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THEORY AND APPLICATION OF A QUASI-EULERIAN FLUID ELEMENT FOR THE STRAW CODE 

by 

J. M. Kennedy and T. E. Eelytschko 

ABSTRACT 

Two-dimensional finite-element models for the treatment of 

the nonlinear, transient response of fluids and structures are 

described. The fluid description is quasi-Eulerian, so that the 

mesh can move independently of the material, and it includes a 

new finite-element upwinding scheme. The structural description 

is based on a corotational formulation in which the coordinate 

system is embedded in the elements, which is applicable to arbi- 

trarily large rotatjons. The interface between the fluid and 

structure permits relative sliding, but because of the descrip- 

tion of the quasi-Eulerian fluid, the nodes of the fluid and 

structure can be allowed to remain contiguous. 

Modeling procedures for treating the v a r i u u s  aspects of sub- 

assemblies, such as the narrow fluid channels, the fuel bundles 

which are immersed in the coolant, and the axial flow are developed. 

Calculations are made for a symmetric 7-subassembly cluster and 

compared to experimental results. In addition, the application to 

a 19-subassembly cluster is described. 

I. INTROUUCTION 

The subassemblies of a reactor core are an important component in the 

safety system of a Liquid Metal Fast Breeder Reactor (LMFBR), Among the 

issues which are of concern in the safety analysis at the subassembly level 

are the following: (1) the structural integrity of the subassembly within 

which thc hypothetical accident occurs; (2) the structural integrity of adja- 

cent subassemblies, particularly the maintenance of sufficient cross-sectional 

areas for the flow of the coolant; and (3) damage to the fuel pins in the 

adjacent subassembly, which could lead to further propagation of the accident. 

The analysis of subassemblies poses several challenging problems in com- 

puter modeling. The subassemblies are separated by narrow channels of fluid, 



and since the analysis of the ultimate load capacities of subassemblies in- 

volves large motions of these channels, neither the standard Eulerian nor 

Lagrangian descriptions of the fluid are appropriate. Similarly, the modeling 

of the internals of the subassemblies, which consist of a matrix of fuel pins 

immersed in the coolant, has entailed the development of special techniques. 

Furthermore, the complex shapes of the subassemblies call for very versatile 

modeling techniques. In response to these needs, general finite-element 

methods for treating transient f luid-structure systems have been developed; ' 
this was the first application of finite-element methods to problems involving 

nonlinear, large-displacement fluid-structure interactions. The methods have 

since evolved considerably and, because of their generality, are applicable to 

a wide variety of problems in reactor safety analysis and other fields. In 

particular, the recently developed quasi-Eulerian e l p r n ~ n t s  for treating fluido 

in channels and other fluid-structure interfaces undergoing large displace- 

ments have considerable potential for application. 

This paper describes these methods in their present stage of development. 

Particular emphasis has been placed on giving a comprehensive account of the 

finite-element treatment of the fluid, structure, and their interfaces. The 

treatment used for the q~lasi-Eulerian elements is included here and, as part 

of this, a new method for upwinding in finite-element methods is described. 

In addition, we have described the modeling procedures used in subassemblies, 

which will hopefully serve as a guide to modeling other systems. 

Studies of the capacity uf subassemblies to withstand energy releases 

have been underway in Great Britain, West Germany and the United States since 

the late 1960s. The British have heen primarily experimental; 

full-size models of 19- and 61-subassembly clusters have been subjected to 

high explosive charges detonated in a central subassembly. Charges which 

yielded peak pressures of 1000 MPa with rise times of 5 ms and durations up to 

50 ms were used. 

The work in West Germany has been reported in Refs. 4 and 5. Analytical 

and experimental efforts have dealt primarily with the role of the fuel bundle 

in subassembly response and the bending behavior of the adjacent hexcan. The 

fuel bundle has been represented by a lattice of truss elements with resistance 

only in compression. Comparisons with experiments show good agreement. Also, 

models of channel flow have been developed which account for the coolant, 

using an approach similar to that in COBRA.6 



The studies in the United States also comprise analytical and experi- 

mental efforts. The experimental efforts have focused on the response of the 

isolated hexcan, a hexcan surrounded by coolant, and small subassembly clus- 

ters. 7'8 Ash and ~arciniak~'lO compared their analytical results with the 

experimental results at SRI and obtained good agreement. In addition, their 

work pointed out the sensitivity of the hexcan response to the degree of 

corner work-hardening. 

The major analytical tools which have been developed for structural 

safety studies of subassemblies at Argonne National Laboratory are the com- 

puter programs STRAW, ' SADCAT, 12' and REXCAT. l4 STRAW, which is the 

topic of this paper, is a two-dimensional, nonlinear, finite-element program 

with fluid elements and structural elements which are used to represent sub- 

assembly walls, coolant channels, and internals. The program is used to model 

cross sections of the subassembly geometry normal to the axis of the sub- 

assemblies and fuel pins. The three-dimensional effects, such as the axial 

flow of the coolant and the axial bending resistance of the adjacent sub- 

assemblies, ate treated by coupling one-dimensional models of the axial flow 

and the flexural resistance to the two-dimensional models. This approach 

entails assumptions about the phenomenology of the accident, but as a conse- 

quence yields significant simplifications and economy of computation. There- 

fore, configurations involving both the accident hexcan and one to three 

layers of adjacent hexcans can be treated by STRAW. SADCAT, on the other 

hand, is a three-dimensional plate-shell program which can model the actual 

geometry of the subassemblies without any geometrical simplifications. In 

KEXCAT, SADCAT is coupled with the two-dimensional Lagrangian finite-difference 

program REXCO-HT. Thus, the internals of the hexcan, including both the 

energy source and the hydrodynamics, are modeled as axisymmetric, whereas the 

hexcan walls are treated as three-dimensional. 

The three-dimensional analysis methods are still too expensive for use in 

elaborate parameter studies or models which include hexcans adjacent to the 

accident hexcan. Thus, in the field of subassembly safety analysis, as in 

many other computer modeling fields, while three-dimensional analyses are 

feasible and not difficult in principle, computational cost has severely 

limited their use and development. 



In this paper, we will confine ourselves to the two-dimensional methods 

and models, which are implemented in the STRAW program. The next section 

presents the finite-element method developed for this program. The modeling 

procedure for the subassemblies is described in Sec. 111. Section IV gives 

some sample results and illustrates some of the fluid-structure effects found 

, in the problem of subassembly response. 



I I. F INITE-ELEMENT METHOD 

The computational methods for the subassemblies and their internals must 

be capable of treating structures of complex shape and their interaction with 

the fluid in which they are embedded. Consequently, these methods must be 

able to treat almost arbitrary combinations of fluid and structural geometries. 

Furthermore, the structures must be treated by bending theory if the total 

number of degress of freedom is to be kept to a reasonable limit. For example, 

if flexural theory is used, the deformation at each point of the structural 

cross section is defined by a single node with three degrees 01 freedom. By 

contrast, a continuum description of the structures would entail about 5 nodes 

at each cross section, two degrees of freedom at each node, and thus a total 

of 10 degrees of freedom, at each section. Thus, the.use of a flexural theory 

for the structural elements is imperative for an economic solution. 

The finite-element method is ideally suited for mixing fluid elements 

with structural elements. In the finite-element method, in both the structural 

and fluid portions, the discrete equations of the mesh are written in the form 

ext 
- F i ~  = 0, 

where 

%L 
= global mass matrix (composed of lumped mass entries); 

u iL = displacements of the nodes; superscript dots denote time deriva- 

tives, so that ti are the accelerations; 
iL 

int 
F i ~  

= the nodal forces resulting from the response of the structure and 

fluid; 

ext 
F i ~  = the nodal forces corresponding to externally applied loads. 

The upper-case subscripts refer to nodes, the lower-case subscripts' to 

degrees of freedom at a node. Each fluid node in these two-dimensional models 

has two degrees sf frccdom: translations in the x and y directions, whereas 

each structural node has three degrees of freedom: translations in the x and 

y directions and rotation of the cross section. We will use numerical sub- 

= ux and u2 a uy. scripts and component subscripts interchangeably; thus u - 

In addition, we will sometimes denote coordinates by x at other times we i; 
will simply use x and y, su rlrat (xl and x) and (x2 and y) are interchangeable. 



The most important ingredient in the finlte-element procedure is the cal- 

culation of the internal nodal forces which arise from the resistance of the 

structure and fluid. These are given by (see, for example, Belytschko and 

where superscript e refers to the element number, LIK is the connectivity 
int 

matrix, and f are the element nodal forces. The element nodal forces are 
i I 

defined by 

for arbitrary ; Here E is the intern.aJ. energy of the element and t (e 1 
I. T, $1 

are any momentum-transport terms which may occur; for Lagrangian elements the 

transport terms vanish. Equation (3) is the means through which the internal 

nodal forces for an element may be derived for a fluid or structural element 

. once the velocity field in the element is assumed. Derivations for several of 

the key elements used in these models are given below. Equation (2) represents 

the summation of the element nodal forces f into the total internal iI 
nodal forces. Although Eq. (2) represents this process as a matrix multipli- 

is a Boolean matrix, and i=n the computer program the cation, in fact LIK 

total internal forces are obtained by simply summing the element nodal internal 

forces according to the element global node numbers. 

The three major elements in the STRAW program are the (1) quasi-Eulerian 

fluid element, (2),the Lagrangian fluid' element, and (3) the beam element. 

The derivation of the nodal-force equations and the ~ ~ m p u t a t i o n . a l  p r o r ~ d ~ ~ r e s  

for each of these elements is given in the following. 

A. Quasi-Eulerian Fluid Element 

The quasi-Eulerian fluid element is an element for which the motion of 

the nodes may differ from the motion of the material, in this case, the fluid. 
M We will designate the material ve1ocity.b~ u , the mesh (or grid) velocity by 

G *M * G  u . When u = u , the element is Lagrangian and all nodes move with the 
material velocity. When iG =. 0, the element nodes are fixed in space and the 

elements are Eulerian. The element is called quasi-Eulerian because whenever 

L~ # ;G the transport terms appear in the momentum equation, so that the 



treatment is very similar to that in Eulerian descriptions. We will consider 

only inviscid, compressible flow. Both quadrilateral and triangular elements 

are included. 

Quasi-Eulerian treatments have been previously developed by Noh, l 7  

~rulio, ' and Hirt et al,. , in f inite-dif f erence formats. Of ten these 

methods are called Arbitrary Lagrangian Eulerian (ALE) . Donea et al., 2 0  have 

reported a finite-element quasi-Eulerian method. 

We will now develop the internal nodal forces for this element; in the 

following we will drop the superscripts on f and use the convention that iI 
lower-case nodal forces pertain to an element. In this development, we will 

concentrate on the quadrilateral element and only outline the triangular 

element. This corresponds to the relative importance of the elements; the 

quadrilateral is used in most of the meshes, while the triangle is used only 

for the edges or irregular shapes. 

The quadrilateral element is shown in Fig. 1. Since we consider only 

Fig. I .  Quadrilateral Fluid Element. 
(ANL Neg. No. 900-78-15. ) 

adiabatic process, the rate of change of internal energy of the element ,is 

given, by 

where p is the pressure and V the volume of the element. The velocity field 

in the element i s  approximated by the standard quadrilateral shape functions 

(see ~ienkiewicz~ for dr~ails) : 



where a  repea ted  s u b s c r i p t  imp l i e s  a  summation over t h e  a p p r o p r i a t e  range;  i n  

t h i s  c a s e ,  s i n c e  t h e  repea ted  s u b s c r i p t  I r e f e r s  t o  t h e  nodes of t h e  element,  

t h e  range is t h e  number of nodes f o r  t h i s  element,  which i s  4.  This  v e l o c i t y  

f i e l d  a p p l i e s  bo th  t o  t h e  m a t e r i a l  and g r i d  v e l o c i t i e s .  

The shape f u n c t i o n s  f o r  t h e  q u a d r i l a t e r a l  a r e  

where 5 a n d . n  a r e  def ined  by t h e  i soparamet r ic  t ransformat ion  

s o  t h a t  d e r i v a t i v e s  a r e  given by (see  Ref. 21) 

where j i s  t h e  Jacobian  

For an  i n v i s c i d  f l u i d ,  t h e  p re s su re  i s  given by t h e  equat ion  of s t a t e  

where p is  t h e  d e n s i t y  and T t h e  temperature.  We w i l l  assume t h a t  p ,  and 

hence p ,  a r e  cons t an t  w i t h i n  t h e  element. This  i s  not  c o n s i s t e n t  wi th  t h e  

r a t e  of d i l a t i o n  (volumetr ic  s t r a i n  r a t e )  a s soc i a t ed  wi th  t h e  v e l o c i t y  f i e l d  

i n  t h i s  element,  because an  eva lua t ion  of t h e  volumetr ic  s t r a i n  r a t e  by sub- 

s t i t u t i n g  t h e  v e l o c i t y  f i e l d ,  Eqs. (6) ,  i n t o  Eq. ( 8 ) ,  shows t h a t  t h e  volumetr ic  

s t r a i n  r a t e  i s  n o t  cons tan t  i n  t h e  element. However, i t  is  no t  f u l l y  l i n e a r ,  

and t a k i n g  i n t o  account  t h i s  v a r i a t i o n  would e n t a i l  a  numerical quadra ture  

with'  a  minimum of four  p o i n t s  r a t h e r  than  the  simple formulas t h a t  w i l l  be  

given he re .  This  would r a i s e  computational e f f o r t  per  element by a  f a c t o r  of  

3 t o  4 ;  i t  i s  our  opin ion  t h a t  u s ing  more elements is  more c o s t - e f f e c t i v e  than 

t a k i n g  i n t o  account t h e  smal l  v a r i a t i o n s  i n  p re s su re  by a  4-point quadrature.  



To obtain the nodal forces, we will need the identity 

where J is the Jacobian of the transformation between the current volume V and 

the original volume V . Combining Eq. (11) with Eq. ( 4 ) ,  we obtain 
0 

Simple geometry can be used to show that the volume rate is 

where 

and it is assumed that J is one node counterclockwise from I; K two nodes 

counterclockwise from I; etc. 

Combining Eqs. (12) and (13) with Eq. (3) in the absence of transport, we 

obtain 

Since the above, which represents consistency in energy between the nodal 

variables and the element variable, must hold for arbitrary u ,  it follows 

that 

To evaluate the discrete transport terms tiI, we will use a Galerkin 

approach. It has been that straight Galerkin approaches to 

the transport terms when used with piecewise linear velocity fields yield os- 

cillatory solutions. This has also been noted in the finite-difference litera- 

ture (cee ~ o a c h ~ ~ ) ,  where. special upwind di,f ferencing forms. have been devel- 

oped. In Refs. 22 and 23, finite-element versions of upwind transport 



d i s c r e t i z a t i o n s  were ob ta ined  by us ing  higher-nsder  weight func t ions  skewed i n  

t h e  upwind d i r e c t i o n .  This  t ype  of "upwinding" makes numerical i n t e g r a t i o n  

neces sa ry .  In  t h e  STRAW program, a  s impler  upwinding scheme has  been incor -  

po ra t ed ,  and i t  w i l l  be  descr ibed  here .  

The Galerk in  approximation t o  t h e  t r a n s p o r t  term g ives  

where t h e  a s t e r i s k  d e s i g n a t e s  t h a t  t h i s  t r a n s p o r t  term w i l l  bc modified t o  

account  f o r  upwinding be fo re  use  i n  Eq. (16)* This i s  a r r n m p l i s h ~ d  by 

where 

y is a  s c a l e  f a c t o r  chosen s o  t h a t  1 y I < 1, and AD is  t h e  donor-cel 1 f a r t n r ,  
I 

sri t h a t  

- 
AD = I -> f u l l  upwinding; 

% - 
AD = 0 *> no upwind ing  . 
I n  o r d e r  t o  avoid  numerical  i n t e g r a t i o n  f o r  t h e  eva lua t ion  of t h e  t r ans -  

p o r t  terms,  they were eva111a t~d  hy sl.!bdividing t h c  q u a d r i l a t e r a l  i i i t u  ~ ~ i a l ~ g l e s  

i n  two ways, a s  shown i n  Fig.  2. For each t r i a n g l e ,  t h e  shape func t ions  4 
I 

a r e  t h e  t r i a n g u l a r  coo rd ina t e s  5 so  t h a t  
I ' 

F i g .  2. Subdivision of Quadri lateral  i n t o  Triangles 
for Evaluation of Transport Terms. 
(ANL; Neg. No. 900-78-16. ) 



Evaluation of the integral yields 

where 

for a triangle with nodes J, K, and L in counterclockwise order; the matrix 

IIK is given by 

IIK = 1 for all I, K, 

and 6 is the usual Kronecker delta (unit matrix) 
I K 

The evaluation of Eq. (19) yields 

The transport terms for the four triangular elements are assembled in the 

standard manner according to the node numbers and then halved to account for 

the two layers of triangular elements. 

In updating the density of the element, the integral form of the.conser- 

vation of mass is used, which gives 

where ni is a unit normal to the surface S. The assumption of constant den- 

sity in the element and evaluation of the right-hand integral with the shape 

functions, Eqs. ( 6 ) ,  yield 



W e  have h e r e  used a n  a s t e r i s k  on t h e  d e r i v a t i v e  t o  i n d i c a t e  t h a t  t h e  d e r i v a t i v e  

is  n e i t h e r  a m a t e r i a l  no r  s p a t i a l  d e r i v a t i v e ;  as t h e  volume V moves through 

space ,  t h e  v e l o c i t y  of i t s  s u r f a c e  p o i n t s  may d i f f e r  from t h e  material velo- * 
c i t i e s  of t h e s e  p o i n t s ,  s o  d p l d t  r e p r e s e n t s  t h e  r a t e  of change of p a long  

t h i s  a r b i t r a r y  p a t h  i n  space-time. 

The procedure used i n  t h e  computer program is given i n  Table I. The 

procedure i s  t y p i c a l  of t h a t  used f o r  e lements  i n  a n  e x p l i c i t  t ime- in tegra t ion  

f in i t e - e l emen t  program. The only  d i f f e r e n c e  is  t h a t  t h e  element must know 

which elements  are a d j a c e n t  t o  i t  t o  compute Eqs. (26) and (27);  f o r  t hese  

purposes,  a n  adjacency t a b l e  is  cons t ruc ted  which lists t h e  element t h a t  

bo rde r  each  of t h e  s i d e s ;  i f  no element borders  a  given s i d e ,  a  zero i s  en te red  

f o r  t h a t  s i d e .  

Table I-. Computational Procedure i n  Quasi-Eulerian Element 

1. Modify element nodal  v e l o c i t i e s  (both m a t e r i a l  and g r i d )  by forward 
e x t r a p o l a t i o n  of Eq. (54) .  

2. Compute new d e n s i t y  of element by Eq. (27) and pnew = + A t  2. 
* 

d P 3. Modify masses of nodes connected t o  element according t o  - 
d t  

4 .  Use equa t ion  of s t a t e  p(p,T) t o  f i n d  new pressure .  

5. Compute l i n e a r  a r t i f i c i a l  v i s c o s i t y ,  Eq. (55).  

6. Compute nodal  f o r c e s  due t o  p r e s s u r e  (from equat ion  of S t a t e  and a r t i -  
f  i c i a l  v i s c o s i t y ,  by Eq. (16).  

7. Compute t r a n s p o r t  t e r m s  t by Eqs. (17) and (19),  and add t o  nodal 
i I 

f o r c e s  f  
iI '  

8. Compute nodal  f o r c e s  due t o  hourg lass  v i s c o s i t i e s  us ing  Eqs. (61-63), 
and add t o  nodal  f o r c e s  f i I .  

9. S t o r e  c u r r e n t  p re s su re ,  d e n s i t y ,  and o t h e r  element v a r i a b l e s .  

10. Add i n t e r n a l  nodal  f o r c e s  f  i n t o  t o t a l  i n t e r n a l  nodal  f o r c e  a r r a y  F i n t  
i I  i I  ' 



The treatment of the triangular element is quite similar and has already 

been alluded to.in the development of the transport terms. For the triangle 

the shape functions are the triangular coordinates, so that 

These shape functions are linear in x and y, and the rate of volumetric strain 

is constant within the element; thus, unlike for the quadrilateral, a constant 

density and pressure is consistent with the kinematics of the element. Hence, 

Eq. (12) follows exactly. Through some elementary geometry, the volume rate 

can be expressed in the same form as Eq. (13), with 

Equations (16), (21), and (24) then give all relations for the triangle. 

B. Lagrangian Fluid Element 

The Lagrangian fluid element is a special case of the quasi-Eulerian 
*M *G 

fluid element with u = u . The transport terms thus vanish. 

The STRAW program includes quadrilateral, triangular, and pentagonal 

elements, but quadrilateral elements are recommended for most meshing. The 

computational procedure for Lagrangian elements is outlined in Table 11. 

Table 11. Computational Procedure for Lagrangian Element 

dp 1. Compute new 'density by - = -pB u p d P new = pold + At -* 

dt i~ i ~ ;  dt 

2. Use equation of state p(p,T) t.o find new pressure. 

3. Compute linear artificial viscosity, Eq. (55). 

4. Compute nodal forces by Eq. (16). 

5, Compute nodal forces, due to antihourglass, by Eq. (61-63) and add to 
element nodal forces. 

6. Store current pressure, density, and other element variables. 

int 
7. Add internal nodal forces fiI into total internal nodal force array FiI . 



C. Beam Element 

. . The beam element is illustrated in Fig. 3. Each beam element has two 

actual nodes, but unlike the fluid elements, it has three degrees of freedom 

per node, so that the nodal displacements at any node are 

where 8 is the rotation in radians. The corresponding nodal forces are 
I 

where m is a moment. 
I 

' INITIAL SHAPE 
6 

DEFORMATION NODAL DISPLACEMENTS AND FORCES 

I f Y 2  

I 
f Y l  

NODAL DISPLACEMENTS AND FORCES 

F i g .  3 .  Beam-element Geometry and Nomenclature. 
(ANL Neg. No. 900-78-1, Rev. I . )  



An important aspect of this beam element is the use of a corotational 

formulation which permits the treatment of arbitrarily large rotations of the 

element. The essential feature of a corotational formulation is that a coor- 
A A 

dinate system (x,y) is embedded in each element so that it rotates with the 
A 

element. In this beam element, the corotational system is embedded so that x 

always connects the two nodes of the beam. Corotational formulations have 

been extensively described by Belytschko and H ~ i e h . ~ " ~ ~  In these papers the 

corotational formulations were limited to elements which were initially 

straight and wherein the rotation of any part of the element relative to the 

corotational coordinate was small. Since then, Belytschko and   la urn^^ have 
developed formulations which account for initial curvature and moderate rela- 

tive rotations, and these have been incorporated here. However,' all of these 

formulations are limited to moderately small strains, of the order of about 

These formulations are applicable to arbitrary nonlinear materials. 

~lthou~h most of our work has been limited to elastic-plastic materials, as 

long as an increment stress can be programmed as an increment of strain and 

previous stress and strain, it is easily incorporated in the program. 

These elements are based on the standard Euler-Bernoulli assumptions that 

the deformation is characterized by the deformation of the midline of the 

beam, and that all straight lines normal to the midline remain straight and 

normal. Shear corrections terms are not included. 

An important aspect of the formulation used here and in Refs. 25-27 is 

that, on the element level, only those degrees of freedom associated with 

deformation of the element are considered. This concept was introduced by 

Argyris -- et a1. 28 It saves considerable computational effort, and, in addition, 

in transient problems it enhances the stability of the computational procedure, 

for it insures the conservation of energy on an element 

The deformation displacements and the corresponding deformation nodal 

forces for this element are 

* def 
u = (e, W1' Lo2); 

where 



e = elongation of the element; 

Orig = rigid body rotation of the element. 

The elongation and rigid-body rotation are respectively given by 

1 
= -( 2R [2 X i ~ ~ U i ~ l  + U i ~ ~ U i ~ l  

(sum on i only) 

and 

The displacement fields associated with the deformation displacements are 

^def A 

A 

u (x) = W. cp. (XI ; 
Y 1: J: 

A 

cp,(x) = c3 - 2c2 *-5; 
,. 

m2(x) = c 3  - E ~ ;  

^def = ec; u 
X 

(36) 

A 

c = xla. . (37) 

It should be noted that, because of the way the rigid body rotation is elimi- 
.A 

nated, the y component of the displaceme-nt vanished at both endpoints, i.e., 

'nodes, of the element. 

If the beam is initially curved, its shape is specified by initial dis- 
A A 

placement u of the midline from the x axis in the forin 
YO 

0 where o (I = 1 and 2) are the initial angles between the midline of the beam 
1 ,. 

and the x axis.' 

The strain displacement equations for the beam element are 



This strain, as shown in Ref. 27, is valid for moderate values of w and U 
0 

(about 0.1). It corresponds to the stretch tensor, or engineering strain. 

The raLe u1 internal work is givcn by 

A 

where a is the conjugate corotational stress. The nodal force3 can now be 

obtained through Eq. (3). Taking the rate of strain from Eq. (39), substitu- 

ting in the shape 'functions, then substituting into Eq. (40), and using Eq. (3 )  

and the arbitrariness of the deformation nodal velocities, we obtain . 

,. A 

It is then assumed that a varies linearly in x, which is the actual situation 
,. 

whenever the material is linear, for that is how the strain E varies. 

The following quantities are evaluated numerically: 

and 

where I = 1 and 2 correspond to the two nodes, that is, 5 = 0 and 5 = 1, res- 

pectively. The integrals in Eqs. (42) and (43) are evaluated numerically by 
,. ,. 

trapezoidal formulas. Since a is assumed to vary linearly In x, it follows ,. 
that p(5) and m(5) also vary linearly in x, so that 

Equation (41) may then be integrated to yield 



where 

- 0 
w = o  + o .  

The last term in Eq. (45) becomes significant only when w, the sum of initial 
rotation and deformation relative rotations, are moderate-ly large (0.01 to 

0.1). It has been found that generally these terms are significant only in a 

few elements of the mesh, in which case the computa,tion of all terms associated 
0 

with these quantities can be suppressed wherever the terms w and o  are small. I I 

The complete set of element nodal forces are obtained from the deformation . 

nodal forces by equilibrium, which gives 

These forces are then transformed to components in the global coordinate 

system. The sequences of computations is shown in Table 111. 

  able 111. Computational Procedure for Beam Element 

1. Compute element deformation displacements through Eq. (32-34). 

2. At each end of the element: 

i. Coxnpute strains at all points through thickness by Eq. (39). 

ii. Compute new stress by stress-strain law. 

iii. Compute p and m by numerical ir~tegration. I I 
3. Compute deformation nodal forces by Eq. (45). 

4. Compute axial artifical viscosity nodal force by Eq. (57) and add to 
deformation nodal forces. 

5. Store current stress and strains. 

6 .  Find all nodal forces in corotational components by Eq. (46). 

7. Transform nodal forces to global components. 
int 8. Add element nodal forces into total nodal force array FiI . 

--".- 



D. Time Integration 

Time integration is carried out by the central-difference explicit method. 

For the central-difference method, the velocities and displacements are updated 

by the formulas 

and 

u(t + At) = u(t) + At ;(t + 1/2At), - - - 

where superscript dots denote time derivatives and At is the time step. For 

purposes of numerical stability the time step is limited by 

2 
at - < y--- (h - -e), 

max 

where o is the maximum eigenvalue (the highest frequency squared) of the 
max 

system and p is the fraction of critical damping in the highest frequency. 

For constant-strain elements, such as the Lagrangian hydrodynamic elements 

and the membrane forces in the beam, the highest frequency may be estimated by 

the formula 

2 c 
W = -  
max R ' 

where c is the maximum elastic or the acoustic-wave speed in the material and 

R the minimum element dimension. For beam elements, the frequency of the 

bending mode may be estimated by 

where r is the radius of gyration of the cross section. Sincc both Eqs. (50) 
G 

and (51) govern the behavior of a beam, the time step in a beam mesh is gov- 

erned by whichever of these frequencies is larger. Thus Eq. (45) governs for a 

beam as long as 

For a uniform cross section, the radius of gyration is given by r2 = h2/12, 
g 

where h is the thickness of the beam, so Eq. (52) becomes 

R '. ah. - (53) 



It is important to keep beam elements long enough so that Eq. (53) is not 

violated by much, for otherwise Eq. (51) governs and At decreases with the 

square of element length. 

For the quasi-Eulerian elements, an additional constraint is imposed by 

the requirement that a material point cannot traverse an element within a time 

step. l 9  An additional aspect of the quasi-Eulerian elements is that a forward 

extrapolation of the velocities, as proposed by Uonea et a1. ,20 has been used. 

Thus, in the subroutine for the quasi-Eulerian elements, before any compu- 

tations are made the velocities are extrapolated by 

; (t) = til(t - 1/2At) + 1/2At UiI(t - At), i I (54) 

so chat the transport terms in Eq. (3) are for time t like the rest of the , 

terms. It is interesting to note that Donea -- et al. used this extrapolation in 

conjunction with the Newmark B-method, where it is necessary even to correctly 

evaluate the change in density from the velocities. However, as shown in the 

results, this extrapolation also has significant effects with the central- 

difference method. 

E. Artificial Viscosity 

In the integration of the finite-element equations of motion with small 

time steps, such as is generally the case in explicit integration, high- 

frequency oscillations which are called "spurious oscillations" or "aliasing" 

will appear in an updamped system. The severity of these oscillations tends to' 

increase if the mesh is rather heterogeneous. These oscillations can be 

reduced and sometimes eliminated by the use of a suitable artificial viscosity, 

which Is really a aumerical damping. 

In Ref. 29, Belytschko et al. have shown that a viscous stress given by -- 

damps the highest mode of an elastic, isotropic element by a fraction of cri- 

tical damping, v .  Here A is the area of the element, c the dilatational-wave 
L 

speed, c the shear-wave speed, 
S 

and E~~ the strain. 

For the hydrodynamic elements, where the shear-wave velocity vanishes and 

the state of stress is hydrostatic, Eq. (55) reduces to 



This pressure is added to the pressure obtained from the equation of state at 

each time step before computing nodal forces. However, only the pressures 

resulting from the equation of state are stored permanently. 

When shocks are expected, an additional quadratic artificial viscosity 

of the Von Neumann type is added. 

The general artificial viscosity of Eq. (55) can also be reduced to a one- 

dimensional form appropriate for the beam elements. However, it was found 

that this has undesirable effects on the flexural response, so, instead, an 

artificial viscosity is only applied to the axial forces. This membrane 

viscosity is given by 

vis fx2 = 2,,&~;~, 

where A is the cross-sectional area of the beam. 

A second type of viscosity which was needed in this program is the 

antihourglass viscosity. The hourglass mode is shown in Fig. 4. It can be 

F<g. 4. H o w g Z a s s  Type  of Mesh I n s t u b i Z i t y .  
(ANL Neg. No. 900-4796-1.) 

seen that this mode of deformation of the quadrilateral element causes no 

volume change, and hence no pressure. Thus, any excitation which induces 

this mode of deformation is unresisted, and elements can become quite dis- 

torted in these modes. 



We have incorpora ted  i n  STRAW a f in i te -e lement  form of t h e  Maenchen and 

sack30 r o t a t i o n a l  a n t i h o u r g l a s s  v i s c o s i t y .  This  v i s c o s i t y  i s  appl ied  t o  t h e  

h o u r g l a s s  modes c h a r a c t e r i z e d  by 

where w i s  the  r a t e  of r o t a t i o n  of s i d e  IJ. 
IJ 

The r o t a t i o n  of  each s i d e  i f  def ined  by 

where t h e  right-hand s i d e  i s  eva lua ted  along t h e  s i d e  IJ. This  y i e l d s  

where 

and 

The gene ra l i zed  s t r e s s e s  corresponding t o '  4 a r e  des igna ted  Q and we choose 
K .  k  ' 

a l i n e a r  r e l a t i o n s h i p  of t h e  form 

where p i s  t h e  a n t i h o u r g l a s s  c o e f f i c i e n t .  The form of t h i s  r e l a t i o n  between 

t h e  genera l ized  hourg la s s  s t r e s s e s  and s t r a i n  r a t e s  i s  s i m i l a r  i n  t h e  form t o  

t h e  a r t i f i c i a l  v i s c o s i t y  i n  t h e  volumetr ic  deformation modes, s o  t h e  range of 

va lues  i n  LI is  s i m i l a r ,  a l though exper ience  shows t h a t  p should usua l ly  
H H 

be  lower than  p by a  f a c t o r  of 2 t o  5. 

The nodal  f o r c e s  a s s o c i a t e d  wi th  Q a r e  obta ined  by use  of E q .  ( 3 ) .  We k 
n o t e  t h a t  t h e  r a t e  of energy d i s s i p a t i o n  i n  t h e  element is  



By using Eqs. (56) and (60), we obtain 

Thus, the antihourglass viscosity simply introduces another set of internal 

nodal forces which are added to those resulting from the pressure in the 

element. 

F. Sliding Interface 

At the fluid-solid interface, relative sliding of the fluid and solid is 

permitted. The treatment of sliding is simplified in quasi-Eulerian formula- 

tions, because the fluid nodes can be constrained to remain contiguous to the 

structural nodes. On the other hand, when Lagrangian meshes are used for the 

fluid, the fluid nodes will move relative to the structure, so rather cumber- 

some algorithms that treat nodes on a sliding interface that are not aligned - 
must be included. 

The node structure at a sliding interface as used herein is shown in Fig. 

5. At each point of the interface, we have two nodes: one fluid node and one 

structural node. For each pair, a local coordinate system (t,n) is set up so 

that 

t is the tangent to the sliding interface; 

n is 90° counterclockwise from t. 

STRUCTURAL NODES 

o FLUID NODES 

Fig. 5. S l i d i n g  Interfaces . 
(ANL Neg. No. 900-78-17, Rev. 1. )  



Whenever a corner occurs in the interface, t.is the average of the two tangent 

directions. 

The grid and material velocities of the fluid are specified by the 

following: 

M 
u = u  Fn Sn' 

where the subscripts S and F refer to the structure and fluid, respectively. 

The conditions bf Eqs. (65a) and (65b) are imposed directly. The con- 

dition Eq. (65c) is enforced through the nodal forces. After all internal 

nodal forces have been summed and prior to the calculation of the nodal accel- 

erations by Eq. (1)' the nodal forces at each pair uf rludes on the sliding 

interface are transformed into the (t,n) system. The normal components of the 

fluid and structural node are then redefined.by 

Thus the normal components of nodal forces are set equal, which results in 

equality of the normal components of the accelerations. Therefore, a p a i r  of 

nodes at the interface in effect only share 3 translational degrees of freedom: 

u u and u Sn' St' Ft' 



111. DESCRIPTION OF MODELS 

We will here describe the modeling.procedures and philosophies employed in 

our treatment of the subassembly problem by the two-dimensional program STRAW. 

As mentioned previously, the two major difficulties in modeling the subassem- 

blies are: - (1) the three-dimensional character of the problem, and (2) the 

complex intermingling of structural components and fldid, with narrow fluid 

channels that must be treated by a limited number of degrees of freedom. 

Because of the inordinate computational expense associated with complete three- 

dimensional analyses,, they had to be ruled out for the major part of the 

studies, and alternative models which capture limited portions of the three 

'dimensionality had to be developed. We denote these models which were con- 

structed by augmenting standard two-dimensional models by 2D-t. 

A cross section of a subassembly cluster is shown in Fig. 6. The dimen- 

sions of an individual subassembly are shown in Fig. 7, the view being per- 

F i g .  6 .  Cross Sect ion of  Subassemb Zy Cluster.  
(ANL Neg. No. 900-75-304.) 

pendicular to the axis of the fuel pins and hexcan. As can be seen, the only 

symmetry in these problems is a rotational periodicity of 30'. The two- 

dimensional models are formed 'in this plane, as shown by the f inite-element 

model of Fig. 8. It includes an accident hexcan and two layers of adjacent 

.subassemblies. This model takes advantage of the 30' periodicity by using a 



Fig. 7. Subassembly Configuration (a Z Z  dimensions in em). 
(ANL Neg. No. 900-77-1146.) 

Fig, 8. Two-dimensional Model of Subassembly Cluster 
(a Z Z  dimensions in em). 
(ANL Neg. No. 900-5440, Rev. I. ) 



one-twelfth section and thus is limited to symmetric loads in the center of 

the accident hexcan. 

The three-dimensional aspects of the STRAW 2Dt model are illustrated in 

Fig. 9. As can be seen from the figure, the area of energy release is expected 

LOADED \ 
'REGION PLANE MESH (ALL STATE 

VARIABLES CONSTANT 

Fig. 9. Three-dimensional Aspect of the 
STRAW 2D+ Mode 2. 
(ANL Neg. No. 900-4768.) 

to be uniform in the z direction, which coincides with the axis of the sub- 

assembly. The behavior in this energy-release zone is represented by a plane 

mesh of two-dimensional elements. The axial flow is modeled by a set of one- 

dimensional elements which are superimposed on the two-dimensional plane mesh, 

with the axis of the one-dimensional flow perpendicular to the plane mesh. 

The flow is assumed to by symmetric about the midplane of the energy-release 

zone, so that in addition to the upward flow model ill.ustrated in Fig. 9, a 

downward flow of equal velocity is assumed in a lower column. As many plane 

elements as desired can be superimposed by a single element of the axial flow 

model; the axial flow is then driven by a area-weighted average of the pres- 

sure in the plane elements which are superimposed by the axial flow elements. 

The axial flow elements are therefore called t'superelements.tt Only vertical 

flow (in the z direction) is modeled in the superelements; any flow in the x 

and y directions above and below the energy-release zone is neglected. 

Although the initial pressure waves propagate through both the solid fuel 

pins and the sodium, only the motion of the coolant is considered in super- 

elements, for it is assumed that the fuel pins are not completely ruptured, 



but maintain axial coherence, so that very large motions will not be exper- 

ienced by the fuel pins. Calculations have shown that the coolant exhibits 

rather large displacements. For example, when the energy source generates a 

pressure of about 7 MPa for about 4 ms, the coolant moves a distance of the 

order of 1 em. Thus it is evident that most of the energy imparted to the 

axial column is employed in overcoming the inertial and viscous resistance of 

the fluid; probably very little energy is expended in the acoustic wave that 

moves through the fuel pins. Therefore, in the axial model, attention is 

restricted to the fluid; the pins are treated as an inert, incompressible 

constituent. 

The hexcan walls are treated as strictly two-dimensional in the x-y 

plane, with the entire strength derived from flexural and membrane action in 

this plane. Hence, the walls of the hexcan are essentially beams i.n a state 

of plane strain. The membrane action and flexure in z direction are neglected 

in the accident hexcan, for energy sources are assumed to extend vertically 

from 20 to 30 cm, whereas the distance across flats is only 6.9 cm, so that 

the effects of flexure and membrane action in z direction should be consider- 

ably less than that in the x-y plane. Furthermore, since the energy source is 

considered to be centered within the energy-release hexcan, no overall bending 

action of this hexcan is expected. On the other hand, the hexcan adjacent to 

the accident hexcan should exhibit substantial overall flexure; therefore, 

beam elements in the x-y plane are not sufficient to capture the salient 

characteristics of its response, and thus beam elements are placed in the z- 

direction to capture the flexure resistance of the adjacent hexcan. Whereas 

the x-y-plane constitutive characterization of the beam elements can be based 

directly on uniaxial strain tests and standard plasticity theory, these trans- 

verse beams include parameters that depend on the response and can only be 

determined from three-dimensional experiments or analysis. 

The channels were modeled by quasi-Eulerian elements. Sliding interfaces 

are included between the beam elements and quasi-Eulerian fluid elements in 

the channels. 

In contrast to Ref. 4, a continuum approach has been chosen for charac- 

terizing the internals. The following are the reasons for this choice: (1) 

since there are 217 fuel pins per subassembly, a discrete model of the inter- 

n a l ~  with a one-to-one correspondence between fuel pins and nodes would 



require of the order of 600 nodes (one for each fuel pin, about 3 for each pf 

the flow channels). Experience with COBRA has shown that models of such 

refinement entail tremendous computational costs for the fluid flow alone, and 

while coarser models have proved effective in treating the fluid flow, it is 

doubtful that a model based on actual pin interaction would prove accurate 

unless the pins are treated in their actual size; (2) while it is possible to 

determine from experiments and analysis the overall behavior of fuel-pin 

matrices, the determination of individual pin interactions is more difficult 

both experimentally and analytically. 

Once a continuum approach is,chosen, it is necessary to separate the 

behavior of the fluid from that of the fuel-bundle lattice. For this purpose, 

the internals are represented by two layers of elements as shown in Fig. 10. 

QUASI-EULERIAN MESH FOR FLUID 

LAGRANGIAN MESH FOR FUEL BUNDLE LATTICE 

Fig. 10. Mesh Represenfxztion of Subassembly Internals .  
(ANL Neg. No. 900-77-446.1 

The fuel-bundle lattice is treated by a Lagrangian mesh. The constitutive 

properties of the lattice are based entirely on their response in the absence 

of the fluid. The constitutive behavior of the fluid depends on the motion 

of the fluid relative to the fuel bundles as well as on the dilation of the 

mesh and fuel. hiindles. Therefore, i t  is convenient to associate a fluid 

element with a single-pin matrix element, so the quasi-Eulerian description 

has been chosen for the fluid mesh. 

In earlier studies, 31 the fuel pin (that is, both the cladding and the 

fuel) was characterized as incompressible compared to the coolant, and the 



shear strength of the fuel-pin matrix was ignored. At that time, an experi- 

mental program to determine the constitutive characteristics.of the fuel 

bundles was contemplated. However, this experimental program is still not 

started, so constitutive equations for the fuel bundles were developed.ana- 

lytically by energy considerations. In.addition,.by noting the strains in the 

fuel bundle associated with certain homogenized states of stress, it is 

possible to relate the energy deposition in the internals to the likelihood of 

failure of the fuel bundles. The material properties of the fuel-pin matrix 

are represented by a Coulomb-Mohr elastic-plastic model, so that the fric- 

tional effects of relative pin sliding are included. The analytical model of 

the fuel-bundle matrix considers two mechanisms: (1) the decrease in distance 

between fuel pins which results from the twisting of the wire wraps and 

flexure of the pins, and (2) the decrease in the effective dimension of the 

fuel pin arising from deformation at the point of wrapper-pin contact. 



IV. RESULTS 

T h e , f i r s t  s e t  of , r e s u l t s  a r e  :included t o  ind ica t -e  t h e  performance of . t h e  

quasi-Eul,erian,elements i n  a,one-dimensipna'l wave-propagation problem. The 

mesh .is shown i n - F i g .  .11. Although two-dimensional elements . a r e .u sed ,  . the 

problem i s  one-dimensional because no mofion is permit ted i n  t h e  y-d i rec t ion .  

The r ight-hand.boundary nodes of t h e  mesh, .nodes 41 and 82, a r e  f i xed .  - - 

F i g .  11. One-dimensional Wave-propag,ation Froblem. 
(ANL Neg. No. 900-78-Id.) 

Three types  of .d .escr ipt ion were considered : 

1. a Lagrangian d e s c r i p t i o n ,  i n  ,which mesh nodes move v i t h  t h e  

m a t c r i a l  ; 

2 .  ,an Eu le r i an  d e s c r i p t i o n ,  i n  which a l l  nodes a r e  f i x e d  i n  space,  

except  t h e  f i r s t  p a i r  of nodes, nodes 1 and 42,  which move wi th  t h e  - - 
m a t e r i a l ;  

3. a quasi-Euler ian mesh, i n  which t h e  f i r s t  two nodes, 1 and 42 ,  a r e  - - 
Lagrangian, and t h e  g r i d  v e l o c i t i e s  of t h e  remaining nodes a r e  

obta ined  by l i n e a r l y  i n t e r p o l a t i n g  between t h e  l e f t -  and right-hand- 

s i d e  nodes: 

Other d a t a  f o r  t h i s  s o l u t i o n  a r e  

11 
c(wavespeed) = 1 x l o5  cm/s; A t  = 2 p s ;  ; = 10 u s .  

The problems were run  s i g n i f i c a n t l y  below t h e  s t a b i l i t y  l i m i t  because t h e  goa l  

was t o  o b t a i n  a converged s o l u t i o n  f o r  t h e  mesh. 



The results for the pressure at x = 0.5 cm and x = 10.5 cm are shown for 

the three cases in Figs. 12 and 13. As can be seen, the predictions with the 

three types of.mesh description are almost identical.and compare well with the 

analytic solution. However, the problem is not a severe test, for the.maximum 

velocit'ies are only 1000 cm/s, so that the momentum-transport terms play a 

small role. 

EULERIAN 
---- LAGRANGIAN 

QUASI - EULERIAN 

0 0.05 0.10 0.15 0.20 0.25 

TIME, ms 

Fig. 12. Pressure a t  x = 0.5 ern 
for Lagrangian, Eu Zerian, 
and Quasi-Eulerian Des- 
crip t i ons  . 
(ANL Neg . No. 900- 78-1 0. ) 

F i g .  13. Pressure a t  x = 10.5 em 
for Lagrangian, E'u Zerian, 
and Quasi-EuZerian Des- 
cm:pti.ons. 
(ANL Neg. No. 900-78-13. ) 

It is of interest to note that the extrapolation of velocities described 

previously has a significant effect on the results. This is evident in Figs. 

14 and 15, which show the results with and without the extrapolation. The 

extrapolation can be seen to provide an artificial viscosity which reduces the 

amplitude of the oscillations. 

In order to illustrate the performance of the quasi-Eulerian elements in 

channels, we have considered two different models for which experimental 
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F i g .  14 .  Pressure a t  x =  0.5  cm f o r  F i g .  15 .  P r e s s u r e  a t x =  10.5 cm f o r  
Quasi-EuZerian D e s c r i p t i o n  Quasi-EuZerian D e s c r i p t i o n  
w i t h  and w i t h o u t  Ve Z o c i t y  w i t h  and w i t h o u t  Ve Z o c i t y  
Ex t rapo  Zation. E x t r a p o Z a t i o n  ? 

(ANL Neg. No. 900-78-12.) (ANL Neg. No. 900-78-19. ) 
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F i g .  16.  S i m p l i f i e d  Mode2 o f  an SRI Exper iment .  
(ANL 'Neg. No. 900-78-6. ) 
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results are available. The first model is a simplified model, shown in Fig. 

16, which represents only the accident (pressurized) .subassembly, the channel 

of fluid, and the adjacent subassembly. In addition, a reservoir is included 

to receive the flow from the channels as the subassembly walls are squeezed 

together. The fluid elements in the channel are quasi-Eulerian, while those 
. i 

in the reservoir are Lagrangian. 

This model represents an SRI experiment8 which is depicted in Fig. 17. 

In this experiment, a slow charge was detonated in the center subassembly, 

Fig. 7 SRI Experimental Mode2 Cross 
Sec-kion. of SubczssenlbZy Cluster. 
(ANL Neg. No. 900-78-7.) 

which resulted in the pressure loading shown in Fig. 18. In the model this 

pressure was applied uniformly on the inside walls of the center hexcan. 

The wall material is annealed Type 316 stainless steel. It.is modeled by 
t 

an elastic-plastic law in a state of uniaxial plane strain. Isotropic har- 

dening is included, but no strainTrate effects are considered. The initial 

hardening curve was obtained as part of the experimental program and is given 

in Table 4. Other material data for the steel are 
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F i g .  18 .  Pressure on Accident SubassembZy. 
(ANL Areg. No. 900-78-28.') ' 

Table IV. Strain-Stress Values of Materials 

6061-T6 Aluminum 

Strain (mlm) 

0.00348 

0.00465 

0.009 

o.l.00 

Annealed 316 Stainless Steel 

Strain (mlm) 

0.000915 

0.002 

0.039 

0.070 

0.170 

0.730 

2.320 

Stress (MPa) 

194.2 

225.1 

362.1 

446.2 

627.5 

1237.8 

1490.5 

Stress (MPa) 

283.2 

326.9 

407.4 

697.3 



Young's modulus = 2.122 x l o 5  MPa; 

~ o i s s o n ' s  r a t i o  = 0.3; 

d e n s i t y  = 7850 kg/m3. 

The f l u i d  between t h e  hexcans i n  t h e  experiment is  a l i gh twe igh t  t r ans -  

former o i l .  It i s  modeled as a compressible ,  i n v i s c i d  f l u i d  wi th  a l i n e a r  

r e l a t i o n s h i p  between p r e s s u r e  and volume change. A p re s su re  cu to f f  was inc lu -  

ded s o  t h a t  no t e n s i l e  p re s su re s  a r e  permi t ted .  The numerical va lues  used f o r  

t h e  m a t e r i a l  d a t a  a r e  

Bulk modulus = 1.67 x l o3  MPa; 

d e n s i t y  = 850 kg/m3. 

The t ime s t e p s  g iven  by t h e  a x i a l  frequency and bending frequency of t h e  

beam, Eqs. (49-51), and f o r  t h e  f l u i d  element a r e  

A t ~ i a l  = 0.8 p s ;  

A t ~ e n d  
= 0.6 p s ;  

s o  t h a t  t h e  s t r u c t u r a l  frequency i s  t h e  l i m i t i n g  f a c t o r  on t h e  t ime s t e p .  A 

t ime s t e p  of 0.2 u s  w a s  used; t h e  t i m e  s t e p  was reduced below t h e  l i n e a r  

s t a b i l i t y  t o  i n s u r e  s t a b i l i t y  i n  t h e  presence  of geometric n o n l i n e a r i t i e s ,  h ~ l t  

we have n o t  examined how much of t h i s  r educ t ion  is  necessary.  

The a n a l y t i c a l  r e s u l t s  f o r  t h e  p re s su re  i n  t h e  channel a t  p o i n t s  A and B 

i n  F ig .  17  a r e  compared t o  t h e  experimental  r e s u l t s  i n  Figs .  1.9 an.d 20, . 

r e s p e c t i v e l y .  A s  can be  seen ,  t h e  average p re s su re  f o r  both t h e  experiment 

and computation i s  about  22% of t h e  p re s su re  i n  t h e  c e n t e r  hexcan. Further-  

more, f o r  p o i n t  A,  t h e  computed p r e s s u r e s  e x h i b i t  a drop a t  0.6 m s ,  which 

corresponds t o  a p r e s s u r e  drop a t  0.5 m s  i n  t h e  experiment.  

Large motion of t h e  channel  was observed from t h e  numerical r e s u l t s ,  t hus  

demonst ra t ing  t h e  need f o r  quasi-Euler ian elements.  The amount of f l u i d  

expe l l ed  from t h e  channel  can  be gauged by the  motion of t h e  Lagrangian 

elements  i n  t h e  r e s e r v o i r .  

A more complete f i n i t e - e l emen t  model f o r  t hese  experiments is  shown i n  

Fig.  21. I n  t h i s  model, t h e  complete ad j acen t  hexcan i s  included.  The same 
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Fig .  19.  P r e s s u r e  H i s t o r y  i n  t h e  
Channel a t  P o i n t  A o f  
Simp Z i  f i e d  Mode 2. 
(ANL Nsg. NO. 900-78-11.) 

EXPERIMENTAL 7"" 

0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

TIME, rns 

Fig .  20. P r e s s u r e  H i s t o q  i n  t h e  
ChanneZ a t  P o i n t  B o f  
s i m p  Z i  f i e d  Mode 2. 
(ANL Neg. No. 900-78-8.) 
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F ig .  21. Complete Model o f  an S R I  Exper iment .  
(ANL Neg. No. 900-78-4.) 



m a t e r i a l  c h a r a c t e r i z a t i o n s  a s  i n  t h e  previous model w e r e  used except  f o r  t h e  

o u t s i d e  c y l i n d e r ,  which was 6061-T6 aluminum. Its i n i t i a l  hardening curve i s  

a l s o  g iven  i n  Table  4.  The other p e r t i n e n t  d a t a  f o r  aluminum a r e  

Young's modulus = 0.814 x 10' MPa; 

P o i s s o n ' s  r a t i o  = 0.3 ;  

d e n s i t y  = 2540 kg/m3. 

The p lugs  used i n  t h e  experiment w e r e  aluminum prisms and modeled by us ing  

Lagrangian continuum elements .  The same p re s su re  load ing  a s  i n  t h e  s i m p l i f i e d  

model was used. 

T h e  pressuLes .aL p o l n t s  A, B ,  and C i n  F ig ,  L j  i n  the channel are cnrnpar~ri  

t o  t h e  exper imenta l  r eco rds  i n  F igs .  22 t o  24. Again, t h e  mean va lue  of the 
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F i g .  22. Pressure History i n  the F i g .  23. Pressure History i n  the 
Channel a t  Point A of Channel a t  Point R of 
Complete Mode 2 .  Complete Model. 
(ANL Neg. No. 900-78-3. ) (AN[, Nsg. No. 900-78-2. ) 
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Fig. 24.  Pressure History i n  the Channel a t  Point C of Complete Model. 
(ANL Ney. No. 900-78-9. ) 



pressure compares well with experimental values. The computations also exhi- 

bit the following features of the experimental records: 

1. Except for the oscillations, the peak pressure at A is about 3.0 MPa 

at 0.3 ms and decays to 1.0 MPa at 0.5 ms, although the experimental record 

exhibits an oscillation at 0.6 ms which is not seen until 0.7 ms in the compu- 

tation. 

2. The records at B and C reach a peak of about 2 MPa at 0.3 ms and 

decay slowly from the time. Deformed confiturations of this model are shown 

in Fig. 25. 

The complete model, shown in Fig. 8, represents the accident subassembly 

and the next two rows of adjacent subassemblies. In addition, four layers of 

fluid elements are added beyond the far walls of the second row of subassem- 

blies. The outside nodes are free, so that because of the tension cutoff, any 

compressive waves which reach the outside boundaries of the model will spa11 

the outside elements and cause little spurious reflection. The channels and ,.. 

the coolant within the subassemblies are modeled by quasi-Eulerian elements. 

Axial flow perpendicular to the plane of the model was also included. 

This model was loaded with a very energetic source with pressure-time 

history as follows: 

Time, ms Pressure, MPa 

Figure 26 shows the deformed configuration of the mesh. The rapid 

attenuation o f  deformation away from the pressurized subassembly is quite 

evident from the figures. It is even more apparent in the maximum strains 

predicted in the hexcan flats. In the accident hexcan, the maximum strain at 

the outside surface of the center of the flat is 14.8%. In the adjacent 

subassembly, the maximum strains opposite this point are 5.0%, while the 

strains in the midflat of the far walls are 1.5%. In the second row of sub- 

assemblies, the maximum strain is 3.8%. Thus, the heterogeneous geometry and 

structure of the subassemblies leads to a considerably greater reduction in 

damage than in homogeneous, cylindrical geometries. 





TIME = 0.30 ms 

F i g .  26. Deformed Configurations of 2D+ Subassembly Cluster Model. 
(ANL Neg. No. 900-78-5.) . 
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