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ABSTRACT

SevereaccidentstudiesfortheSavannahRiverproductionreactorsindicatethat if coherentfuel
meltingandrelocationoccurintheabsenceoftargetmelting,in-vesselrecriticalitymaybeachieved.
Inthispaper,fuel-melt/targetinteractionpotentialisassessed,wherefissiongas-inducedfuel
foamingandmeltattackontargetmaterialareevaluatedandcomparedwithavailabledata. Models
aredevelopedtocharacterizefoamsfor irradiatedAI-basedfuel. Predictionsindicatetransient
foaming(theextentofwhichi3governedbyfissiongasinventory),heatingtransient,andbubble
coalescencebehavior.Themodelalsoindicatesthatmetallicfoamsarebasicallyunstableandwill
collapse,whichlargelydependsonfilmtenacityandmeltviscosity.Forhigh-burnupfuel,foams
lastingtensof secondsarepredicted,allowingmoltenfueltocontactandcausemeltablationof
concentrictargets.Forlow-burnupfuel,contactcannotbeassured,thusrecriticalitymaybeof
concernat reactorstartup.

INTRODUCTION

Theprimarypurposeof theSavannahRiverSite(SRS)reactorsis theproductionof tritiumfor
nationaldefense.Forover30yearsthismissionhasbeenconductedwithoutseriousthreatto the
public;nevertheless,post-Chernobylconcernsregardingthesafetyof Departmentof Energy(DOE)
reactorshasheightenedissueswithregardstosevereaccidentconsequences.Toprovidecontinued
assurancethattheSRSreactorscanbeoperatedwithoutunduerisk,DOEhasinitiatedaprogram
to upgradepresentandfutureproductionreactorsto thehighestsafetystandards.A centralpartof
thisprograminvolvestheunderstandingofgoverningphenomenaandabilitytoquantifythe
consequencesoflow-probability/high-consequenceaccidentsinvolvingcoremeltdown.

Forsevereaccidentstheissueofrecriticalityisofconcern,wherecore-meltrelocationin the
presenceof a watermoderatormay,undercertainconditions,leadto recriticality.Suchrecriticality
ispossibleforcoherentfuelmeltingandrelocationin theabsenceoftargetmelting.Mixingoftarget
andfuelmelt,however,willassurea noncriticalconfiguration,lt isof interestthereforeto assess
fuel/targetinteractionpotenti,:,l,wheretheinfluenceof fission-gas-inducedfuelswelling/foaming
behaviorareprimarymechanismsforfuel-meltattackof targets.Inthispaper,modelsare
developedfor thepredictionof irradiatedfuelfoamingandfoamstabilitycharacteristics.Calculation
resultsareappliedto SRSMark-22concentricfuel/targetgeometryandillustratedin Figure1.
Predictedtrendsarecomparedwithexperimentalobservationson irradiatedfuelfoam
characteristicsandconclusionsgivenwith respectto recriticalityconcerns.
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F'cjure1. Illustrationof Mark.22Fuel/TargetAssembly

FOAM CHARACTERIZATION

Simplystated,a foamis anagglomerationofgasbubblesseparatedfromeachotherbya
networkof thinliquidft!ms.Bubblemorphologycharacteristicslargelygoverntheextentof foaming,
whilethetenacityof thefilmnetworkcontrolsfoamstability.Forirradiatedfuel,the foaming
potentiallargelydependsonchangesinthemorphologyofentrappedfissiongasbubblesasthefuel
melts,whilefoamstabilityisgovernedbythepersistenceof theliquidfilmsseparatingthegasphase
fromthemelt.

Figure2 illustratesthesequenceofeventsinvolvedinspontaneouslyinducedfoamingfnr
irradiatednuclearfuel1. Initially,fissiongasisimbeddedinthefuelmatrix_s individualatoms,
followedbynucleationofmicro-bubbleswithinthefuelmatrix.Uponfuelmelting,enhancedbubble
coalescence,expansion,andattendantfuelswellingoccur.Ifcoalescenceisrapid,thefoamedstate
canbe reached. Ifbubblecoalescenceisslow,bubbleescapeatthefreesurfacemaypreventthe
highlyvoidedconditionnecessaryfortruefoaming. Thus,foamingis largelya race _tween bubble
nucleation,growth,andcoalescenceversusgasescapefromthe melt.

2
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Destruction
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Onceformed,foamswill tend_ocollapsed[_ io filmdestruction.Drainageof the
interveningfilmbetweentwoadjacentbubbleswillleadtofoamcollapse.Quantitativemodelsfor the
assessmentoffoamformationandstabilitycharacteristicsarepresentedin thispaperandappliedto
SRSconditions.

FoamInSt

Theextentof foamingforirradiatedfueluponmeltingcanbecalculatedasthesumof
severalcontributionsassociatedwiththeexpansionofthefuelup:_nmeltingandchangesinbubble
morphologywithinthemelt;i.e.:

FtotaI= Fmatrix+ Fst+ Fbc+ Fth (1)

whereFmatrixistheexpansionofthefuelcelluponmelting,Fstis thechangeinbubblevolume
resultingfromtheloweredsurfacetensionuponsolid-to-liquidphasetransformation,Fbcisthe

volumetricexpansionresultingfrombubblecoalescence,Frhisthermallyinducedbubblegrowth,and
thefractionalextentofvolumetricswelling(F)foran individualmechanismcanbeexpressedas:

F = (VfinaI- Vinitial)/VinitiaI (2)

whereV is thevolumeofa unitfuelcell(i.e.,1cm3).

Fuelmatrixexpansionuponmeltingcanbeestimatedas:

Fmatrix= (ps/Pm)-1 (3)

wherePsandPmarethedensitiesofthesolidandmeltrespectively.

Notingthatthealuminumdensityat roomtemperatureisabout2.7g/cm3versus2.38

g/cm3at melting,thevolumetricswellingresultingfromdensitychangesisabout13percent,a

Theinfluenceofa reductioninsurfacetension((_)onthevolumeoccupiedbyfissiongas
bubblesinthemeltversussolidcanbeassessedfrc:_thethefollowingequilibriumforcebalance"

(2(_s + PRs)R2=(2(] +PRm)R2 (4)s m m

whereP isambientpressure,and(_sanda m are,respectively,thesolidandmeltsurfacetension.

a. FmatrixisdependentonUAIxalloyingcomposition,wherelittleexpansionisexpecteduponmelting

for highUcontef_tresultingfromreducedPswithincreasedU.

4
M9005018



Solving equation (4) for Rra, the fractional swelling c.used by changes in surface
tension is:

N(4_:/3)[R3m " R3]s
Fst = • (5)

1 + N(4_/3)R3s

Thebubbleconcentration(N, bubbles/cc-fuel)canbe estimatedas:

N = Ng/Ngb (6)

whereNgis the numberof gasatomsper unitvolume,Ngbis the numberof gas atomsperbubble(R)
and R is estimatedfromthe equationof statefor microbubbles2,which is:

Vb

Ngb = [A = BR] (7)

whereVb equalsbubblevolume,A equals85 E-24cm3,B equalskT/2_, kequalsBoltzmann's
constant,and T equalstemperature.

As shownin Table1, surfacetensioneffectsonswellingare quite limitedand estimatedto
contributea maximumvolumetricswellingof aboutten percentfor large bubbles(20,000A°)
associatedwith high-burnupconditions(50atom-percent).At lowerburnupsandsmallerbubbleradii,
the effect is muchlower. Becausea three-foldvolumetricswellingis requiredto ensuregood
fuel/targetcontactfor SavannahRiverMark-22assemblies,changesin fuel densityandsurface
tensionupon meltingare not sufficientto accountfor fuel/targetcontact. The primarymechanisms
for foam inducement,therefore,relateto changesinbubblemorphologycausedby enhancedbubble
coalescencein the meltandthermallyinducedbubbleexpansion.

Uponfuelmelting,an increaseinbubblemobilityoccurs,inducingcoalescenceofnumerous
microbubblesinto fewerbut largerbubbleswithattendantfuelswelling. Coalescencewill result in
continuedbubblegrowthand fuelswellinguntil largebubblestry to escapefrom the meltbybouyancy-
drivenforcesor otherbubbleescapemechanisms.Thus,the extentof foamingcanbe viewedas
largelya racebetweenbubblecoalescenceversusescape,whichcanbe assessedby determination

of the criticalbubbleradius(Rc)at whichbouyancy-inducedbubbleescapejust matchesthat of
bubblemigration/coalescencebyvolumediffusion,i.e.:

ac =[(9/8_)(1/pg)(e/ra)(A T/T)]0"5 (8)

whereAT equalstemperaturegradient,T equalstemperature,Q equalsactivationenergyfor

volumediffusion,ra equalsatomicradius,p equalsmeltdensity,and g equalsgravitationconstant.

5
M9005018



TABLE1. SwellingCausedbySurfar_TensionEffects

parameterValues

os = 1000dy/cm

om = 914dy/cm

P = 1atm(1.0E+6dy/cm2)

Ng =2.0E+20gas-atoms/cc-fuel(at50-percentatomburnup)

C_lculation

A° (cm) A° N,bubbles/cc percentRb,s, Rb,m, Fst,

10 (1.0E-7) 10.46 4.44E+18 026
200(2.0E-6) 209 1.41E+15 0.64
1000(1.0E-5) 1045 4.01E+13 2.03
10,000(1.0E-4) 10,440 3.64E+I1 8.10
20,000(2.0E-4) 20,830 9.07E+10 9.75

ForSRPcore-meltdownconditions,Rcisestimatedtobein therangeof20,000A°.
Coale_encetoa limitof20,000A° isbasedonequilibriumbetgweenescapeandcoalescence;while,
attransientheatingconditions,a non-equilibriumconditionexistssothatlargerbubbleradiicanbe
expected,thus,equation(8)yieldsa lowerlimitofcoalescence.

Thefractionalswellingperunitfuelvolumecausedbyachangeinbubblemorphologyby
coalescencecanbeexpressedas:

(4rd3)[N2R3- N1R]]

Fbc = and R2= Rc (9)
1 + Nl(4_R]/3)

wherethesubscripts1and2 refertothe initial(uncoalesced)andfinal(coalesced)states
respectively.

A similarexpressionforfractionalswelling(Fth)resultingfroman increasein fuel
temperaturecanbedefined,where,in thiscase,thebubbledensity(N)remainsconstantandideal
gasbehaviorisassumed,i.e.:

6
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N(4_3)(R 3- R3c)

Fth = and R2 = [(T2TI)R_J0.5 (10)
1 + N(4gR3c/3)

whereRc isthecriticalbubbleradiusforcoalescenceinthemeltL_forethermallyinducedbubble
expansion.

Calculationresults[asa functionoffueltemperature(1,000and1,500K),burnup(50,5,
and1atom-percent),andextentof bubblecoalescence(Rc= 20,000-30,000A°)]aresummarizedin

Table2, whereRlequals10A° andT1equals500K,whichis characteristicof normalSRP
operationalconditions.Resultsindicatethatat elevatedburnup(50atom-percent)andtemperature
(1000- 1500K),afive-to-eight-foldincreaseinvolumetricswellingcanbeexpectedsothatMark-22
fuel/targetcontactisassured(i.e.,a three-foldincreasein fuelmeltvolumeis requiredforfuel/target
contact.However,at reducedbumupsandassociatedlimitedgasinventoryconditions,thepredicted
extentof fuelswelling/foamingis insufficientto causefuel/targetcontact, lt is alsointerestingthat
temperaturegradienteffectsareof importance,whereenhancedbubblemobility/coalescenceis
predictedat increasedgradientsasdemonstratedinEquation(8)whereincreasedATyieldslarger
Rc. Thefoamingpotentialwouldthusbeenhancedforincreasedtransientheatingconditions.

FoamStability

Althoughlarge-scalefoamingispredictedforhighburnup,thequestionarisesastothe
stabilitycharacteristicsofsuchmetallicfoamsandwhethersufficienttimeexistsfortargetmelting.
Thecharacteristictimefortargetmeltingcanbeapproximatedfromthefollowingequationforthe
thermalrelaxationperiod:

t t,m X2/(o_a2) (11)

whereo_equalsthermaldiffusivity,X equalstargetthickness,anda equalssolidificationconstant
assessedfromequation(12).

Cp(Tmp-T)/L" a exp(a2) (I2)

whereCpequalsspecificheat,Trapequalsmeltingpoint,Tequalsinitialtargettemperature,andL
equalsthe latentheatof fusion.

Table3 indicatesthatforAI-basedtargetsandMark-22geometry,a thermalrelaxation
timeof 1.3seconds(s)is estimated.Thus,fuelfoammustbestableforseveralsecondsinorderto
initiatetargetmelting.

7
M9005018



TABLE2. Summaryof Pr_ed FoamingBehaviorof IrradiatedU-AIFuel

InitialConditions: R1 = 10A° T1 = 500 K

Fractional Fractional Total Volumetric
Burnup Temperature Bubble BubbleThermal Swelling

(percent) T2 Coalescence Expansion (Ft)

(K) (Fbc at Rc) (Fth)

50 1000 2.97(20,000A°) 2.79 5.76
1500 2.97(20,000A°) 5.64 8.61
1000 4.45(30,000A°) 1.50 5.97
1500 4.45 (30,000A°) 3.44 7.89

5 1000 0.30(20,000A°) 0.43 0.73
1500 0.30 (20,000A°) 0.98 128
1000 0.45(30,000A°) 0.57 1.02
1500 0.45 (30,000A°) 1.31 1.76

1 1000 0.06(20,000A°) 0.10 0.16
1500 0.06(20,000A°) 0.24 0.30
1000 0.09 (30,000A°) 0.15 0.24
1500 0.09 (30,000A°) 0.35 0.44

Ft " Fbc+ Fth
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Table3, EstimatedTarguiThermalRelationTime

ParameterValuesIAI-melti

Cp = 0.26cal/g-K k = 0.25cal/s-cm-K

Tmp = 933K p = 2.38g/cm3

T = 600K o_ = k/pCp= 0.4cm2/s
L = 95cal/g a = 0.62

Calculation

Cp(Trap- T)/L= 0.91

X(Mark-22innertarget)=2.019cre-1.57cm=0.449cm

tt,m " X2/(_a2) " 1.3s

To evaluatefoamstabilitycharacteristics,thetimescalefor thinning/destructionof the
filmlamellaebetweentwolargecoalescedbubblesisassessedforthegeometryillustratedinFigure
3, wherethevelocityprofileisbasedonthesolutionof theNavier-Stokesequationforfilmflowas
developedbyLeeandHodgson3.

wherehequalsfilmthickness,APequalspressuredifferential,andRfequalsradiusoffilmdisk.
Applicationof masscontinuityfortherataof filmthinningintheZandr directionsyieldsthefollowing
relationship4.

dh h3Ap
- --= (14)

dt 3gR_

9
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' Thisrelationship,uponintegrationfromtheoriginalfilmthickness(ho)tothecritir_',

thickness(hc)at whichfilmdestructionoccurs,yieldsthetimeforfilmdestructionbythinning4-

J_iIco-h°3 dh= z_Itt;).

dt and (15)
3 IX R_ o

la

31_R_ 1 1

tt= 2AP (h 2 52.) (16)
c o

Becauseho >>hc,thefilmdestructiontimecanbeapproximatedas:

2
3pRf

tt ~ 2 _ (17)
2AP hc

lt is interestingthatthefilmthinningtimeisessentiallyindependentoftheoriginalfilm
thickness,butratherdependsonthelengthofthefilmligament(Rf)andthecriticalfilmthickness

(hc)atwhichruptureoccurs.ForpracticalpurposesRf_ R(bubbleradius),whilethepressure

differentialonverticalfilmlamellaecanbeapproximatedasAP_-2Rpg,thus:

~

tt 31J'R2 (18)
4Pghc

wherep is themeltdensityandg is thegravitationconstant(980cm/s2).

Severalcriteriahavebeensuggestedforestimationof hc 5. DeVries6 proposedthat
ruptureoffilmlamellaeoccurbywaveinstabilitiesat thicknessof about100A°. Ina nuclear
radiationenvironment,puncturingoffilmsbyfission-fragmentionization(stoppinglengthof 1000A°)7
maybea moreappropriatecriteriafor hc.

Table4 presentspredictedfilmthinningtimesatvarioushcandfinalcoalescedbubbleradii.
As indicated,thefilmdrainagetime(andthusfoamstability)is largelycontrolledbythecritical
thickness(hc)at whichfilmruptureoccurs.If filmthinningdownto 100A° occurs,thendrainage

timesontheorderof 20minutesareestimated.Ina radiationfield(hc = 1000A°), a muchshorter
timeis estimated(i.e, t _ 10s).'t

11
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" " Table4. EstimatedFilmDestructionTimes

Pat'ameterValues.AI-melt

= 0.015g/s-cm p = 2.38g/cre3

g = 980 cr_/s2 31.d4pg= 4.823E-6cm-s

Bubble CriticalFilm FilmThinning
Radius,R (A°,). Thickness,hc (A°) Time, tt (s)

20,000 100 964 (:- 16min)
1000 9.64

i

30,000 100 1447 (-"24 rain)
1_00 14.47

DISCUSSIONAND COMPARISONWITHEXPERIMENTALOBSERVATIONS

Theresultsof theforegoinganalysisindicatesomeof theessentialfeaturesof foamformation
and stabilityfor irradiatednuclearfuel. Of particularnoteistheoverridingdependanceof the
foamingpotentialonfissiongasinventoryandtheextentofbubblecoalescenceas revealedby
equations(9)and(10). Fuelat lowfissiongasinventoryandcorrespondinglowbubbleconcentrations
(N) exhibitlimitedfoamingpotential.Theextentof volumetricfoamingisalsolargelydeterminedby
bubblemorphologyconditions:thatis,theamountofbubblecoalescence(Rc)andthermallyinduced
bubbleexpansion.Themorepronouncedtheextentofbubblecoalescence,thegreaterthevolumetric
sw_lling;thus,ata particularburr,upcondition,largerbutfewerbubbleswillleadto greaterfoaming
thannumerousbutsmallerbubbles,lt isfromthisperspectivethatfoamingcanbeviewedlargelyas
a racebetweeqcoalescenceandfissiongasbubbleescapefromthemelt.

In the analysispresented,thelimitofbubblecoalescence(i.e.,criticalbubbleradius,Rc)was
definedusingtwocriteria.Thefirstis basedontheconditionofequilibriumbetweenbouyancy-induced
bubbleescapefromthe meltversuscoalescencebya volumediffusionmechanism.Sucha
coalescencelimitdoesnotaccountforothercontributionsto bubblemobility(e.g.,
evaporation/condensation,stress-inducedbubblemobility,sweepingof gasatomsby bubbles)or the
variousfactorsthatcontributeto gas escapefromthe melt (e.g., interlinkingof bubbles,melt

breakup). Thus,predictedvaluesof the coalescencelimit (Rc)are approximateand representa
lowerlimitof coalescence.Nevertheless,a five-to-eight-foldincreaseinvolumetricfoamingis
predictedfor SRSfuelat 50atom-percentburnupandcoalescenceto bubbleradiiof 20,000to 30,000
A° A decreas, in fissiongas inventorybya factorof 'gn (burnupequals5 atom-percent)results in
!essthan a two-foldincreaseinswellingat similarbubblerad!!. Thus,fissiongas inventory(burnup)
conditionsarethe singlemost importantfactorgoverningfuel foamingpotential.

Althoughextensivefoamingis predictedforhigh-burnupaluminum-basedfuel,suchmetallic
foamsare unstableand collapseas a resultof destructionof the thin film lamellaethatconstitutethe

]2
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• fiifnnetworkcharacteristicof thefoamedcondition(Figures2 and3). ThetimescaleforfiJm
destructionwascharacterizedfromconsiderationof gravity-inducedfilmdrainage,wherethinningtoa
criticalfilmthickness(ht) resultsin filmdestructionandonsetof foamcollapse.Predictedfilmthinning

timesexhibita2edpowerdependenceonhc;thus,foamstabilityisconsideredlargelydependentonthe
filmthickness(hc)asfilmruptureoccurs.Fora radiationenvironment,filmpuncturingby ionizationat

hc- 1000A° yieldsanonsettimeof foamcollapseoftensofseconds.Ina non-radiationenvironment,
filmsareconsideredstableto 100A_"withcorrespondingfilmthinningtimeson theorderof tensof
minutes.

Althoughthemodelingapproachoutlinedis approximateandconsidersonlyfirstordereffects;
nevertheless,it servesasabasisforpredictionofoveralltrends.Thesetrendsarecomparedhere
withexperimentalobservations.Revealingexperimentsarethoseconductedin theearly60'sby
BudderyandScott8,wherefissiongasreleaseandswellingof moltenU-metalwasexamined.

Naturaluraniumsampleswereheatedout-of-pileto uranium-meltingtemperatures (]'mp= 1405K)at
fissiongasdensitiesof about2.0E+19gas-atomspercc-fuel(correspondstoaboutfive-percent
burnupfor SRSfuel).Transientswellingandcollapsebehaviorwascharacterizedfromfuelvolume
anddensityestimates,which._redottedinFigure4 intermsoffuel-specificvolume.Initialswellingis
evidentwithsubsequentcollapseuponfissiongasreleasefromthemelt.Morethan99percentofthe

Kr85(measuredduringtesting)waslostonmelting.Rapidgasreleasebeganabout10°Cbelowthe
meltingpointandincreasedoncemeltingoccurred.Thefinalconfigurationwasaonce-moltenpoolof
almostfull-densityuraniumcoveredbya low-densityfroth°

BasedonsuchobservationBudderyandScott8concludedthat,forirradiatedmetallicfuel,
initialfoamingbehaviorcanbeexpected,followedbyrapidfrothcollapseuponreleaseofpreviously
entrappedfissiongas. Thefinaldensityofthefuelcanbeexpectedtobecloseto thatof theinitial
densitypriorto heating.]'heyalsoconcludedthatalthoughburnupandmelttemperaturehada large
impacton theextentof foaming,theseparametershadlittleeffectontherateof gasreleaseand
foamcollapse.Suchexperimentalobservationsareingeneralagreementwithpredictedmodeling
trends(i.e.,initialfo_mingatfuelmeltingwithsubsequentfoamcollapseuponreleaseofentrapped
fissiongases),lt is interestingthatthehalfwidthoftheswelling/collapsepeakshowninFigure4 is
ontheorderof 15seconds.Thisexperimentalvaluecomparesfavorablywiththefilmdestruction
times(foamcollapse)estimatedinTable4.

]3
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CONCLUSIONS

Modelsoftransientfoamingandcollapsebehaviorforirradiatedmetallicfuelheatedto melt
temperaturesindicatett_atthefoamingpotentialisgovernedbyfissiongasinventoryconditions.Fuel
atlowfissiongasinventoryandcorrespondinglowbubbleconcentrationsexhibitlimitedfoaming
potential;whereashigh-burnupfuelexhibitsa highpotentialto foam. Theactualextentof volumetric
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• CONCLUSIONS

foaming,however,islargelydeterminedbybubblemorphologyconditions,(i.e.,theamountofbubble
coalescenceandthermallyinducedbubbleexpansion).Themorepronouncedtheextentofbubble
coalescence,thegreaterthevolumetricswelling;thus,ata particularburnupcondition,largerbut=

fewerbubbleswillleadtogreaterfoamingthennumerousbutsmallerbubbles.Fuelfoamingcan
thereforebeviewedlargelyasa racebetweencoalescenceandfissiongasescapefromthemelt.

Althoughextensivefoamingispredictedforhigh-burnup,aluminum:basedfuel,suchmetallic
foamsarepredictedtobeunstableandcollapsebecauseofdestructionof thethinfilmlamellaethat
const_.,."Jtethefilmnetworkcharacteristicof thefoamedstate.Thetimingofcollapsewilldependon
severalfactors,includingthefilmthicknessatwhichruptureoccurs,meltgeometry,andviscosity.
U-AIfoamslastingtensofsecondsarepredictedforradiationenvironmentsresultingfromfilm
ionizationatathicknessof1000A°, whilelongerfoamlifetimesarepredictedfornon-radiation
environments(tensofminutes)wherefilmsareconsideredstableto100A°.

ForSRSMark-22geometry,fuelfoamingathigh-burnupconditionsissufficientto inducefuel
meltcontactwithtargetmaterialandremainstablefortensofseconds,whichwouldallowforonset
of targetmelting.Forlow-burnupSRSfuel,fuel/targetcontactcannotbeassured,sorecriticality
maybeof concernat reactorstartupconditions.
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