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’bhstract

The equations that describe the motion of two-dimensionisl vortex fluids
and gquiding center plasmas are shown to possess underlying field Hamiltonian
structure. A Poisson bracket which is given in terms of the vorticity, the
physical although noncanonical dynamical variable, casts these equations into
Heisenberg form., The Hamiltonian density is the kinetic energy density of the
fluid. The well-known conserved quantities are seen to be in involution with
respect to this Poisson bracket. Expanding the wvorticity in terms of a
Fourier-Dirac series transforms the fiecld description given here into the
usual canonical equations for discrete vortex motion. A Clebsch potential
representation of the vorticity transforms the noncanonical field description

into a canonical Jegcription.
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I. Introduction

This paper is concerned with the Hamiltonian field formmlation of the
equations whick describe the advection of vorticity in a two-dimensional
fluid. These¢ equations have received a great deal of actention in the past
thirty years and are believed to model the large scale motions which occur in
atmospheres and oceans. They have also arisen in the study of plasma
transport perpendicular tc a uniform magnetic field, the so-called guiding
center plasma.1’2 (For recent reviews see Refs. 3 and 4.)

It has been known for some time that a system of discrete vortex (or

charge) filaments possesdes a Hamiltonian descz‘ipt:iaan.5 The equations of

motion are

L Xy am o My e ()
1 de 3y, ide  ax,
1 1

th vortex which has coordinatesg x; and

where k; is the circulation of the i
¥ie The Hamiltonian, H, is the interaction enerqy and for an unbounded fluid
has the form
H=2l ] kk, Inr
= 5T . 1n s
2n i35 i3 i3
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where Rij = fxy xj) + (-i yj) - The varlables x; and y; are canonically
conjugate. The formulation we describe here is a field formulation which
possesses this underlying discrete dynamics.
In Sec. IX we briefly review some aspects of finite degree of freedom

Hamiltonian dynamics. The emphasis here is placed on the Lie algebraic

properties of the Poisson bracket. This is used as a framework in which to
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explain the "constructive" approach to Hamiltonian dynamics. Such an approach
frees cne from the prejudice that a system need be in canonical variables to
be Hamiltonian. This sgection is then concluded by the extension of these
notions to infinite degree of freedom or Hamiltonian density systems. In Sec.
111 we present a Poisson bracket that renders the vorter equations into
Heisenberg form. This formlation is novel in that it is nuncanonical. In
the remainder of this section we discuss involutivity of the well-known

constants of motion for this system, Fourier space representation ani

truncation. In Sec. IV we expand the vorticity in a Fourier-Dirac sger.e:s
which, upon substitution into the Poisson bracket of Sec. III, v:e e
canonical discrete vortex description of the Introductior. Following S=is ws2

introduce Clebsch potentials which also bring the Poisson brackez :in==
canonial form. Finally, we obtain a spectral description where complex
conjugate pairs are canonically conjugate. A quartic interaction Hamiltonian

is obtained.
II. Constructive Hamiltonian Dynamics

The standard approach6 to a Hamiltonian description is via a Lagrangian
description. One constructs a Lagrangian on physical bases and through the
Legendre transfcrmation (assuming convexity) obtains the Hamiltonian and the
following 2N (where N is the number of degrees of freedom) first order
ordinary differential equations:

c';k = [q,H] P, = Ip, H] k = 1,2,00.N . 2)

Here the Poisson bracket has the form
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£.q0 = ) (-g——: -%f—-%g— =3-f—iJ1339—. . (3)
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The last equality of Eq. (4) follows from the substitutions,

i qk for i
z = for i
Py

k=1,2...N
N+k=¢(N+ 1)... 2N

and
s s I
(o' = N (4)

where IN is the N x N unit matrix. We assume the repeated index summation
convention here and henceforth. The gquantlity Ji1 g known as the Poisson
tensor or the cosymplectic form. It 1ls not difficult to show that it
transforms as a contravariant tensor under a change of coordinates. Those
transformations which preserve its form, and hence the form of the Egs. (2),
the equations of motion, are canonical.

The constructive approach differs from the above in that one is not
concerned with any underlying action principle nor with (initially at least)
the necessity of canonical variables. The emphasis is placed on the algebraic
properties of the Poisson bracket. A system need not have the canonical form
of Egs. (2) with Eq. {3) to be Hamiltonian. To make the idea more precise we
introduce a few mathematical concepts. The guantities on which the Poisson
bracket acts are differentiable functions defined on phase space. The
collection of all such functions is a vector space (call it ) under addition
and scaler multiplication. The Poisson bracket 1s a biline.- function which

maps 3 x Q to . Also note that the Poisson bracket possesses the fcllowing



two important properties: (i) [f.q] = - [g,f] for every f,g € © and (ii) the
Jacobi identity, i.e., [£,[g,h)] + [g,[h,fl] + [h,[f,q]] = O for every f,g,h
€ Q. A vector space together with such a bracket defines a Lie algebra.
Property (1) requires that the Poisson tensor be antisymmetric and property

{(ii) requires the following:

lek H le —QE ij + J]E _ﬁf Jki + sz —EE 13 0 . (5)
92 3932 92

One can show that §i3% t.ansforns contravariantly; hence if it vanishes
identically in one coordinate frame it dees so in all. Similarly antisymmetry
is cv.rdinate independent. The covariance of properties (i) and (ii) suggests

the converse outlook: if a system of equations possesses the form

1. #Ad BH.

i, = 1,2...28 (6)
3z?

where Eij is antisymmetric and fulfills the Jacobi requirement, but is not of
the form of Eg. (4}, then it is Hamiltonian. This outlook is justified by a
theorem due to Darboux {1882) which states that assuming det(Jid) 2 o
(locally) canonical coordinates can be ccnstructed. (The proof of +this
theorem may be found in Refs. 7, 8, and 9.} Bence in order for a system to be
Hamiltonian it is only necessary for it be representable in Heisenberg form
with a Poisson bracket that makes ) into a Lie algebra. The constructive
approach simply amounts to constructing Poisson brackets with the appropriate
properties.

The rigorous generalization of the above ideas to infinite dimensional
systems requires the language of functional analysis and the differential

geometry of infinite dimensional manifolds. (See Ref. 7, Ch. V ard Refs. 10 -



15.) This of course is not our purpose here; rather we simply parallel the
above. The Poisson bracket for a set of field equations usually has the

following fv:.»rrn:5
A - N - % .
IF,G) = ): f (_G.F_ Gi - 6_G__ QF—.) at (7)

where the integration is taken over a fixed volume. The quantities on which
the bracket acts are now functionals, such as the integral of the Hamiltonian

density f(e.g., BEq.(13)]. The functional derivative i3 defined by

~ A ~

EE(n + ew) = [ +— war =
de k IE=D dnk Gn_k

where the bra-ket notation is used to indicate the inner product <flg> =

[ fg 4t. In terms of this notation Eg. (7) becomes

[F,G) = <2 | otd &8, (8)
su* Su

where the °N quantities W, and x, are as previously the 2N indexed quantities

ui. fThe canonical cosymplectic density has the form

(Oij] - -: IN) .

In noncanonical variables the quantity (Oij) may depend upon the variables ui,
and further it may contain derivatives with respect to the independent
variables. In general antisymmetry of Bg. (8) requires that the (Oij) be an
anti-self-adjoint operator. The Jacobi identity places further restrictions,

analogous to Eq. {5), on this quantity. We defer a discussion of this to the

1
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Appendix where the Jacobi identity for the bracket we present [Bg. (15)] is

proved. The extéension of the Darboux theorem to infinite dimensions has been

proved by <. Marsden.14 For a discussion pertinent here see Ref, 15.
IXI. Y¥oncanonical Polsson Bracket
The equations under consideration are the following:
w == vV (9)
7-v =0 . (10)

Here we use the usual Euclidian coordinate system with uniformity in the =z
direction {(which has unit vector ;). The quantity wix,t) = ;.v = vix,t),

where x = (x,y), is the vorticity and v is the flow velocity such that
!-; = 0, (For the quiding center plasma w corresponds to the charge density

and v to the E x B drift velocity.) For an unbounded fluid v can be

eliminated from Eq. (9) by'®
v= [ wxyu (xix7) arr (1
where we display only the arguments necessary to avoid confusion. Here

M=z x VK(EIE‘) and K{x|x") is the Green function for Laplace's equation in

two dimensions,

1 2
Kixlx") = 3 1n /(x~x‘)2 + (y=y~) .



The integration in Eg. (11} is over the entire x-y plane; dt = dxdy. 1In this

form Eq. (10) is satisfied manifestly. Eguation (9) becomes

w = -f w{x?) M(xix") d17 « V wix) . (12)

Equations {9) and (10) are known to pogsess conserved densities; that is,
quantities which satisfy an equation of the form pt + V-E = 0, consistent
with Eq. (12). Clearly any function of w is conservad. In addition, the

kinetic energy is conserved which is the natural cheoice feor the Hamiltonian.

With the density (mass) set to unity we have

[ Mixlx”) » M(xlx"") wix”) wlx”") dr 417 dt””

1
= -5 [ Rxlx”) wlx”) wix) dar dt* . 13)
The functional devivative of Eq. (13) is the following:
== - Klx|x") w(x") at” . (14)

We introduce the Poisson bracket17

~ ~

(7,61 = [ weo (5, &) ar (15)

where |f,g] = 3f 3g _ 3g 72 . One observes that the discrete vortex Poisson
3x 3y 3y 8x

bracket is nestled inside the fleld Poisson bracket. 1In Sec. IV we will see

how to regain the discrete bracket from this field bracket. It is not

difficult to show from Egs. (14) and (15) that



w = lwH] = - wMart s Y .

Clearly this bracket is antisymmetric by virtue of the antisymmetry of the
discrete bracket. We prove the Jacobi identity in the Appendix.

We note by examination of Eq. (15} that any two functionals of w are in
involution; that is, if ;i{w} =] Fi(w)dT (for i=1,2) are two such functionals

where the F, are arbitrary functions of w, then

Also, substitution of any such Fi and ﬁ [Egsa (13)]) into Egq. (15) and

integration by parts yields

[F,, Bl =0 .
i
In particular, we =ee (when Fi = uz) that the enstrephy commutes with the
Hamiltonian.

The c¢lose relationship betwcen this functional Hamiltonian formaulation
and the conventional formulation of Sec. II is seen by Fourier expanding the

vorticity in a unit box with periodic boundary conditions,
w,oe N (16)

where k = (k1, kzl. The reality of w implies m; =y . 1f we suppose for the

moment that w(f) depends upon some additional independent variable j,, then we

~

have the following for some functionall® F:
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F
j%—g—fdx ay . (173

From this we see for p = w, upon Fourier inversion that

-ikex

1 3
P (18
3 [=] ’ : )

o

t1|21‘>

2
{2w)

[t ]

where the F on the left hand side is treated as a functional of w while the
F of the right hand side is to be regarded as a function of the variables

w . Substituting Eqs. (16) and (18) into Eq. (15) yields,

k
w
PR k+h . o -
[F,G) = 7 27 kxk) %L:;—G“
ko2 (2m) “k e
The Hamiltonian becomes
) ] mg!z
H= 2vr" . 2 13
% 2

and the equations of motion are

. zkxp) an

w =, w =ZJ rv ’ (19)
L - k,

LR S S T

where J, 'y the cosymplectic form, is
’

z+ (L x k)

> e+ . (20)
: (2m) k+i

Clearly, Eq. (19) is of the form of the finite degree of freedom equations,

Eqs, (6}, of Sec. II except here the sum ranges to infinity. The form Eg.

S L
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{20) is obviously antisymmetric and it is not difficult to verify Fq. (5).
At first, one might think that a truncation of the Jk 2 would yield a
'_

finite Hamiltonian system which to some accuracy would mimic the original.

Unfortunately, the process of truncation destroys the Jacobi identity. One

must seek a change of variables which allows truncation. Canonical variables

are suited for this purpose and in the next section we discuss this.
IV. Cancnical Descriptions

As was noted in Se~. III, the Poisson brackzt for the discrete vortex
picture is emhedded in that for the field. To see the connection between the
two, we expand the vorticity (distribrted vorticity) as follows:

wlx) =k E(x-x ), (21;
= i - -i

i

where 6(x) is the Dirac delta function, the k; are constants and u obtains its

t dependence through the x. . Then using Eg. (17) we obtain the identity
-1

aF 3 &F
L I 2
3% 1 5% Sw (22)
X
X = {x, ,y.)
- 1 1

where the functional F on the left hand side is now to be regarded as a
function of the wvariables X; and y;. Similarly we obtai- the relation for

BF/ayi- Substituting Egs. (21) and (22) into Eq. (15) yields

[[::‘ 6.1 = 1_ _(Bi Bi - 3_ a6 (23)
‘ Dk, tax, 3y, | 3y, ax ’ b
J ] 2 y] dY] J

Further, if we substitute Eg. {21) into the Hamiltonian, Bg. (13), we obtain



i i ii i e —
17_ 1 ] n 1
\= H ' - = J—
-12=-
- -1
H= o ¥ kk, In R .
1,5 7 1

Since this is singular along the diagonal i=j, we remove the self-energy of

each vortex and obtain the usual result

[}
-

k. k., In R, . (24}
1] 17

[
|

i3

Eguations (23) and {24) reproduce the Egs- (1). Hence, we see that expansins
of w in a Fourier-Dirac series is a particular way of discretizing, a way
which allows truncation without destroying the Hamiitonian structure. We now
discuss another approach,

The cosymplectic form, BEgq. (20), suggests by its linearity in “hes that
a guadra*ic change of variables {(i1.e., w ~ ¢2, where ¢ is the new variable) is
needed in order to achieve canorical form. Such a transformation [lagiven by
Eq. (31)] removes the nonlinearty present in the Poisson bracket and places it

in the Hawmiltonian [Eq. (30)]. Enroute to arriving at this result we

introduce a Clebsch potential representation of the vorticity,21

- 3% 8. 3y 3y (25)

This substitution transforms the Poisaon bracket, Bg. (15), into canonical
form. Clearly, Eq. (25) is not uniquely invertable. We have the local gauge
condition that any function E, such chat ;xxy - nyx = @, can be added to y
(and likewise for jy).

The chain rule for functional differentiation yields
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(=
T

J SF -

5-;"7’(61»"“7"]

5P &F - .
A i B (<6)

where on the left 1; is now regarded as a functional of ¢ and y. The canonical

Poisson bracket for x and ¢ is

which upon substitution of Egs. (26) yields the bracket Eq. (15). C(Clea:'y u

and , satisfy

. oH . 58

P ; = - = (27

Ty X 8y ’
Upon Fourier transformation Egs. (27) become

. 1 3H . 1 3H

- ; o= - —— 2 . (28)

Ean? Fx : (zmy? oy

de new jintroduce the field variable 3, as follows:

- *
o * by BENEE N
v = L (——— ) _-i (—) .
ko 2n V2 - Y2

o
»
E
N
=

{This form maintains the reality condition for uxk and xk-) In terms of these

variables Eqs. (28) become

o _ M a* _3H
i, =5 i, Yoo (29)



I P

and the Hamiltonian has the form

~ L]
H = s ¢, & 4 ¢ C30
irmesry LeTiS/E L om Ts Tt 7
where the matrix elements § are
Z,m,s,t

y ze(t x L) ze(m x s} z-{s « 2) ze{m » t:
s} = — - = - - + = — - - .
DS 4.2 e -t e - sl 12 - ml Im -t

R L
N = —— t@ . LA B
¥
- Tk g (2.)2 E i
Hence, we see the connection between Clebsch potcatials and nur hrackes. ™

t:ransformation allows discretizaticn and truncation while nnr dessroyinu -

Hamilerriar structure.
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Appendix

Here we generalize the method used by P. 1tax?2 for the Gardner bracket,
to prove the Jacobi identity for Eq. {15). We suppose F[u} is a functional or

the variable u. Recall the functional derivative is defined by

LY

d [
— F u + = > .
de u cw} Ps=0 6u lw
We denote G = (%E J]w> + G can again be regarded as a functional of u.

Performing a second variation we obtain

E:G ‘u + r\zf' 1n=0 = <6—;z|w>

where the symbol 52F/6u2 is used to denote an operator acting on z. By the

~quality of mived partial derivatives this operator is seif=-adjouint,

A

Let u: now take the variation of a bracket [F,G] defined by

-

§F

SE Sc
du

{F,G) = < | o 5a ,

where the uperator C is anti-self-adjoint.

a o _ . 81F,Q)
ac (F.€l {u + evl | = v
e=0
2- - - 27 ~ 80, .4
_ F §G SF [ [ &G
= & 2 - - - —_— =
3 W 1o ta’ T ¢ T 1l o FERRAR m | i aa > N

Su 6u
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i S

in this expression the first two terms are straight forward, “%: last comes

from any dependence the operator O may have upon u; i.e.,

d 60}
ac 0 (u + cgw) ' i .
=0
Isolating w w2 obtain
M=§_2:06_G~_é2_éca_§+rr(é_§ é—é) (A-1)
Su 2 u 2 du Su * Su
du Su

where the operator T romes from reroving GOW/Gu from we T is antisymmetric in

its arguments.

The Jacobi jdentity is

_ SE | 8IF,G). . OF | . 8IG.El . 8G | . SIE,Fl _ )
S <Gu|06u >+<6u|v 5u>+<6u|o o> =0 . {(A=2)
5%k
Inserting Bq. (A-1) into (A~2) and using the self-adjointness of - ard the
Su

anti-self~adjointness of O, we obtain

| JE SF 86, , OF 86 $E , ¢ SE eF, _
S qul o [ @t G 0 (G raa) e | 0T (G w0

This equation is the functional equivalent of Bq. (5).

Wow consider the bracket, Eg. (15). We obtain

éliﬁ_L = { %g . %% } + operator terms,
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where the first term is T ( %ﬁ . %ﬁ } and the remaining terms as shcwn above

do not enter Eq. (A-3). Hence,

- -

GE (AF 4G
s = N{EB'{E;' E;H dt + cyc .

Clearly, S vanishes by virtue of the Jacobi identity for the discrete bracket.
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