.3 Benefits of Rapid Prototyping CAMP's Interface....... 26

6. CONCLUSIONS.. 28

7. REFERENCES... 29

TABLES

1. A reference table for UIMS-like tools on workstations
used for rapid prototyping........................... 22

2. A reference table for PC-based tools used for rapid
prototyping.. 23

1. INTRODUCTION

In the recent past, technological innovation was paramount to
the success of a computing system. Today, we find that success
depends more on well-designed, high-quality user interfaces,
because poorly designed interfaces result in a system's disuse or
misuse. To facilitate the design of high-quality interfaces, a
methodology is required that is capable of presenting user
requirements in a concrete and dynamic form, demonstrating concepts
visually rather than relying on verbal or written specifications
supported by static drawings. Additionally, the methodology must
permit iteration of the design process in order to permit
simulation, evaluation, and redesign of different candidate
interface designs.

The objective of this development report is to detail the
implementation of a rapid-interface-prototyping (RIP) methodology
into the traditional software development cycle for the Crypto
Algorithm Message Processor (CAMP).

1.1 Scope

The focus of this report is on the development of the user
interface for CAMP. Development is in terms of its inception,
design, evaluation, and subsequent refinements. The impact of the
user interface on software design is also included; however, its
implementation is discussed in SAND88-0800 (Design and
Implementation of the Crypto Algorithm Message Processor Software).

1.2 Organization of Report

The remaining chapters in this report are organized
accordingly:

Chapter 2 examines some of the difficulties with past user
interface development efforts and the history of techniques aimed
at improving the development process.

Chapter 3 presents a rapid-interface-prototyping methodology,
detailing features required for an effective prototyping
environment. Also included in this chapter are the benefits and
limitations of prototyping, along with a list of candidate software
projects that would benefit from this methodology.

Chapter 4 reviews the prototyping tools that are currently
available. These tools are categorized into large systems (that is,
User Interface Management System - like) versus personal computers.

Chapter 5 focuses on the user interface prototyping for CAMP.
Included in this chapter are the prototyping process and benefits
associated with this project.

-7-

Chapter 6 extends the rapid-interface-prototyping methodology
to other software project endeavors.

-8-

2. INTERFACE DESIGN AND THE SOFTWARE LIFE CYCLE

The user interface design has plagued many software engineers
because of the imprecise manner by which user requirements and
needs are expressed. The imprecision stems from two opposing
ambiguities:

(1) The user knows exactly what he/she wants but is unable to
express the requirements precisely.

(2) The user does not know what he/she needs and has no idea
of how his/her needs may change later on.

In the weapon command and control community, the users are
typically unsure of their needs because of many external influences
(e.g., a complex weapon code system and interaction with numerous
agencies). These users, at best, have some inklings about their
needs. Frequently the users rely on others (e.g., Sandia's system
engineers) to determine their needs.

In this chapter, problems associated with user interface
development efforts are discussed along with a historical review of
software engineering techniques and methodologies that were used
with hopes of resolving the problems.

2.1 Difficulties of Interface Development in the Software Cycle

The traditional software life cycle (Boehm, 1981) consists of:
(1) requirements analysis and specification; (2) design; (3)
implementation; (4) testing; (5) release; (6) maintenance; and (7)
retirement.

2.1.1 Requirements Analysis and Specification

The first step in any system's development is the requirements
analysis for determining its functionalities. Traditionally,
technical problems are researched and analyzed thoroughly. For
example, cryptographic algorithms, data flows, message formats, and
communication protocols are readily analyzed and thus well
formulated and specified precisely. On the other hand, user
interface requirements are treated in a cursory fashion. At best,
requirements documents specify that the user interface needs to be
"user-friendly." The obstacle in this phase of the life cycle is
the difficulty in expressing the user interface requirements.

2.1.2 Design

There is an arsenal of techniques, such as data dictionary,
data structure, and structure charts, that are used in the design
phase. Again, these techniques are aimed at software design and not
user interface design.

-9-

It becomes apparent that the emphasis of the design process
has been concentrated on the technical merits of a software system.
The user interface, until recently, is regarded as secondary in
importance, resulting in its neglect during the design process.

2.1.3 Implementation

The recent proliferation of publications on user interface
design guidelines (e.g., Smith and Hosier, 1984; Schneiderman,
1987) is indicative of a demand for effective and usable
interfaces. This demand stems from past practices, whereby
programmers implement user interfaces without regard to user's
abilities, background, and knowledge (more frequently, lack of
knowledge) of the software system under development. Programmers
tend to implement interfaces that are tailored for themselves
(i.e., programmers not users) and that are over-generalised (i.e.,
flexibilities and extra features not specified in the requirements
are included). Such over-generalizations and unsuitable.tailoring,
in turn, complicate the interface from the user' s/jfersufective.
These inattentions to user's abilities are not the faults erf the
programmers, but rather a lack of savvy in human factors expertise.

Another difficulty in this phase of the life cycle is the
lengthy coding time. Even if the interface is virtually impossible
to use, software changes will frequently not be incorporated
because of scheduling and cost constraints. Instead, training will
be burdened with the task of adapting the users to the system. In
addition, the user manual must include all the quirks and
convoluted paths associated with the user interface.

2.1.4 Testing

In the weapon command and control community, the testing phase
is typically the first time that non-development individuals (e.g.,
military liaison and human factors personnel) have the opportunity
to view the user interface of a system. As mentioned above, changes
recommended by these and other individuals are met with resistance.
As a result, the interface may be far from optimal in terms of
understandability, simplicity, and ease of use.

2.1.5 Release

Sandia is typically tasked with training the users of weapon
command and control systems. These users return to their respective
installations and, in turn, train their operators. This process,
coupled with a complicated user interface, has resulted in
operators expressing frustration and stress because of difficulties
in using the system. These operators are required to perform
various operations on military systems that involve weapon
security. Additionally, the military has built in a very strong
negative incentive of jeopardizing careers for those who perform

-10-

poorly on weapons operations. Therefore, any unexpected responses
in interacting with the software system may have dire consequences.

2.1.6 Maintenance

For a complicated interface, both the training process and the
user manual are unable to address all of the possible quirks
resident in it. Consequently, as problems arise, ad hoc changes are
made to the user manual and the effected pages in the manual are
redistributed. This can be troublesome in keeping the manuals
consistent and up-to-date.

2.1.7 Retirement

It is evident that complicated user interfaces without regard
to user's abilities generate great dissatisfaction among users,
particularly among weapon command and control users. It is
imperative that interfaces for these users be extremely
straightforward, understandable, well defined, and simple;
otherwise, the system may be slated for early retirement.

2.2 Software Engineering Techniques for Specifying User Interfaces

Early efforts have relied on story boards using static
drawings or displays for characterizing user interfaces. As the
field of software engineering progressed, sophisticated
specification techniques gained some attention. Currently, User
Interface Management System (UIMS) is in vogue and does incorporate
many of the rapid prototyping features.

2.2.1 Story Boards

Static renditions of user interfaces are easily mocked up and
presented to users. Story boards can be built using 8 and 1/2 by 11
paper; however, software packages are increasingly available for
designing static screen facades. Examples of some personal computer
based tools are:

IBM Compatible

Application Display
Management System^
AutoCAD^ 1 2

1. Application Display Management System is a trademark of
International Business Machines (IBM) Corporation

2. AutoCAD is a trademark of Autodesk Incorporated

-11-

Dr. Halo^
PC Storyboard1^

Macintosh

MacPaint^
MacDraw^
Super Paint^

The obvious deficiency with story boards is the missing
dynamic action between the displays and user actions. The ability
to dynamically simulate interface designs is by far more authentic
and offers users a perspective of realism.

2.2.2 Formal Specification Techniques

These techniques permit precise descriptions of external
behavior of a system without specifying its internal
implementation. Formal specification techniques are used in many
aspects of software development; thus, their extension to user
interface specifications is a natural progression.

Most specification languages are based on two formal models:
Backus-Naur Form (BNF) (Reisner, 1981) and state transition
diagrams (Parnas, 1969). For BNF, an action is associated with a
unique grammar rule; that is, whenever that rule applies to the
input language stream, the associated action occurs. The deficiency
with specification languages is that it is difficult to determine
exactly when something will occur after what input tokens have been
recognized.

State transition diagramming associates a transition with an
action; whenever the state occurs, the system performs the
associated action. Sequence is explicit in a state diagram, whereas
it is implicit in BNF; hence, there has been extensive research in
using state transition diagrams for specifying user interfaces
(e.g., Foley and Wallace, 1974; Singer, 1979; Moran, 1981). 3 4 5 6 7

3. Dr. Halo is a trademark of Media Cybernetics Incorporated

4. PC Storyboard is a trademark of IBM Corporation

5. MacPaint is a trademark of Apple Incorporated

6. MacDraw is a trademark of Apple Inc.

7. Super Paint is a trademark of Silicon Beach Software
Incorporated

-12-

Both techniques require rigorous and non-trivial notation
schemes. The resultant diagrams are difficult to read and
understand, thus limiting their usefulness in communicating with
users. Additionally, the complexity of the techniques may besiege
the designer and detract him/her from the task at hand.

2.2.3 The Wizard of Oz Technique

The Wizard of Oz technique is based upon L. F. Baum's classic
novel of the same title. The technique uses an experimenter, hidden
from the user, to present and control the user interface prototype.
The user unknowingly believes that the ensuing interaction
constitutes the real application system. Applications of this
technique have been used for development of query-like dialogue
interfaces (e.g., Good, Whiteside, Wixon, and Jones, 1984; Green
and Wei-Haas, 1985).

The strength of this technique lies in its effective use of
iterative design, incorporating feedback from user behavior into
the interface. With the hidden experimenter manipulating the
interface, user recommendations for improvement can be rapidly
incorporated and represented.

There are a number of limitations associated with this
technique. First, its use has been limited to problem domains that
are small (e.g., electronic mail system and weather reporting), and
to users who are unfamiliar with computer applications. Second, it
is very difficult to change from one presentation style to another
(e.g., from a query dialogue mode to menu selection) in the midst
of an interaction between the experimenter and user. Finally, the
interplay between the experimenter and user requires certain skills
and experience on the part of the experimenter in order to present
and modify the interface effectively and efficiently.

2.2.4 User Interface Management System (UIMS)

User Interface Management System (UIMS) is a relatively new
area of software engineering research whereby an integrated
approach to software design within the traditional life cycle is
utilized. UIMS's are interactive systems that support the
specification, design, implementation, prototyping, execution,
evaluation, and maintenance of human-computer systems, including
their interfaces (Hartson, Ehrich, and Johnson, 1986). These
systems tend to be quite complex because they include an interface
author, run-time libraries, database, and hardware device
interfaces that together provide a running system.

The UIMS approach is appealing because of the interface
independence feature that separates the user interface from the
computational components of the system. This separation has several
implications:

-13-

1. Several user interfaces may be specified for the same
system. This affords the user the opportunity to view different
presentations and determine the best one for his/her needs.

2. Code can be easily modified and maintained. Without
decoupling the user interface from the computational components, it
may be difficult in large systems to locate the code responsible
for specific dialogue instances that require modification. Testing
these modifications which have to be compiled, linked, and executed
is often a time-consuming process.

3. The distinct components can be developed by different
specialists for facilitating the development of quality systems
(e.g., human factors specialists for developing the user
component). There are currently a number of UIMS's being developed
in different university environments. Details of some such systems
are discussed in Section 4.1 below.

The primary disadvantage of the UIMS, which has limited
widespread use, is its complexity. However, with extended interest
in applying UIMS to software systems, this approach may be the key
to user interface designs in the near future.

2.3 The Interface Design Problem

The user interface design is recognized as a major bottleneck
in software system development. Numerous efforts have been devoted
by experts in software engineering to effectuate the user interface
development. One such effort is the rapid-interface-prototyping
methodology (RIP), which is a significant subset of UIMS.

-14-

3. RAPID INTERFACE PROTOTYPING (RIP) METHODOLOGY

The basic principle underlying RIP is the iterative process of
design, simulation, evaluation, and redesign. User interface
design is far from an exact science; therefore, any methodology
that does not permit iteration will not capture the evolutionary
process, necessary for defining user needs.

3.1 Features of RIP Methodology

Premised on the iterative principle, many proponents of RIP
have assembled desirable features required for an effective
prototyping environment (Boar, 1984; Johnson, Hartson, Ehrich,
Roach, Reilly, Siochi, and Tatem, 1986; Myers and Buxton, 1986;
Schwalm, Thomas, White, and Williams, 1987; Rosenberg, Wilson, and
Nelson, 1988). The following is a collection of features enumerated
by the practitioners:

3.1.1 Non-Programming Interface Author

The interface author is the means by which user interfaces are
designed. A non-programming authoring environment allows
specialists, who may not be proficient in programming, to readily
design the interfaces. By the same token, programmers are
alleviated from the task of designing user interfaces which are
generally not their primary concerns. Additionally, the non­
programming author facilitates the iterative process without the
tedium of compiling, linking, and executing code.

The author needs to support the following:

1. The design of displays. The mechanism for generating
text, objects, and color should be readily accessible. Also, a
superframe (e.g., template) that alleviates regeneration of
portions of a display over and over again is desirable. A
superframe that can be edited and then overlaid with displays would
further expedite the design process.

2. The logic for sequencing displays. The linkage between
displays is necessary to provide realistic dynamic simulation of
interfaces. The linkage should be sophisticated such that when a
menu option or icon is selected from a display, the path of the
dialogue will be followed through.

3. The entry of data. There are a number of interfaces that
do not require users to enter data (e.g., Sandia's safeguards
systems); however, others do require data entry (e.g., Sandia's
weapon command and control systems). Data entries need to be stored
for feedback later on in the dialogue.

-15-

4. The WYSIWYG format. The interface that is being developed
should be visible at all times and changes should be immediately
apparent.

5. The simulation of dialogue. Once the dialogue along with
its paths has been designed, a capability to immediately simulate
is required. The simulation must not require any compiling and
linking in the traditional sense of programming languages.

6. The change capability. The ease and rapidity in changing
displays and paths also facilitate the iterative process.
Because time is the critical element here in the iterative
process, the designer who can readily switch from the simulate mode
to the design mode, make changes easily and quickly, and then
simulate the modified dialogue, has a superior communication
channel between the users and the system.

3.1.2 Multiple Dialogue Modes

There are many dialogue modes used for presenting interfaces.
The selection of the dialogue mode must be based on user
requirements. The dialogue design can involve a combination of two
or more modes, since different dialogues are appropriate to
different tasks and different categories of users (see Chao, 1986
for a discussion of frequently used dialogue modes and the
tradeoffs among the different dialogues, user type, and system
response).

The interface author which is extensible to the design of
different dialogues (e.g., menu selection, form filling, command
language, and interactive graphics) will greatly enhance its
usefulness. This capability, however, may be quite difficult to
incorporate into an effective tool. As discussed in Chapter 4
below, tools are currently available which permit textual or
graphical dialogues, not both. Textual dialogues are only suitable
for text with some manipulations of, say, an IBM PC's extended
character set for generating crude graphics. Graphical dialogues
are only suitable for graphics manipulations, because the
associated text is also bit-mapped and consequently does not lend
itself to ease of use. Perhaps a hybrid of the two types of
dialogues can be entertained; for example, a text dialogue author
with a library of icons/symbols for presenting limited graphics.

To complicate the tool implementation issue, new techniques,
such as windows, are increasingly popular and may quickly become a
norm required by users. Most tools are premised on objects; that
is, each item whether it is a menu option or an icon is treated as
an object. The introduction of a window then requires the
generation of another object that is set underneath the menu option
or icon. This is a circuitous way to design a window; therefore, in
this example, the tool needs to incorporate the concept of either

-16-

an area or superframe that segments the display, and then design
can proceed as usual after the segmentation.

Incorporating up-to-date techniques in an interface author is
obviously problematic and not realistic. The designer has to
ascertain his/her needs and determine the suitable author for
him/her.

3.1.3 Multiple Input Devices

As with multiple dialogue modes, there are many and
increasingly more input devices. Although there have been numerous
studies on pros and cons of input devices (e.g., Card, English, and
Burr, 1978; Karat, McDonald, and Anderson, 1986; Chao, 1987), the
appropriate input device for a particular interface is best
determined by the user. Again, it is impossible to accommodate up-
to-date input devices, but a set of commonly used devices needs to
be included. The popularity of direct manipulation devices where
the user typically uses a mouse to select and manipulate objects on
the screen is becoming predominant for modern computer systems.
Therefore, a set would consist of keyboard (including cursor
control, keypad, and special function keys), touch, and mouse
devices.

3.1.4 On-Line Data Collection

Evaluations of user interfaces require a means for collecting
on-line data. Subjective evaluations, such as observing and
communicating with the users are not as rigorous as objective
evaluations. A data collection scheme, included in the prototyping
environment, would facilitate rapid and objective evaluations of
user performance. Typical objective performance measurements
consist of "time-stamping" and "entries-capturing." Time stamping
provides a record of the amount of time that was spent on each
display, and thereby gives useful information on display clutter,
information overload, etc. Entries-capturing, such as a record of
keystroke, touches, and mouse selections and manipulations, would
provide information on frequency of menu selection, types of
inputs, etc.

In addition to a data collection scheme, either a data
reduction and analysis procedure or a utility procedure for
formatting the data into a generic data management format (e.g.,
dBASE® format) is desirable. This is because enormous amount of
data can be quickly generated, and without the means to reduce the
data for analysis, it would be extremely cumbersome for evaluating
candidate interface designs.

8. dBase is a trademark of Ashton-Tate

-17-

3.1.5 Transportability

Transportability refers to the transfer of software from one
level or type of system to another. This feature is essential in
order to evaluate candidate interfaces on computer systems that are
representative of the final product that is to be delivered.
Transportability can be as basic as transferring software from one
DOS machine to another, or as sophisticated as transferring
executable code along with device drivers and emulators for
supporting a variety of monitors and entry devices without re­
coding the supporting software.

3.1.6 Code Generation

After the interface has been designed, the capability to use
it during the implementation process is a desirable feature. An
unnecessary step is avoided whenever the prototyped interface can
be used as part of the final product. This feature can entail
generating the prototyped interface into ASCII text files, or
generating actual run-time code.

The weapon command and control projects typically have
stringent security requirements; that is, the software requires
special design considerations in order to maintain the integrity of
classified information and data processing. Therefore, the
generation of actual run-time code is not desirable since it may
breach security constraints. For this class of software projects,
the generation of ASCII text files is sufficient.

3.2 Benefits of RIP

A number of benefits can be realized by the RIP approach.
These include:

1. Superior Communication Channel. As mentioned in an earlier
section, one of the difficulties in user interface design is the
ineffective communication occurring between users and developers.
Rapid prototyping permits an interface to be quickly mocked up and
thus provides the means by which users and developers can readily
discuss the requirements and their ramifications on the outcome of
the project.

2. Functional Verification. Although the intent of the RIP
approach is to aid the user interface design process, it may also
be used for functional verification. Since the user interface
reflects the functional capabilities of a system, the prototyped
interface can demonstrate that the functions are fully
incorporated, and more importantly, that "extra" capabilities are
not included.

-18-

3. User Satisfaction. Since user participation is essential
to prototyping, users take great pride in the final product because
of a sense of involvement and accomplishment.

4. Design of Interfaces by Specialists. Specialists, such as
human factors individuals, are well versed in the effective design
of user interfaces, but are not necessarily proficient in
programming. Thus, RIP embodied in an effective tool can be used by
the specialists, rather than the programmers, to design the
interfaces.

5. Parallel Activities by Developers, Prior to using the RIP
approach, weapon command and control projects have progressed in a
serial fashion. That is, the systems engineers first perform the
requirements analyses, second, the developers design and implement
the system, and third, the support specialists (e.g., quality
assurance, manual writer, trainer, and human factors) perform their
evaluations and duties. This serial process is time-consuming, with
insufficient time allocated towards the latter activities. The RIP
permits many of the activities to be performed in parallel,
particularly the support activities. Also, an added benefit is that
the recommendations stemming from the support evaluations can be
readily incorporated into the design.

In addition to the benefits gained within the software
engineering realm, a "business case" can be realized by the RIP
approach. Future systems can be easily marketed to determine their
feasibilities, and since revisions are quickly completed, the
prototyped interface can be used for attracting a wide range of
customers.

3.3 Limitations of RIP

The RIP methodology is not a panacea for all user interface
designs. In fact, it is most suitable for data processing systems
with limited potential for real-time processing systems. Also, with
the ever changing technology associated with entry devices, any RIP
tool would become obsolete quickly.

There are limitations associated with rapid prototyping
itself. Large projects may result in unwieldy interfaces with the
evaluations difficult to manage and control. The prototyped
interface may give the illusion that the project has progressed
considerably and that the final product is imminent and shortly
forthcoming; whereas, in actuality the system has yet to be fully
analyzed and perhaps not even designed. For the business case,
marketing may oversell the prototyped interface, creating
unrealistic expectations for the actual product performance.

The significance of rapid prototyping is simply a methodology
aimed at improving the user interface design process. The
effectiveness depends on type, size, and application of the

-19-

software system. The designer needs to determine whether rapid
prototyping is appropriate for his/her needs by weighing the pros
and cons of the methodology.

-20-

4. TOOLS AVAILABLE FOR IMPLEMENTING RIP

There are a number of tools available in both the commercial
market and university environments. These tools can be classified
into UIMS-like systems/workstations and personal computers (PCs).
Most of the UIMS-like systems are found in university environments
with limited commercial dissemination, whereas the PC tools are
generally commercially available.

This chapter highlights some of the tools, and is by no means
a comprehensive review of all the tools currently available.
Because there is an increasing number of new prototyping tools
entering the market, a thorough review is not feasible. The
emphasis here is to provide the reader with a flavor of the more
well-known tools.

4.1 UIMS-Like Tools

These tools tend to be general purpose tools on workstations
(e.g., graphics workstations, symbolics workstations, and
distributed processing with micro-computers). Table 1 lists some of
the more common UIMS-like tools along with a comparison of the
features that the tools support (e.g., non-programming environment,
types of input devices, types of dialogue modes, hardware).

4.2 Microprocessor Based Tools
There is an increasing number of prototyping tools entering

the market for personal computers. They range from simple story
boards for drawing on the CRT screens to interactive prototyping
products. Some of the commercially available story boards are
listed in Section 2.2.1. Table 2 lists five of the more frequently
used tools for IBM and Apple's Macintosh personal computers.

-21-

Table 1: DINS - Like Tools on Uorkstations Used for Rapid Prototyping

Norr Program ng
Eiwiroraent

Sipports
Dialogue Modes

Text Graphic

Sipports
Input Devices

Digitizing
Key Touch Mouse Tablet Voice

On-Line
Data

Collection
Suggested
Hardware

Code
Generator Cements

Rapid/Use X X X X
SUN/Unix
VAX/Ultrix
VAX/VMS
Apolto/Unix

X
* Uses Transition Diagrams to
design and sequence interface.

* Provides sndular user interface.

COUSIN X X pointing device VAX/Unix
Perq/SPICE

* Uses editor to generate display.
* Provides nodular user interface.

Peridot X X X
Xerox
1109 Al
Workstation

X
* Specifically intended for use

with direct manipulation devices
(sinulated mouse).

* Generates Interlisp-Dcode.
* Provides aodular user interface.

Trilliun X X X X
Xerox
1186 AI
Workstation

* Specifically intended for design
and simulation of Copiers.

BLOK X X X X

Bit mapped
Workstation

ASCII
terminals

* Uses State Transition Syntax and
Graphics Editor to design and
sequence interface.

VAPS X X X
(only
for

flight
simulation)

IRIS
Workstation

* Uses a mix of menu driven and
object oriented programming to
design and simulate interface.

AIDE X X X X X X VAX 11/780 X
* Provides modular user interface.
* Requires user to enter

conditional expressions in order
to simulate interface.

Table 2: PC - Based Tools Used for Rapid Prototyping

Bun-Programing
Emrirur—nt

Sipports
Dialogue Modes

Text Graphics

Supports
Input Devices

Digitizing
Key Touch Notse Tablet Voice

On-Line
Data

Collection
Suggested
Harthnre

Code
Generator CoBaents

DEMO II X X X IBMPC/
MSOOS

* Difficult to learn and the
manual is very terse; must
purchase a separate tutorial
in order to learn how to use it.

* Limited sipport of data entries.

Skylights X X X X X IBMPC/
MSOOS

X * Uses a direct manipulation editor
similar to commercial "draw"
programs to design screens.

* Difficult to leam end the mrual
is very terse.

* Keystroke files are not foraattid
(time is in hex and keystrokes
are coded).

Mi rage X X X X X X IBMPC/
MSOOS

* Designed specifically for scppcrl:
of Sandia's command and control
systems.

HyperCard X X X X Macintosh X * Uses a direct manipulation editor
to design screens.

* Requires programming skill tc
link displays.

Prototyper X X X X Macintosh X

5. AN APPLICATION: RAPID PROTOTYPING THE USER INTERFACE FOR CAMP

The user interface design process for CAMP was accomplished
with Mirage, a prototyping tool developed specifically for Sandia's
weapon command and control systems. This chapter details the CAMP
user interface design process; whereas, the implementation process
is enumerated in SAND88-0800.

5.1 Requirements

5.1.1 System Requirements

CAMP is used for generating files of Code Activated Processor
(CAP-MC3764) ciphertext containing Set Weapon Identification and
Configure data, and for transferring data to and from the T1563
Automated PAL Controller. The functions associated with CAMP are:

1. Generation of Set Weanon-ID Messages. This function
permits a file of Set Weapon-ID Messages to be generated such that
the contents of this file can be used by the T1563 for setting
Weapon Identifications (i.e., Weapon Mark, Modification, and Serial
Number) into CAP-equipped weapons.

2. Generation of Confisure Messages. This function permits a
file of Configure Messages to be generated for W82-0 weapons only.
These messages contain CAP-encrypted data and are used by the T1563
for setting W82-0 weapons.

3. Add a Serial Number or PSA Identifier. This function
permits the user of CAMP to interactively add either a serial
number or a PSA identifier to the source files.

4. Transfer Data To/From the T1563. This function permits the
above files to be transferred to the T1563 and permits the National
Security Agency's configure seed files to be transferred to CAMP
using the T1563.

CAMP requirements are detailed in CD384275 (Compatibility,
Crypto Algorithm Message Processor).

5.1.2 User Requirements

CAMP is intended for use by operators at Mason & Hanger in
Amarillo, Texas. These operators are those involved in the weapon
production lines. They are not likely to be familiar with computing
systems or computing terminologies. Thus, the user interface must
be (1) well defined, (2) extremely straightforward, (3)
understandable, and (4) simple. Furthermore, the training
requirements must be minimal so as to reduce the potential for
errors.

-24-

5.2 Design and Evaluation of the CAMP Interface

An initial user interface prototype was developed on an IBM-PC
using Mirage (see McDonald, Vandenberg, and Smartt, 1987 for a
detailed description of the Mirage prototyping tool). The
prototyped interface was a general conceptualization of the user's
requirements for preparing files of CAP messages. It was menu
driven and contained approximately 25 screens. Upon viewing the
interface, the user and Sandia engineers were able to readily
communicate in detail the necessary steps for preparing these
files; that is, details of the source files, output files, and an
editing feature for modifying the source files. The objectives
during this phase were to resolve ambiguous requirements and to
provide a model of the interface that behaved as the user expected.

The second interface was again menu driven with numerous
interactive keyboard entries for specifying various filenames and
memory phrases to decrypt and encrypt contents of the files, and
for using the editor. This interface contained over 70 screens. For
this phase of the evaluation, the user enlisted the aid of their
systems engineers who were accustomed to designing user interfaces
for their operators. At this phase, the basic requirements were
defined, but the "how-to" implementation of the requirements needed
to be developed. Here, the user's systems engineer provided
invaluable recommendations with respect to the following:

1. Display Layout. The user identified the optimal locations
on the screen for presenting menu items, instructions, and
miscellaneous information such as audit trails.

2. Keyboard Entry, The user requested minimal keyboard
entries which greatly influenced the design of the software. Since
the user did not want their operators to type in filenames, default
filenames for both source and output files had to be used. Also,
the source files had to reside in different diskettes, one for the
Set Weapon ID source file and another for the Configure Messages
source file, in order to accommodate the use of default filenames
which needed to be transparent to the operators.

3. Sequencing of Displays. The user provided recommendations
as to the sequence of displays with aborts interspersed throughout
the dialogue. Additionally, the user simplified the editor to
merely an "add" feature. This was because the flexibility of a full
editor was deemed too complex to operate so that the editor was
stripped down to a minimum.

4. Wordings and Terminologies. Instructions, descriptions of
menu choices, and audit trails were rephrased to reflect the
vocabulary used by the operators. Verbosity was reduced such that
the dialogue can be read quickly and understood at once. Unfamiliar
terminologies were replaced with familiar terminologies (e.g.,
transfer of data from CAMP to T1563 instead of PDM emulation).

-25-

It is interesting to note that by the end of this phase, both
the user and Sandia engineers were realizing the CAMP requirements
and their impact on user's operations. Even though the intent of
the prototyping process was aimed towards defining the user
interface, it provided an excellent communication vehicle for all
the parties. Once the user saw how the originally requested
features (e.g., a full editor) increased both operator work-load
and the complexity of the interface, these "extra" features were
quickly eliminated.

The third interface was menu driven with minimal keyboard
entries. This interface contained approximately 30 screens. For the
third iteration, the user enlisted their operators, the ones who
will be performing the operations on CAMP, to evaluate the
interface. The operators suggested refinements for specifying
instructions on the screen; that is, they wanted the instructions
to be patterned after their own "Operations and Instructions"
manuals.

The outcome of this iterative design and evaluation process is
a tailored user interface that provides only the necessary
operations for preparing files of CAP messages and subsequent
transfer of these files to another piece of equipment, the T1563.

5.3 Benefits of Rapid Prototyping CAMP's Interface

The RIP approach was beneficial to all parties. The users
expressed great satisfaction with the software product. This was
because of their intimate involvement with the user interface
design. Additionally, the product delivered was as expected such
that the users were not caught by any surprises or besieged by an
unfamiliar product.

For the designers, the benefits were numerous:

1. In the past, the requirements definition occurred at the
same time as design which complicated the design process because of
changing requirements. The RIP process facilitated the requirements
definition such that functional requirements were all known before
the start of the development process.

2. Since all parties subscribed to the user interface, it
remained stable throughout the entire project. The stability
permitted ease in designing and implementing the software.

3. The user interface provided the framework for the software
design since it embodied all the functional requirements.

4. The developers addressed error conditions and recovery
procedures early in the development process. This was possible
because the user interface permitted one to visualize different

-26-

types of errors as one dynamically stepped through each of the
displays.

5. The test plan was developed in parallel with the
development activities. With the user interface and the
requirements document at hand, test matrices and test cases were
readily developed. For each of the test cases, the expected outcome
was directly traceable to a particular display of the user
interface,

An additional benefit that was not realized with the CAMP
project, but would be very prominent in future weapon command and
control projects, is the assimilation of Sandia's support
activities. The support activities, such as human factors
evaluation, training, manual writing, and quality assurance, are
typically performed after the product prototype has been developed
(close to the end of the development process) . With the user
interface at hand, the support activities can occur in parallel
with the development process, allowing more of their
recommendations to be incorporated into the product and most
importantly, allowing a timely release of the product.

-27-

6. CONCLUSIONS

The RIP methodology is now suggested as a guideline for
Sandia's software developments. Mirage is currently being used to
develop interface prototypes for several command and control
software products under development. Other sectors of Sandia use
other tools, such as HyperCard,9 for developing interface
prototypes. Regardless of the tool used to implement the RIP
methodology, the success of the methodology has been demonstrated
and is widely accepted, and consequently recommended as part of
Sandia's software development process (e.g., Schroeder and Cooper,
1988) .

9. HyperCard is a trademark of Apple Corporation

-28-

7. REFERENCES

Boar, B.H. (1984). Application Prototyping. New York, NY: John
Wiley and Sons.

Boehm, B.W. (1981). Software Engineering Economics. New Jersey:
Prentice-Hall, Inc.

Card, S.K., English, W.K., and Burr, B.J. (1978). Evaluation of
Mouse, Rate-controlled Isometric Joystick, Step Keys, and Task
Keys for Text Selection on CRT. Ergonomics. vol. 21, pages
601-613.

Chao, B.P. (1986). Design Guidelines for Human-Computer Dialoeues.
SAND 86-0259, Sandia National Laboratories, NM.

Chao, B.P. (1987). Prototyping a Dialogue Interface: A Case Study.
In G. Salvendy (Ed.), Cognitive Engineering in the Design of
Human-Computer Interaction and Expert Systems. New York, NY:
Elsevier Science, pages 357-364.

Foley, J.D. and Wallace, V.L. (1974). The Art of Graphic Man-
Machine Conversation. Proceedings of the IEEE, vol. 62, no. 4,
pages 462-471.

Good, M.D., Whiteside, J.A., Wixon, D.R., and Jones, S.J. (1984).
Building a User-Derived Interface. Communications of the ACM,
vol. 27, no. 10, pages 1032-1043.

Green, P. and Wei-Hass, L. (1985). The Rapid Development of User
Interfaces: Experiences with the Wizard of Oz Method. Pro­
ceedings of the Human Factors Society - 29th Annual Meeting.
Santa Monica, CA: The Human Factors Society, pages 470-474.

Hartson, H.R., Ehrich, R.W., and Johnson, D.H. (1986). Introducing
Dialogue Management. In Ehrich and R. Williges (Eds.), Human-
Computer Dialogue Design. New York, NY: Elsevier Science,
pages 11-107.

Johnson, D.H., Hartson, H.R., Ehrich, R.W., Roach, J.W.,
Reilly, S.S., Siochi, A.C. and Tatem, J.E. (1986). The
Dialogue Author. In R. Ehrich and R. Williges (Eds.),
Human-Computer Dialogue Design. New York, NY: Elsevier
Science, pages 109-163.

Karat, J., McDonald, J.E., and Anderson, M.A. (1986). A Comparison
of Menu Selection Techniques: Touch Panel, Mouse, and Keyboard.
International Journal of Man Machine Studies, vol. 25, no. 1,
pages 73-88.

McDonald, J.E., Vandenberg, P.J., and Smartt, M.J. (1987). The

-29-

Mirage Rapid Interface Prototyping System. MCCS-87-87, New
Mexico State University, Las Cruces, NM.

Moran, T.P. (1981). The Command Language Grammar: A Representation
for the User Interface of Interactive Computer Systems. Inter­
national Journal of Man-Machine Studies, vol. 15, pages 3-50.

Myers, B.A. and Buxton, W. (1986). Creating Highly-Interactive and
Graphical User Interface by Demonstration. Proceedings of ACM
SIGGRAPH '86. pages 249-258.

Neidigk, D.N. (1988). Design and Implementation of the Crypto
Algorithm Message Processor Software. SAND88-0800, Sandia
National Laboratories, NM.

Parnas, D.L. (1969). On the Use of Transition Diagrams in the
Design of a User Interface for an Interactive Computer System.
Proceedings of the 24th National ACM Conference, pages 379-385.

Reisner, P. (1981). Formal Grammar and Human Factors Design of an
Interactive Graphics System. IEEE Transaction on Software
Engineering. vol. 7, pages 229-240.

Rosenburg, D.J., Wilson, J., and Nelson, M.A. (1988). Rapid Pro­
totyping for User Interface Design. Workshop for ACM/SIGCHI
'88.

Schneiderman, B. (1987). Designing the User Interface: Strategies
for Effective Human-Computer Interaction. Reading MA: Addison-
Wesley.

Schroeder, D.H. and Cooper J.A. (1988). Weapon Microprocessor
System Design Standards Committee Final Report. SAND88-0423,
Sandia National Laboratories, NM.

Schwalm, R.C., Thomas, M.E., White, R.J., and Williams, R.D.
(1987). User Interface Prototyping in Military Systems. Pro­
ceedings of the National Aerospace Electronics Conference,
pages 247-254.

Singer, A. (1979). Formal Methods and Human Factors in the Design
of Interactive Languages. Ph.D. dissertation, Computer and
Information Science Department, University of Massachusetts.

Smartt, M.J. (1987). Compatibility, Crypto Algorithm Message
Processor (CAMP). CD3842705, Sandia National Laboratories, NM.

Smith, S.L. and Mosier, J.N. (1984). Design Guidelines for the
User Interface for Computer-Based Information Systems. The
MITRE Corporation, Bedford, MA.

-30-

Distribution:
2300 J. L. Wirth
2310 M. K. Parsons
2312 D. J. Allen
2312 A. E. Farmer
2312 J. D. Mangum
2315 M. J. Smartt
2315 D. R. Blazek
2315 B. P. Chao (50)
2315 A. M. Chavez
2315 S. N. Giles
2315 M. A. Hug
2315 D. D. Neidigk
2315 M. H. Price
5126 W. D. Chadwick
5126 J. w. Bonahoom
5126 J. F. McDowell
7223 R. G. Easterling
7253 R. E. Baack
7253 J. Huttenhow
3141 S. A. Landenberg'
3141-1 C. 0. Ward (8)

(For D0E/0STI)
3151 W. I. Klein (3)
8524 J. A. Wackerly

