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THEORY AND APPLICATION OF A QUASI-EULERIAN FLUID ELEMENT FOR THE STRAW CODE
by
J. M. Kennedy and T. B. Belytschko

ABSTRACT

Two-dimensional finite—element models for the treatment of
the nonlinear, transient response of fluids and structures are
described. The fluid description is quasi-Eulerian, so that the
mesh can move independently of the material, and it includes a
new finite-element upwinding scheme. The structural description
is based on a corotational formulation in which the coordinate
system is embedded in the elements, which is applicable to arbi-
trarily large rotations. The interface between the fluid and
structure permits relative sliding, but because of the descrip-
tion of the quasi-Eulerian fluid, the nodes of the fluid and '

structure can be allowed to remain contiguous.

Modeling procedurés for treating the varivus aspects of sub-
assemblies, such as the narrow fluid channels, the fuel bundles
which are immersed in the coolant, and the axial flow are developed.
Calculations are made for a symmetric 7-subassembly cluster and
compared to experimental results. In addition, the application to

a 19-subassembly cluster is described.

I. INTRODUCTION

The subassemblies of a reactor core are an important component in the
safety system of a Liquid Metal Fast Breeder Reactor (LMFBR). Among the
issues which are of concern in the safety analysis at the subassembly level
are the following: (1) the structural integrity of the subassembly within
which thc hypothetical accident occurs; (2) the structural integrity of adjé-
cent subassemblies, particularly the maintenance of sufficient cross-sectional
areas for the flow of the coolant; and (3) damage to the fuel pins in the

adjacent subassembly, which could lead to further propagation of the accident.

The analysis of subassemblies poses several challenging problems in com-

puter modeling. The subassemblies are separated by narrow channels of fluid,



and since the analysis of the ultimate load capacities of subassemblies in-
volves large motions of these channels, neither the standard Eulerian nor
Lagrangian describtions of the fluid are appropriate. Similarly, the modeling
of the internals of the subassemblies, which consist of a matrix of fuel pins
immersed in the coolant, has entailed the development of special techniques.
Furthermore, the complex shapes of the subassemblies call for very versatile
modeling techniques. In response to these needs, general finite-element
methods for treating transient fluid-structure systems have been developed;1
this was the first application of finite-element methods to problems involving
nonlinear, large-displacement fluid-structure interactions. The methods have
since evolved considerably and, because of their generality, are applicable to
a wide variety of problems in reactor safety analysis and other fields. 1In
particular, the recently developed quasi-Eulerian elements for treating fluido
in channels and other fluid-structure interfaces undergoing large displace-

ments have considerable potential for application.

This paper describes these methods in their present stage of development.
Particular emphasis has been placed on giving a comprehensive account of the
finite-element treatment of the fluid, structure, and their interfaces. The
treatment used for the quasi-Eulerian elements is included here and, as part
of this, a new method for upwinding in finite-element methods is described.

In addition, we have described the modeling procedures used in subassemblies,

which will hopefully serve as a guide to modeling other systems.

Studies of the capacity of subassemblies to withstand energy releases
have been underway in Great Britain, West Germany and the United States since
the late 1960s. The British efforts2’3 have heen primarily experimental;
full-size models of 19~ and 6l1-subassembly clusters have been subjected to
high explosive charges detonated in a central subassembly. Charges which

yielded peak pressures of 1000 MPa with rise times of 5 ms and durétions up to

50 ms were used.

The work in West Germany has been reported in Refs. 4 and 5. Analytical
and experimental efforts have dealt primarily with the role of the fuel bundle
in subassembly response and the bending behavior of the adjacent hexcan. The
fuel bundle has been represented by a lattice of truss elements with resistance
only in compression. Comparisons with experiments show good agreement. Also,
models of channel flow have been developed which account for the coolant,

using an approach similar to that in COBRA.®



The studies in the United States also comprise analytical and experi-
mental efforts. The experimental efforts have focused on the response of the:
isolated hexcan, a hexcan surrounded by coolant, and small subassembly clus-
ters.’?8  Ash and Marciniak®’10 compared their analytical results with the
experimental results at SRI and obtained good agreement. In addition, their
work pointed out the sensitivity of the hexcan response to the degree of

corner work-hardening.

The major analytical tools which have been developed for structural
safety studies of subassemblies at Argonne National Laboratory are the com-
puter programs STRAW,1>11 SADCAT,IZ’13 and REXCAT.lu STRAW, which is the
topic of this paper, is a two-dimensional, nonlinear, finite-element program
with fluid elements and structural elements which are used to represent sub-
assembly walls, coolant channels, and internals. The program is used to model
cross sections of the subassembly geometry normal to the axis of the sub-
assemblies and fuel pins. The three-dimensional effects, such as the axial
flow of the coolant and the axial bending resistance of the adjacent sub-
assemblies, are treated by coupling one-dimensional models of the axial flow
and the flexural resistance to the two-dimensional models. This approach
entails assumptions about the phenomenology of the accident, but as a conse-
quence yields significant simplifications and economy of computation. There-
fore, configurations involving both the accident hexcan and one to three
layers of adjacent hexcans can be treated by STRAW. SADCAT, on the other
hand, is a three-dimensional plate-shell program which can model the actual
geometry of the subassemblies without any geometrical simplifications. In
REXCAT, SADCAT is céupled with the two-dimensional Lagrangian finite-difference
program REXCO-HT.1% Thus, the internals of the hexcan, including both the
energy source and the hydrodynamics, are modeled as axisymmetric, whereas the

hexcan walls are treated as three-dimensional.

The three-dimensional analysis methods are still too expensive for use in
elaborate parameter studies or models which include hexcans adjacent to the
accident hexcan. Thus, in the field of subassembly safety analysis, as in
many other computer modeling fields, while three-dimensional analyses are
feasible and not difficult in principle, computational cost has severely

limited their use and development.
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In this paper, we will confine ourselves to the two-dimensional methods
and models, which are implemented in the STRAW program. The next section
presents the finite-element method developed for this program. The modeling
procedure for the subassemblies is déscribed in Sec. III. Section IV gives
some sample results and illustrates some of the fluid-structure effects found

in the problem of subassembly response.



II. FINITE-ELEMENT METHOD

The computational methods for the subassemblies and their internals must
be capable of treating structures of complex shape and their interaction with
the fluid in which they are embedded. Consequently, these methods must be
able to treat almost arbitrary combinations of fluid and structural geometries.
Furthermore, the structures must be treated by bending theory if the total
number of degress of freedom is to be kept to a reasonable limit. For example,
if flexural theory is used, the deformation at each point of the structural
cross section is defined by a single node with three degrees of freedom. By
contrast, a continuum description of the structures would entail about 5 nodes
at each cross section, two degrees of freedom at each node, and thus a total
of 10 degrees of freedom, at each section. Thus, the.use of a flexural theory

for the structural elements is imperative for an economic solution.

The finite-element method is ideally suited for mixing fluid elements
with structural elements. In the finite-element method, in both the structural

and fluid portions, the discrete equations of the mesh are written in the form

o int ext _
Meplip ¥ Fixg ~ Fix = 0 1
where

MKL = global mass matrix (composed of lumped mass entries);

U, = displacements of the nodes; superscript dots denote time deriva-
tives, so that ﬁiL are the accelerations;

F;Et = the nodal forces resulting from the response of the structure and
fluid;

Fizt = the nodal forces corresponding to externally applied loads.

The upper-case subscripts refer to nodes, the lower-case subscripts to
degrees of freedom at a node. Each fluid node in these two-dimensional models
has two degrees of frcedom: translations in the x and y directions, whereas
each structural node has three degrees of freedom: translations in the x and
y directions and rotation of the cross section. We will use numerical sub-
scripts and component subscripts interchangeably; thus uy = u and u, = u .

y

In addition, we will sometimes denote coordinates by x,; at other times we

i;
will simpiy use x and y, su that (xl and x) and (x2 and y) are interchangeable.

11
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The most important ingredient in the finite-element procedure is the cal-
culation of the internal nodal forces which arise from the resistance of the

structure and fluid. These are given by (see, for example, Belytschko and

Kennedyls)
int _ (e) _(e)int
Fixk = Lik fir ’ (2

e

where superscript e refers to the element number, L is the connectivity

. IK
matrix, and f;?t are the element nodal forces. The element nodal forces are

defined by

(e)int _ = . (e)
uyrfis =Byt (3)
(e)
iT° il
are any momentum-transport terms which may occur; for Lagrangian elements the

for arbitrary u Here E is the internal energy of the element and t
transport terms vanish. Equation (3) is the means through which the internal
nodal forces for an element may be derived for a fluid or structural element

once the velocity field in the element is assumed. Derivations for several of

the key elements used in these models are given below. FEquation (2) represents

the summation of the element nodal forces fi;)lnt into the total internal
nodal forces. Although Eq. (2) represents this process as a matrix multipli-

. . e) . . .
cation, in fact LéK) is a Boolean matrix, and in the computer program the
total internal forces are obtained by simply summing the element nodal internal

forces according to the element global node numbers.

The three major elements in the STRAW program are the (1) quasi-Eulerian
fluid element, (2) the Lagrangian fluid element, and (3) the beam element.
The derivation of the nodal-force equations and the computatianal procedures

for each of these elements is given in the following.

A. Quasi-Eulerian Fluid Element

The quasi-Eulerian fluid element is an element for which the motion of
the nodes may differ from the motion of the material, in this case, the fluid.
We will designate the material velocity by GM, the mesh (or grid) velocity by

GG. When GM = ﬁG, the element is Lagrangian and all nodes move with the

. . +G .
material velocity. When u = 0, the element nodes are fixed in space and the
elements are Eulerian. The element is called quasi-Eulerian because whenever

M G ' .
u # u the transport terms appear in the momentum equation, so that the



treatment is very similar to that in Eulerian descriptions. We will consider
only inviscid, compressible flow. Both quadrilateral and triangular elements

are included.

‘ Quasi-Eulerian treatments have been previously developed by Noh,17
Trulio,l® and Hirt gE_gl,,lg in finite-difference formats. Often these
methods are called Arbitrary Lagrangian Eulerian (ALE). Donea et al.,?? have

reported a finite-element quasi-Eulerian method.

We will now develop the internal nodal forces for this element; in the.
following we will drop the superscripts on fiI and use the convention that
lower—-case nodal forces pertain to an element. In this development, we will
concentrate on the quadrilateral element and only outline the triangular
element. This corresponds to the relative importance of the elements; the
quadrilateral is used in most of the meshes, while the triangle is used only

for the edges or irregular shapes.

The quadrilateral element is shown in Fig. 1. Since we consider only

Fig. 1. Quadrilateral Fluid Element.
(ANL Neg. No. 900-78-15.)

adiabatic process, the rate of change of internal energy of the element is

given by
' Jdu :
. i
E = - fp—a;—dv, (4)
v i
where p is the pressure and V the volume of the element. The velocity field

in the element is approximated by the standard quadrilateral shape functions

(see Zienkiewicz?! for details):

13



ui(xj) = u, ;9. (E,m), (5)

where a repeated subscript implies a summation over the appropriate range; in
this case, since the repeated subscript I refers to the nodes of the element,
the range is the number of nodes for this element, which is 4. This velocity

field applies both to the material and grid velocities.

The shape functions for the quadrilateral are

¢, = (1-8)(@A-n); ¢, = &n;
(6)
¢, = &(1-n); ¢, = (1-&)m,
where £ and n are defined by the isoparametric transformation
x, = x4 (E,m), (7
so that derivatives are given by (see Ref. 21)
1) =;<§.za_<_>_azg_<_>_>.
x j\9on 9¢& 9E 9n ’
zuh}(a_xz(_l_a;m) ®
ay j \9& on on 9¢ .
where j is the Jacobian
For an inviscid fluid, the pressure is given by the equation of state
p = p(p,T), : (10)

where p is the density and T the temperature. We will assume that p, and
hence p, are constant within the element. This is not consistent with the

rate of dilation (volumetric strain rate) associated with the velocity field

in this element, because an evaluation of the volumetric strain rate by sub-
stituting the velocity field, Eqs. (6), into Eq. (8), shows that the volumetric
strain rate is not constant in the element. However, it is not fully linear,
and taking into account this variation would entail a numerical quadrature
with a minimum of four points rather than the simple formulas that will be
given here. This would raise computational effort per element by a factor of

3 to 4; it is our opinion that using more elements is more cost-effective than

taking into account the small variations in pressure by a 4-point quadrature.



To obtain the nodal forces, we will need the identity
J—==17, ‘ (11)

where J is the Jacobian of the transformation between the current volume V and

the original volume Vo' Combining Eq. (11) with Eq. (4), we obtain
E=-pf Tiav--pf Jav - -pl. (12)
J o
A V0

Simple geometry can be used to show that the volume rate is

V=B, u., (13)
where
-1 .
S IRATE
B = _l-. . : (14)
21 - 7 *y°

Yo T V3 TV g T L T X

and it is assumed that J is one node counterclockwise from I; K two nodes

counterclockwise from I; etc.

Combining Eqs. (12) and (13) with Eq. (3) in the absence of transport, we
obtain

uyrfyr = PByYir- (15)
Since the above, which represents consistency in energy between the nodal

variables and the element variable, must hold for arbitrary &i it follows

I,
that

£, -PB, ;- (16)

To evaluate the discrete transport terms tiI’ we will use a Galerkin
approach. It has been documented?2°23 that straight Galerkin approaches to
the transport terms when used with piecewise linear velocity fields yield os-
cillatory solutions. This has also heen noted in the finite-difference litera-

oped. In Refs. 22 and 23, finite-element versions of upwind transport

15
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discretizations were obtained by using higher-order weight functions skewed in
the upwind direction. This type of "upwinding' makes numerical integration

necessary. In the STRAW program, a simpler upwinding scheme has been incor-

porated, and it will be described here.

The Galerkin approximation to the transport term gives

u
* i «D
t., = J}¢ u.dv;
I \V I axj j

. = ou, - 17
J J J

where the asterisk designates that this transport term will be modified to

account for upwinding before use in Eq. (16). This is accomplished hy

-
tir = 51 T vg)s (18)

3¢
/—I'- uDdV (19)

Y is a scale factor chosen:so that IYII <1, and AD is the donor-cell facrtnr,
sn that

where

AD = 1 = full upwinding;

AD = 0 = no upwinding.

In order to avoid numerical integration for the evaluation of the trans-
port terms, they were evalnared hy subdividing the quadrilateral iutu Liianpgles

in two ways, as shown in Fig. 2. For each triangle, the shape functions ¢I

are the triangular coordinates &T, so that

Fig. 2. Subdivision of Quadrilateral into Triangles
for Evaluation of Transport Terms.
(ANL Neg. No. 900-78-16.)
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% M D J
- _J 4a. 20
i1 T YigYiK /"CICK %, dA (20)
A

Evaluation of the integral yields

_L M |
tir = 27 Yig%kYi0 Tk * 4k (21)

where

217 S Yk T Pag T L T XK
for a triangle with nodes J, K, and L in counterclockwise order; the matrix
I is given by

IK

g~ 1 for all I, K, ‘(22)

and SIK is the usqal Kronecker delta (unit matrix)
0if I # K
s =

The evaluation of Eq. (19) yields

or

_AD D I
Yy < Y usg axi deA
A
_ AD ‘D _, *D _ D
= By M (“il tu, t u13>' ' (24)

The transport terms for the four triangular elements are assembled in the
standard manner according to the node numbers and then halved to account for

the two layers of triangular elements.

In updating the density of the element, the integral form of the- conser-

vation of mass is used, which gives

d _ D ..
T ﬁdv = ﬁuinids, (25)
v S

where n, is a unit normal to the surface S. The assumption of constant den-
sity in the element and evaluation of the right-hand integral with the shape

functions, Egqs. (6), yield

1 if I = K. (23)

17
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. 4

dp _p_ D *D *D *D .

dt  2A E [yJI (“xl + uxJ) * Xy (“yI + uyJ>] 3 (26)
I=1 ‘
J=I+1

o _d G

dp . dp _ oG

at - ar - PBir%ir @7

We have here used an asterisk on the derivative to indicate that the derivative
is neither a material nor spatial derivative; as the volume V moves through
space, the velocity of its surface points may differ from the material velo-
cities of these points, so d*p/dt represents the rate of change of p along

this arbitrary path in space-time.

The procedure used in the computer program is given in Table I. The
procedure is typical of that used for elements in an explicit time-integration
finite-element program. The only difference is that the element must know
which elements are adjacent to it to compute Eqs. (26) and (27); for these
purposes, an adjacency table is constructed which lists the element that
border each of the sides; if no element borders a given side, a zero is entered

for that side.

Table I. Computational Procedure in Quasi~Eulerian Element

1. Modify element nodal velocities (both material and grid) by forward
extrapolation of Eq. (54).

2. Compute new density of element by Eq. (27) and pnew = p°1d + At %%.
*
3. Modify masses of nodes connected to element according to %EQ.

4. Use equation of state p(p,T) to find new pressure.
5. Compute linear artificial viscosity, Eq. (55).

6. Compute nodal forces due to pressure (from equation of state and arti-
ficial viscosity by Eq. (16).

7. Compute transport terms tig by Eqs. (17) and (19), and add to nodal
forces fiI'

8. Compute nodal forces due to hourglass viscosities using Eqs. (61-63),
and add to nodal forces fiI'

9. Store current pressure, density, and other element variables.

nt

10. Add internal nodal forces fi I°

I into total internal nodal force array Fi
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The treatment of the triangular element is quite similar and has already
been alluded to in the development of the transport terms. For the triangle

the shape functions are the triangular coordinates, so that
= 28
¢ (x,y) = . . (28)

These shape functions are linear in x and y, and the rate of volumetric strain
is constant within the element; thus, unlike for the quadrilateral, a constant
density and pressure is consistent with the kinematics of the element. Hence,
Eq. (12) follows exactly. Through some elementary geometry, the volume rate
can be expressed in the same form as Eq. (13), with

B =

(Y

Y 5k
(29)

By1 =

N

*xJ

Equations (16), (21), and (24) then give all relations for the triangle.

B. Lagrangian Fluid Element

The Lagrangian fluid element is a special case of the quasi-Eulerian

. . M -G . ‘
fluid element with u = u . The transport terms thus vanish.

The STRAW program includes quadrilateral, triangular, and pentagonal
elements, but quadrilateral elements are recommended for most meshing. The

computational procedure for Lagrangian elements is outlined in Table II.

Table II. Computational Procedure for Lagrangian Element

. new old d
ity P TPt A s

1. Compute new density by d at”

cep
dt

2. Use equation of state p(p,T) to find new pressure.

3. Compute linear artificial viscosity, Eq. (55).
4. Compute nodal forces by Eq. (16).

5. Compute nodal forces, due to antihourglass, by Eq. (61-63) and add to
element nodal forces.

6. Store current pressure, density, and other element variables.

nt

7. Add internal nodal forces fiI into total internal nodal force array FiI .
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C. Beam Element

~ The beam element is illustrated in Fig. 3. Each beam element has two
actual nodes, but unlike the fluid elements, it has three degrees of freedom

per node, so that the nodal displacements at any node are

i

uxI

uiI = uyI

°

, ' (30)

where 0_ is the rotation in radians. The corresponding nodal forces are

I
fo
fi153 51 0 (31)
oy

where mI is a moment.

/ INITIAL  SHAPE

NODAL DISPLACEMENTS AND FORCES

Fig. 3. Beam-element Geometry and Nomenclature.
(ANL Neg. No. 900-78-1, Rev. 1.)



An important aspect of this beam element is the use of a corotational
formulation which permits the treatment of arbitrarily large rotations of the
element. The essential feature of a corotational formulation is that a coor-

A

dinate system (x,y) is embedded in each element so that it rotates with the
element. In this beam element, the corotational system is embedded so that x
always connects the two nodes of the beam. Corotational formulations have

been extensively described by Belytschko and Hsieh.25°26

In these papers the
corotational formulations were limited to elements which were initially
straight and wherein the rotation of any part of the element relative to the
corotational coordinate was small. Since then, Belytschko and Glaum?’ have
developed formulations which account for initial curvature and moderate rela-
tive rotations, and these have been incorporated here. However, all of these
formulations are limited to moderately small strains, of the order of about

10%.

These formulations are applicable to arbitrary nonlinear materials.
Although most of our work has been limited to elastic-plastic materials, as
long as an increment stress can be programmed as an increment of strain and

previous stress and strain, it is easily incorporated in the program.

These elements are based on the standard Euler-Bernoulli assumptions that
the deformation is characterized by the deformation of the midline of the
beam, and that all straight lines normal to the midline remain straight and

normal. Shear corrections terms are not included.

An important aspect of the formulation used here and in Refs. 25-27 is
that, on the element level, only those degrees of freedom associated with
deformation of the element are considered. This concept was introduced by
Argyris 95_31,28 It saves considerable computational effort, and, in addition,
in transient problems it enhances the stability of the computational procedure,

for it insures the conservation of energy on an element level.?>

The deformation displacements and the corresponding deformation nodal

forces for this element are

~def
u = (e, wys ‘*’2);

(32)
fdef -

(fXZ’ ml’ mz) ’

where
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e = elongation of the element;
- _ oris.
wr = OI C] H
rig . .
€] = rigid body rotation of the element.

The elongation and rigid-body rotation are respectively given by
e =1 2 x,..u + u u ; .(33)
2% iJIiJI iJI1iJI :
(sum on 1 only)

and

. rig _ _l_‘ _ '
sin © = 2 (uyJIxJI uxJIyJI> . A (34)

The displacement fields associated with the deformation displacements are

adef o = w1.¢1-(;);

6, () = €3 - 262 +o¢; (35)
b,(x) = €3 - £2;

adef - e; . (36)
£ = x/%. : 37

It should be noted that, because of the way the rigid body rotation is elimi-
nated, the y component of the displacement vanished at both endpoints, i.e.,

‘'nodes, of the element.

If the beam is initially curved, its shape is specified by initial dis-

A

placement uVo of the midline from the x axis in the form

~ ~

(x)

uyo w;¢1(x), ' 4 (38)

]

where w; (1

and the x axis.’

1 and 2) are the initial angles between the midline of the beam

The strain displacement equations for the beam element are

~def 2 def
n du 1 o ~ 0%u
e, = X +5 w2 + 0w -y —L— . (39)

oxX ax?



This strain,'as shown in Ref. 27, is valid for moderate values of wé and w

(about 0.1). It corresponds to the stretch tensor, or engineering strain.

The rale ul internal work is given by

E = f e odV, (40)
X
V .

where o is the conjugate corotational stress. The nodal forces can now be.
obtained through Eq. (3). Taking the rate of strain from Eq. (39), substitu-
ting in the shape functions, then substituting into Eq. (40), and using Eq. (3)

and the arbitrariness of the deformation nodal velocities, we obtain

X2 ) 1 0
m; =f fc -y (6 - 4) +% (382 - 4 + 1) (mo + w)odAdE.
0 A N
m, -y(6E - 2) (382 - 26) (41)

~ ~

It is then assumed that o varies linearly in x, which is the actual situation

~

whenever the material is linear, for that is how the strain € varies.

The following quanﬁities are evaluated numerically:

Py = J.odA . (42)
A
and
my = f yodA, (43)
A .

where I = 1 and 2 correspond to the two nodes, that is, £ = 0 and £ = 1, res-
pectively. The integrals in Eqs. (42) and (43) are evaluated numerically by
trapezoidal formulas. Since 8 is assumed to vary linearly 1in ;, it follows
that p(£) and m(§) also vary linearly in ;, so that

p(g) = (p2 - pl)E +pys )

ff

Equation (41) may then be integrated to yield

23
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my .= ml + ) pl(6ml - wz) + pz(zwl - wz) ’ (45)
m, m2 pl(—w1 + wz) + pz(—w1 + 6w2)

where

o
w w + w.

The last term in Eq. (45) becomes significant only when w, the sum of initial
rotation and deformation relative rotations, are moderately large (0.01 to
0.1). It has been found that generally these terms are significant only in a
few elements of the mesh, in which case the computation of all terms associated

A o
with these quantities can be suppressed wherever the terms Wy and w, are small.

The complete set of element nodal forces are obtained from the deformation
nodal forces by equilibrium, which giveé

~ ~

fxl = _fx2;

(46)
PR M M,
yl y2 - L

These forces are then transformed to components in the global coordinate

system. The sequences of computations is shown in Table III.

Table III. Computational Procedure for Beam Element

1. Compute element deformation displacements through Eq. (32-34).
2. At each end of the element:
i. Compute strains at all points through thickness by Eq. (39).
ii. Compute new stress by stress—strain law.
iii. Compute Py and my by numerical integration.

3. Compute deformation nodal forces by Eq. (45).

4. Compute axial artifical viscosity nodal force by Eq. (57) and add to
deformation nodal forces.

5. Store current stress and strains.

6. Find all nodal forces in corotational components by Eq. (46).

7. Transform nodal forces to global components.

8 nt

Add element nodal forces into total nodal force array F;I .
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D. Time Integration

Time integration is carried out by the central-difference explicit method.
For the central-difference method, the velocities and displacements are updated

by the formulas

u(t + 1/2at) = u(t - 1/28t) + At i(t) (47)
and

u(t + At) = u(t) + At u(t + 1/24At), (48)

where superscript dots denote time derivatives and At is the time step. For

purposes of numerical stability the time step is limited by

At < w2 (Vl + uZ - ), (49)
max '
where Woax is the maximum eigenvalue (the highest frequency squared) of the

system and p is the fraction of critical damping in the highest frequency.

For constant-strain elements, such as the Lagrangian hydrodynamic elements
and the membrane forces in the beam, the highest frequency may be estimated by

the formula

w === (50)

where ¢ is the maximum elastic or the acoustic-wave speed in the material and
£ the minimum element dimension. For beam elements, the frequency of the

bending mode may be estimated by

l2cr
- < | (51)
“mnax 2 ?

where . is the radius of gyration of the c¢ross section. Since both Eqs. (50)

and (51) govern the behavior of a beam, the time step in a beam mesh is gov-

erned by whichever of these frequencies is larger. Thus Eq.A(AS) governs for a

beam as long as

9 < 6rg. ’ (52)

For a uniform cross section, the radius of gyration is given by rg = h2/12,
where h is the thickness of the beam, so Eq. (52) becomes

2 > v3h. : (53)
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It is important to keep beam elements long enough so that Eq. (53) is not
violated by much, for otherwise Eq. (51) governs and At decreases with the

square of element length.

For the quasi-Eulerian elements, an additional constraint is imposed by
the requirement that a material point cannot traverse an element within a time

step.l®

An additional aspect of the quasi-Eulerian elements is that a forward
extrapolation of the velocities, as proposed by Donea et gl.,zo has been used.
Thus, in the subroutine for the quasi-Eulerian elements, before any compu-

tations are made the velocities are extrapolated by

ﬁiI(t) = GiI(t - 1/2At) + 1/2At ﬁiI(t - At), (54)

so that the transport terms in Eq. (3) are for time t like the rest of the
terms. It is interesting to note that Donea et al. used this extrapolation in
conjunction with the Newmark B-method, where it is necessary even to correctly
evaluate the change in density from the velocities. However, as shown in the
results, this extrapolation also has significant effects with the central-

difference method.

E. Artificial Viscosity

In the integration of the finite-element equations of motion with small
time steps, such as is generally the case in explicit integration, high-

frequency oscillations which are called "

spurious osc¢illations" or "aliasing"
will appear in an updamped system. The severity of these oscillations tends to-
increase if the mesh is rather heterogeneous. These oscillations can be
reduced and sometimes eliminated by the use of a suitable artificial viscosity,

which 1s really a numerical damping.

In Ref. 29, Belytschko et al. have shown that a viscous stress given by

*vis _ _ . . A .
oij = ppvA [(CL CS)E,Q,RGij + 2cscij] (55)

damps the highest mode of an elastic, isotropic element by a fraction of cri-

tical damping, u. Here A is the area of the element, cr the dilatational-wave

speed, ¢, the shear-wave speed, and Eij the strain.

S

For the hydrodynamic elements, where the shear-wave velocity vanishes and

the state of stress is hydrostatic, Eq. (55) reduces to
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pVi% = VA cV/v. (56)

This pressure is added to the pressure obtained from the equation of state at
each time step before computing nodal forces. However, only the pressures

resulting from the equation of state are stored permanently.

When shocks are expected, an additional quadratic artificial viscosity

of the Von Neumann type is added.

The general artificial viscosity of Eq. (55) can also be reduced to a one-
dimensional form appropriate for the beam elements. However, it was found
that this has undesirable effects on the flexural response, so, instead, an
artificial viscosity is only applied to the axial forces. This membrane

viscosity is given by

vis _ .
fxz = ZUADCEXs (57)

where A is the cross-sectional area of the beam.

A second type of viscosity which was needed in this program is the

antihourglass viscosity. The hourglass mode is shown in Fig. 4. It can be
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Fig. 4. Hourglass Type of Mesh Instability.
(ANL Neg., No. 900-4796-1.)
seen that this mode of deformation of the quadrilateral element causes no
volume change, and hence no pressure. Thus, any excitation which induces
this mode of deformation is unresisted, and elements can become quite dis-

torted in these modes.
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We have incorporated in STRAW a finite-element form of the Maenchen and

Sack30 rotational antihourglass viscosity. This viscosity is applied to

hourglass modes characterized by

- W

91 7 Y14 7 %230

92 7 “12 7 %43’

where wIJ is the rate of rotation of side 1J.

The rotation of each side if defined by

du_ du
o =2l Y __x
1J - 2 \3x 3y /J°

where the right-hand side is evaluated along the side 1J.

. =BH .
N kir%ir’
where’
Y41 "¥41 Y32 %32 Y32
g -1
kil ~ 2
Y21 T*21 Y21 *21 V43 %3
and

- _ 2 2y,
xpy = xpy/ (Rp +yg)s

TX32 Y4y

Y43

2

_ = 2
Vpy = Ypgf G35+ v1g)-

This yields

the

(58)

(59)

(60)

(1)

The generalized stresses corresponding to‘c.lK are designated Qk’ and we choose

'a linear relationship of the form

Q = ugeevA g,

(62)

where y is ;he antihourglass coefficient. The form of this relation between

the generalized hourglass stresses and strain rates is similar in the form to

the artificial viscosity in the volumetric deformation modes, so the range of

values in p

be lower than p by a factor of 2 to 5.

The nodal forces associated with Qk are obtained by use of Eq. (3).

note that the rate of energy dissipation in the element is

H is similar, although experience shows that u

should usually

We



E = kac'lkdv. : , " (63)
v

By using Eqs. (56) and (60), we obtain

H
il

Thus, the antihourglass viscosity simply introduces another set of internal
nodal forces which are added to those resulting from the pressure in the

element.

F. Sliding Interface

At the fluid-solid interface, relative sliding of the fluid and solid is
permitted. The treatment of sliding is simplified in quasi-Eulerian formula-
tions, because the fluid nodes can be constrained to remain contiguous to the
structural nodes. On the other hand, when Lagrangian meshes are used for the
fluid, the fluid nodes will move relative to the structure,'so rather cumber-
some algorithms that treat nodes on a sliding interface that are not aligned

must be included.

The node structure at a sliding interface as used herein is shown in Fig.

5. At each point of the interface, we have two nodes: one fluid node and one

structural node. For each pair, a local coordinate system (t,n) is set up so

that
t is the tangent to the sliding interface;

n is 90° counterclockwisevfrom t.

® STRUCTURAL NODES
O FLUID NODES

Fig. 5. Sliding Interfaces.
(ANL Neg. No. 900-78-17, Rev. 1.)

__H . : : .
Fi1 = BitQV- (64)

29



Whenever a corner occurs in the interface, t is the average of the two tangent

directions.

The grid and material velocities of the fluid are specified by the

following:
ng N ﬁén; (652)
‘.‘gt - l.’St:; (65b)
&%n = ug_, (65¢)

where the subscripts S and F refer to the structure and fluid, respectively.

The conditions of Eqs. (65a) and (65b) are imposed directly. The con-
dition Eq. (65c) is enforced through the nodal forces. After all internal
nodal forces have been summed and prior to the calculation of the nodal accel-
erations by Eq. (1), the nodal forces at each pair of nodes on the sliding
interface are transformed into the (t,n) system. The normal components of the

fluid and structural node are then redefined by

fsn © fsn t fpnd
(66)

an © fSn'

Thus the normal components of nodal forces are set equal, which results in
equality of the normal components of the accelerations. Therefore, a pair of

nodes at the interface in effect only share 3 translational degrees of freedom:
Ug s Ugys and u

Ft*
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III. DESCRIPTION OF MODELS

We will here describe the modeling:procedures and philosophies employed in
our treatment of the subassembly problem by the two-dimensional program STRAW.
As mentioned previously, the two major difficulties in modeling the subassem-
blies are: - (1) the three-dimensional character of the-problem, and (2) the
complex intermingling of structural cdmponénts and fluid, with narrow fluid
channels that muét be treated by a limited number of degrees of freedom.
Because of the inordinate computational expense associated with complete three-
dimensional analyses, they had to be ruled out fof the major part of the
studies, and alternative models which capture limited portions of the three

" dimensionality had to be developed. We denote these models which were con-

structed by augmenting standard two-dimensional models by 2D+.

A cross section of a subassembly cluster is shown in Fig. 6. The dimen-

sions of an individual subassembly are shown in Fig. 7, the view being per-
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Fig. 6. C(ross Section of Subassembly Cluster.
(ANL Neg. No. 900-75-304.)
pendicular to the axis of the fuel pins and hexcan. As can be seen, the only
symmetry in these problems is a rotational periodicity of 30°. The two-
dimensional models are formed in thisAplane, as shown by the finite-element
model of Fig. 8. It includes an accident hexcan and two layers of adjacent

‘subassemblies. This model takes advantage of the 30° periodicity by using a
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Fig. 7. Subassembly Configuration (all dimensions in cm).
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Fig. 8. Two-dimensional Model of Subassembly Cluster
(all dimensions in cm).

(ANL Neg. No. 900-5440, Rev. 1.)



one-twelfth section and thus is limited to symmetric loads in the center of

the accident hexcan.

The three-dimensional aspects of the STRAW 2D+ model are illustrated in

Fig. 9. As can be seen from the figure, the area of energy release is expected

SUPERELEMENT
4, ONLY W

— H

I

FLOW
! DIRECTION

T

AY . X

LOADED

‘REGION PLANE MESK (ALL STATE

VARIABLES CONSTANT
IN 2 ONLY)

Fig. 9. Three-dimensional Aspect of the
STRAW 2D+ Model.
(ANL Neg. No. 900-4768.)

to be uniform in the z direction, which coincides with the axis of the sub-
assembly. The behavior in this energy-release zone is represented by a plane
mesh of two-dimensional elements. The axial flow is modeled by a set of one-
dimensional elements which are superimposed on the two-dimensional plane mesh,
with the axis of the one-dimensional flow perpendicular to the plane mesh.
The flow is assumed to by symmetric about the midplane of the energy-release
zone, so that in addition to the upward flow model illustrated in Fig. 9, a
downward flow of equal velocity is assumed in a lower column. As many plane
elements as desired can be superimposed by a single element of the axial flow
model; the axial flow is then driven by a area-weighted average of the pres-
sure in the plane elements which are superimposed by the axial flow elements.
The axial flow elements are therefore called '"superelements.'" Only vertical
flow (in the z direction) is modeled in the superelements; any flow in the x

and y directions above and below the energy-release zone is neglected.

Although the initial pressure waves propagate through both the solid fuel
pins and the sodium, only the motion of the coolant is considered in super-

elements, for it is assumed that the fuel pins are not completely ruptured,
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but maintain axial coherence, so that very large motions will not be exper-
ienced by the fuei pins. Calculations have shown that the coolant exhibits
rather large displacements. For example, when the energy source generates a
pressure of about 7 MPa for about 4 ms, the coolant moves a distance of the
ordetr of 1 cm. Thus it is evident that most of the energy imparted to the
axial column is employed in overcoming the inertial and viscous resistance of
the fluid; probably very little energy is expended in the acoustic wave that
moves through the fuel pins. Therefore, in the axial model, attention is
restricted to the fluid; the pins are treated as an inert, incompressible

constituent.

The hexcan walls are treated as strictly two-dimensional in the x-y
plane, with the entire strength derived from flexural and membrane action in
this plane. Hence, the walls of the hexcan are essentially beams in a state
of plane strain. The membrane action and flexure in z direction are neglected
in the accident hexcan, for energy sources are assumed to extend vertically
from 20 to 30 cm, whereas the distance across flats is only 6.9 cm, so that
the effects of flexure and membrane action in z direction should be consider-
ably less than that in the x-y plane. Furthermore, since the energy source is
considered to be centered within the energy-release hexcan, no overall bending
action of this hexcan is expected. On the other hand, the hexcan adjacent to
the accident hexcan should exhibit substantial overall flexurc; therefore,
beam elements in the x-y plane are not sufficient to capture the salient
characteristics of its response, and thus beam elements are placed in the z-
direction to capture the flexure resistance of the adjacent hexcan. Whereas
the x-y-plane consticutive characterization of the beam elements can be based
directly on uniaxial strain tests and standard plasticity theory, these trans-
verse beams include.parameters that depend on the response and can only be

determined from three-dimensional experiments or analysis.

The channels were modeled by quasi-Eulerian elements. Sliding interfaces
are included between the beam elements and quasi-Eulerian fluid elements in

the channels.

In contrast to Ref. 4, a continuum approach has been chosen for charac-
terizing the internals. The following are the reasons for this choice: (1)
since there are 217 fuel pins per subassembly, a discrete model of the inter-

nals with a one-to-one correspondence between fuel pins and nodes would



require of the order of 600 nodes (onelfor each fuel pin, about 3 for each of
the flow channels). Experience with COBRA has shown that models of such
refinement entail tremendous computational costs for the fluid flow alone, and
while coarser models have proved effective in treating the fluid flow, it is
doubtful that a model based on actual pin interaction would prove accurate
unless the pins are treated in their actual size; (2) while it is possible to
determine from experiments and analysis the overall behavior of fuel-pin
matrices, the determination of individual pin interactions is more difficult

both experimentally and analytically.

Once a continuum approach is chosen, it is necessary to separate the
behavior of the fluid from that of the fuel-bundle lattice. For this purpose,

the internals are represented by two layers of elements as shown in Fig. 10.

QUASI-EULERIAN MESH FOR FLUID

AN
\\\

1\
N ~

LAGRANGIAN MESH FOR FUEL BUNOLE LATTICE

Fig. 10. Mesh Representatibn of Subassembly Internals.
(ANL Neg. No. 900-77-446.)

The fuel-bundle lattice is treated by a Lagrangian mesh. The constitutive
properties of the lattice are based entirely on their response in the absence
of the fluid. The constitutive behavior of the fluid depends on the motion
of the fluid relative to the fuel bundles as well as on the dilation of the
mesh and fuel hundles. Therefore, it is convenient to associate a fluid
element with a single-pin matrix element, so the quasi-Eulerian description

has been chosen for the fluid mesh.

In earlier studies,31 the fuel pin (that is, both the cladding and the

fuel) was characterized as incompressible compared to the coolant, and the
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shear strength of the fuel-pin matrix was ignored. At that time, an experi-
mental program to determine the constitutive characteristics .of the fuel
bundles was contemplated. However, this experimental program is still not
started, so constitutive equations for the fuel bundles were develoﬁed‘ana—

lytically by energy considerations. In-addition,.by noting the strains in the

~ fuel bundle associated with certain homogenized states of stress, it is

possible to relate the energy deposition in the internals to the likelihood of
failure of the fuel bundles. The material properties of the fuel-pin matrix
are represented by a Coulomb-Mohr elastic-plastic model, so that tﬁe fric-
tional effects ot relative pin sliding are included. .The analytical model of
the fuel-bundle matrix considers two mechanisms: (1) the decrease in distance
between fuel pins which results from the twisting of the wire wraps and
flexure of the pins, and (2) the decrease in the effective dimepsion of the

fuel pin arising from deformation at the point of wrapper-pin contact.



IV. _RESULTS

The first set of results are included to indicate the performance of ‘the
quasi-Eulerian .elements in a.one-dimensional wave-propagation problem. The
mesh is shown in Fig. 11. Although two-dimensional elements are. used, .the
problem is one-dimensional because no motion is permitted in the y-direction.

The right-ﬁand.boundary nodes of the mesh, nodes 41 and 82, are fixed.

'p, MPa

o 100

t, us
y .

’ 1 cm

42 43 44 —‘] I___alaz_i
N e A A A A A A

piy 1 2 3 aoa |

Fig. 11. One-dimensional Wave-propagation Problem.
(ANL Neg. No. 900-78-14.)

Three types of description were considered:

1. a Lagrangian description, in which mesh nodes move with the

matcrialg

2. an Eulerian description, in which all nodes are fixed in space,
except the first pair of nodes, nodes 1 and 42, which move with the

material;

3. a quasi-Eulerian mesh, in which the first two nodes, 1 and 42, are
Lagrangian, and the grid velocities of the remaining nodes are
obtained by linearly interpolating between the left- and right-hand-
side nodes:
-G .M

Ut = U 70 | 67

Other data for this solution are

c(wavespéed)'= 1 x 10° cm/s; At = 2 us; %-= 10 us.

The problems were rum significantly below the stability limit because the goal

was to obtain a converged solution for the mesh.
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The results for the pressure at x = 0.5 e¢m and x = 10.5 cm are shown for
the three cases in Figs. 12 and 13. As can be éeen, the predictions with the
three types of mesh description are almost identical and compare well with the
analytic solution. However, the problem is not a severe test, for the maximum
velocities are onlf 1000 cm/s, so that the momentum-transport terms play a

small role.
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Fig. 12. Pressure at x = 0.5 cm . Fig. 13. Pressure at x = 10.5 cm
for Lagrangian, Eulerian, for Lagrangian, Eulerian,
and Quasi-Eulerian Des- - and Quasi-Eulerian Des-
eriptions. eriptions.
(ANL Neg. No. 900-78-10.) (ANL Neg. No. 900-78-13.)

It is of interest to note that the extrapolation of velocities described
previously has a significant effect on the results. This is evident in Figs.
14 and 15, which show the results with and without the extrapolapion. The .
extfapolation can be seen to provide an artificial viscosity which reduces the"

amplitude of the oscillations.

In order to illustrate the performance of the quasi~Eulerian elements in

channels, we have considered two different models for which experimental
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Fig. 16. Simplified Model of an SRI Experiment.
(ANL Neg. No. 900-78-6.)
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results are availéble. The first model is a simpiified model, shown in Fig.
16, which represénts only the accident (pressurized) subassembly, the channel
of fluid, and the adjacent subassembly. In addition, a reservoir is included
to receive the flow from the channels as the subassembly walls are squeezed

together. The fluid elements in the channel ére quasi-Eulerian, while those

in the reservoir are Lagrangian.

This model represents an SRI experiment8 which is depicted in Fig. 17.

In this experiment, a slow charge was detonated in the center subassembly,

| 26.83 cm |

[of

)\ _
RN

Y72\ 8 /)
\__A_//

Fig. 17. SRI Experimental Model Cross
Section. of Subassembly Cluster.
(ANL Neg. No. 900-78-7.)

‘which resulted in the pressure loading shown in Fig. 18. In the model this

pressure was applied uniformly on the inside walls of the center hexcan.

The wall material is annealed Type 316 stainless steel. It.is modeled by
an elastic-plastic law in a state of uniaxial plane strain. Isotropic har-
dening is included, but no strainsrate effects are considered. The initial
hardening curve was obtained as part of the experimental program and is given

in Table 4. Othgr material data for the steel are
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Fig. 18. Pressure on Accident Subassembly.

(ANL Neg. No. 900-78-18.)

Table IV. Strain-Stress Values of Materials

Strain (m/m)

.000915
002
.039
.070
.170
.730
.320

N O O O O o ©

Strain (m/m)

0.00348
0.00465
0.009
0.100

Annealed 316 Stainless Steel

Stress (MPa)

194.
225,
362.
446.
627.
1237.
1490.

B 00 U NN =N

6061-T6 Aluminum

Stress (MPa)

283.2
326.9
407.4
697.3
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2.122 x 10° MPa;

It

Young's modulus

Poisson's ratio = 0.3;

density = 7850 kg/m3.

The fluid between the hexcans in the experiment is a lightweight trans-
former oil. It is modeled as a compressible, inviscid fluid with a linear
relationship between pressure and volume change. A pressure cutoff was inclu-
ded so that no tensile pressures are permitted. The numerical values used for

the material data are
Bulk modulus = 1.67 x 103 MPaj;
density = 850 kg/m3.

The time steps given by the axial frequency and bending frequency of the

beam, Eqs. (49-51), and for the fluid element are

AtAxial = 0.8 us;
AtBend = 0.6 us;
AtFluid = 1.3 us,

so that the structural frequency is the limiting factor on the time step. A
time step of 0.2 us was used; the time step was reduced below the linear
stability to insure stability in the presence of geometric nonlinearities, but

we have not examined how much of this reduction is necessary.

The analytical results for the pressure in the channel at points A and B
in Fig. 17 are compared to the experimental results in Figs. 19 and 20,
respectively. As can be seen, the average pressure for both the experiment
and computation is about 227 of the pressure in the center hexcan. Further-
more, for point A, the computed pressures exhibit a drop at 0.6 ms, which

corresponds to a pressure drop at 0.5 ms in the experiment.

Large motion of the channel was observed from the numerical results, thus
demonstrating the need for quasi-Eulerian elements. The amount of fluid
expelled from the channel can be gauged by the motion of the Lagrangian

elements in the reservoir.

A more complete finite-element model for these experiments is shown in

Fig. 21. 1In this model, the complete adjacent hexcan is included. The same
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Fig. 19. Pressure History in the

Channel at Point A of
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Fig. 21. Complete Model of an SRI Experiment.
(ANL Neg. No. 900-78-4.)
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material characterizations as in the previous model were used except for the

outside cylinder, which was 6061-T6 aluminum.

also given in Table 4.

Young's modulus

Poisson's ratio 0.3;

density = 2540 kg/m3.

0.814 x 10° MPa;

Its initial hardening curve is

The other pertinent data for aluminum are

The plugs used in the experiment were aluminum prisms and modeled by using

Lagrangian continuum elements.,

model was used.

The same pressure loading as in the simplified

The pressures al polnts A, B, and C in Fig, L/ in the channel are compared

to the experimental records in Figs. 22 to 24.

Vo
i 1. — EXPERIMENTAL

PRESSURE, MPa

.l T 1 T 1 t t
o] 0.l 0.2 0.3 0.4 0.5 0.6 07
TIME, ms

Fig. 22. Pressure History in the
Channel at Point A of
Complete Model.
(ANL Neg. No. 900-78-3.)
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Fig. 23. Pressure History in the

Channel at Point B of
Complete Model.
(ANT, Neg. No. 900-78-2.)
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pressure compares well with experimental values. The computations also exhi-

bit the following features of the experimental records:

1. Except for the oscillations, the peak pressure at A is about 3.0 MPa
at 0.3 ms and decays to 1.0 MPa at 0.5 ms, although the experimental record
exhibits an oscillation at 0.6 ms which is not seen until 0.7 ms in the compu-

tation.

2. The records at B and C reach a peak of about 2 MPa at 0.3 ms and
decay slowly from the time. Deformed confiturations of this model are shown

in Fig. 25.

The complete model, shown in Fig. 8, represents the accident subassembly
and the next two rows of adjacent subassemblies. In addition, four layers of
fluid elements are added beyond the far walls of the second row of subassem-
blies. The outside nodes are free, so that because of the tension cutoff, any
compressive waves which reach the outside boundaries of the model will spall
the outside elements and cause little spurious reflection. The channels and I
the coolant within the subassemblies are modeled by quasi-Eulerian elements.

Axial flow perpendicular to the plane of the model was also included.

This model was loaded with a very energetic source with pressure-time

history as follows:

Time, ms . Pressure, MPa
0.0 , 0.00
0.2 68.75
0.4 0.00

Figure 26 shows the deformed configuration of the mesh. The rapid
attenuation of deformation away from the pressurized subassembly is quite
evident from the figures. 1t is even more apparent in the maximum strains
predicted in the hexcan flats. In the accident hexcan, the maximum strain at
the outside surface of the center of the flat is 14.8%. 1In the adjacent
subassembly, the maximum strains opposite this point are 5.0%, while the
strains in the ﬁidflat of the far walls are 1.5%Z. 1In the second row of sub-_
assemblies, the maximum strain is 3.8%. Thus, the heterogenéous geometry and
structure of the subassemblies leads to a considerably greater reduction in

damage than in homogeneous, cylindrical geometries.
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TIME=0.0 ms

______

TIME =0.5 ms TIME=0.7 ms

Fig. 25. Deformed Configurations of Complete Model.
(ANL Neg. No. 900-78-117.)
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TIME=0.25 ms

TIME=0.30 ms

Deformed Configurations of 2D+ Subassembly Cluster Model.

(ANL Neg. No. 900-78-5.) .

Fig. 26.
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