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HOT D R Y  ROCK GEOTHERMAL POTENTIAL OF ROOSEVELT HOT SPRINGS AREA:  
REVIEW OF DATA AND RECOMMENDATIONS 

Jennifer East 

AB STRACT 

The Roosevelt Hot Springs area i n  west-central Utah  
possesses several features indicating potential fo r  hot dry 
rock ( H D R )  geothermal development. The area is character- 
ized by extensional tectonics and a h i g h  regional heat flow 
of  greater t h a n  105 mW/mz. The presence of s i l i c i c  vol -  
canic rocks as young as 0.5-0.8 Myr and t o t a l i n g  14 km3 
i n  volume indicates underlying magma reservoirs may be the 
heat source f o r  the thermal anomaly. 

Several h o t  dry wells have been dr i l led  on the periph- 
ery of the geothermal f i e ld .  Information obtained on three 
of these deep wells shows that  they have thermal gradients 
of 55-6O0C/km and bottom i n  impermeable Tertiary grani t ic  
and Precambrian gneissic units. The Tertiary granite i s  
the preferred HDR reservoir rock because Precambrian 
gneissic rocks possess a well-developed banded fo l ia t ion ,  
making fracture control over the reservoir more d i f f i cu l t .  

Based on a f a i r ly  conservative estimate of 160 km2 
f o r  the thermal anomaly present a t  Roosevelt Hot S p r i n g s ,  
t h e  a r e a  d e s i g n a t e d  f a v o r a b l e  f o r  HDR geothermal e x p l o r -  
a t i o n  may be on the order o f  seven times o r  more than the 
hydrogeothermal area currently under development. 

\ 

I .  INTRODUCTION 

The Roosevel t Hot Springs area is located i n  Beaver County, west-central 
Utah, about 14 km northeast of the c i ty  o f  Milford. I t  l i e s  about 1 km above 
the floor of Milford Valley on the western f l a n k  of the Mineral Mountains, 
the s i t e  of the largest  exposed intrusive body i n  the s t a t e .  
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A t  one t ime, Roosevel t Hot Spr ings  was a r e s o r t  area t h a t  con ta ined  

thermal s p r i n g s  d i s c h a r g i n g  s i 1  i c a - r i c h  waters. By 1966 s p r i n g  f l o w  had 

ceased, y e t  Roosevel t s t i l l  con ta ins  a c t i v e  fumaroles d e p o s i t i n g  sub1 imates 

wi th a s l  i g h t  hydrogen s u l  f i d e  odor. 

Based on temperature da ta  f rom 53 s h a l l o w  d r i l l  ho les ,  Wilson and Chapman 

(1978) es t ima ted  t h e  hydrothermal  resource  area as be ing  6 km l o n g  by 1.5 km 

wide a t  a depth o f  450 m. Several companies a r e  c u r r e n t l y  work ing  w i t h i n  t h i s  

f i e l d .  Seven p roduc t i on  w e l l s  have been d r i l l e d  w i t h  a maximum f l o w  c a p a b i l -  

i t y  o f  about  4.5 X 10 kg  o f  combined vapor and l i q u i d  p e r  hour.  Bottom- 

h o l e  temperatures a r e  as h i g h  as 260°C, w i t h  w e l l  depths rang ing  from 300 t o  

2234 m (Evans and Nash, 1978; P a r r y  and o the rs ,  1977). 
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11. REGIONAL STUDIES 

A.  Geology and Geophysics 

The Roosevel t Hot Spr ings  area i s  a t  t h e  eas te rn  margin o f  t h e  Basin and 

Range p r o v i n c e  where t h i s  p r o v i n c e  i s  t r a n s i t i o n a l  w i t h  t h e  Colorado P la teau  

( F i g .  1). The phys iog raph ic  boundary between these two prov inces  has been 

p laced  a long  major  f a u l t  zones t o  t h e  e a s t  and southeas t ,  such as t h e  H u r r i -  

cane, Sev ie r ,  and Tushar F a u l t s ,  which a r e  cons idered as southern  ex tens ions  

o f  t h e  Wasatch F r o n t  ( F i g .  2 ) .  However, based on se i sm ic  r e f r a c t i o n ,  geomag- 

n e t i c  v a r i a t i o n ,  geochemistry, and geo log ic  s t r u c t u r e s ,  t h e  ma jo r  l a t e r a l  

change o f  c r u s t a l  geophysica l  parameters between t h e  Basin and Range-Col orado 

P la teau  occurs 50 t o  100 km e a s t  o f  t h e  a c t u a l  phys iog raph ic  boundary (Shuey 

and o the rs ,  1973; K e l l e r  and o the rs ,  1975). 

Th is  t r a n s i t i o n  zone between t h e  Colorado P la teau  and Basin and Range 

p r o v i n c e  i s  c h a r a c t e r i z e d  by t h i n  c r u s t ,  approx imate ly  25 km t h i c k ,  a l ow  Pn 

v e l o c i t y  o f  7.5 km/s and a c r u s t a l  l o w - v e l o c i t y  l a y e r  i n  t h e  general  depth 

range o f  8-15 km. These fea tures  suggest  t h a t  a mant le  upwarp area, a t  l e a s t  

80 km wide and o f  unknown leng th ,  e x i s t s  beneath t h e  t r a n s i t i o n  zone ( K e l l e r  

and o the rs ,  1975). 

It has been p r e d i c t e d  t h a t  t h e  h i g h  h e a t  f l o w  c h a r a c t e r i s t i c  o f  t h e  Basin 

and Range p r o v i n c e  (desc r ibed  l a t e r )  extends eastward beyond t h e  Basin and 

Range-Colorado P la teau  phys iog raph ic  boundary (Shuey and o the rs ,  1973). 

C u r r e n t  h e a t  f l o w  work w i t h i n  t h e  t r a n s i t i o n  zone has v e r i f i e d  t h i s  p r e d i c t i o n  

(John Bode l l ,  U n i v e r s i t y  o f  Utah, personal  communication, 1980). The southern  
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F i g .  1. Loca t ion  o f  s tudy  area and phys iosg raph ic  s u b d i v i s i o n s  o f  
Utah. A f t e r  S i b b e t t  and N ie l son ,  1980. 
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8. East Cache Fault 
9. Wasatch Fault Zone 
10. Sevier Fault Zone 
11. Hurricane Fault Zone 
12. Paunsaugunt Fault Zone 

Fig .  2. Generalized l a t e  Mesozoic-Cenozoic map of Intermountain 
West taken from King's t e c t o n i c  map of North America (1969) 
and U. S. Geological Survey ' s  (1962) t e c t o n i c  map of United 
S t a t e s .  S t i p p l e d  pa t t e rn  = T e r t i a r y  and Quaternary  vol- 
can ic  rocks ; heavy 1 ines = physiographic boundaries.  Late 
Cenozoic and Quaternary  f a u l t s  s h o w  w i t h  hachures on down- 
thrown s i d e .  A f t e r  Smith and Sbar,  1974. 
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p a r t  o f  t h e  In te rmoun ta in  Seismic B e l t  ( ISB)  o f  Smith and Sbar (1974) i s  a l s o  

c o i n c i d e n t  w i t h  t h e  Basin and Range-Colorado P la teau  boundary. The Intermoun- 

t a i n  Seismic B e l t  i s  a 1300-km-long and 100-km-wide zone o f  pronounced e a r t h -  

quake a c t i v i t y  t h a t  extends n o r t h e a s t  f rom Ar i zona  i n t o  Utah, and then n o r t h  

i n t o  eas te rn  Idaho and western Montana ( F i g .  3 ) .  Two secondary w e s t e r l y  

t r e n d i n g  se i sm ic  zones a l s o  occur i n  t h e  i n t e r m o u n t a i n  r e g i o n .  The southern 

zone extends eastward 200 km f rom southern Nevada i n t o  asouthwest Utah, i n t e r -  

s e c t i n g  t h e  I S B  and t h e  Hur r i cane  F a u l t  near  Cedar City, Utah. 

Roosevel t  Hot Spr ings i s  l o c a t e d  near t h e  western edge o f  t h e  I S B  where 

t h e  t r e n d  changes f rom n o r t h e a s t  t o  n o r t h .  T h i s  e a s t - t r e n d i n g  zone o f  a c t i v e  

s e i s m i c i t y  crosses t h e  r e g i o n a l  t e c t o n i c  g r a i n  o f  nor th-south Basin and Range 

b l o c k  f a u l t i n g ;  y e t  i t  i s  c o i n c i d e n t  w i t h  an e a s t - t r e n d i n g  zone o f  T e r t i a r y  

r h y o l i t e s  and ca lde ras  t h a t  extend f rom t h e  Tushar Mountains, which a re  t h e  

range immediate ly  e a s t  o f  t h e  M i n e r a l  Mountains, i n t o  southern Nevada. T h i s  

change i n  t r e n d  o f  t h e  I S B  a l s o  corresponds t o  a major east-west g r a v i t y  l i n -  

ear t h a t  Cook and o t h e r s  (1975) t h i n k  r e p r e s e n t s  a r e l i c  t r a n s f o r m  f a u l t  of 

late-Mesozoic ear ly-Cenozoic age. 
a 

6. Regional  Heat Flow 

The Basin and Range p rov ince  possesses an average hea t  f l o w  of 92 - + 

8 mW/m2 i n  c o n t r a s t  w i t h  t h e  50 - + 8 mW/m2 average o f  t h e  Colorado P la teau  

(Sass and o the rs ,  1980). Two r e g i o n s  have been i d e n t i f i e d  w i t h i n  t h e  Utah 

Basin and Range p r o v i n c e  t h a t  show e l e v a t e d  h e a t  f l o w  (Chapman and o the rs ,  

1978). The nor thernmost  r e g i o n  i s  r e f e r r e d  t o  as t h e  South B o n n e v i l l e  Anom- 
a l y .  

The southern r e g i o n  o f  e l e v a t e d  h e a t  f l o w  t r e n d s  n o r t h e a s t  f rom t h e  

Escalante Deser t  o f  southwest Utah t o  t h e  Cove Fo r t -Su lphu rda le  geothermal 

area o f  wes t - cen t ra l  Utah. T h i s  r e g i o n  possesses an average hea t  f l o w  of 

g r e a t e r  than 105 mW/m2 and i n c l u d e s  seve ra l  Known Geothermal Resource Areas 

(KGRA) ( F i g s .  4 and 5 ) .  The h e a t  f l o w  anomaly was d e l i n e a t e d  on t h e - b a s i s  of 

r e g i o n a l  measurements e x c l u d i n g  t h e  geothermal resource  areas (Chapman and 

o the rs ,  1978). Based on t h e  hea t  f l o w  map o f  Sass and o t h e r s  (1980), t h e  

Roosevel t  Hot Spr ings KGRA i s  marg ina l  t o  t h i s  200-km-long zone, which ends 

n o r t h e a s t  o f  Roosevel t  near t h e  Cove Fort-Sul  phurdale geothermal area. 

It t r e n d s  r o u g h l y  no r thwes t  near l a t i t u d e  40"N. 
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F i g .  3. Index map and regional seismicity. Regional seismicity 
taken from Smith, (1975). Box outlines Cove Fort and 
Roosevelt Hot Spr ing  area. After Olsen and Smi th ,  1976. 
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Fig. 4. Western United S t a t e s  show ng heat-flow contours ( i n  HFU), 
heat-flow provinces , and major physiographic d i v i s i o n s  
(SRP, Snake River P l a i n ;  BMH, Battle Mountain High; E l ,  
Eureka Low; R G R ,  Rio Grande r i f t  zone; Y ,  Yellowstone; L V ,  
Long Val ley . )  (1 HFU = 41.8 mW/m2.) Afte r  Sass and 
others , 1980. 
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F i g .  5. Location o f  K G R A ' s  i n  west-central Utah. Tertiary and 
Quaternary volcanic outcrops are  shown w i t h  accompanying 
age dates i n  Myr. Tb = Tertiary basal t ,  Tr = Tertiary 
rhyolite,  Qb = Quaternary basal t ,  Qr = Quaternary rhyo- 
l i t e .  After Parry and others,  1977. 
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111. LOCAL GEOLOGY 

The Mineral Mountains are a 45-km-longY 12-km-wide horst ,  character is t ic  
of the Basin and Range province. North-s t r iking bounding fau l t s  define i t s  
western and eastern margins. Mil ford Valley, a northern extension of the 
Escalante Desert, l i e s  to the west. A l l u v i u m  i n  Milford Valley has a m i n i m u m  
depth of 1 km, based on d r i l l  hole information (Carter and Cook, 1978). 

The northern and southern por t ions  of the Mineral Mountains are comprised 
mainly of Precambrian metamorphic and sedimentary rocks of Paleozoic t o  Meso- 
zoic age. Tertiary-age grani t ic  rocks dominate the central section , bounded 
on the nor th  by the County Line Fault and on the south by the Cave Canyon 
Fault ( F i g .  6 ) .  These two f a u l t s  correspond w i t h  well-defined east-west 
trending magnetic gradients (Carter and Cook, 1978). 

A probable major structural  feature i n  the Milford area is  an east-  
northeast trending l ineation, designated by Crosby (1973) as the Black Rock 
Offset. I t  extends 90 km from the Tushar Mountains t o  the San Francisco 
Mountains, and defines the northern edge of the transverse igneous be l t  men- 
tioned ear l ie r .  The of fse t  exhibits predominate right-lateral  s t r ike-s l  i p  
d i s  p l  acemen t. 

I n  the northern Mineral Mountains the County Line Fault probably corre- 
sponds i n  p a r t  w i t h  the Black Rock Offset. East-west trending magnetic and 
gravi ty  gradients cross the County Line F a u l t  and  continue westward through 
the a l luv ium of Milford Valley. Carter and Cook (1978) interpreted these 
g r a v i t y  and magnetic t rends  as i n d i c a t i n g  t h e  nor thern  terminus o f  one l a r g e  

or several smaller intrusives. These intrusives form the f l o o r  o f  the Milford 
Valley south  of the County Line Faul t-Black Rock Offset. 

North-trending, normal fau l t s  o f f se t  Precambrian and Tertiary rocks along 
the western edge of the central Mineral Mountains. Other nor th  t o  northeast- 
trending faul ts  such as the Opal Mound F a u l t  ( the  Dome Fault of Petersen, 
1975) were mapped on the basis of l inear  trends of h o t  spring deposits, and 
displacements i n  alluvial fan surfaces (Petersen , 1975). 

The central Mineral Mountains a re  a structural  h i g h  that  expose highly 
deformed Precambrian metamorphic rocks and the Mineral Mountains pluton , and 
cover nearly 250 km2. Rb-Sr systematics by Lipman and others (1978) suggest 
the maximum age of the p l u t o n  i s  35 Myr, yet  the granite is assumed t o  
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F i g .  6 .  General geology o f  the  Mineral Mountains. Modi f ied from 
Car ter  and Cook, 1978; Nielson and others,  1978. A f t e r  
Yusas and Bruhn, 1979. 
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be 20-25 Myr based on K-Ar dates on similar rocks t o  the west in the San 
Francisco and Wah Wah Mountains (Lemmon and others, 1973). 

Other units exposed i n  the central Mineral Mom tains include Quaternary 
h o t  spring deposits of opaline and chalcedonic sinter, and l a t e  Tertiary 
rhyolite and Quaternary s i l i c i c  volcanics. K-Ar  dating of the Quaternary 
rhyolites yields ages of approximately 0.5 to 0.8 Myr (Lipman and others, 
1978). 

A few small outcrops of vesicular porphyritic basalt  are present near the 
northern end of  the range. T h e  outcrops consist  of small flows w i t h  ropy flow 
tops and  two small spa t te r  cones t h a t  overlie bedrock and alluvium. The ba- 
s a l t  cones are only s l igh t ly  eroded and the ropy flow tops and spa t te r  cones 
a re  well preserved, suggesting t h a t  most are  less t h a n  10 000 years old (Sib- 
be t t  and Nielson, 1980). Several extensive basalt f ie lds  l i e  north and east  
of the Mineral Mountains. They are  roughly contemporaneous w i t h ,  and younger 
than, the rhyolite of the Mineral Mountains (Condie and Barsky, 1972; Hoover, 
1974). Basaltic volcanism was in i t ia ted  about 1 Myr ago i n  the Black Rock 
f i e ld  to the n o r t h .  The Cove Fort f i e ld  to the west i s  recognized as one of 
Utah's youngest lava f ie lds ,  dated a t  less  than 10 000 years. T h i s  bimodal 
assemblage o f  basalt and rhyolite,  associated w i t h  continental regions, has 
been recognized widely i n  the western United States i n  upper Cenozoic volcanic 
sequences (Christiansen and Lipman , 1972) .  

A. Stratigraphy: Precambrian 
Precambrian gneiss and  s ch i s t  form an irregular,  1-km-wide be l t  along the 

eastern edge of the Roosevelt KGRA. These metamorphic rocks were divided into 
f ive  mappable units by Nielson and others (1978). The u n i t s  include banded 
gneiss, hornblende gneiss, quartzi te ,  s i l l imani te  schist, and bioti te gneiss. 
However, recent age dating now suggests a Tertiary age for  the hornblende 
gneiss and b i o t i t e  gneiss units (Nielson, University o f  Utah Research Ins t i -  
t u t e ,  personal communication, 1980). 

T h e  banded gneiss is the oldest  and most extensive u n i t .  I t  consists of 
highly variable interlayered gneiss, schist ,  and a migmatite w i t h  conspicuous 
l i g h t  and dark layers. T h i s  banding is thought t o  r e f l ec t  r e l i c t  sedimentary 
layering. The gneiss possess a well-developed schis tosi ty  and isoclinal 
folding w i t h  northeast-plunging lineation on schis tosi ty  planes (Nielson and 
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others, 1978). The banded gneiss has been intruded by the hornblende gneiss 
and the Tertiary plutonic phases. 

The hornblende gneiss is a coarse-grained fol  iated granodiorite tha t  
intrudes the banded gneiss to the west and is intruded by Tertiary plutonic 
rocks t o  the east .  I t  commonly displays a weak fol ia t ion,  ye t  locally, horn- 
blende gneiss may show a strong foliation and l ineation, w i t h  alignment of 
hornblende grains. 

The other three units, the metaquartzite, s i l l imani te  schist ,and b io t i te  
gneiss are o f  limited extent and occur mainly as inclusions w i t h i n  the banded 
gneiss and hornblende gneiss. 

B. T e r t i a n  
Tertiary f e l s i c  rocks of the Mineral Mountains p l u t o n  underlie most of 

the central portion of the Mineral Mountains. Intrusive rocks i n  the San 
Francisco and Wah Wah Mountains to the west yield dates of 20-23 Myr for  
quartz monzonite rocks and 27-29 Myr f o r  granodiorite rocks (Lemmon and 

others, 1973). The Mineral Mountains p l u t o n  i s  assumed t o  be of similar age. 
K-Ar dates show ages o f  roughly 10-12 Myr for  the Mineral Mountains pluton 
(Armstrong, 19701, b u t  a thermal event approximately 10 Myr ago probably has 
reset  these dates. 

Nielson and others (1978) have identified f ive  major f e l s i c  phases of the 
batholith,  w i t h  re la t ive  ages documented by cross-cutting relationships. In 
chronologic order the f ive phases are: quartz monzonite, porphyritic granite,  
syenite,  granite,  and fine-grained granite. The p l u t o n  has been subsequently 
cut by a su i t e  of mafic and a p l i t i c  dikes, as well as by Quaternary s i l i c i c  
volcanics, which include flows, pyroclastics, and domes. 

Felsic plutonic phases are  typically medium t o  coarse-grained. Bioti te 
and hornblende are varietal  minerals. Sphene, apa t i te ,  magnetite, and ilmen- 
i t e  are  minor accessories in most units. Alteration of the phases is minor, 
w i t h  some formation of s e r i c i t e  associated w i t h  feldspars and some chlor i te  
a f t e r  b io t i te .  

The quartz monzonite is the e a r l i e s t  and most abundant phase of the 
Mineral Mountains p l u t o n  as exposed i n  the Roosevelt Hot Springs area. I t  
intrudes Precambrian gneiss and i s  i n  turn intruded by a l l  other Tertiary 
f e l s i c  phases. The quartz monzonite is typically massive, however near its 
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contact w i t h  the Precambrian rocks i t  displays numerous xenoliths and a 
pervasive shear f o l i a t i o n ,  which generally trends north-south. 

The l a t e r  Tertiary f e l s i c  phases are only briefly mentioned. They dis- 
play strong textural and compositional a f f i n i t i e s .  Fine- to medium-grained 
granite occurs as a major late-stage dike-forming u n i t  followed by minor 
microdiorite, diabase, and rhyolite dikes. 

Younger Tertiary s i l i c i c  volcanic rock units (K-Ar d a t e  7.90 - + 0.3 Myr) 
occur i n  lower Corral Canyon south of Roosevelt KGRA. The  volcanics are 
highly dissected and dissimilar petrographically from the younger rhyol i t e  
domes located along the c res t  of the range. F i e l d  work by Evans and Nash 
(1978) indicates t h a t  these are older rhyolites and may be the remnant of an 
ea r l i e r  dome or s e t  of domes. However, Sibbett and Nielson (1980) describe 
the volcanic units as a flow of porphyritic quartz l a t i t e .  I t  may be t h a t  a 
thermal event a t  10 Myr produced these la te  Tertiary s i l i c i c  volcanics and 
reset  many of the dates on rocks o f  the Mineral Mountains pluton. 

C .  Qua ternary 
A su i t e  of Pleistocene rhyol i t ic  volcanic rocks extends discontinuously 

for  about 15 km along the c res t  of the Mineral Mountains. This su i t e  was 
in i t ia ted  by eruption of two low-viscosity rhyolite flows, followed by a i r -  
f a l l  pumice and non-welded ash flows. The youngest ac t iv i ty  produced 12 vis- 
cous rhyolite domes and minor lava flows. K-Ar radiometric dates indicate 
this volcanic ac t iv i ty  l a s t ed  from 0.8 t o  0.5 Myr b . p .  (Lipman and o the r s ,  
1978). 

Smi th  and Shaw (1975) hypothesized t h a t  young rhyolites such as these may 
indicate the presence of  shallow magma reservoirs t h a t  could serve as the 
heat source for  the geothermal system present a t  the Roosevelt Hot Springs 
area. The KGRA is located 2-km west of the nearest Quaternary rhyolite out- 
crop. 

The Bailey Ridge and Wildhorse Canyon nonporphyritic obsidian flows are 
the oldest of the Quaternary rhyolites. Radiometric dating of the Bailey 
Ridge flow gives an age of 0.77 - + 0.08 Myr (Lipman and others, 1978). Paleo- 
magnetic, chemical , and morphological similari t i e s  between the Bailey Ridge 
and Wildhorse Canyon flow suggest a similar age. Both flows are  

13 



currently about 3 km long and about 80 m thick,  and  were or iginal ly  as much as 
100 m thick. They are  nonporphyritic and obsidian-rich b u t  commonly possess 
devi t r i f ied  cores. 

Pyroclastic units occupy an intermediate pos i t i on  i n  the s t ra t igraphic  
sequence. Explosive eruptions deposited a i r - fa l l  tuff  (some was reworked by 
water), as well as nonwelded ash flow tu f f s .  Principal exposures a re  in 
Ranch Canyon. The tuffs  are generally l i g h t  colored, white t o  tan and poorly 
consol idated.  A K-Ar date on a contained obsidian c l a s t  gives a maximum age 
for  the pyroclastics of 0.68 - + 0.04 Myr (Lipman and others, 1978). 

Twelve rhyolite domes occur along the c r e s t  of the range, extending dis- 
continuously for  about  15 km. The domes form some of the highest topographic 
points i n  the Mineral Mountains. Individual domes are as much as 1 km across 
a t  the base and as much as 250 m h i g h  (Lipman and others, 1978). Small, s t u b -  
by flows extend out from some of the domes. 

Based solely on the degree of dissection i t  appears the oldest  domes are  
North and  South Twin  F l a t  Mountains and the youngest domes are  Bearskin and 
L i t t l e  Bearskin Mountain. Well-dissected domes e x h i b i t  a basal black vi t ro-  
phyre zone tha t  grades upward i n t o  devi t r i f ied  rock. Upper portions of the 
less  dissected domes consis t  of blocks of tan p e r l i t i c  glass ,  remnants of the 
original brecciated frothy carapace. The steeply d i p p i n g  flow layering and 
ramp structures  i n  the in t e r io r  of the domes show a marked contrast  i n  viscos- 
i t y ,  compared w i t h  flow structures  i n  the older lavas of Bailey Ridge and 
Wil dhorse Canyon (Lipman and others,  1978). A1 1 the domes contain phenocrysts 
of quartz, oligoclase,  a lka l i  feldspar,  b io t i t e ,  and iron-titanium oxides. 

Age determinations on obsidian from Bearskin Mountain and sanidine from 
L i t t l e  Bearskin Mountain have yielded K-Ar ages of 0.58 + 0.12 Myr and 0.53 + 
0.05 Myr, respectively (Lipman and others,  1978). 

Several magma-genesis models have been proposed for  the Pleistocene rhyo- 
l i t e s  of the Mineral Mountains. One model involves different ia t ion from a 
parent granit ic magma related t o  the Mineral Mountains pluton. The second 
model a t t r ibu tes  rhyol i t ic  magmatism t o  a l a t e r  event independent of the plu- 
ton, y e t  localized where the c rus t  was s t i l l  h o t  from the e a r l i e r  plutonic 
event (Lipman and others, 1978). Evans and Nash (1978) propose t h a t  the h i g h  
amount of basal t ic  volcanism to  the north and southeast of the Mineral 

- - 

14 



Mountains, i n  combination w i t h  a h i g h  regional heat flow of 92 mW/m2 or 
greater caused crustal me1 t i n g  that  produced a separate ( l a t e r )  rhyol i t ic  
magma. 

Evans and Nash (1978) have a l s o  determined equil ibration temperatures for  
the Quaternary rhyolite using the iron-titanium oxide geothermometer of Bud- 
d i n g t o n  and Lindsley (1964). The results indicate eruption temperatures of 
740-785°C f o r  the older Quaternary obsidian flows and 635-665°C f o r  the young- 
e r  pyroclastic rocks and rhyol i t e  domes. Simil a r  temperatures were obtained 
using the two-fel dspar  geothermometer. Evans and Nash (1978) speculate tha t  
the domes and flows are genetically related and t h a t  the rhyolite of  the domes 
was derived by differentiation of the magma that  produced ear l ie r  obsidian 
flows. Chemical and mineralogic data also substantiate a single magma source 
w i t h  the fractionation of feldspar (Parry and others, 1977). 

D .  Hot Spr ing  Deposits 
Hot s p r i n g  deposits i n  the Roosevel t KGRA include both opaline and chal- 

cedonic s in t e r  and silica-cemented a l luv ium.  The Opal Mound and other h o t  
spring deposits are  e i ther  localized a long  the n o r t h  trending Opal Mound F a u l t  
or i n  the proximity of Roosevelt Hot Springs.  Hot spring deposits along the 
Opal Mound Fault are ver t ical ly  displaced a t  l e a s t  3.5 m (Petersen, 1975). 

E. Structure 
Based on work by Nielson and others (1978) the Roosevelt KGRA is believed 

t o  be dominated by four major faul t  systems. These a r e  i n  order o f  a g e :  1) 

large-scale faul ts  which dip a t  shallow angles t o  the west, 2 )  northwest 
trending f a u l t  zones probably related t o  the low-angle fau l t s ,  3 )  east-west 
steeply dipping structures and, 4 )  north to  northeast-trending Basin and Range 
normal fau l t s  which localized the h o t  sp r ing  ac t iv i ty  ( F i g .  7 ) .  

The large-scale f a u l t s  generally trend northwest and can be traced d i s -  
continuously for  up to  3 km. These low-angle normal fau l t s  of fse t  both Pre- 
cambrian metamorphic and Tertiary grani t ic  rocks. Fault planes appear t o  
f la t ten  a t  depth and the f a u l t  zones are often marked by mylonites or by 
intense brecciation. These low-angle faul ts  a re  similar t o  those described as 
denudation fau l t s  by Armstrong (1972) and may also be referred t o  as gravity 
s l i de  blocks. They were probably formed dur ing  u p l i f t  of the Mineral 
Mountains (Nielson and others, 1978). According t o  Si  b b e t t  and Nielson 
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Fig .  7 .  East-west c ros s  s e c t i o n  through Roosevelt  Hot Springs geothermal 
f i e l d ,  i l l u s t r a t i n g  f a u l t  r e l a t i o n s h i p s .  After  Nielson and o t h e r s ,  
1978. 



(1980) , the f i r s t  low-angle fau l t s  probably formed near the pluton-country 
rock contact or a few fee t  below th is  along cooling fractures within the 
pluton. Later denudation fau l t s  a re  t h o u g h t  t o  have formed deep within the 
pluton. 

The second f a u l t  system is confined t o  the upper plates of the major 
1 ow-angle fau l t s .  They form zones of northwest-trending, high-angle fau l t s  
which d i p  steeply e i ther  east  or west. Nielson and others (1978) conclude 
t h a t  northwest t r end ing  fau l t s  were developed i n  the upper plate  i n  response 
t o  different ia l  movement of the plate d u r i n g  displacement. T h i n  sections of 
f a u l t  breccia and mylonite suggest more than one period of movement of low- 
angle fau l t s  (Sibbett  and  Nielson, 1980). 

The t h i r d  faul t sys tem incl udes s teeply dipping eas t-wes t normal faul ts  . 
The most prominent of these i s  the Negro Mag faul t system (Hot S p r i n g s  Fault 
of Yusas and B r u h n ,  1979) sub-parallel to  Negro Mag Wash. 

The fourth and youngest set  of fau l t s  i n  the KGRA trend north- t o  nor th-  
northeast and dip a t  h i g h  angles. The best exposed is the Opal Mound Fault 
w i t h  associated s i l ic ious  sinter deposits. The Opal Mound Fault forms the 
western boundary of the hydrothermal reservoir.  A north-south trending mag- 
ne t ic  h i g h  and r e s i s t i v i t y  low follows the Opal Mound Fault south of Negro Mag 
Wash (Carter and Cook, 1978; Nielson and others, 1978). North of the wash 
there is a change in trend of the r e s i s t i v i t y  low t o  the northwest and tracing 
of the Opal Mound Fault becomes speculative (Nielson and others,  1978) 

Detailed gravity surveys conducted by the University of Utah i n  1974 and 
1975, showed t h a t  t h e  Opal Mound F a u l t  i s  j u s t  one o f  s e v e r a l  n o r t h  t r e n d i n g  

normal fau l t s  i n  the area (Crebs and Cook, 1976; Thangsuphanich, 1976). Grav- 
i t y  modeling by Ward and others (19781, and Olson and Smith (1976) show 
repeated down faul t ing t o  the west of the Opal Mound Fault. Gertson and Smith 
(1979) have mapped a f a u l t  i n  alluvium about  1.5 km west of the Opal Mound. 
T h i s  f a u l t  i s  believed to  be the main range-front f a u l t  on the west s ide of 
the Mineral Range. 

IV. GEOPHYSICAL STUDIES 

Geophysical studies he1 p i n  understanding hydrothermal systems as well as 
the HDR potential present i n  the Roosevelt Hot Spr ings  area. Seismic, grav- 
i t y ,  and magnetic studies have defined the regional se t t ing ;  r e s i s t i v i ty  
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and h e a t  f l o w  were used t o  l o c a l i z e  t h e  convec t i ve  hydrothermal system, 
whereas se ismic,  m a g n e t o t e l l u r i c ,  g r a v i t y ,  and magnet ics were used i n  an 

at tempt  t o  l o c a t e  t h e  source o f  hea t .  

A. Seismic 

Microear thquake m o n i t o r i n g  around t h e  Roosevel t Hot Spr ings KGRA d u r i n g  

1974 and 1975 and aga in  f r o m  1977 t o  1978, r e v e a l e d  t h a t  v i r t u a l l y  a l l  e a r t h -  

quakes occurred a long  a nor theast -southwest  t r e n d  f rom n o r t h  o f  Cove F o r t  

through t h e  M ine ra l  Range. The s t r i k e  o f  t h e  b e l t  appears p a r a l l e l  t o ,  b u t  

e a s t  o f ,  t h e  Opal Mound f a u l t  zone. Earthquake a c t i v i t y  i n  t h e  Roosevel t  Hot 

Spr ings area was minimal i n  comparison w i t h  t h e  Cove For t -Sulphurdale area 

25 km t o  t h e  east ,  where ear thquake a c t i v i t y  was c h a r a c t e r i z e d  b y  p r i m a r i l y  

shal low,  l e s s  than  5-kin f o c a l  depths (Olson and Smith, 1976). 

A t e l e s e i s m i c  P-delay s tudy  was r e c e n t l y  completed b y  t h e  U. S. 
Geo log ica l  Survey (USGS) f o r  t h e  Roosevel t  and Cove F o r t  r e g i o n s  (Robinson and 

Iyer, 1979).  Two e longa te  zones were de tec ted  beneath t h e  M ine ra l  Mountains, 

which were i n t e r p r e t e d  as p ipes  o f  p a r t i a l l y  mol ten m a t e r i a l .  The deeper 

zone o f  t h e  two extends f rom t h e  man t le  t o  app rox ima te l y  10-km depth.  The 

s m a l l e r  l o w - v e l o c i t y  zone i s  found a t  a depth o f  5 km o r  l e s s .  

Weschler and Smith (1979), however, suggest t h a t  t h e  delays i n  P-wave 

t r a v e l  t imes c o u l d  be due t o  t h e  f r a c t u r e d  n a t u r e  and p o s s i b l e  f l u i d - f i l l e d  

p o r o s i t y  o f  t h e  western edge of t h e  M ine ra l  Mountains p l u t o n .  They a l s o  

suggest t h a t  low v e l o c i t i e s  c o u l d  be i n  response t o  a compos i t i ona l  change 

f r o m  g r a n i t e  t o  gneiss.  

Faul  t -p lane  s o l u t i o n s  f o r  t h e  Cove F o r t  earthquakes demonstrate ob1 ique  

normal f a u l t i n g  w i t h  west t o  west-northwest d i r e c t i o n s  o f  t h e  minimum com- 

p r e s s i v e  s t r e s s  (Ward and o t h e r s ,  1977).  T h i s  s t r e s s  d i r e c t i o n  i s  c o n s i s t e n t  

w i t h  genera l  east-west e x t e n s i o n  o f  t h e  e a s t e r n  Great Basin. 

B. G r a v i t y  and Magnet ics 

Th is  summary o f  g r a v i t y  and magnet ic work a t  Roosevel t  i s  p r i m a r i l y  f rom 

Ward and o t h e r s  (1977). F i g u r e  8 shows t h e  t e r r a i n - c o r r e c t e d  Bouguer g r a v i t y  

anomaly map based on about 700 s t a t i o n s  measured d u r i n g  1974 through 1976. 

The g e n e r a l l y  n o r t h - t r e n d i n g  g r a v i t y  con tou rs  w i t h  pronounced g r a d i e n t s  

a d j a c e n t  t o  t h e  western margin o f  t h e  M ine ra l  Mountains i n d i c a t e  Basin and 

Range f a u l t i n g ,  t h a t  formed t h e  e a s t e r n  margin o f  t h e  M i l f o r d  V a l l e y  graben 
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F i g .  8. Terrain-corrected Bouguer gravity anomaly map of the Roose- 
vel t Hot Springs area. Contour interval = 2 mgal . Well 
des i gnations : sol i d  ci rcl e--producti ve we1 1 ; pl  ain open 
circle--non-productive well ; open c i r c l e ,  w i t h  crosses-- 
thermal gradient well. Letter designations are described i n  
text.  After Ward and others , 1977. 
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t h a t  appears as a gravity low along the western p a r t  of the map. About 2-km 
north of the Millard-Beaver county l i ne ,  a f a u l t  zone occurs ( C  of F i g .  8) 
where the Mineral Mountains pluton terminates against Paleozoic rocks. Here 
the northern gravity h i g h  is separated into two gravi ty  h i g h s  t h a t  are r i g h t -  
l a t e ra l ly  of fse t  about 2 km i n  the intervening gravity saddle. T h i s  eastward 
trending lineation corresponds w i t h  the Black Rock Offset of Crosby (1973) and 
passes across the County Line Fault. In  the southern p a r t  of the gravity map 
( D  of F i g .  8) is a pronounced north-northeast trending elongate gravity low, 
about 8 km i n  length, which consists of two gravity lows ( D  and E of F i g .  8 ) ,  
that  correspond w i t h  a ser ies  of volcanic domes, including Bearskin and L i t t l e  
Bearskin Mountains, and North and South Twin  F l a t  Mountains. This gravity low 
may indicate a low-density intrusive a t  shallow depth ( 2  km) beneath these 
domes, b u t  more l ikely i t  i s  caused by the low-density extrusive rhyolite 
(Carter and Cook, 1978). 

Figure 9 shows a total  magnetic intensity residual anomaly map. The 
broad northward trending magnetic h i g h ,  o f  a b o u t  250 gammas o f  average t o t a l  
r e l i e f ,  t ha t  extends through the central par t  of  the map, corresponds w i t h  the 
Mineral Mountains grani t ic  pluton. In the south-central p a r t  of the map, the 
striking constriction of the magnetic h i g h  anomaly corresponds w i t h  1) a sim- 
i l a r  constriction of the exposed pluton as a consequence of the volcanic domes 
which intrude the p l u t o n  i n  the area,  2 )  a postulated east-west lineament i n  
this area, and 3 )  the southern end of the pronounced geothermal gradient 
anomaly. 

Near the northern edge of the map ( F  of F i g .  9) the s t r ik ing  east-west 
l inear  trend of the magnetic contours, w i t h  a large gradient, corresponds w i t h  
the northern margin of the Mineral Mountains pluton and the Millard-Beaver 
County Line f a u l t  zone. The continuation of the lineament across Milford 
Valley indicates tha t  h i g h  magnetic susceptibil i t y  material (probably gran- 
i t i c )  may underlie the alluvium of Milford Valley. Also a magnetic low ( G  of 
F i g .  9 )  par t ly  coincides w i t h  the Bearskin and L i t t l e  Bearskin volcanic domes. 

Figure 10 shows the terrain-corrected Bouguer gravity anomaly, and an 
interpretat ive geologic cross section along the east-west l ine  2.2 N .  The 
density contrast  between the bedrock and alluvium is assumed to be 0.5 gm/cc. 
Gravity data along l i ne  2.2 N indicates: 1) the north-trending Opal Mound 
horst ,  bounded on the eas t  by the Opal Mound Fault w i t h  an indicated vertical 
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Fig. 9 .  Total aeromagnetic i n t e n s i t y  r e s idua l  anomaly map of the 
Roosevelt  Hot Springs a rea .  Contour i n t e r v a l  = 50 gammas. 
Data taken along eas t -wes t  l ines a t  1/4 mile (402 m )  spac ing  
drape flown a t  an e l eva t ion  of 1000 f t  (305 m )  above 
ground. Letter des igna t ions  a r e  descr ibed  i n  text. After 
Ward and o t h e r s ,  1977. 
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F i g .  10. I n t e r p r e t a t i v e  two-dimensional  model f o r  g r a v i t y  p r o f i l e  
a long l i n e  2.2N (see F i g .  9) o f  t h e  Roosevel t  Hot  Spr ings 
area. Assumed d e n s i t y  c o n t r a s t  i s  0.5 gm/cc. A f t e r  Ward 
and o thers ,  1977. 
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displacement of a b o u t  50 m y  2) step f a u l t s  i n  the bedrock bounding the eastern 
margin of the Milford Valley graben, and 3 )  an a l l u v i u m  thickness of about 
1.4 km beneath Milford Valley a t  the western end of the profile.  Gravity d a t a  
indicates many pronounced faul ts  s t r iking bo th  north-south and east-west i n  
the Roosevel t Hot Springs thermal area. 

As previously mentioned,Ward e t  a l .  (1977)  assumed a density contrast  of 
0.5 g/cc i n  the i r  gravity modeling. Based on original gravity interpreta- 
tions, i t  was predicted that  the Acord 1-26 well i n  Milford Valley, SW 1/4 of 
Sec. 26, T 26 S, R 10 W ,  would intercept high-density rock a t  1.2-km depth 
(Group Seven, Inc., 1980). This h i g h  density, approximately 2.7 g/cc, was 
believed t o  be crystal l ine basement. However, on d r i l l i n g  i t  was found t h a t  
the high-density rock consisted primarily of rhyolite t u f f ,  to  which 5-20 
anhydrite had been added by deposition. This resulted i n  a density t h a t  was 
mistaken for t h a t  of granodiorite i n  the gravity interpretation. 

Reinterpretation by Group Seven, Inc. of four gravity and magnetic 
profiles,  which cross the Acord well s i t e  for  control , has led to  the assump- 
tion t h a t  the gravity surface, which i s  based on a marked increase i n  rock 
density, represents the surface of the rhyolite tuff  and that  the magnetic 
surface represents crystal 1 ine basement. Therefore, nor th  of the Acord well 
i n  the area known as Beaver Bottoms, aeromagnetic data gives a depth t o  crys- 
t a l l i n e  basement of  a t  l ea s t  2.44 t o  4.88 km. Along east-west aeromagnetic 
profiles the magnetic basement l i e s  1525 

the surface. 
A contour  map showing d e p t h  t o  

( F i g .  11) based on aeromagnetic data 
intervals of 1220 m (4000 f t )  a re  used. 
can be obtained, as depth correlation of 
can d i f fe r  by as much as 915 m (3000 f t )  

m t o  s l igh t ly  less than 305 m beneath 

crystal  1 ine basement is presented 
from these four profiles.  Contour 

Unfortunately, no bet ter  resol ution 
the Acord well w i t h  the four profiles 
from s i t e  t o  adjacent s i t e .  However, 

a crude overview of the subsurface basement i n  Milford Valley can be obtain- 
ed. Figure 11 shows a deepening of c rys ta l l ine  basement to  the west of 
Roosevelt Hot Springs, w i t h  the Milford Valley axis oriented along a n o r t h  
trending l ine .  Placement of a hinge i n  the ax is  i n  the vicini ty  of T27 S ,  R 

10 W ,  shows a deepening of valley f i l l  and depth to basement to  the north and 
south .  In the Beaver Bottoms area, north of the Acord well , there is a major 
downwarp (probably a separate f a u l t  block) g i v i n g  a maximum depth to  basement 
rock of 4.9 km. T h i s  l a s t  configuration may be unreal is t ic  because Geothermal 
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F i g .  11. Map of predicted dep th  t o  c rys ta l l ine  basement i n  Milford 
Valley, based on data  from magnetic prof i les .  Contour 
interval = 4000 f t  (1220 m ) .  Stippled area shows approx- 
imate outline of the Roosevelt KGRA. "Well" means Acord 
1-26 well. Modified a f t e r  Group Seven, Inc., 1979. 
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Kine t i c s ,  Inc. discovered a l a rge  magneto tu l le r ic  (MT) anomaly over the Beaver 
Bottoms a rea .  The combined lack of  magnetization and low r e s i s t i v i t y  in th i s  
small area could be due t o  temperature e f f e c t s ,  or poss ib ly ,  t h e  presence of 
c l ays .  

C.  Thermal Measurements 
Near-surface hea t  flow surveys by S i l l  and Bodell (1977) and Wilson and 

Chapman (1978) have proved useful in o u t l i n i n g  the geometry of the hydro- 
thermal system. Wilson and Chapman's contoured su r face  hea t  flow map of the 
Roosevelt a rea  is based on 53 shallow thermal g rad ien t  holes  ( F i g .  1 2 ) .  The 
100 rnW/m-' contour o u t l i n e s  the l i m i t  of thermal e f f e c t s  assoc ia ted  with 
t h i s  geothermal system; anything l e s s  than 100 mW/rn-' (2 .4  HFU) i s  consid- 
ered background Great Basin hea t  flow f o r  Utah. The 400 mW/m-' contours  

2 enc lose  an area o f  57 km , while  the h ighes t  contour shown i s  1000 rnW/m-', 
which encloses  an area of 16 k m  , in p a r t i c u l a r  a 2-km-wide band p a r a l l e l  t o  
t he  Opal Mound Fau l t .  

The pa t t e rn  of t h e  hea t  flow f i e l d  i s  c l e a r l y  con t ro l l ed  by geologic  
s t r u c t u r e  and ind ica t e s  pr imar i ly  convect ive hea t  flow assoc ia ted  with the  
hydrothermal system. The elongated hea t  flow high i s  p a r a l l e l  t o  and encloses  
the Opal Mound Faul t .  This zone has an abrupt southern te rmina t ion  by a se t  
o f  west by northwest t rending  f a u l t s  and changes t rend  a t  the i n t e r s e c t i o n  o f  

the Opal Mound and Negro Mag f a u l t s .  Heat flow contours in many p a r t s  of t he  
f i e l d  p a r a l l e l  mapped o r  i n fe r r ed  f a u l t s .  The re-emergence o f  the 400 mWlrn-' 
contour t o  the southwest of t he  area co inc ides  with f a u l t  blocks in fe r r ed  from 
g r a v i t y  and e l e c t r i c a l  r e s i s t i v i t y  studies (Ward and S i l l ,  1976) and may re- 
su l t  from water leakage over an impermeable upthrown block (Wilson and Chap- 
man, 1 9 7 8 ) .  

discussed in Sec. V. E.,  "Hot Dry Wells." 

2 

Thermal g rad ien t s  and hea t  flow measurements for deep dry  holes  wi l l  be 

D. E l e c t r i c a l  Measurements 
Most of  th i s  sec t ion  is taken from summary work by Ward and o t h e r s  (1977) 

and work by Group Seven, Inc. f o r  Geothermal Kine t ics ,  Inc.  E l e c t r i c a l  sur- 
veys performed a t  Roosevelt Hot Springs thermal area include 100 m ,  300 m ,  and 
1 k m  dipole-dipole  r e s i s t i v i t y ,  Schlumberger r e s i s t i v i t y  soundings,  e l e c t r o -  
magnetic soundings,  and magnetotel l u r i c  soundings.  Figure 13 por t rays  the 
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Fig.  12. Sur face  heat flow p a t t e r n  a t  the Roosevelt Hot Spr ings ,  
based on 53 d p i l l  ho le s .  Af t e r  Wilson and Chapman, 1978. 
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F i g .  13. Contours of apparent resistivity obtained w i t h  diople- 
d ipo le  array, f i r s t  separation, over the Roosevelt Hot 
Springs area. Contours a t  10, 20, 30, 50, 100 ohm-m and 
multiples of ten times these figures. Productive wells 
shown by solid dots ,  "dry wells'' by open circles, shallow 
a1 terati on hol es by ci rcl es w i t h  crosses. Traverse 1 ines 
are shown. After Ward and others, 1977. 
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con tou rs  o f  apparent  r e s i s t i v i t y  observed over  t h e  geothermal f i e l d  i n  f i r s t  

s e p a r a t i o n  300 m d i p o l e - d i p o l e  r e s i s t i v i t y  survey ing.  I t  i s  b e l i e v e d  t o  

demonstrate t h e  d i s t r i b u t i o n  o f  br ine-soaked c l a y s  i n  t h e  t o p  500 m o f  t h e  
system. The c l a y s  a re  a l t e r a t i o n  p roduc ts  o f  f e l d s p a r s  and occur dominan t l y  

a l o n g  f a u l t s  and f r a c t u r e s  i n  t h e  T e r t i a r y  g r a n i t i c  h o s t  r o c k .  Because c l a y  

a1 t e r a t i o n  i s  p r e v a l e n t  a long  f r a c t u r e s ,  t h e  100 m d i p o l e - d i p o l e  survey d e l  i n -  

eated major  f r a c t u r e s  i n  t h e  geothermal f i e l d .  

When a l l  o f  t h e  da ta  f rom a c t i v e  e l e c t r i c a l  methods i s  combined, t h e  

pseudo-geological  model o f  F i g .  14 i s  generated (Ward and o t h e r s ,  1977).  Th i s  

i s  t h e  b e s t  model t o  depths o f  500 m f o r  l i n e  3.5 N o f  F i g .  13, beyond which 

t h e  a c t i v e  e l e c t r i c a l  methods t o t a l l y  l acked  r e s o l u t i o n .  

The apparent  r e s i s t i v i t i e s  f r o m  25 MT soundings have been i n v e r t e d  t o  

one-dimensional model e a r t h s  a t  each sounding s i t e .  The r e s u l t i n g  model i s  

b e l i e v e d  t o  be a t o t a l l y  u n r e a l i s t i c  r e p r e s e n t a t i o n  o f  a subsur face d i s t r i -  
b u t i o n  of t r u e  r e s i s t i v i t i e s  w h i l e  s i m u l t a n e o u s l y  b e i n g  d i a g n o s t i c  o f  a 

c o n v e c t i v e  hydrothermal  system. The observed r e s i s t i v i t i e s  o f  l e s s  than  1 

ohm-m a t  depths o f  o r d e r  2 t o  3 km a r e  v i r t u a l l y  imposs ib le  t o  o b t a i n  un less 

g r a p h i t i c  h o r i z o n s  o r  massive s u l f i d e s  a re  p resen t ;  c l a y  a l t e r a t i o n  should be 

absent  a t  these depths.  C u r r e n t  g e o l o g i c  evidence prec ludes these p o s s i b i l -  

i t i e s .  Ward and o t h e r s  (1977) b e l i e v e  t h a t  t h e  subsur face r e s i s t i v i t i e s  

i n t e r p r e t e d  f rom t h e  MT d a t a  a r e  a r t i f a c t s  o f  t h e  i n t e r p r e t a t i o n  technique.  

Geothermal K i n e t i c s ,  I n c .  r a n  two MT surveys i n  t h e  M i l f o r d  V a l l e y  area. 

The e a r l i e r  survey showed an anomaly i n  t h e  Beaver Bottoms area, l a t e r  sub- 

s t a n t i a t e d  b y  a 1979 survey. Surface e l e c t r i c a l  surveys over t h i s  MT anomaly 

showed a r e l a t i v e l y  sha l l ow  conduc t i ve  zone, whereas a l a r g e  mass o f  r o c k  a t  

depth shows a low r e s i s t i v i t y  and i s  nonmagnetic. Group Seven, I n c .  proposed 

t h a t  t h i s  l a r g e  mass o f  r o c k  may be t h e  i n t r u d e d  h o t  r o c k  mass which i s  t h e  

h e a t  source f o r  Roosevel t  Hot Spr ings.  

V. ROOSEVELT GEOTHERMAL FIELD 

A. D r i l l  H i s t o r y  

D r .  Eugene Davies o f  M i l f o r d  i n i t i a t e d  geothermal e x p l o r a t i o n  i n  1968. 

He d r i l l e d  on t h e  e a s t  f l a n k  o f  t h e  Opal Mound w i t h  a steam blowout  a t  82 m. 

P h i l l i p s  Petro leum won most of t h e  su r round ing  leases i n  t h e  J u l y  1974 KGRA 

sa le ,  and d r i l l e d  s i x  w e l l s  i n  1975. The f i r s t  deep w e l l  was unsuccessfu l ,  
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w i t h  low levels of f l u i d  production a t  depth of 2099 m. The o t h e r s  were a l l  
p roduct ive ,  ranging i n  depth from 830 t o  2230 m. Bottom-hole temperatures 
were about 260°C. Other l e a s e  holders  now inc lude  Geothermal Power Corpo- 
r a t i o n ,  Getty Oil Corporation, Thermal Power Company and 0 '  Brien Resources 
Inc. ,  Geothermal Exploration Company, American Geological Enterprises, and 
Union Oil .  

Seven producing wells have been completed (F ig .  1 5 ) .  They cover a 
2 6-km a rea  and range i n  depth from 382 t o  2234 m. Ward and o t h e r s  (1978) 

5 i n d i c a t e  the average well has a p o t e n t i a l  f l u i d  production of 4.5 X 10 

Kg/h Uti1 i z a t i o n  of the 
energy a t  Roosevelt is dependent on present dea l ings  w i t h  Utah Power and Light  
(UP and L ) .  I t  is hoped an i n i t i a l  20-MWe power p l a n t  and two 55-MWe p l a n t s  
will be on l ine  by 1982. The i n i t i a l  agreement between UP and L and P h i l  1 ips 
was f i n a l i z e d  i n  l a t e  1981. 

a t  s h u t - i n  bottom-hole temperatures o f  around 260°C. 

B. Hydrothermal A1 teration 
All rocks have been weakly t o  s t r o n g l y  a l t e r e d  i n  the Roosevelt Hot 

Springs area. Acid-sulphate water a l t e r e d  rocks t o  a l u n i t e  and opal a t  the 
s u r f a c e ,  and t o  k a o l i n i t e ,  a l u n i t e ,  montmor i l lon i te  and muscovite t o  a depth 
of 50 m. Deeper a l t e r a t i o n  by ch lo r ide - r i ch  waters formed muscovite, ch lo r -  
i t e ,  c a l c i t e ,  K-feldspar,  a l b i t e  and ep ido te  (Pa r ry  and o t h e r s ,  1978). Alter- 
a t ion  is most intense a t  or n e a r  the s u r f a c e  n e a r  the Opal Mound F a u l t ,  and is 
less intense i n  deeper wells, and i n  wells more remote from the f a u l t .  Frac- 
ture zones and some dikes  a l s o  show hydrothermal a l t e r a t i o n .  

Sil ica-cemented alluvium is l o c a l i z e d  along the Opal Mound F a u l t .  
A l l u v i u m  i n  general  shows a h i g h  degree o f  ca l c i t e  cementation (Hulen, 1978). 
T h i s  calcite-cemented al luvium may serve as a caprock f o r  the geothermal 
reservoir, prevent ing  h e a t  and f l  uid 1 oss. 

C. Water Chemistry 
The Roosevel t Hot Springs are l o c a t e d  a long  the Opal Mound F a u l t  nea r  i t s  

juncture w i t h  the Negro Mag F a u l t .  The s p r i n g s  discharged during historic 
times bu t  flow appears t o  have ceased about  1963 (Petersen, 1975).  W .  T. Lee 
i n  1908 s t a t e d  t h a t  one s p r i n g  flowed a t  a rate o f  10 gpm and t h a t  the 
temperature was a t  l e a s t  87°C. Mundorff (1970) s t a t e s  t h a t  the main s p r i n g  
was dry i n  1966 and records water temperatures from seeps o f  82 and 54°C. 

t 
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Fig .  15. Well C/T-2 i s  shown here as exploration well 9-1. After 
Bamford and others, 1980. 



Swanberg (1974) gives a Na-K-Ca geothermometer estimate of 289°C for  the 
Roosevelt Hot S p r i n g s ,  the highest rating of a thermal water i n  the s t a t e  of 
U t a h .  Calculation of sul fa te  geothermometers for the Roosevel t area by 
Nehring and others (1979) gives average temperatures of  approximately 275°C for 
three deep wells, 145°C for  one shal low well, and 216°C fo r  the Roosevelt 
seep. Soil temperatures of 95 t o  97°C have been measured a t  depths of 1 to  
3 m. 

Surface and deep thermal waters are  di lute  (ionic strength = 0.1) sodium 
chloride brines; average chloride -3700 mgla (Parry and others, 1978). The 
water from Roosevelt Hot Springs also contains h i g h  s i l i c a  content. 

D. Hydrothermal Reservoir 
In order to determine the f eas ib i l i t y  of Hot Dry Rock geothermal 

exploration a t  Roosevelt Hot Spr ings ,  the hydrologic cycle and i t s  
relationship t o  the hydrothermal reservoir must f i r s t  be understood. I t  is 
believed tha t  water circulates a t  depth  along mainly n o r t h - s o u t h  t r e n d i n g  

normal fau l t s  t h a t  border the western edge of the range. Water recharge may 
also occur along high-angle east-west fau l t s .  The water is heated a t  depth 
and then r ises  along high-angle fau l t s  i n  the geothermal area u n t i l  i t  reaches 
low-angle f au l t  planes associated w i t h  the gravity s l i d e  blocks. The 
low-angle faul ts  allow f l u i d s  to migrate subhorizontally along the plate.  
These upper plates have been highly faulted and mylonitized, creating a 
permeable zone ideal fo r  the circulation of hot water. 

Because the hydrothermal area is s t ruc tura l ly  control 1 ed, this gives the 
fie1 d rather d i s t i nc t  boundaries. The north-south trending Opal Mound F a u l t  
bounds the f i e l d  on the west, whereas the Mineral Range bounds i t  on the 
east .  However, to  the north and south, the edges of the f i e ld  are  more 
d i f f i cu l t  to delineate. Producing wells have been dr i l led  north of the east-  
west trending Negro Mag Fault and the northern boundary may extend to  the Sa l t  
Cove area, b u t  the controlling structures are not f u l l y  understood. To the 
south, a major structural  zone, interpreted as a ser ies  of intersecting faults,  
has been identified from a combination of e lectr ical  r e s i s t i v i ty  and radon 
emanometry studies (Nielson, 1978). T h i s  feature is  s i tuated between Utah 
State  well 72-16 (productive) and 52-21 (non-productive) and may terminate the 
hydrogeothermal f i e l d  t o  the sou th .  T h u s ,  the present day geothermal f i e ld  a t  
Roosevelt has an areal extent of about 20 km . 2 

32 



Wilson and Chapman (1979) delineated a water circulation pattern based on 
heat flow and thermal gradient determinations for 53 shallow dr i l l  s i t e s  i n  
the vicinity of Roosevelt Hot Spr ings .  They recognized three spa t ia l ly  con- 
s i s t e n t  patterns indicative of  heat-transfer processes associated w i t h  the 
geothermal system. Three d is t inc t  temperature groups,  labeled I ,  11, and 111, 
represent hydrologic recharge, active convection, and discharge regions , 
respectively ( F i g .  1 6 ) .  

Group I s i t e s  along the eas t  and west f lanks of the Mineral Mountains 
p l u t o n  are characterized by 1 ow-thermal gradients due to  hydrologic recharge. 
That the Mineral Mountains are the probable source region for water i n  the 
system is substantiated by oxygen isotope studies by Bowman (1979). Group I1 
s i t e s  located west of and parallel to the Mineral Mountains exhibit very h i g h  
shallow gradients ( u p  t o  331"C/km), due to the i r  close proximity t o  the geo- 
thermal reservoir. Group 111 s i t e s ,  further west on the f l o o r  of Milford 
Val ley,  possess near-surface gradients intermediate between groups I and 11. 
Wilson and Chapman suggest t h a t  such gradients of about 7 times background 
encountered u p  t o  6-km west of t h i !  Opal Mound F a u l t ,  require e i ther  mu1 t i p l e  
or  broad heat sources or, a l ternat ively,  l a te ra l  mass and heat transport west- 
ward across Mil f o r d  Val 1 ey. 

E .  Hot Dry Wells 
As Wilson and Chapman's studies demonstrated, an understanding of the 

hydrology of the Roosevelt geothermal system is greatly aided by available 
well hole d a t a .  However, f o r  the purposes of HDR exploration, deep holes t h a t  
give "true" thermal gradient and heat flow are more desirable. Unfortunately, 
most of the available data were gathered from shallow d r i l l  holes or holes 
t h a t  are otherwise hydrothermally disturbed. Most temperature data on deep 
dry holes are proprietary, even t h o u g h  they are  non-productive. Hot dry well 
temperature information t o  date is res t r ic ted  to three wells; Los Alamos 
National Laboratory C/T-2 (or iginal ly  P h i l l i p s  9-1) , Utah State 52-21 
(originally Getty Oil' 52-21), and Acord 1-26, a partnership dr i l l  e f f o r t  
invol v i n g  Geothermal Kinetics , Inc. , McCull och , and others. 

P h i l l i p s  9-1 is located i n  the north-central par t  of Sec. 9, T 27 S, R 9 
W ,  a b o u t  0.5 km west of the Opal Mound Fault. The well is  se t  aside for  use 
by Los Alamos National Laboratory f o r  the tes t ing and calibration of d r i l l i n g  
tools.  The Earth Science Laboratory/University of Utah Research Ins t i tu te  has 
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F i g .  16. Location o f  th ree  areas i n  the  Roosevelt  Hot Springs which 
e x h i b i t  d i f f e r i n g  temperature-depth behaviors. A f t e r  
Wilson and Chapman, 1978. 
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completed a comprehensive study of Phi l l ips  9-1 cutt ings and well logs for  the 
Los Alamos National Laboratory. The well intersects  Precambian banded gneiss 
and several phases o f  the Mineral Mountains pluton, and  bottoms i n  Tertiary 
d ior i te  ( F i g .  1 7 ) .  Total depth of the well is  2099 m .  The bottom-hole temp- 
erature  is 228°C. Calculation of the thermal gradient for  the lower 1000 m of 
9-1 gives a value of 56"C/km ( F i g .  18). 

Getty Oil 52-21 was sponsored by DOE'S Industry Coupled Program. Nielson 
and others (1978) present a detailed l i thologic  log of the well, while Glen 
and Hulen (1979) give an evaluation of the geophysical logs. The well i s  
located beyond the southern end of the Roosevelt geothermal f i e l d ,  and is 
2281 m in depth. The lower section o f  the hole is i n  crudely t o  moderately 
fol ia ted banded gneiss, which is in t ruded  by granodiorite gneiss and quartz  
monzonite. Temperature logs indicate 202°C a t  a depth of 2242 m y  with a 
temperature gradient over the 305 to  2242 m interval o f  58"C/km. 

T h e  Acord 1-26 well , in the SW 1/4 of Sec. 26, T 26 S, R 10 W ,  is in 
Mil ford Valley, approximately 8.5 km west-northwest of the Roosevel t geo- 
thermal f i e ld .  The well was dr i l led  to  a depth of 3855 m y  where a bottom-hole 
temperature of about 230°C is recorded. Although temperature logs are  n o t  
available,  th i s  f igure gives an average gradient over the en t i r e  hole of 
60"C/km, well w i t h i n  the parameters of HDR geothermal production. According 
to  a study performed by Group Seven, Inc., the heat flow i n  Acord 1-26 is 

2 approximately 146 mW/m , suf f ic ien t ly  h i g h  t o  indicate t h a t  there may be a 
shallow heat source in the c rus t  below the well. 

Lake sediments are found in the upper 976 m of the Acord 1-26 well. They 

are underlain by sandstone and conglomerate. Also w i t h i n  this section is a 
24-m interval of dacite and rhyolite a t  2156 m .  From 3172 m t o  the bottom, 
the well i s  in quartz monzonite. Acord 1-26 was d r i l l ed  i n  the spring of 1979 
to  investigate a r e s i s t i v i ty  low discovered d u r i n g  a magnetotelluric survey. 
Inspection of temperature, ca l iper ,  gamma-ray neutron , and dual -channel den- 
s i t y  logs, supplemented by an increased d r i l l i n g  rate between 3507 t o  3812 m y  
indicated the presence of a f racture  zone over this depth interval.  Casing 
was s e t  t o  3507 m y  y e t  a f t e r  testing the well fo r  f l u id  production, i t  became 
c lear  tha t  there was no permeability from 3507 m t o  the bottom of the well. 
The combination of h i g h  temperature and low permeability i n  c rys ta l l ine  rocks 
makes the Acord 1-26 a good candidate fo r  HDR geothermal production. 
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Fig .  17. Geologic c ros s  s e c t i o n  o f  the Roosevelt Hot Springs 
geothermal a r e a  showing well C/T-2. A f t e r  Glenn and 
o t h e r s ,  1980. 
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Two a d d i t i o n a l  deep d r y  w e l l s  a re  l o c a t e d  o u t s i d e  t h e  Roosevel t  geo- 

thermal f i e l d  and have he lped  t o  d e l i n e a t e  t h e  r e s e r v o i r ' s  boundar ies.  How- 

ever ,  no temperature da ta  o r  o t h e r  i n f o r m a t i o n  except o f  a general  n a t u r e  i s  

now a v a i l a b l e .  These w e l l s  a r e  P h i l l i p s  42-9 and P h i l l i p s  82-33. 

The P h i l l i p s  42-9 w e l l  was P h i l l i p s  f i r s t  e x p l o r a t i o n  w e l l ,  d r i l l e d  i n  

1975 and i t  extends 2100 m. Temperature and l i t h o l o g y  o f  t h e  w e l l  i s  n o t  

a v a i l a b l e .  P h i l l i p s  82-33 i s  l o c a t e d  i n  t h e  NE 1 / 4  o f  Sec t i on  33, o f f  t h e  

no r thwes t  end o f  t h e  KGRA. The w e l l  i s  s i t u a t e d  on h o t  s p r i n g  depos i t s  o f  

s i 1  ica-cemented a1 luv ium. Temperature, 1 i t h o l o g y ,  and depth o f  t h e  we1 1 a r e  

n o t  a v a i l a b l e .  

F. HDR Reservo i r  Rock a t  M ine ra l  Mountain 

T e r t i a r y  g r a n i t i c  r o c k s  o f  t h e  M i n e r a l  Mountains p l u t o n  eas t  o f  Roosevel t  

h o t  Spr ings appear t o  be t h e  b e s t  t a r g e t  f o r  a HDR geothermal r e s e r v o i r .  The 
r o c k  i s  g e n e r a l l y  medium- t o  coarse-gra ined and does n o t  show e x t e n s i v e  hydro-  

thermal a l t e r a t i o n ,  except  where a d j a c e n t  t o  major h igh-angle f a u l t s  o r  w i t h i n  

t h e  e x i s t i n g  geothermal f i e l d  a t  sha l l ow  depths. Gne iss i c  rock ,  on t h e  o t h e r  

hand, i s  o f t e n  f o l i a t e d  so t h a t  c o n t r o l  over f r a c t u r i n g  may be more d i f f i c u l t .  

The M ine ra l  Mountains p l u t o n  i s  bounded on t h e  south b y  t h e  Cave Canyon 

F a u l t  and on t h e  n o r t h  b y  t h e  County L i n e  Faul t -B lack Rock O f f s e t .  The n o r t h -  

e r n  and southern l i m i t s  o f  t h e  T e r t i a r y  i n t r u s i v e  a re  s u b s t a n t i a t e d  b y  g r a v i t y  

and magent ic work, which e x h i b i t  east-west t r e n d i n g  con tou rs  o f  l a r g e  r e 1  i e f  

co r respond ing  w i t h  t h e  above two f a u l t s  ( C a r t e r  and Cook, 1978). The Black 

Rock Offset  i s  a major s t r u c t u r e  and r e p r e s e n t s  t h e  n o r t h e r n  boundary o f  

T e r t i a r y  i n t r u s i v e  a c t i v i t y  i n  wes t -cen t ra l  Utah. C a r t e r  and Cook (1978) 

s t a t e  t h a t  T e r t i a r y  i n t r u s i v e  r o c k  may u n d e r l i e  most o f  M i l f o r d  V a l l e y .  The 

Acord 1-26 w e l l ,  i n  t h e  m idd le  o f  t h e  v a l l e y  suppor ts  t h i s  statement,  w i t h  a 

lower  683-m s e c t i o n  o f  q u a r t z  monzoni te f rom 3172 t o  3855 m. Based on aero- 

magnet ic s t u d i e s  b y  Geothermal K i n e t i c s ,  Inc., t h i s  au tho r  has contoured 

approximate depths t o  t h e  c r y s t a l 1  i n e  basement (HDR r e s e r v o i r  r o c k )  i n  M i l f o r d  

V a l l e y  ( F i g .  11). 

V I .  CONCLUSION 

I n  conc lus ion ,  many of  t h e  c r i t e r i a  t h a t  suppor t  a p o t e n t i a l  HDR s i t e  a r e  

met a t  Roosevel t  Hot Spr ings. Reg iona l l y ,  t h e  area i s  p a r t  o f  t h e  Basin 
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and Range-Col orado Plateau transit ion,  characterized by extensional tectonics 
and h i g h  heat flow. Locally, the Roosevelt Hot Spr ings  area has undergone 
young (0 .5  t o  0.8 Myr) s i l i c i c  volcanism. Moreover, extensive basalt  f ie lds  
as young as 10 000 years occur t o  the north and east .  Recent volcanism and 
possibly uncrystallized source magma i s  believed to be the h e a t  source for  the 
Roosevel t Hot Springs area. 

Because of the promise of hydrogeothermal production a t  Roosevel t, 
extensive work was done i n  order to determine the dimensions and structural  
control of the geothermal reservoir and the distribution of shallow heat flow 
and hydrologic patterns, as well as the subsurface s t ructure  and bedrock 
configuration. A1 t h o u g h  no magma reservoirs have been conclusively found, 
seismic and magnetotel l u r i c  surveys i n  the Roosevel t area have picked up major 
anomalies suggestive of par t ia l ly  molten or p las t ic  material a t  depth. 

The KGRA contains seven geothermal wells, w i t h  an i n i t i a l  producing 
capabili ty of 130 MWe. In addition, several hot dry wells have been dr i l led 
on the periphery of the KGRA and o u t  on the floor of Milford Valley. Although 
scant information on these holes is available, i t  is known t h a t  two of the 
wells have bottom-hole temperatures of about 230°C and h i g h  gradients of 
a pp roxi ma tel y 55- 60 "C/ km . 

The areal dimensions of the Roosevelt Hot Springs area thermal anomaly 
are n o t  yet  well defined. However, i t  seems most l ikely that  the thermal 
anomaly f a l l s  w i t h i n  the area bounded by the County Line Fault on the north, 
the eastern portion of  the Milford Valley on the west,and the Mineral Range on 
the east .  I t  has not ye t  been determined whether a thermal anomaly exists 
beneath the eastern s ide o f  the Mineral Range. The southern extent o f  t h e  

thermal anomaly is much more d i f f i c u l t  t o  determine; i t  is a t  l e a s t  as f a r  
south  as the hot dry Getty Oil Co. well 52-21. The anomaly may very l ike ly  
extend as far as the Ranch Canyon area, w h i c h  marks the southernmost exposure 
of Qua ternary rhyol i te. 

Based on the available, i f  somewhat spotty, data the thermal anomaly 
present i n  the Mineral Mountains-Milford Valley area has been calculated to  
cover between 160 to  475 km . Location of thermal anomaly boundaries for  
the maximum and m i n i m u m  figures given is shown i n  F i g .  19. The minimum figure 
of 160 km2 is a '  f a i r ly  conservative estimate based on> the northern, 
southern, and westernmost l imits of h o t  dry wells, and on anomalies w i t h i n  
the western f l a n k  of the Mineral Range. The maximum figure of 475 km2 is 

2 
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F i g .  19. Approximate areal extent o f  the thermal anomaly present a t  
the Roosevelt Hot Springs area, showing proposed upper and 
lower limits. The most conservative estimate is represent- 
ed by the inner c i r c l e  enclosing 160 km2, while the outer 
c i r c l e  encloses an area of 475 km2. Modified a f t e r  Yusas 
and B r u h n ,  1979. 
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p a r t , d  l y  based on rather arbi t rary southern and western bounwries beyond the 
h o t  dry wells. The eastern limit is placed along the east  edge of the Min- 
eral Mountains, and  the nor th  l imit  i s  the County Line Faul t-Black Rock Offset. 

W i t h i n  th is  h i g h  thermal-anomaly area the Roosevelt Hot Springs KGRA 
possesses an areal extent of 20 km2 or less .  This is s ignif icant  i n  t h a t  
less than 12.5 of  the thermal anomaly may be hydrothermal, while the remain- 
i n g  represents area potentially favorable for  h o t  dry rock geothermal 
expl ora t i  on. . 

VII. RECOMMENDATIONS 

If interested i n  a HDR s i t e  a t  Roosevelt Hot Springs, the Los Alamos 
National Laboratory should f i r s t  take advantage of pre-existing hot dry wells 
t ha t  are  peripheral to the hydrothemal f i e ld  or further west w i t h i n  Milford 
Valley. A t  l e a s t  two of these wells have the proper temperature and reservoir 
rock type (Tertiary plutonic rock). D r i l l i n g  of an accessory shallower hole 
nearby and hydrofracturing wil l  be necessary before further deepening and 
commercialization. 

On the other hand, i f  the Los Alamos National Laboratory is unable t o  
o b t a i n  one of the h o t  dry wells, the presence of an overall h i g h  heat flow i n  
the Roosevelt area f ac i l i t a t e s  the location of a sui table  HDR s i t e .  Two ob- 
vious factors should be kept i n  mind.  The f i r s t  i s  to  locate an area where 
basement is  not a t  an unreasonable depth. The Tertiary grani t ic  intrusive 
rocks, the most sui table  reservoir rock type, apparently form a major po r t ion  
of the valley floor.  However, n o t  enough deep d r i l l i n g  has been done t o  sub- 
s t an t i a t e  this,  whereas magnetic and gravity work is unable to  distinguish 
Precambrian gneiss from Tertiary grani t ic  rock. The second factor i n  locating 
a HDR geothermal well is detection o f  the high-angle Basin and Range faul ts  
which successively s tep down into the Milford-Val-ley. To keep a t i g h t  control 
on f l u i d  circulation, a f a u l t  zone should of course 

Location of depth t o  basement can be aided by further seismic, magnetic 
and gravity work, while r e s i s t i v i ty  and soil  mercury surveys could possibly 
help i n  delineating major fau l t s .  

be avoided. 
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