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Abstract 

The equations that describe the motion of two-dimensional vortex fluids 

and quidinq center plasmas are shown to possess under 1-ying field Hamiltonian 

structure. A Poisson bracket which is given in terms of the vorticity, the 

physical although noncanonical dynamical variable, casts these equations into 

Heisenberg form. The Hamiltonian density is the kinetic energy density of the 

fluid. The well-known conserved quantities are seen to be in involution with 

respect to this Poisson bracket. Expsnding the vorticity in terms of a 

Fourier-Dirac series transforms the field description given here into the 

usual canonical equations for discrete vortex motion. A Clebsch potential 

representation of the vorticity transforms the noncanonical field description 

into a canonical description. 

. DISCLAIM!* . — — — 

iWHBPinn of mis Docihwn u UKIIIIIED 



-2-

I. Introduction 

This paper is concerned with the Hamiltonian field formulation of the 

equations which describe the advection of vorticity in a two-dimensional 

fluid. These equations have received a great deal of attention in the past 

thirty years and are believed to model the large scale motions which occur in 

atmospheres and oceans. They have also arisen in the study of plasma 

transport perpendicular to a uniform magnetic field, the so-called guiding 
1 2 center plasma. ' (For recent reviews see Refs. 3 and 4.) 

It has been known for some time that a system of discrete vortex (or 

charge) filaments possesses a Hamiltonian description. The equations of 

motion are 

i dt 3y. Ki dt " 3x. ' ' 

where k^ is the circulation of the ifc vortex which has coordinatts x̂  and 

y.. The Hamiltonian. H, is the interaction energy and for an unbounded fluid 

has the form 

i>3 

where R J * = (Xi-xJ + '-i_lr-f' T h e v » r i a b l e 8 xi a n d vi a r e canonically 

conjugate. The formulation we describe here is a field formulation which 

possesses this underlying discrete dynamics. 

In Sec. II we briefly review some aspects of finite degree of freedom 

Hamiltonian dynamics. The emphasis here is placed on the Lie algebraic 

properties of the Poiason bracket. This is used SB a framework in which to 
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explain the "constructive" approach to Hamiltonian dynamics. Such an approach 

frees one from the prejudice that a systeni need be in canonical variables to 

be Hamiltonian. this section is then concluded by the extension of these 

notions to infinite degree of freedom or Hamiltonian density systems. In Sec. 

Ill we present a Poisson bracket that renders the vortev equations into 

Heisenberg form. This formulation is novel in that it is noncanonical. In 

the remainder of this section we discuss involutivity of the well-known 

constants of motion for this system, Fourier space representation ar.̂  

truncation. In Sec. IV we expand the vorticity in a Fourier-Dirac series 

which, upon substitution into the Poisson bracket of Sec. Ill, yielis -'-» 

canonical discrete virtex description of the Introduction. Followi-? "-.is v± 

introduce Clebsch potentials which also bring the Poisson brac'ter i-t~ 

canonial form. Finally, we obtain a spectral description where complex 

conjugate pairs are canonically conjugate* A quartic interaction Hamiltonian 

is obtained. 

II. Constructive Hamiltonian Dynamics 

The standard approach to a Hamiltonian description is via a Lagrangian 

description. One constructs a Lagrangian on physical bases and through the 

Legendre transfirmation (assuming convexity) obtains the Hamiltonian and the 

following 2N (where N is the number of degrees of freedom) first order 

ordinary differential equations: 

^k * [ qk' H l ; k̂ = ! pk' H 1 k = 1' 2'"- N • ( 2 ) 

Here the PoiBson bracket has the form 
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k-1 3 qk 3 pk 3 p k B V 3Z 1 3Z 3 

The last equality of Eq. (4) follows from the substitutions, 

{q, for i = k « 1,2.. .N 
p for i = N + k = < N + 1 ) . . . 2N 

and 

where T N is the N x N unit matrix. We assume the repeated index summation 

convention here and henceforth. The quantity J ] is known as the Poisson 

tensor or the cosymplectic form. It is not difficult to show that it 

transforms as a contravariant tensor under a change of coordinates. Those 

transformations which preserve its form, and hence the form of the Eqs. (2), 

the equations of motion, are canonical. 

The constructive approach differs from the above in that one is not 

concerned with any underlying action principle nor with (initially at least) 

the necessity of canonical variables, itie emphasis is placed on the algebraic 

properties of the Poisson bracket. A system need not have the canonical form 

of Eqs. (2) with Eq. (3) to be Hamilton!an. To make the idea more precise we 

introduce a few mathematical concepts. Tne quantities on which the Poisson 

bracket acts are differentiable functions defined on phase space. The 

collection of all such functions ie a vector space (call it Q) under addition 

and scaler multiplication. The Poisson bracket is a bilinet.- function which 

maps it x a to Q. Also note that the Poisson bracket possesses the following 
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two important properties: (i) [f,g] = - [g,f] for every f ,g e ft and (ii) the 

Jacobi identity, i.e., [f,[g,h]] + [g, [h,f]] + [h,[f rg]] = 0 for every f,g,h 

E ft. A vector space together with such a bracket defines a Lie algebra. 

Property (i) requires that the Boisson tensor be antisymmetric and property 

(ii) requires the following: 

sijk . ji£ _ 9 _ ̂ k + j j £ J_ j ki + j M _ 3 _ jii = Q . ( 5 , 
3Z8- dZl 3 Z 1 

One can show that S 1 3 * transforms contravariantly; hence if it vanishes 

identically in one coordinate frame it does so in all. Similarly antisymmetry 

is coordinate independent. The covariance of properties (i) and tii) suggests 

the converse outlook: if a system of equations possesses the form 

•i = ~ij _3H_ = 1 2 < - 2 N ( 6 ) 

where J ^ is antisymmetric and fulfills the Jacobi requirement, but is not of 

the form of Eq. (4), then it is Hamiltonian. This outlook is justified by a 

theorem due to Darboux (1882) which states that assuming det(J 1 ]) * 0 

(locally) canonical coordinates can be ccnstructed. (The proof of this 

theorem may be found in Refs. 7, 8, and 9.) Hence in order for a system to be 

Hamiltonian it is only necessary for it be representable in Heisenberg form 

with a Poisson bracket that makes I) into a Lie algebra* The constructive 

approach simply amounts to constructing Poisson brackets with the appropriate 

properties. 

The rigorous generalization of the above ideas to infinite dimensional 

systems requires the language of functional analysis and the differential 

geometry of infinite dimensional manifolds. (See Ref. 7, Ch. V ai.d Refs. 10 -
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15.) This of course is not our purpose here; rather we simply parallel the 

above. The Poisson bracket for a set of field equations usually has the 

following form: 

IPyG) = } J [-:— — -—1 dT (7) 

where the integration is taken over a fixed volume. llie quantities on which 

the bracket acts are now functionals, such as the integral of the Hamiltonian 

density [e.g., Eq.(13)]. The functional derivative is defined by 

dp (ST ftV 
•ft <nk + EW)| = / jj- wdr i <^~|w> 

where the bra-ket notation is used to indicate the inner product <f|g> = 

/ fg dt. In terms of this notation Bq. (7) becomes 

Su1 6u D 

where the Ttl quantities r\^ and it̂  are as previously the 2N indexed quantities 

u 1. The canonical cosymplectic density has the forra 

^ • ( ; : - ) 

In noncanonical variables the quantity (0 3 ) may depend upon the variables a1, 

and further it may contain derivatives with respect to the independent 

variables. In general antisymmetry of Bq. (8) requires that the (O 1 3) be an 

anti-self-adjoint operator. "Bie Jacobi identity places further restrictions. 

Analogous to Bq. <5), on this quantity. We defer a discussion of this to the 



Appendix where the Jacobi identity for the bracket we present [Bq. (15)] ie 

proved. "Hie extension of the Darboux theorem to infinite dimensions has been 

proved by «. Marsden.14 For a discussion pertinent here 3ee Kef. 15. 

III. Noncanonical Poisson Bracket 

The equations under consideration are the following: 

w = - v V cu (9) 

7-v - 0 (10) 

Here we use the usual Euclidian coordinate system with uniformity in the z 

direction <which has unit vector z). The quantity ui(x,t) = z«V * v(x,t), 

where x = lx,y), is the vorticity and v is the flow velocity such that 

v z = 0. (For the guiding center plasma tu corresponds to the charge density 

and v to the E x B drift velocity,) For an unbounded fluid v can be 

eliminated from Eq. (9) by 1 6 

v = | to(x') M (x|x") dT' , til) 

where we d i sp lay only t he arguments necessary t o avoid confus ion. Here 

M = z x VK(x\x') and K<x|x ' ) i s t h e Green func t ion for Lap lace ' s equa t ion i n 

two dimensio-is. 

1 , 2 2 
K ( x l x ' ) = T - In Jlx-x') + ( y - y ' l 
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The integration in Eg.. (11) is over the entire x-y plane; di = dxdy. In this 

form Bq. (10) is satisfied manifestly. Equation (9) becomes 

hi = -j m(x') M(xjx') dT' • V <u(x) . (12) 

Equations (9) and (10) are known to possess conserved densities? that is, 

quantities which satisfy an equation of the form p + V»J = 0, consistent 

with Bq. (13). Clearly any function of io is conserved. In addition, the 

kinetic energy is conserved which is the natural choice for the Hamiltonian. 

With the density (mass) set to unity we have 

2 
HI UJ = / |~ d T = I / ??<x|x'> ' M(x|x") w(x') u(x") dx dT' dx" 

= - \ I K(x|x') ID(X-) a>(x) dT dT' . (13) 

The functional derivative of Bq. (13) is the following: 

I 5 = -/ K(x|x') u(x') dt" . (14) 

!'•« - J «fx> {£. £ } dr . <15> 

where (f ,q\ = _ IS _ i2 £_ . one observes that the discrete vortex Poisson 1 3 ) 3x 3y 8y ox 
bracket is nestled inside the field Poisson bracket. In Sec. IV we will see 

how to regain the discrete bracket from this field bracket. It is not 

difficult to show from Eqs. (14) and (15) that 
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OJ = !u,H] = -f u M dT' • Vol 
t ' 

Clearly this bracket is antisymmetric by virtue of the antisymmetry of the 

discrete bracket. We prove the Jacob! identity in the Appendix. 

We note by examination of Bq. (15) that any two functionals of in are in 

involution; that is, if F. jw} = f F.(u))dT (for i=1,2) are two such functionals 

where the F. are arbitrary functions of u, then 

[F ,F_] = 0 1 i 

Also, substitution of any such F. and H [Eq. (13)] into Eq. (15) and 

integration by parts yields 

IF , H; = 0 i 

In particular, we see (when F. = u ) that the enstrephy commutes with the 

Hamiltonian. 

The close relationship between this functional Hami ltonian formulation 

and the conventional formulation of Sec. II is seen by Fourier expanding the 

vorticity in a unit box with periodic boundary conditions, 

ik»x 
V .u. e " , (16) 
'• k K -

where k = <k , k I. The reality of i» implies u> = m . If we suppose for the 1 2 k -k 
moment that u(x) depends upon some additional independent variable p, then we 

1ft " have the following for some functional F: 



-10-

3F , 6F 3uj 
9F- = J IS IS d X *V ' ( 1 7 J 

From this we see for p = u^ upon Fourier inversion that 

where the F on the left hand side is treated as a functional of ui while the 

F of the right hand side is to be regarded as a function of the variables 

(i) . Substituting Eqs. (16) and (18) into Eq. (15) yields, 

tr.G] - ; - ^ - >.(£><k) f ^ l 5 -

k,* (2„) 2 • - 3 < \ 3 u £ 

The Hamiltonian becomes 

2 - -H = 2r 2 

and the equations of motion are 

( 19) 

where J^ , r the cosyraplectic form, is 

z-(£ x k) 
J = = — - ^ - ui, , . (20) k,H ,, ,2 "V+i - - (2-n ) - -

Clearly, Eq. (19) is of the form of the finite degree of freedom equations, 

Eqs. (6), of Sec. II except here the sum ranges to infinity. The form Eq. 
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(20) is obviously antisymmetric and it is not difficult to verify fiq. (5). 

At first, one might think that a truncation of the J would yield a 
k,i 

finite Hamiltonian system which to some accuracy would mimic the original. 

Unfortunately, the process of truncation destroys the Jacobi identity. One 

must seek a change of variables which allows truncation. Canonical variables 

are suited for this purpose and in the next section we discuss this. 

IV. Canonical Descriptions 

As was noted in Sec. Ill, the Poisson bracket for the discrete vortex 

picture is embedded in that for the field. To Tee the connection between the 

two, aa expand the vorticity (distributed vorticity) as follows: 

u(x) = k S(x-x ) (2r, 
i - -i 

I 

where o (x) is the Dirac delta function, the kĵ  are constants and m obtains its 

t dependence through the x. . Then using Eq. (17) we obtain the identity 

— - k -2- — 9x. i .~ix 5w (22) 
(x.,y.) 

where the functional F on the left hand side is now to be regarded as a 

function of the variables Xj and yi. Similarly we obtai- the relation for 

3F/3y.. Substituting Eqs. (21) and (22) into Eq. (15) yields 

Further, if we substitute Eq. (21) into the Hamiltonian, Eq. (13), we obtain 
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-1 r H = - — ) k.k. In R 4TI '• l 3 i 3 

Since this is singular along the diagonal i=j, we remove the self-energy of 

each vortex and obtain the usual result 

H = ̂ - k.k . In R. . . (24* 
* i>j * 3 ^ 

Equations (23) and (24) reproduce the Bqs. (1). Hence, we see that expansm 

of w in a Fourier-Dirac series is a particular way of discretizing, a way 

which allows truncation without destroying the Hamiltonian structure, we now 

discuss another approach. 

The cosymplectic form. Eq. (20), suggests by its linearity in -̂  that 
k+t 

a quadratic change of variables (i.e., u> ~ $ 2, where $ is the new variable) is 

needed in order to achieve canonical form. Such a transformation [giver, by 

Eq. (31)] removes the nonlinearty present in the Poisson bracket and places it 

in the Hamiltonian fEq. (30)). Enroute to arriving at this result we 
2 1 introduce a Clebsch potential representation of the vorticity. 

= i£ li . .it h. # ( 2 5 ) 
9x 3y 3y 3x 

This substitution transforms the Poisson bracket, Eq. (15), into canonical 

form. Clearly, Gq. (25) is not uniquely intertable. We have the local gauge 

condition that any function i(I, such chat I|J y - ^i y = 0, can be added to v 

(and likewise for / ) . 

The chain rule for functional differentiation yields 
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OF _ ,C>T , 

f - - ' • ( f « ' ' *) < '-'*> 

where on the left p is now regarded as a functional of t(j and x- Th* canonical 

Poisson bracket for \ and ij; is 

1 ; , ,«F <5G 6G 6F. 

which upon substitution of Bqs. (26) yields the bracket Sq. (15). Cleatiy u 

and , satisfy 

d* A 44" 

Upon Fourier t r ans fo rma t ion Eqs. (27) become 

1 3H 1 3H (28) 
** (2,»2 " u * ' *5 <2,>2 3*-k 

we nr>v introduce the field variable $y as follows: 

1 *k ''-k _. ^k *-k 

(This form maintains the reality condition for i|i ana x • 1 In terms of these 

variables Bqs. (28) become 

.; 3H .•* 3H 
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and the Hamiltonian has the form 

* * 
i + m = s 1 . t

 Si-!?.s,t *« *m *s *t ' 

where the matrix elements S are 
£,m,s,t 

z-(t x Jt) z«(m * si z-fs " I) z»(m * t: 
'i,m,s,t l f_2 U " t) |ra - s| \l - ra| \m - tl 

The aua'''"at:r transforation mentioned above is 

î -(t - I) . 
~ " " 2 " *t*l <2- ) - -

Hence, we see the connection between Clebst-h potentials and our hrackf . T> 

t: ̂ r.sfnrmat ion allows discretization and truncation while nor IPSTOVITJ --

Hami Itcr.iar. structure. 
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Appendix 

Here we generalize the method used by P. Lax 2 2 for the Gardner bracket, 

to prove the Jacobi identity for Bq. (15). We suppose F[U| is a functional or 

the variable u. Recall the functional derivative is defined by 

h ; ; » + e * l i E -o = *«s l u > 

We denote G * <-— | u> , G can again be regarded as a functional of u. 

Performing a second variation t*e obtain 

d A F -7- <3 •" + nz'. ! „ = < - 2 — zlw> d" n=0 . 2 
Su 

2" 2 where the symnol o F/6u is used to denote an operator acting on z. By the 

"quality of raided partial derivatives this operator is seif-adjoint. 

i 2 r , , t2; 
— - z I w > = < z | — - v > 
-u 6u 

Let u£ now t ake the v a r i a t i o n of a b r acke t [F,G] def ined by 

6u Su 

where the operator 0 is anti-self-adjoint. 

h f^i (u + H I • < ̂ ! w > 
£ = 0 
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in this expression the first two terms are straight forward, *\i last comes 

from any dependence the operator 0 may have upon u; i.e.. 

- 60 
• ^ O (u • E w , | E ^ 

C=0 

Isolating w V3 obtain 

Su 2 ° Su 2 ° 6u + T (Su ' 5u' ( A ' 
cm Su 

where the operator T romes from removing 60 /Su from w. T ±3 antisymmetric n 

its arguments. 

The Jacobi identity is 

S - f l O ^^-> + < 2 U % ^ > + <|S | 0 ^ I > = 0 . (A-2) 
Su 6u Su 6u 6u 6u 

6 2F Inserting Eq. (R-1) into (A-2) and using the self-adjointness of — - and the 
Su 

anti-self-adjointness of 0, we obtain 

6u -6u fiu'1 Su v6u 6uJ Su ^6u Su' 
(A-3) 

This equation is the functional equivalent of Eq. (5). 

Now consider the bracket, Bq. (15). We obtain 

^ - { £ • • § } • °** r a t o r t e r r a s ' 
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whore the first term Is I ( V . T ) a n d t h e remaining terms as shown above 
v Sal ou ' 

do n o t e n t e r Eq. CA-3) . Hence , 

f (6E r $ F 6G, , . 

Clearly, S vanishes by virtue of the Jacobi identity for the discrete bracket. 
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