

DOE/PC/89772--T1

APPLICATIONS OF MICELLAR ENZYMOLOGY TO CLEAN COAL
TECHNOLOGY

DOE/PC/89772--T1

Fourth Quarterly Report

DE91 005553

DOE Grant No. DE-FG22-89PC89772

Submitted to:

Robert Dolence
Technical Project Officer
PM-20, MS 922-206
U.S. Department of Energy
Pittsburgh Energy Technology Center
P.O. Box 10940
Pittsburgh, PA 15236

Prepared by:

Received by USI

Carol T. Walsh, Ph.D.
Principal Investigator
Boston University School of Medicine
80 E. Concord Street, L-603
Boston, MA 02118
617-638-4326

DEC 31 1990

October 26, 1990

US/DOE Patent Clearance is not required prior to the publication of this document.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
MASTER *pe*

TABLE OF CONTENTS

<u>Section</u>		<u>Page</u>
1	INTRODUCTION	1
1.1	Program Overview	1
1.2	Summary of Results	1
2	MATERIALS AND METHODS	3
2.1	Materials	3
2.2	Methods	4
2.2.1	Enzyme Assays in Reverse Micelle Solutions	
2.2.2	Incubations of DBT with Microbial GB-1 Intracellular Fractions	4
2.2.3	Quantitative Analysis of DBT Metabolites: HPLC Procedure	5
3	RESULTS	5
3.1	Activity of Laccase from <u>Polyporus versicolor</u> on DBT Sulfoxide After 24 hr in AOT Reverse Micelles	5
3.2	Activity of HRP Types I and VI in AOT Reverse Micelles with DBT, DBT Sulfoxide, and DBT Sulfone as Substrates	6
3.3	Incubations of Intracellular Fractions from GB-1 Microbes with DBT in 90 % Acetonitrile or AOT-Isooctane Reverse Micelles	6
3.4	Evaluation of Solubility and UV Absorbance Characteristics of EPS, EP Sulfoxide and EP Sulfone	10
4	PLANS FOR THE FIFTH QUARTER	10
5	BIBLIOGRAPHY	15

LIST OF FIGURES

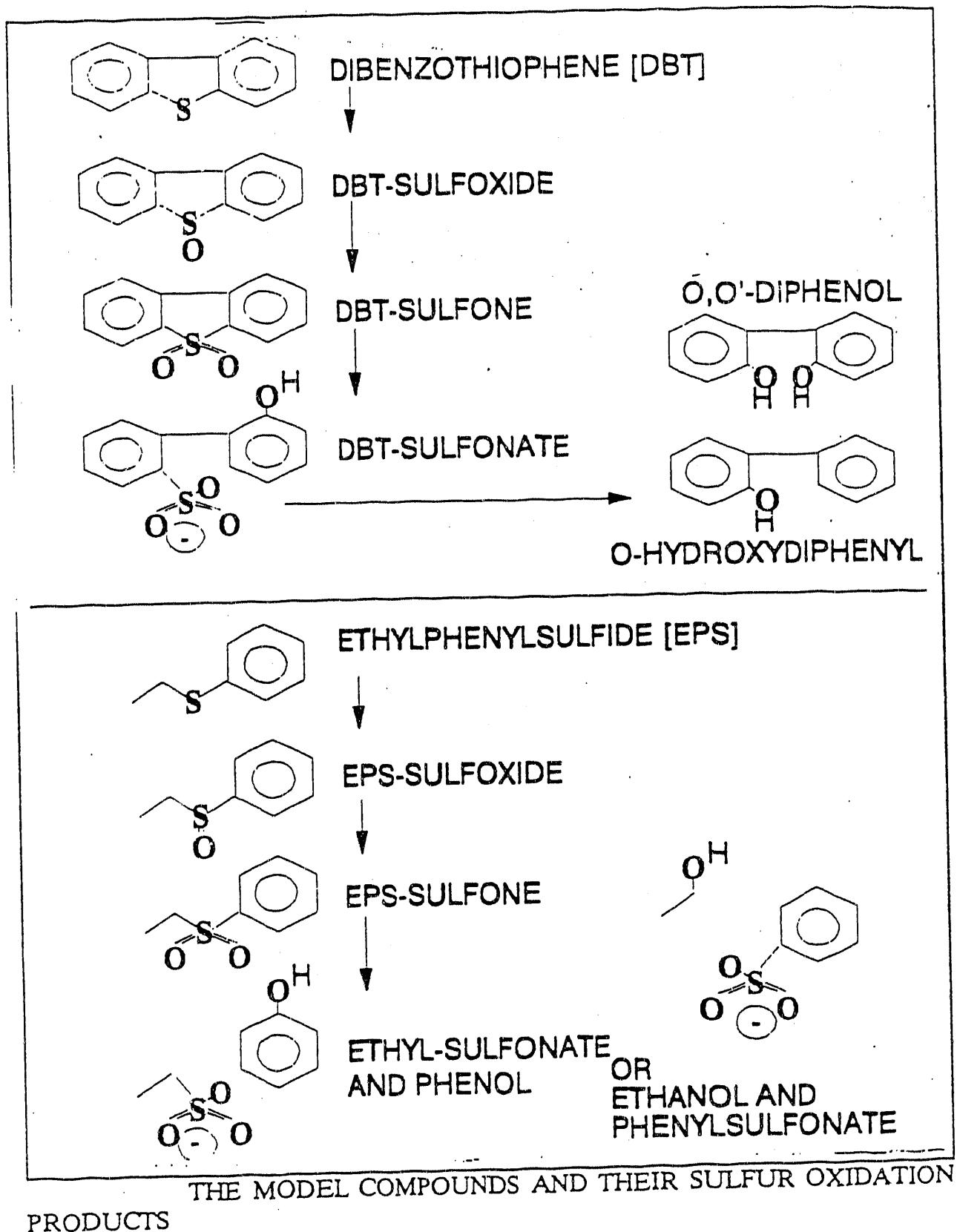
<u>Figure</u>		<u>Page</u>
Figure 1:	DBT, EPS and Metabolites in Sulfur Oxidation Pathway	2
Figure 2:	Wavescan of EPS in Isooctane	11
Figure 3:	Wavescan of EP Sulfoxide in Isooctane	12
Figure 4:	Wavescan of EP Sulfone in Isooctane	13
Figure 5:	Peak Absorbance of EPS in Isooctane and AOT-Isooctane	14

LIST OF TABLES

Table 1:	Effect of 24-hr Incubation of DBT Sulfoxide with Laccase from <u>Polyporus versicolor</u> in Reverse Micelles	7
Table 2:	Effect of 24-hr Incubation of DBT, DBT Sulfoxide, and DBT Sulfone with HRP in Reverse Micelles	8
Table 3:	Effect of 7-day Incubation of DBT with Intracellular Fraction from GB-1 in 90% Acetonitrile or 0.05 M AOT-Isooctane	9

Section 1

INTRODUCTION


1.1 Program Overview

Full implementation of coal fuel sources will require more effective methods of providing "clean coal" as a fuel source. Methods must be developed to reduce the sulfur content of coal which significantly contributes to environmental pollution. This project is designed to develop methods for pre-combustion coal remediation by implementing recent advances in enzyme biochemistry. The novel approach of this study is incorporation of hydrophilic oxidative enzymes in reverse micelles in an organic solvent. Enzymes from commercial sources or microbial extracts are being investigated for their capacity to remove organic sulfur from coal by oxidation of the sulfur groups, splitting of C-S bonds and loss of sulfur as sulfuric acid (Figure 1). Dibenzothiophene (DBT) and ethylphenylsulfide (EPS) are serving as models of organic sulfur-containing components of coal in initial studies.

A goal of this project is to define a reverse micelle system that optimizes the catalytic activity of enzymes toward desulfurization of model compounds and ultimately coal samples. Among the variables which will be examined are the surfactant, the solvent, the water:surfactant ratio and the pH and ionic strength of the aqueous phase. Studies by several groups (Martinek *et al.*, 1981; Kabanov *et al.*, 1988; Martinek, 1989; Verhaert *et al.*, 1990) have shown that the surfactant AOT over a broad concentration range in organic solvents produces micelles, comparatively uniform in diameter, which incorporate hydrophilic enzymes. The activity (*k*_{cat}) of certain enzymes in this system is higher than in aqueous solution. This surfactant is therefore being examined first, although the potential disadvantages of an SO₃ containing molecule have been recognized. Other surfactants to be tested include Tritons, Tweens and Brij 35.

1.2 Summary of Results

FIGURE 1

The ability of the oxidative enzymes, HRP and laccase, to oxidize the sulfur moiety in the model coal compound DBT was examined in the novel milieu of a reverse micelle solution. Experiments were chosen to retest conditions in which some evidence of sulfur oxidation had been previously detected but had not been consistently observed. Also studies were carried out with a purified form of DBT sulfoxide to determine its susceptibility to laccase oxidation. A preparation of HRP of higher specific activity ($R_z=3.2$) was also tested. To date we have not found evidence that DBT or its sulfur oxidation products are substrates for oxidation by HRP or laccase in AOT-isoctane reverse micelles. Studies were also conducted to test for DBT oxidation in a reverse micelle solution containing an intracellular extract from GB-1, a microorganism capable of oxidizing the model coal compound. Loss of DBT or production of sulfur oxidation products by the microbial extract was not observed under the conditions of the study. Control studies of the extract in an organic solution without micelles demonstrated less activity than previously observed in another laboratory and suggested the importance of concentrating the extract prior to incubations.

Results from the first year of the project were summarized in the thesis for the Masters degree submitted by Majid Yazdani. A new student, John Pezzullo, has begun work on this project.

Section 2

MATERIALS AND METHODS

2.1 Materials

Studies were carried out with HRP, Type I $RZ=1.2$ and Type VI $RZ= 3.2$ (Sigma Chemical Co.) and laccase from Polyporus versicolor (isolated by Reinhammer and obtained from Kirk). Substrates for HRP assays included hydrogen peroxide (H_2O_2 , 30%, Fisher Scientific), DBT (Aldrich Chemical), DBT sulfoxide (K&K Laboratories),

and DBT sulfone (Aldrich Chemical Co.). Buffers included sodium phosphate (Fisher Scientific).

For formation of reverse micelle solution, the surfactant AOT, di(2-ethyl-hexyl)sodium sulphosuccinate, was obtained from Sigma Chemical Co. (The water content of the AOT has not been determined and therefore reported water content of micelle solutions do not account for the possible small contribution from this source.) Isooctane (Optima, Fisher Scientific) was used as organic solvent.

2.2 Methods

2.2.1 Enzyme Assays in Reverse Micelle Solutions

AOT (MW 444) was dissolved in isooctane to produce a 0.1 M solution. For study of DBT (2.0 mM), DBT sulfoxide (0.02 mM), and DBT sulfone (0.2 mM) in reverse micelle solutions, the compounds were added to 0.1 M AOT-isoctane. Reverse micelle solutions of laccase were formed with addition of enzyme in 32 μ l of acetate:phosphate buffer (0.025 M:0.1M, 3:1, pH 5.0) per ml of organic phase. HRP (2.1 μ M) and H_2O_2 (0.2 mM) were added in a total aqueous volume of 23 μ l of phosphate buffer (pH 7.0, 0.025 M) per ml of organic solvent. Control samples contained no enzyme. Samples of two ml in 20-ml scintillation vials were shaken on a Scientific Industries Rotator for 24 hr.

2.2.2. Incubations of DBT with Microbial GB-1 Intracellular Fractions

DBT (0.05 or 1.0 mM) was incubated for 7 days in an organic solution, consisting of 90 % acetonitrile or 0.05 M AOT-isoctane with a 3.24 % aqueous phase. (The AOT concentration was reduced in an attempt to improve resolution of the DBT sulfoxide peak on HPLC.) The aqueous phases were either a control solution of Tris buffer (10 mM, pH 7.0) or an extract of cytosol from GB-1. Extracts were prepared by Sara Nochur, Ph.D. at DynaGen, Inc. and stored at -20 C prior to incubations (Nochur and

Kitchell, 1990). Incubates of 2 ml were placed in 20-ml scintillation vials and gently shaken on a Scientific Industries Rotator. After 7 days, samples were filtered and analyzed by HPLC as described below. Prior to analysis, filtrates from the acetonitrile study were transferred to 1-ml KIMAX Brand Accuform Microvials in 500 μ l aliquots which were evaporated down to 50 μ l.

2.2.3 Quantitative Analysis of DBT Metabolites: HPLC Procedure

DBT (0.1-2 mM), DBT sulfoxide (0.02 mM), DBT sulfone (0.02 mM) and dihydroxybiphenyl (0.02 M) were added to 0.1 M AOT in isoctane, alone or in combination to serve as standards. Standards and experimental samples were filtered through disposable syringe filter units (Rainin Instrument Co., No. 38-159, 0.2 μ pore size, 3 mm diameter Nylon 66 membranes). Filtrates (4 μ l) were analyzed at DynaGen, Inc. with a Waters HPLC system containing a C18 resolve (5 micron spherical) column. The mobile phase contained tetrahydrofuran:acetonitrile:water (23:20:57) at a programmed rate of 0.8-1.8 ml/min. The specific program was 0-10.5 min, 0.8 ml/min; 10.5-27.0 min, 1.8 ml/min; 27.0 min, 0.8 ml/min. The detector was a Waters Lambda Max 481 LC spectrophotometer which was set at 280 nm. The method is a modification of procedures previously used by Dr. Kitchell at DynaGen, Inc. for analysis of DBT metabolites in organic solvents (Wyza et al., 1989).

Section 3

RESULTS

3.1 Activity of Laccase from Polyporus versicolor on DBT Sulfoxide After 24 hr in AOT Reverse Micelles

Initial studies with DBT sulfoxide as a possible substrate for laccase were carried out with the unpurified metabolite which was substantially contaminated with DBT sulfone.

These experiments were therefore replicated after purification of DBT sulfoxide by TLC as described in the Third Quaterly Report. The compound (approximately 0.02 mM) was incubated with laccase from Polyporus versicolor for 24 hr. The reverse micelle solution consisted of 0.1 M AOT in isoctane with a 3.2 % aqueous phase at pH 5 (3:1 0.025 M acetate buffer: 0.1 M phosphate buffer). The purity of the DBT sulfoxide was confirmed by subsequent HPLC analysis of the starting material. There was no evidence of significant decrease in the concentration of DBT sulfoxide in laccase-containing samples as compared to controls. No DBT sulfone or dihydroxybiphenyl was detected in either controls or enzyme-containing incubations (Table 1).

3.2 Activity of HRP Type I or VI in Reverse Micelle Solutions with DBT, DBT Sulfoxide or DBT Sulfone as Substrate

DBT, DBT sulfoxide and DBT sulfone were separately incubated for 24 hr in control reverse micelle solutions or solutions containing HRP. Aliquots were analyzed by HPLC. Neither HRP Type I or VI (2.1 uM) reduced the concentration of DBT or generated detectable levels of metabolites (Table 2). No conversion of DBT sulfoxide or sulfone was observed with HRP Type I.

3.3 Incubations of Intracellular Fractions from GB-1 Microbes with DBT in 90% Acetonitrile or AOT Reverse Micelles

Seven-day incubation of the intracellular fraction of GB-1 with DBT in a 0.05 M AOT-isoctane solution did not decrease the DBT concentration which remained similar to that in the control solution without extract (Table 3). No sulfur oxidation products were consistently produced. A small amount of DBT sulfone was detected in one extract-containing sample. The extract was reexamined in 90% acetonitrile, a condition that had previously been shown to result in DBT oxidation. In this experiment some problems with definitive resolution of DBT sulfoxide peaks occurred. In extract-containing samples no DBT sulfur oxidation products were consistently

TABLE 1 Effect of 24-hr Incubation of DBT Sulfoxide with Laccase from Polyporus versicolor in Reverse Micelles

	DBT Sulfoxide (mM)	DBT Sulfone	Dihydroxybiphenyl
CONTROL	0.049	-	-
	0.014	-	-
	0.014	-	-
LACCASE	0.013	-	-
	0.012	-	-
	0.013	-	-

- none detected

TABLE 2 Effect of 24-hr Incubation of DBT, DBT Sulfoxide, and DBT Sulfone with HRP in Reverse Micelles

<u>SUBSTRATE</u>	DBT	DBT SULFOXIDE	DBT SULFONE	DIHYDROXY- BIPHENYL
(mM)				

DBT

Control	1.93 + 0.06 ^a	- ^b	-	-
HRP Type I	1.99 + 0.15	-	-	-
HRP Type VI	2.20 + 0.10	-	-	-

DBT SULFOXIDE

Control	NA	0.016 + 0.000	-	-
HRP Type I	NA	0.017 + 0.000	-	-

DBT SULFONE

Control	NA	-	0.020 + 0.001	-
HRP Type I	NA	-	0.021 + 0.001	-

a mean + SD, n=2

b none detected

NA not assayed

TABLE 3 Effect of 7-day Incubation of DBT with Intracellular Fraction from GB-1 in 90% Acetonitrile or 0.1 M AOT-Isooctane

	DBT	SX	SN	DI-OH	MONO-OH
<u>90% ACETONITRILE</u>					
Control DBT	0.150+0.014 ^a	1.201 n=1	0.0007 n=1	-	0.002
Control ICF	0.002+0.00 ^a	1.62+0.3 ^a	-	-	0.003
DBT + ICF	0.107+0.07 ^b	0.064 n=1	-	-	0.011
<u>REVERSE MICELLES</u>					
Control DBT	1.29+0.03 ^b	0.90 n=1	-	-	-
Control ICF	-	1.05 n=1	0.0008 n=1	-	-
DBT + ICF	1.35+0.19 ^b	-	0.002 n=1	-	-

SX=DBT Sulfoxide

SN=DBT Sulfone

DI-OH=Dihydroxybiphenyl

MONO-OH=Monohydroxybiphenyl

a mean + SD, n=2

b mean + SD, n=3

detected.

3.4 Evaluation of Solubility and UV Absorbance Characteristics of EPS, EP Sulfoxide and EP Sulfone

EPS, EP sulfoxide, and EP sulfone were solubilized in isoctane at 50 mM. At this concentration EPS remained in solution at room temperature, while EP sulfoxide and EP sulphone went into solution only after gentle heating to temperatures of 55 °C- 65 °C. The sulfides were analyzed by UV spectrophotometry. EPS and the metabolites were found to be essentially indistinguishable from each other in absorbance characteristics, all showing a single strong peak in the 254 nm range at concentrations of 0.05 mM and 0.5 mM (Figures 2-4). The extinction coefficient was least for the sulfone, approximately one-tenth that of EPS, and one-fifth that of the sulfoxide.

The absorbance of EPS in isoctane was linearly related to concentrations between 0.05 mM and 0.5 mM, as was EPS solubilized in AOT/ isoctane at the same concentrations (Figure 5).

Section 4

PLANS FOR THE FIFTH QUARTER

- 1.) Examination of oxidative activity of HRP and laccase in a reverse micelle solution with a non-sulfur containing surfactant, CTAB.
- 2.) Examination of enzymes in reverse micelles which may oxidize sulfur in EPS based on recent studies of sulfide oxidation by bacterial and mammalian enzymes (Holland, 1988, Kobayashi et al., 1986, and Rettie et al., 1990).
- 3.) Further work to enhance the DBT sulfur oxidizing activity of GB-1 including additional studies with reverse micelles.

FIGURE 4
LKB WAVELENGTH SCAN

Operator: EPS in ISOPOTANE
Date: 10-10-1990
Plot title: 0.5M I_A
Mode Abs/XT: Abs
Plot scale: 2
Plot offset: 0
Start Wavelength: 230
Stop Wavelength: 430
Scan speed, nm/s: 3

SAMPLE NUMBER: 4

BY WAVELENGTH : By Peak Height:
Peak WAVELENGTH Peak Height Peak WAVELENGTH Peak Height
No peaks

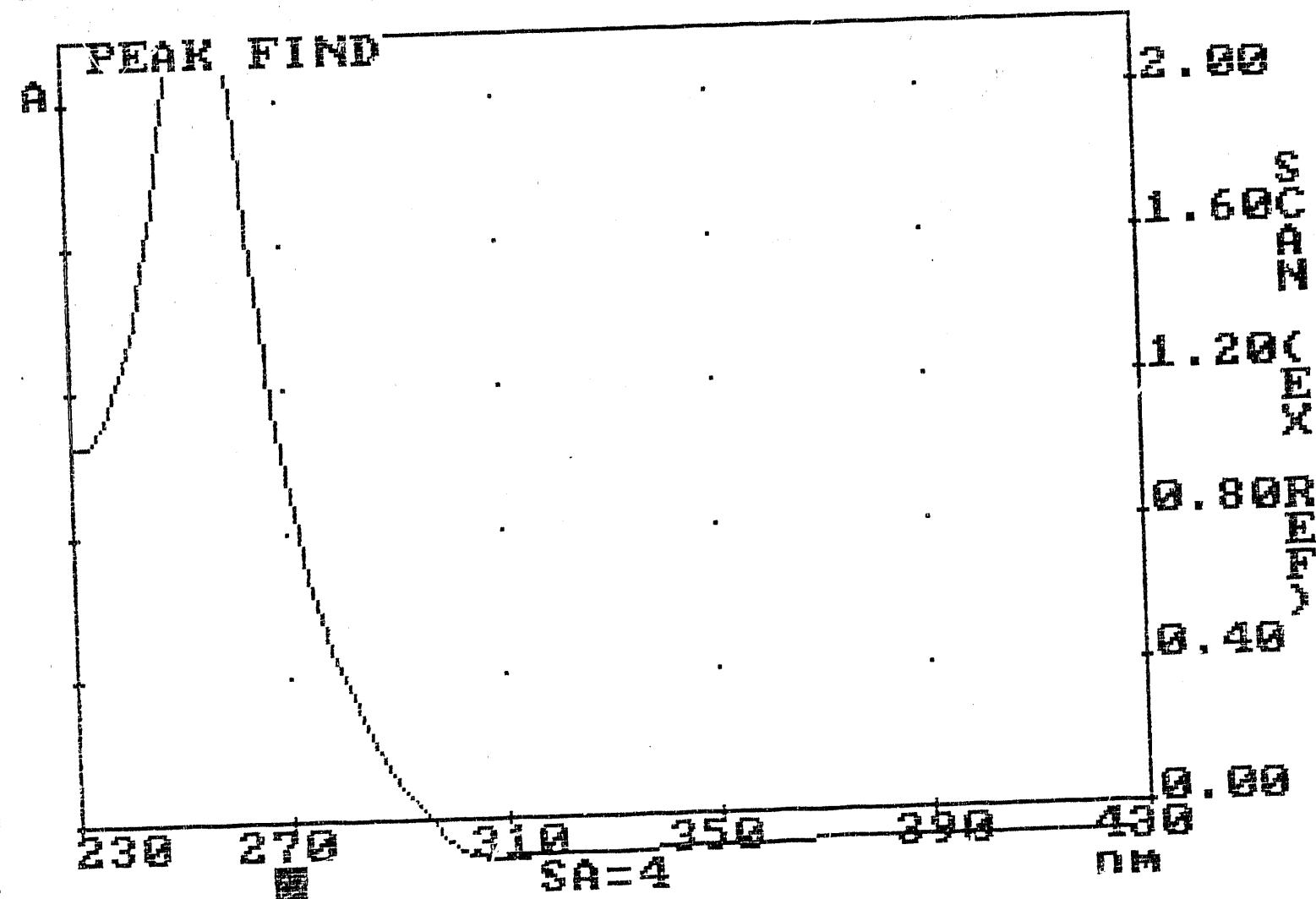


FIGURE 3

LKB WAVELENGTH SCAN

Operator: EP SULFOXIDE

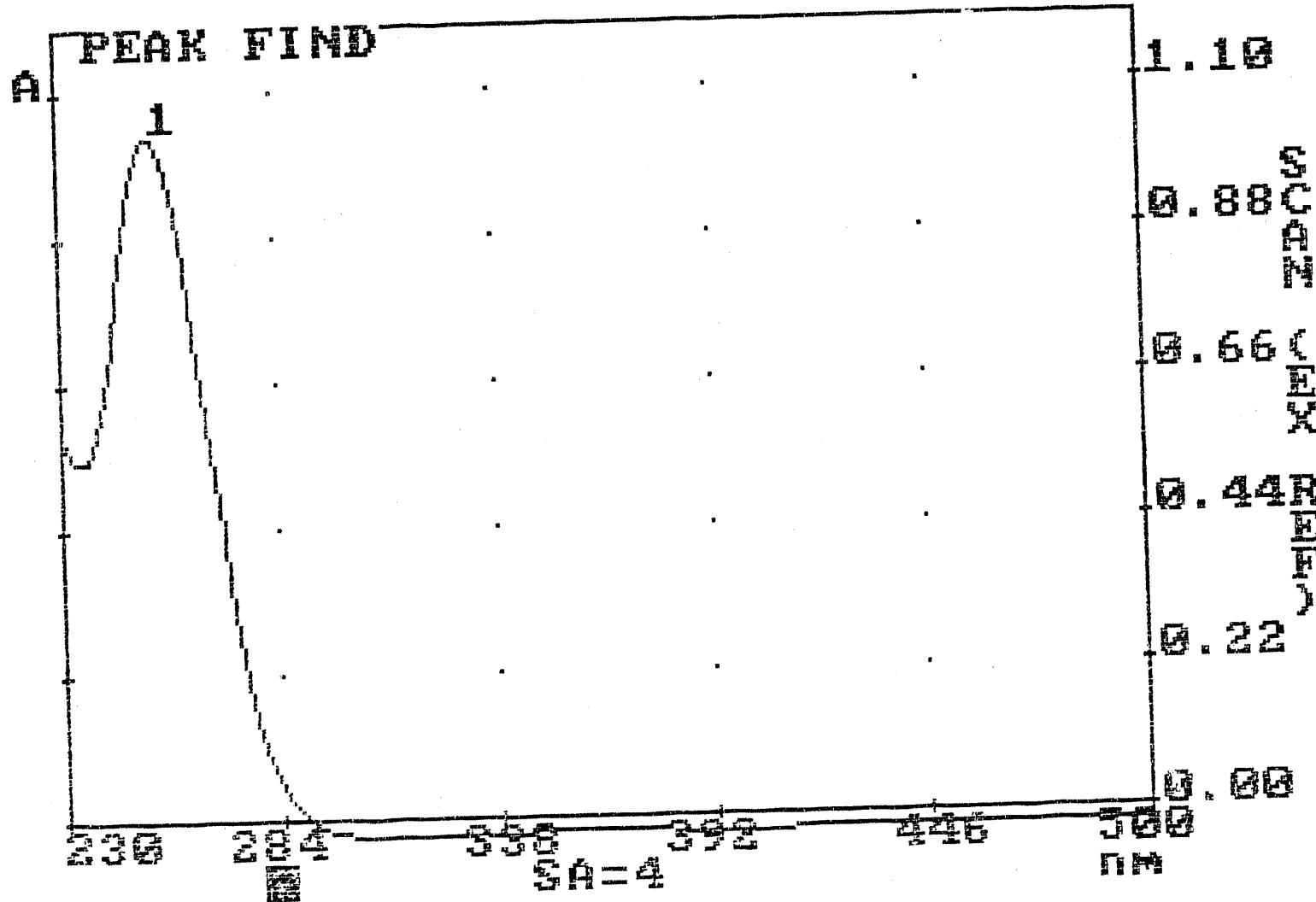
Date: 10-22-1990

Plot title: 0.5mM

Mode Abs/XT: Abs

Plot scale: 2.7

Plot offset: 0


Start Wavelength: 230

Stop Wavelength: 500

Scan speed, nm/s: 3

SAMPLE NUMBER: 4

By Wavelength :			By Peak Height:		
Peak	Wavelength	Peak Height	Peak	Wavelength	Peak Height
	nm	Abs		nm	Abs
1	254.5	1.034	1	254.5	1.034

LKB WAVELENGTH SCAN

Operator: EP SULPHONE
 Date: 10-22-1990
 Plot title: 0.5mm
 Mode Abs/XT: Abs
 Plot scale: 2
 Plot offset: 0
 Start Wavelength: 230
 Stop Wavelength: 500
 Scan speed, nm/s: 3

SAMPLE NUMBER: 4

By Wavelength:			By Peak Height:		
Peak Wavelength	Peak Height	nm	Peak Wavelength	Peak Height	nm
nm	Abs		nm	Abs	
1	261.5	0.314	1	261.5	0.314

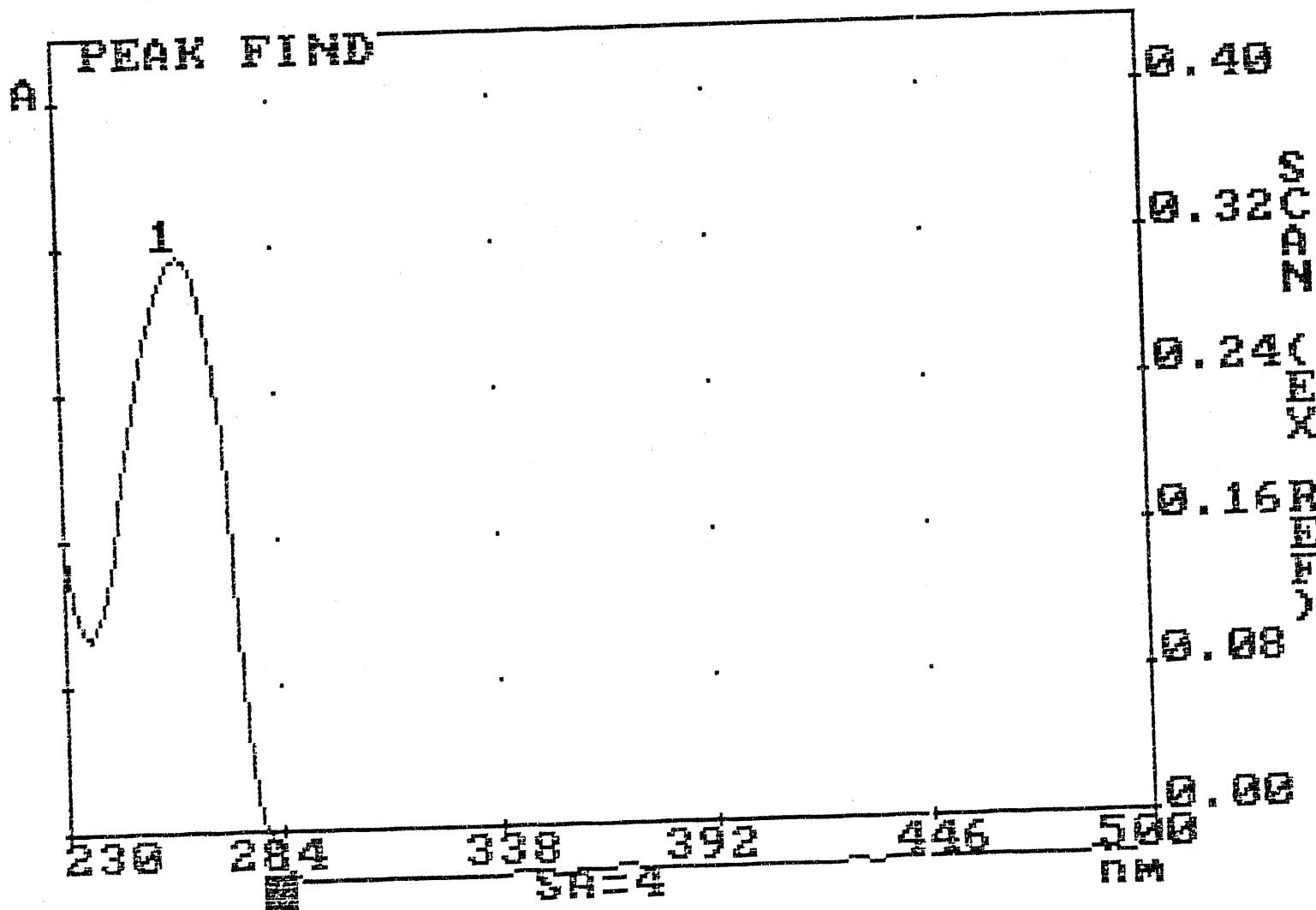
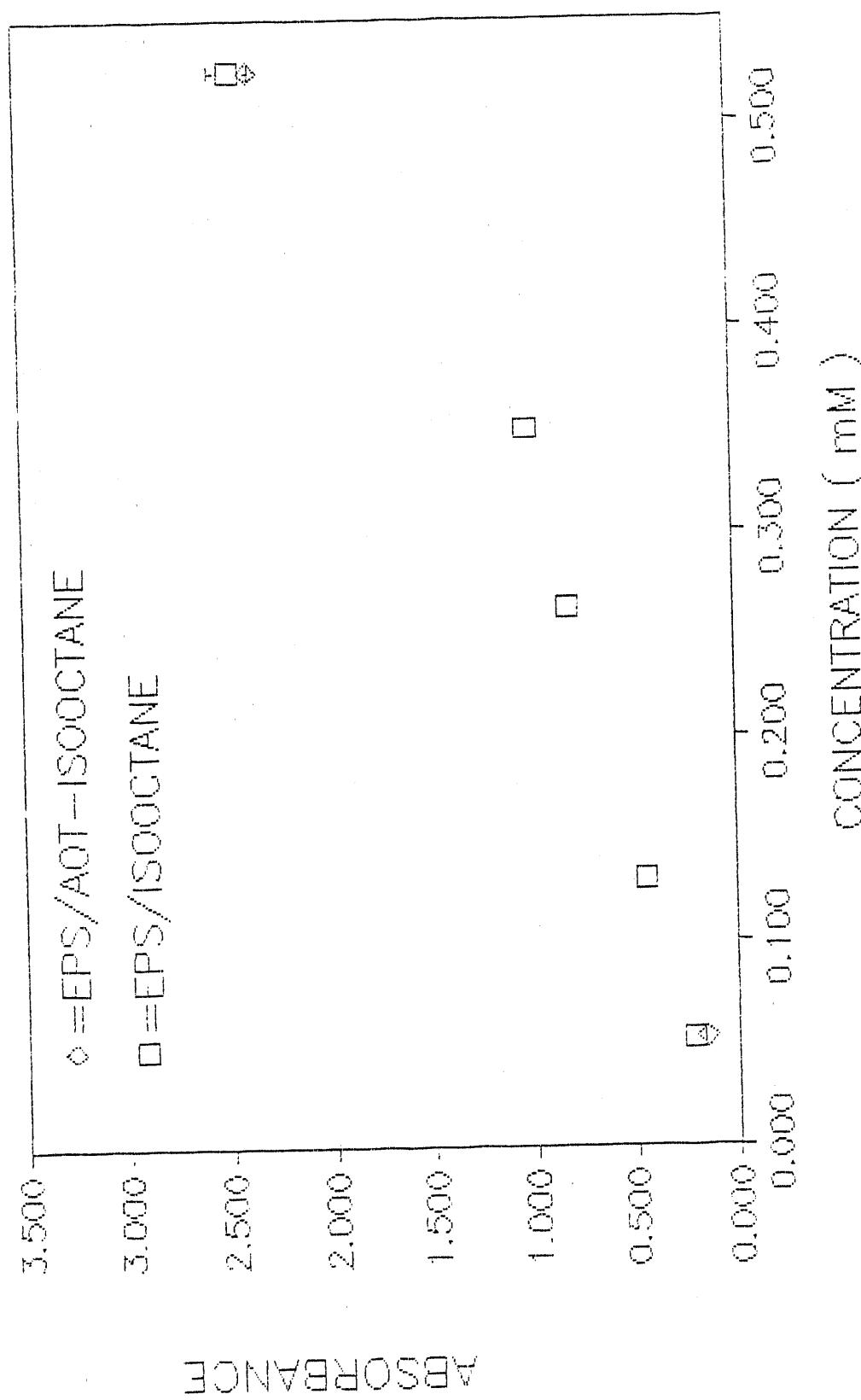



FIGURE 5

Peak Absorbance of EPS in Isooctane and AOT/ Isooctane

Section 5

BIBLIOGRAPHY

Holland, H.E. Chiral sulfoxidation by biotransformation of organic sulfides. Chem. Rev. 88: 473-485. 1988.

Kabanov, A.V., Levashov, A.V., Klyachko, N.L., Namyotkin, S.N., Pshezhetsky, A.V. and Martinek, K. Enzymes entrapped in reversed micelles of surfactants in organic solvents: a theoretical treatment of the catalytic activity regulation. J. Theor. Biol. 133: 327-343, 1988.

Kobayashi, S., Nakano, M., Goto, T., Kimura, T., and Schaap, A.P. Evidence of the peroxidase-dependent oxygen transfer from hydrogen peroxide to sulfides. Biochemical and Biophysical Research Communications 135: 166-171. 1986.

Martinek, K. Micellar enzymology: potentialities in fundamental and applied areas. Biochemistry International 18: 871-893, 1989.

Martinek, K., Levashov, A.V., Klyachko, N.L., Pantin, V.I. and Berezin, I.V. The principles of enzyme stabilization vs. catalysis by water-soluble enzymes entrapped into reversed micelles of surfactants in organic solvents. Biochim. Biophys. Acta 657: 277-294, 1981.

Martinek, K., Berezin, I.V., Khmelnitski, Y.L., Klyachko, N.L. and Levashov, A.V. Coll. Czech. Chem. Commun. 52: 2589, 1987.

Mozhaev, V.V., Khmelnitsky, Y.L., Sergeeva, M.V., Belova, A., Klyachko, N., Levashov, A. and Martinek, K. Catalytic activity and denaturation of enzymes in water/organic cosolvent mixtures. Eur. J. Biochem. 184: 597-602, 1989.

Nochur, S.V. and Kitchell, J.P. Enzymatic desulfurization of coal: Isolation of microbial enzymes which oxidize sulfur in a model coal compound. Proceedings: 1990 First International Symposium on the Biological Processing of Coal. EPRI, Inc.

Reinhammar, B. Laccase. In: Copper Proteins and Copper Enzymes, Vol. III, Lontie, R., ed., CRC Press, Inc., Boca Raton, FL, 1984.

Rettie, A.E., Bogucki, B.D., Lim, I., and Meier, G.P. Stereoselective sulfoxidation of a series of alkyl p-tolyl sulfides by microsomal and purified flavin-containing monooxygenases. Molecular Pharmacology. 37: 643-651, 1990.

Verhaert, R.M.D., Hilhorst, R., Vermue, M., Schaafsma, J.J. and Veeger, C. Description of enzyme kinetics in reversed micelles. 1. Theory. Eur. J. Biochem. 187: 59-72, 1990.

Wyza et al. Presented at Microbial Coal Desulfurization Workshop, DOE Contractors Review Meeting, August, 1989.

END

DATE FILMED

02/07/91

