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Interesting modelling of intense eciectron f{low L"s been done with
implicit “pariirle-in-cell” simulation codes [1-4]. In this report, the
“direct” implicit PIC simulation approach  [5-8] is applied to
simuiations .aat include fuil electromagnetic fields. The resulting
algorithm offers advantages relative to “moment” implicit
electromagnetic algorithms [4]. and may help in our gquest ‘or robust and
simpler implicit codes.

Implicit fields reproduce electromagnetic waves at lo 7 wavelengths
{>>cAt). At short wavelengths, the electrostatic, magnc .ostatic, and
inductive electric fields are retained, as in a "Darwin" code [9]. At
all wavelengths, Langmuir waves are stabilized, as in a direct implicit
electrostatic code. The electrostatic fields are accurate for
wavelengths ionger than the electron transit distance (vteAt). These
properties make an implicit electromagnetic code attractive e.g. to
modeling of intense electron flow which is subject to pinching. Weibel
instability [4], and other processes generating magnetic fields which
alter the eiectron flow [1].

Time Differencing of the Particle and Field Equations
To begin our outline of an implicit algorithm we select the “D,"
time-differencing scheme [10] for the particles:

%au1 %y Yok ack ek MaopaB, (1ab)
—_— =2V M = a *+ — X - la
At n+} At n 2 me (
- - q .
where a, = i[a,_, + EEn+l(xn+l)]‘ (1c)

Desired features of the implicit differencing of the Maxwell
equations include:

s At long wavelengths, accuracy in dispersion Re w(k), and weak damping
(e.g. Im w(k)/ck = ®(ckat)3; k is the wavevector).
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= Statilily {preferadly demping} at short wavelengths ¥ 28x -stability
despile cdt > Ax {[violatlion of the Courcnl condilion for sxplici?

differencing}. and dissipation of inaccurstely calculated short
wavelengths.

» Compalible with implicit particles.
* Adsptable Lo general boundary condiliocns.
* Simplicity, and economy in storage.

= Optionally recover the centered 2nd order scheme now commonly used
for the fields.

s Oplionally recover Lhe centered Darwin schemz [9].

For the fields, we adapt implicit schemes developed for the particle
equations of motion. For example, in the particle equetions (1), we
drop the vXB term, replace x by E, v by cVXB, and a by —c29XVxE to
obtain the Maxwell equations (in rationalized cgs units):

E -E

VKB 4 = Jnug + -E:i:—-f (2a)

B,,; -B,-
WX, = n_*iu_n__i (2b)
where E, = 4[E,_, +E,,,] (2¢)

is the result of & recursive low-pass filter with phase error ®(At3).
This phase error is an advance, not a lag as one gets if E ., is not
used, so il provides stability when ckAt >> 1.

The code must solve the coupled set of equations (lab) and (2). A
price of implicit differencing is that time-cycle splitting, of the
particle and the field time advances, is more complicated.

To advance *he field values implicitly, eliminate E_ ,, or Bn,# from
the coupled equations (2) to obtain a single elliptic equation.
Eliminating Bn,# to form an equation for E__, :

2542 = E
Eqey + 3c2At39xVXE,,, = B, - J 48t + catWX[B,_, - catvXE,_,]

(3)

-or, eliminate E ,, to form an equation for B"*i:



gt BBV Sgag Y. DR BAL ¥ Ry !

Buoj - detatiols, o B, ¢ Joatnx[d, - E,_, - E]

In either case. the right-hand-aide is composed of known fields. The
left-hand-sides have well-behaved ellipltic operatlors.
To form » B, for use in the parlicle maover, we use e.g.

B, =B, ;- %" cVXE, (4)

Eqs. (2a-2b) diflfer from the popular centered “"leap-frog" scheme
only in that the eleciric field in Faraday's law here is En instead of
E,. 1f we replace fn in (2b) with the jinear combination aﬁn + (1-a)E_,
then with a=1 we obtain the D, scheme above, and the leap-frog scheme
with a=0. For intermediate values the upper bound on At increases as a
- 1. In problems where most cells are large and the undamped leep~-frog
scheme is prefetred, but some cells are much smalier (e.g. near a
boundary, or for r-0 in cylindrical or spherical coordinates), one might
use a=0 for the large cells and increase a to maintain stability where

cells are smaller.

The Direct Methcd for Implicit Particles and Fields

The essence of the "direct” method is that we work directly with
the particle equations of motion and the particle/field coupling
equations. These are linearized about an estimate (extrapolation) for
their values at the new time level n+l. The future values of {x.v} are
divided intc two parts:

¢ increments {dx,év} which depend on the (unknown) fields at the future
time level n+l1, and

s extrapolations {xggf.vggg} which incorporate al! other contributions
to the equation of motion

The increments {éx,dv} are evaluated by linearization of each equation o
motion [5,6,7]: here, we have

ox,,, /40t = 8Vpap = 1(1+R)-(qAt/2m)E,, (x,,,). (5)
<there the operator R effects a rotation through angle —anAt/mc.

The corresponding densities {pggz.lggg} and {6p.d6J} are inserted
into Maxwell's equations.
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Evsivation of {plf{.lif‘}. the extrspolated densities.

The exirapolnted current and charge Jensilies are evalualed the
same s2 in explicil codes, such ss ZOHAR [11] and WAVE, from x{9), !9
snd x_ . AL the grid point located st !j.

pL8] = qsix, - ={3) {e)
318} = T avil stx, - Hx,+x{3D) (78)
er =7 q'gg; §[s(x, -x,) + S{X, -x{I)] (7d)

To correct the small error in V-J&ﬂi (dué to the slightly
nonconservative but otherwise beneficial method of collection of J
[12.11]). we replace J;E; by

Jaeg = 319} - (W)/an, (8a)
where -2y = pggz + V-[Atlgg - E.]. (8b)

EBvaluation of {8p. 6J}, the increments due to future fields.

The care with which {6p.6J} are formed is a compromise between
complexity and strong convergence [5.7]. They may be evaluated
rigorously if necessary as derivatives of equations (8) and (7) ("strict
differencing”; [5]. section 4), or as simplified difference
representations [5,7] of

8p = -V-[psx]. (9)
83 = pév - 49 X (J X &x) (10)
for each species. This form for &J trivially conserves charge: ©6p +

AtV-8J = 0. This property can easily be preserved in the spatial
differencing of 6J.

The terms in Egq. (10) have both analytic and pictorial
justifications: see Figure. A heuristic derivation of &éJ uses an
analogy to magnetization current,. The megnetic moment of the current

ioop in the last diagram is
(1/2¢)}x X dx = (q/2cAt)éx X (vgg;m.
The current due to a density n of these is
83 = cVXM = cUX[n(q/2cAt) 6x X vggiAt] = lux[sx x pvggz]

which leeds to the last term in (10).
We row have everything needed to write an equation for E ,,. On
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While -J.,., curresponds to
moving Lhe perticle directly
from x, to x_,,. it can be

regarded as the sum of 3

motions:

Yo
il) motion R (2) then

Jl !

from x, to ’ o ) motion from
Hi givine T Ly i) e xay

n ’
0], giving pdv, -7

xn”
xn+l

plus (3) a circulation term - éVX(JXGx) to
cancel the “"detour” to “32;' This is not
needed to get p,,, but does affect B and E,. x{9)

\_ Xn _J
substituting our expressions for pggg. 6p. Jgg and 4J into the field
equations (2~3), we have

n+1 -En

At

o7 X [ Byyy + (JpgXéx)/2e J = 304 + pl0)sv + (11a)

Bn+§ "Bn—i
At

-4 cv x (E,., +E,,,]1= (11b)

These equations, together with (5), are the simplest yet proposed for
implicit field prediction, both in themselves and in what one must

accumulate from the particles.
The divergence of the Ampere-Maxwell equation recovers ezactly our

electrostatic implicit lield equation [5.6]

w



g, Sl TS T Y W ST At u
-] J
'11} = v-[1ax)-p,,,

where the implicit asusceptibilily y m (p£21q612/3m]{I+R]/2 is & tensor
due to the rotation R induced by B.

Ceneralizstions

To inciude relativity, one would linearize the relativislic
psrlicle equation-of-motion [11,12]. Eleclron-ion collisions (v < at~!)
may be described (] an addition to the rotation R in the
equation-olf-motion.

It &« corponent of the plasme is modeled by fluid equations then
those equations are linearized to find {8p.3J} [8]. Combining fluid and
particle descriptions is diificult, bul not more so in the direct method
than in the moment method.

Loose Ends

Some questions remain for analysis and/or experimentation. For
example, in a straightforward implementation of Eq. (11), a careful
examination of the locations at which E and B are evaluated shows a
S{kvat)? error. This error is the same type as in [7], where it seemed
not to cause problems in their applications. This report does not
discuss spatial differencing, which | anticipate would follow in spirit
the "simplified differencing” of Refs. [5, 7]. As in Refs. [5, 7, 13],
the "strict direct method” provides tools for analysis of the
convergence and stability of differencing schemes that are simpler than
those derived by strict application of the direct method, and are
simpler (and less restrictive in some respects) than the moment method.
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