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Pulsed Zero Field NMR of Solids and Liquid Crystals
Ann M. Thayer

Abstract

This work describes the development and applications to solids and
liquid crystals of zero field nuclear magnetic resonance (NMR)
experiments with pulsed dc magnetic fields. Zero field NMR experiments
are one approach for obtaining high resolution spectra of amorphous and
polycrystalline materials which normally (in high field) display broad
featureless spectra. The behavior of the spin system can be coherently
manipulated and probed in zero field with dc magnetic field pulses which
are employed in a similar manner to radiofrequency pulses in high field
NMR experiments.

In Chapter I, the fundamental nuclear spin interactions and
formalism used throughout are introduced. The fleld cycling scheme is
explained theoretically and practically in Chapter II, including
calculations of the signal function for a few illustrative experimental
examples. Technical details are relegated to the appendix. Chapter III
introduces how experimental dc pulse sequences can be exploited to
improve pulsed fleld homogeneity with composite pulses. Such sequences
are also used for the detection of NMR and NQR spectra with increased
sensitivity via level crossings, for isotope selective pulses, and for
two dimensional extensions of the experiment. Theoretical consider-
ations of the initial zero field state after demagnetization are also
included.

The study of liquid crystalline systems by zero field NMR methods



is the topic of Chapter IV. Nematic phases are studied in order to
observe the effects of the removal of an applied magnetic field on
sample alignment and molecular order parameters. In nematic phases with
positive and negative magnetic susceptibility anisotropies, a comparison
between the forms of the spin interactions in high and low fields is
made. High resolution zero field NMR spectra of unaligned smectic
samples are also obtained and reflect the symmetry of the liquid
crystalline environment. These experiments are a sensitive measure of
the motionally induced asymmetry in biaxial phases. Homonuclear and
heteronuclear solute spin systems are compared in the nematic and
smectic phases. In Chapter V, nonaxially symmetric dipolar couplings
are reported for several systems. The effects of residual fields in the
presence of a non-zero asymmetry parameter are discussed theoretically
and presented experimentally. Computer programs for simulations of

these and other experimental results are found in Chapter VI.
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I. INTRODUCTION

A. Introduction

Nuclear Magnetic Resonance {(NMR) involves the interaction of

nuclear spins with static and time dependent magnetic fields. It can be
used to obtain information on chemical identity, structure and dynamics.
Thia information is contained in the nuclear spin Hamiltonians which may
be probed as perturbations in the presence of an applied static magnetic
field or, as will be discussed in this thesis, in the absence of such a
field. In this first chapter, the formalism and basic interactions are
introduced. Later chapters describe the theory and implementation of
zero field NMR techniques and their applications to polycrystalline
solids and liquid crystalline mesophases. In the experiments presented,
the similarity between the uses of pulsed dc magnetic fields in zero
field and the high field radiofrequency pulses of "normal" NMR methods

is considered.

B. The Density Matrix

A pure quantum mechanical state can be represented by a single
ket , |w>, which when expanded in a complete orthonormal basis set, |un>,

is written

fu(e)> = Ecn(t)|un> (I.1)
n !

The coefficients, C,» may be time dependent and often ccntain arbitrary

phase factors. In NMR, one is generally concerned with measuring the



average expectation value for an ensemble of identical systems, rather
than observing a single state. 1In such cases, it is convenient to
employ the density matr‘ix.1

The elements of the density matrix, p, are defined in the

expression for the ensemble averaged expectation value of an ogperator,

0, as

— *
0> =L Lce <u fofu>
mn n m
nm

=1 pmn<un|0|um> (1.2)
nm

*
The gquantities cpc, can be thought of as the matrix elements of the

Hermitian operator, p, where

¥
e Cy = <uplelu > (1.3)

%rom Equations (I.2) and (I.3), it is evidenc¢ that the expectation value

of any operator is quite easily calculated from

0> = Tr{p0) = Tr{0p} (I.4)

The diagonal elements of the density matrix, correspond to the

pnn 9
ensemble averaged populations of the states up and the elements Phm

correspond to coherences betwaen states u, and U . The essence of the

2

random phase approximation® is that the off-diagonal elements are equal

to zero at thermal equilibrium. The diagonal elements, or populations,

are expressed in terms of the Bcltzmann distribution

Prn exp(iEn/kT) (1.5)

(S

-

in which the partition function L=Enexp(iEn/kT). Writing Equation (I.5)



in terms of the Hamiltonian of the system yields an expression for the

density operator
o = 3 expliH/XT) (1.6)

The Hamiltonian for a nuclear spin system at thermal equilibrium in a
large applied magnetic field is dominated by the Zeeman Hamiltonian
(HZ=_mOIZ where wO=YBO) since this interaction is orders of magnitude
larger than the internal spin interactions. Expanding the exponential

in Equation (I.0) and truncating to the first two terms (since KT>>H, in

the high temperature limit3), the density operator becomes

I
1 H i Yo'a
p =Z(1 _ﬁ) =z(\ + T ) (1.7)

In order to interpret and predict the behavior of an ensemble of
huclear spins with time, the evolution of the density operator must bz
understood. The evolution of the density operator is given by the

Liocuville-~-Von Neumann equationu

it‘-’ = i(p,H] (1.8)

For a time independent Hamiltonian, H, the solution of Equation (I.8) is
p{t) = exp(-iHt)p(0)exp(iHt) (1.9)

in which exp(-iHt) is termed the propagator of the system. The
Hamiltonian, H, appearing in the exponential terms can include the
effects of local spin interactions or the transformation of the density
matrix by application of a pulsed field. The first term of the density
operator in Equation (I.7) is unchanged by the unitary transformaticn of

Zquation (I.9) and tne reduced density operatcr is then defined as



w

o
P =gkl T Bl (1.10)

representing the high field equilibrium state of the system.
C. Nuclear Spin Hamiltonians

In tnis section, the nuclear spin Hamiltonians are presented and
discussed, Since most of the experiments to be described occur in the
absc¢nce of an applied magnetic field, the usual rotating frame
transformation3’5 is not used. Instead, general forms of tne
Hamiltonians are presented and specific frames of reference are
indicated for individual examples. The secular or truncated6'7 form of
the Hamiltonians in large magnetic fields (i.e. that part which commutes
with Iz) is presented for comparison in some instances. The actual
mechanics of the truncation are covered in many texts which can be
consulted for reference3'®78.

The Hamiltonians can be written as a product of a second rank

(3x3) Cartesian tensor and two vectors,7
X,Y,2 )
H=XAY= ¢ A, XY, (1.11)
= PR SIS S|
IDJ

The tensor, A, describes the coupling between the vector components, X
and Y, which can correspond to spin vectors of the same or different
nuclei, or a magnetic field vector., The matrix representation of the
Cartesian tensor depends upon the choice of reference frame. Transfor-
m..ions between different frames is discussed in a later section. The

principal axis system (PAS) of A is that which renders A diagonal.



1. Zeeman Interaction
The basis of nuclear magnetic resonance lies in the intrinsic spin
angular momentum, I, of most nuclear species. The spin angular momentum
is proportional to the magnetic moment, p, which interacts with an

applied magnetic field, B. The interaction is expressed as

= - ur = - T)6 I 12
HZ n'B YI(h/21)bo 2 (I )

where the field, Bo' is chosen as the laboratcory frame z axis and IZ is
the component of spin angular momentum in this direction. The
gyromagnetic ratio, YI' is a constant for a particular nuclear species
and plays an important role in magnetic resonance. For example, the
above interaction may be expressed in terms of the resonance frequency,

w,=Y{B,, Of a nucleus in an applied field

H, = - wOI (1.13)

in angular frequency units of radians/sec. This is by far the largest
interaction as it is on the order of megahertz (v=w/27m). For a given
field, this frequency Wy is characteristic of a nuclear spin due t¢ its
dependence on YI. Therefore, in an applied field, one gains a handle on
different nuclej allowing them to be distinguisned and manipulated on
the basis of resonance frequency. While this may seem a trivial fact
for most students of NMR, this property is later shown to be an
important experimental factor.

The eigenstates of the Zeeman Hamiltonian are the usual angular

momentum states, ]m>, upon which the angular momentum operators act




according to

I_|m> = m|m>

4
5 (I.1h)
I%m> = I(I+1) [m>
and defining I, = IX+in and I_ = Ix-in as the raising and lowering
operators, respectively
1,|m> = (11 D=m(m+1) 12 [me>
(1.15)
I|m> = [I(I+1)-m(m-1)]1/2]m-1>

where m=-I, -I+1,...,I-1, I for the (2I+1) eigenstates of a single

nucleus, spin I.

2. Chemical Shift Interaction
In the presence of a magnetic field, a nucleus is shielded by
surrounding electrons. The chemical shift is a measure of the degree of

this shielding effect and takes the form

H.o = - Y,I'g'B (1.16)

and is proportional to the applied field. In the absence of a field,
the chemical shift vanishes. The chemical shift tensor is a
characteristic of different chemical sites and is therefore frequently

used for their identification.

3. Radiofrequency Interaction
The interaction of the nuclear spins with an applied radio-

frequency (rf) fleld can be described by the Hamiltonian



Hop = - YIB1IXZCos[wt + o(t)] (1.17)

in which the irradiation is applied in a direction perpendicular (x) to
the static field (z). The applied field is characterized by an
amplitude wy = YIB1, a frequency w of the irradiation and a phase ¢.
These experimental variables provide for a complex and varied approach
to the manipulation of nuclear spins. The treatment of a pulsed rf or

de field on the density operator is discussed in later sections.

4. Quadrupolar Hamiltonian

Certain nuclear spin interactions exist even in the absence of an
applied magnetic field and it is these which are of interest in zero
field NMR and NQR experiments. une is the quadrupolar interaction8
whicr, in analogy to the chemical shift in high field, acts as a site
specific chemical label. For nuclei with spin I21, the nucleus has a
nonspherical distribution of electric charge, i.e. a quadrupole moment,
2Q. This quadrupole moment is a property of a particular nuclear
species and interacts with electric field gradients arising in che local
environment of the nucleus (<.g. bonding, crystal structure, etc.). The

coupling of the nucleus and electric fields for a single spin is given

by

oo Y
Q@ ° T I DGen LYl (1.18)

where ¥ is the electric field gradient (EFG) tensor. As stated
previously, in the principal axis frame of the interaction the tensor is

v and Vxx' These are defined such

diagonal with three components sz' vy

that



and

v + V -V =0 (1.19)

the latter in accordance with the Laplace's Equation. The largest
component of the electric field gradicnt is often defined as V,,=eq, and
the asymmetry parameter n, which describes the deviation from axial

symmetry of the electric field gradient, is defined by

LAER
S £ A S (1.20)

v
2z

The Hamiltonian written in the principal axis frame of the interaction,
in terms of aingular momentun operators, becomes
2

e qQ

2 2 2 2
Q> T T REn) [31Z -1+ n(Ix - Iy)] (1.21)

Note that in the principal axis frame there is no angular dependence.
Two characteristic features of this interaction are the value of
equ/h, the quadrupole coupling constant, and the asymmetry parameter,
n, which are very sensitive measures of different sites in a molecule,
motions cr bonding. Molecular motions produce an averaging effect of
the quadrupolar interaction making it a sensitive measure of these
effects. The quadrupolar interaction can be quite large (kilohertz to
many megahertz) but, in the cases relevant to this work, is often on the
order of 100-200 kHz. In high field, an interaction of this magnitude
would be truncated with respect to the applied field and the secular

form is



2
o_ _ e aQ 2, i 2 2 _ .2
Hy= = ST hreny [(3cos®8~1) + nsin®geos2a](3I_ - I")  (I.22)

The orientation dependence arises from the relation of the principal
axis frame to the laboratory/field frame. For a powder distribution of
crystallites, the angular dependence differs for each orientaticn and

results in a broad range of quadrupolar frequencies and hence a broad

spectrum,

5. Dipolar Hamiltonian
Another such field independent interaction is the direct, through
space coupling of nuclear magnetic moments as described by the dipolar
Hamiltonian.8 The Hamiltonian may be written as a sum over the

couplings of many &pins, or for just two spins as

Y, Y h [3(I,-r){I,'r)
Lo _ 12 1 2 . .
H. = 3 I, 12 (1.23)

12 T2

where r,, is the internuclear distance between nuclei 1 and 2 and r is
the unit vector. The dipolar interaction is a traceless, second rank
tensor and is generally considered to have axial symmetry. The dipolar
Hamiltonian is similar in form to the quadrupolar Hamiltonian (n=0) with
products of two spin, rather than single spin, operators. The

Hamiltonian may be expanded into a sum of six terms



10

Y, Y,h
(A+B+C+D+E+F] (I.24)

in which

A = (3cosZB-1)I

z1I22

B = & (3c0s®B-1)(1, I - I,-1,)

Tz locos z1722” *17%2

_ 3 s
C = 5 sinBcosBexp( La)(IZ]I+2+ I+]I22)

y 3 (1.25)

D=C = EsancosBexp(xu)(Iz1I_2+ 1_1122)

3.2 o
E = gsin Bexp( 21a)I+1I+2

F = E* = isinZBex (2ia)I_, 1
4 P -17-2

expressed in an arbitrary frame. The angles, a and B8, relate this frame
to the principal axis frame with the PAS z axis generally chosen to be
the internuclear vector. When the reference frame is determined by an
applied field (z axis), the Hamiltonian reduces to the secular terms A

and 3

o 1°2 2
Hy = - —5= [31,,1,, = I;-I,1(3cos™8-1)
Unr12
(1.26)
Y, Y., h
e} 12 2
Hp = = =3~ [21,,1,5 = 1/2(1,,1 5+ I_,1,,)1(3c0os"p~1)
4

As in the case of the quadrupolar interaction, the angular dependence on
B (relating the orientation of the internuclear vector and the field
direction) produces a broad range of spectral frequencies for
polycrystalline samples. If structure in a spectrum due to dipolar

couplings can be deciphered, then the geometry of the spins can be



determined from the r dependence of the interaction.
For a heteronuclear pair of spins, the dipolar coupling is written
in the same rorm as Equation (I.23) replacing the vector operator of the

second spin 12 by S such that

Hy = = 1-D°S (1.2m

where S is generally used to denote a rare spin species and I an
abundant one. The Hamiltonian can be expanded in the same manner as
Equations (I,24)~(I.25). In contrast, the I ,I_ "flip~-flop" term in
Equation (1.26), describing a simultaneous Am=1 flip of one spin and a
Am=~1 flip of the other, is no longer energy conserving for a
heteronuclear spin pair in high field due to the different I and S
resonance‘frequencies. The secular form of the hetercnuclear dipolar

coupling is then

Y_Y h
W - - LS (215 1(3c0s%8-1) (1.28)
unr3 22
18

In the absence of a field, when (mos—moI)*O, the form of the Hamiltonian

changes as will be shown in later discussions.

6. Indirect Coupling
The indirect spin~spin coupling, or J-coupling, is an interaction
which is mediated bty the electrons of a molecule. The coupling
constant, J, is generally considered isotropic (although in some cases
anisotropic components which have the same form as the dipolar coupling

contribute}, and the Hamiltonian may be written for two sSpins as

il
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H, = - I,°d°L, = ~J LI

J 17475 12l 712 (1.29)
o 1

iy IPLEFIRIPAE (LR IPL W

If the chemical shift difference between spins 1 and 2 is large compared

to J, the secular term is no longer given by Equation (1.29) but rather

° I (1.30)

By = 7 dyoladse

For heteronuclear spins, the Hamiltonian has the same form

HJ = - JISI‘S (1.31)

except that this always reduces in high fieid to the secular form

o
HJ = JISIZSz (I1.32)

as the I .S_ and I_S, terms are not energy conserving.

D. Rotatlions and Sphnerical Tensors

1. Rotations
Rotations include the effects of rf pulses (rotations on the spin
degrees of freedom), averaging of tensor interactions (rotations
relating spin and/or spatial degrees of freedom), and the represen-
tation of tensors in different coordinate frames. A vector, X, or
tensor, T, in a coordinate system {(x,y,z) can be expressed in another
coordinate system (x',y',z') through the use of a rotation operator, R,

whers



' =RX
- T
T =RTR (1.33)
The rota.ion operator, R, is defined a59
R(aBY) = R(Q) = RZ,.(Y)Ry.(B)RZ(a) (I.34)

and is composed of three successive rotation operatlors, or in matrix
form, three rotation matrices. The R(zBY) term describes the rotation
in Cartesian space by the zngles a, B, Y, commonly referred to as the
Euler angles. These angles relate the two coordinate systems as
illustrated in Figure I.1.10 Equation (I 4) describes the rotation by
the angle a (0 £ o £ 27) about the original z axis of the systerm,
followed by 8 (0 £ 8 £ w) ~Lout the new y' axis and lastly, by Y (0 £ ¥
£ 2w) about the final z'' axis. These rotations may also take place

about a set of fixed axes (x,y,z) for which R is redefined as
R{aBY) = Rz(a)Ry(B)Rz(Y) (I.35)

The rotation cperators can be expressed in terms of the angular momentum

operator‘s9 and Equation (I.35) becomes
. R{aBY) = exp(-iuIZ)exp(—iBIy)exp(—iYIZJ (1.36)

The effects of rotations on spherical tensors is covered in the

following section,
A pulsed radiofrequency or dc magnetic field, 81, acts as a

rotation on & spin system if the pulse is strong, so that the Zeeman

13
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Figure 1.1: The relation of coordinate frames by the Euler angles
(a,B,Y) in which the frame of reference moves With the rotated body (as
defined in Reference 10). Rotation about the z axis by the angle « (0O
£ a £ 21) takes the axes from the original frame (x,y,z) to the frame
labelled (x',y",z'). 1In this frame, rotation about the y' axis by the
angle B (0 £ 8 £ 1) results in the position labelled by (x'',;'',z'').
Rotation into the final frame (x''',y''',z''') occurs with a rotation
by the angle Y (0 £ ¥ £ 27) about the z'' axis. When there is
cylindrical symmetry about the z'' axis, the rotation by the angle Y is
no longer necessary to make the frames coincident. 1In such cuases the
angles a and 8 can be related to the more common polar coordinates, ¢
and 8, of the z'' axis in the original frame. Rotations can also be
conducted about the original fixed axes (x,y,z) as mentioned in the

text.



interaction with the applied field dominates and internal interactions
can be neglected. The Hamiltonian for a field in the x direction (in
the rotating frame for an rf field3, or in the laboratory frame for a de

field) is H = Y;ByI, and the prcpagator in Equation (I.9) becomes
p(t) = exp(-iYB1Ixt)p(O)exp(iYBilxt) (1.37)
This is readily recognizable as a rotation operator with a pulse angle,

6=YBIt. As an example, consider a pulse applied to the initial state of

a spin system in a large field where p(Q) o I,,

plt) = exp(~i6I_)I exp(ieIl )
X', x
(1.38)

I_cos® ~ I _sin®
2 y

which corresponds to the rotation of a vector, (0,0,I,). The rf pulse
thereby produces a transverse component of magnetization which may be

detected by the voltage it induces in a coil of a tuned circuit.

2. Spherical Tensors
Spherical tensor not:at:ion7'9_11 is introduced in the following
section as an alternative representation of the Hamiltonians. This
representation is convenient when considering the effect of
transformations of tensors under rotations. The elements of a second

rank Cartesian tensor, T (i,j = x,y,z), may be combined to form

iJ

irreducible tensors of

[

zZero rank: Ty 1/3Tr[Tij} = 1/32Tii

first rank: T, I/Z(TiJ-T<») {(1.39)

J1l

15



second rank: T, = 1/2(Tij+T )—1/3Tr{Tij}

Ji

The irreducible tensor T; of rank 1 has 21+1 components T, and can be

represented in a new frame by

1
_lTlm,Dm,m(aBY) (1.40)

‘ -1
T, = RGBT 8" (aBY)

n o=

iy
where R(aBY) is the rotation operator defined in the previous section.
The rotation operation does not alter the rank of the tensor, nor does
it change the measured observables associated with the tensor if only a
change of coordinate frame is made. The Dé.m terms are the elements of

the Wigner rotation matrices

1 R . :
D, (aBY) = <lm'|exp(-ial Jexp( i8I Jexp( 1YI_)|1m>

exp(-im'a) d;,m(s) exp(-imY) (1.41)

elements are tabulated in many boOks as are descriptions of

7,9,10

1
The Dy,

their symmetry and orthogonality properties.

The Hamiltonians are conveniently expressed as a product of

tensors which is written as

YA, T (1.42)

1 o 1
AT, = D DA = n G0 T

1 -
R L £ BN

For example, using Equaticn (I.11) from Section C.1, the expression for

the NMR Hamiltonian in Cartesian tensor and vector notation

H = X*AY = XiininYj

16
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can now be written in spherical tensor notation as

! m
I(-1)7A
0 m=-1

H =

mT
1

(I.43)

1

2
E 1-m

where the dyadic product of spin vectors forms the tensor T and the
tensor A describes the spatial terms. The NMR interactions are composed
of tensors of rank 0,1,2, thus the limits of the index 1 are determined
in Equation (I.43). The truncation of the Hamiltonians is easily seen

from the commutation properties of the spherical t:ensor‘s‘2

[Iz , Tlm] = Ty, (I.u4Y)

thus only those elements with m=0 commute with the high field state.

The tensor elements, Tlm' are given by6'7

Too = —/% [Ty * Tyy * T,
i
Tio = /% tTxy Tyx]
1
Tiag= ~ 3 [Ty ~ Ty * 1(sz Tyz)]
1 (I.45)
Tog = /E f3r,, ~ (T, * Ty-y * 7,0
|
Togg= F g T, + Ty * 1(Tyz+ sz):|
1
= = - T i
Toep= 3 [T Tyy £ 1T r T 00

in terms of their Cartesian components.
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II. EXPERIMENTS IN ZERO FIELD

A. Motivation

It is customary in the NMR experiment to observe the nuclear spin
interactions as a perturbation on the much larger Zeeman interaction of
the nuclear moments in a large magnetic field. The magnetic field makes
two very important contributions; firstly, it produces an observable
magnetization or polarization of the nuclear spins proportional to the
field strength and secondly, it provides for increased sensitivity in
detection due to the dependence of the induced signal voltage on
resonance frequency. Thus experimentalists often strive for higher and
higher fields for sensitivity enhancement and the increased resolution
of the field proportional chemical shifts. This is understandable when
studying liquid samples, as the anisotropic components of the nuclear
spin interactions are averaged away, but complications arise when
applying the same principles to polyerystalline solids or amorphous
materials.

The resulting problems are directly attributable to the angular
terms arising in the secular forms of the Hamiltonians in a magnetic
field., For a given molecular orientation in an applied field, the
observed frequency is shifted from its unperturbed value Dy an amount
related to the angular term and the size of the interaction. In
liquids, this angular dependence is averaged to zero due to the fast,
random isotropic motiéns of the molecules., When a static distribution
of all possible orientations is present, as in a polycrystalline powder,

the resulting spectrum is a superposition of spectra from the individual
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1

crystallites. The result is a broad powder spectrum’' covering a range

of frequencies.

For a small number of spins, the powder spectrum retains enough
distinctive structure, as shown in Figure II.1, to determine inter-
nuclear distances, or quadrupolar coupling constants and asymmetry
parameters., As the number of spins increases, so does the complexity of
the spectrum making fine structure in the spectrum difficult to
interpret. Geometrical information concerning a number of dipolar
coupled spins becomes intractable, and equally difficult is the
distinction of similar yet inequivalent quadrupolar sites with small
asymmetry parameters. Similarly, dynamical effects often produce only
subtle changes in a powder spectrum which may not be pronounced enough
to interpret. Much experimental time is devoted to unravelling complex
spectra and developing approaches to obtain high resolution spectra in
solids.2'3 Often this involves selectively averaging or reméving the
effects of the orientation dependent interactions while, unfortunately,
simultaneously ridding the spectrum of some of its most valuable
irformation. The orientational broadening is avoidable through the use
of oriented samples such as single crystals or liquid crystals; although
to gain a complete analysis from a single crystal study, the system must
be measured as a function of many orientations3 and the data must then
be disentangled.

Ideally, one would like to remove the anisotropy of the
inteructions in high field while maintaining the information content.
Consider then, that the only difference between the crystallites in a
powder sample is their orientation dependence with respect to a field

direction; in the absence of a field, with no preferential direction in
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Figure II.1: Theoretical powder pattern representative of either two
dipolar coupled spin I=1/2 nuclei or a single spin I=1 quadrupolar
nucleus with n=0. The distribution in frequency is a function of the
angle, B, which relates the z axis of the principal axis system (PAS) of
the spin interaction to the field direction. In the former, the
separation in the singularities is given by the dipolar coupling
Aw=3Y2h/Unr3 (tens of kHz) from which the internuclear distance can be
calculated. For a spin I=1, with n=0, the powder spectrum has the same
characteristic shape with the separation equal to Am=2ﬂ'(3e2qc/uh) (tens

tc hundreds of kHz).
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space, every orientation is identical. Thus the energies corresponding
to the untruncated zero field Hamiltonian are finite in number and
should yield discrete, Wwell-resolved spectral lines. Although the
Zeeman, chemical shift and radiofrequency interactions will have
vanished, the information rich dipolar and quadrupolar interactions
remain. The frequencies corresponding to the dipolar and quadrupolar
Hamiltonians can be extremely low on an NMR secale (<200 kHz) and
therefore direct detection in zero field is difficult. The conflicting
desires to use high field sensitivity and zero field resolution are

overcome by using field cycling techniques. Field cycling methods

employ an applied field in the preparation and detection periods of the
experiment, with the field rewoved during the evolution period of the
5pins under the zero field Hamiltonian.

Zero field and field cycling techniques have existed for many
years as there has long been interest in the behavior of spin systems in

6

low and zZero rields,"’5 either for measuring relaxation® and demagne-

tization el“x‘“ects,'Z'9 or for measuring quadrupolar f‘requencies.‘o’11
There are several review articles and text55'9—11 which cover the field
in depth and only a brief discussion of a few related experiments
follows. The most common experiment is pure Nuclear Quadrupole
Resonance (NQR)m']1 in which the isotopic abundance and differences in
quadrupolar anergy levels in zero field are large enough (>few MHz) so
that the population differences produce an observable polarization. The
NQR resonances are detected directly in zero field after perturbing the
system with eithe* an rf pulse and Fourier transforming a time domain

signal, or with continuous irradiation and detection of the f.equency

dowain signdl.1l Quadrupolar nuclei with small quadrupolar coupling
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constants are unaccessible by such experiments. In these cases, field
cycling techniques and double resonance NQR methods utilizing sensi-
tivity enhancement via level crossings are employed.12-1“ Most NQR
experiments are frequency domain experiments which means that the system
is irradiated in zero field. Often this leads to power broadening of
the resonance lines,13 and in double resonance experiments, the
undesirable absorption of energy by a second spin species.13 The
experiment to be described in the following sections iIs a time domain

Fourier transform adaptation of previous methods of flield cycling

U,16 18

developed by Ramsey and Pound,15 Hahn, Redfield17 and others.

B. Field Cycling Schemes

The field cycle is used to prepare the initial state, induce
avolution in zero field, and detect the signal. The basic concept
behind the ideal time domain sequence, as depicted in Figure 11.2, is as
follows. If the sample is prepared in an equilibrium high field state,
a magnetization, sz proportional to the field, BZ, develops. Sudden
removal (in the quantum mechanical sense) of the field leaves the system
in a nonequilibrium state and evolution for a given time, ty, occurs
under the zero field Hamiltonian. Terminating the evolution by
reapplying the field traps a component of the magnetizationg, and the
signal is then detected in high field for that value of ty. As in a two
dimensional exper‘iment,19 the evolution in zero field is monitored at a
later time in successive field cycles as a function of the incremented
time, ty. Fourier transforming this signal produces the freguency

domiin spectrum.  Practically, it is difficult to quickly remove a field
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Figure II.2: Idealized version of the field cycle to zero field. At
top, the field, Bz' as a function of time and below the magnetization,

M as a function of time are illustrated. In the preparation stage, a

z*
magnetization My proportional to Bz, develops. Sudden removal of the
field to zero at time t1=0 causes the magnetization to oscillate in the
presence of the dipolar or quadrupolar local fields. Evolution in zero
fleld continues for a time, t;, until it is halted by -apidly reapplying
the z field. This traps a component of the magnetization which is then
detected in the presence of B,. Sampling the magnetization, point by
point, as a function of Ly indirectly maps out the oscillations in zero

field.



of the magnitude desired for preparation and detection, therefore a
stepwise field cycle is used. The experimental field c¢cycle is illu~
strated schematically in Figure II.3, and is explained step by step in
the following sections. A variation of this field cycle using pulsed dc
magnetic fields, as an alternative means of inducing evolution in zero
field, is also presented. Applications and variations of the experiment

are explored in later chapters.

1. The Initial State

Any experiment must begin with an observable, and in NMR it is the
behavior of the magnetization of the spin system which is usually
examined. In an applied field, the equilibrium state of the system is
described by the Zeeman interaction which means that for a spin I there
are 2I+1 energy levels separated in energy by AE=YhBO/2n. For N spins,
an unequal population of the energy levels, as given by the Boltzmann
distribution gives rise to a net macroscopic magnetization in the field

direction pr‘opor‘tional8 to

mexp(YhmBO/anT)

exp(YhmBo/anT) (I1.1)

=X
[}

[*]
=
EN s
po3
3~ 3

where m = -I to I. The Boltzmann distribution can also be expanded in

the high temperature limit,8 Equation (II.1) takes the form

O NYPRPI(Ten)

5 x B (II.2)
127 kT

where Xo» the bulk susceptibility of the system, is proportional to 1/T

by the Curie Law. The magnitude of the magnetization is proportional to
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Figure 1I.3: Schematic representation of 'the experimental field cycle.
The sample originates in a large applied field magnetic field, Bo’
during which time an equilibrium magnetization is produced. The field
is then adiabatically reduced by removal of the sample to a field level
Bint>Bloc' Two magnet coils are used to produce the zero field region
and provide a sudden transition in the field which leaves the sample in
zero field and initiates evolution for ty. Reapplying the field,
terminates evolution and preserves the z component of magnetization.
The sample is adiabatically remagnetized to B, and the signal is
detucted by standard NMR methods. Sampling the signal as a function of
ty produces S(t]). the time domain signal, which when Fourier

transtormed ylelds the zero field frequency domain spectrum.
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the inverse temperature, the number of spins, N, the isotnpic abundance
of the resonant nucleus and the gyromagnetic ratio, Y, which determines
the energy level separation for a given field. Examples of these
factors have been tabulated for a few nuclei of inter‘ﬂst.20

The net magnetization in the field direction, Mz, approaches its
equilibrium value, Mo, roughly exponentially from a unmagnetized state
with a time constant, T1, known as the spin lattice relaxation time.21
When allowed to equilibrate and develop a net magnetization, the high

field state of a system of many spins, N, is described by the density

operator at time t=0,
N
p, (0) al = L I_. (11.3)
L LT

where the subseript, L, indicates that this operator is expressed in the
laboratory frame with the z axis defined by the field direction.
(Operators in the zero field representation will not have subscripts in
order to simplify the notation). The initial density operator contains
only spin angular momentum terms and is independent of molecular
orientation. The eigenstates of the system correspond to the eigenbasis
of the high field Hamiltonian. Since the magnetization is proportional
to the field strength, the initial preparation stage of the experiment

occurs in a field of approximately 4 Tesla.

2. Demagnetization
The next stage of the field:.cycle is demagnetization to an
intermediate field level, Bint' as shown in Figure II.3. The notation

B and B; will be used interchangeably for the intermediate field

int

27
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level. The demagnetization is accomplished by mechanically moving the
sample out of the certer of the large magnetic field through the fringe
field of the magnet. The fringe field is aligned ‘ the same direction
as the main field over the entire transit, thus the shuttling process is
simply adiabatic demagnetization in the laboratory frame (ADL.F).9 This
process is described by defining two céncepts, spin temperature and
adiabatic demagnetization.

a. Spin Temperature. The idea of spin temperature originates in a
discussions’g of the thermodynamic properties of nuclear spin systems.
A macroscopic quantity such as temperature becomes useful in describing
the establishment of equilibrium states, cross-relaxation effects and
adiabatic demagnetization. A system can be considered to contain at
least two reservoirs, namely the spins and the lattice, each with its
own thermodynamic properties such as heat capacity and temperature. The
Lattice is composed of the quasi-continuous distribution of energy
levels corresponding to the other degrees of freedom of the system, such
as vibrational or phonon modes in the solid. Therefore, the lattice has
a much greater heat capacity than the nuclear spin reservoir, and
generally is considered to be in a state of thermal equilibrium. The
lattice and spins exchange energy through spin-lattice relaxation
mechanisms, and the time constant which describes the rate at which the
spins come into thermal equilibrium with the lattice is known as T,. At
equilibrium, the lattice has a temperature, TL'

A temperature, T., different from T, may be defined for the

9

s
nuclear spin system if a few conditions exist. If the spin-spin
couplings are greater than the coupling to the lattice, than the spin

system may be considered isolated from the lattice with its own
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temperature. This is often the case in solids with abundant magnetic
nuclei, such as protons, among which the dipolar couplings are strong.
These couplings rapidly bring the spin system into a state of internal

equilibrium with the ratio of the populations of any two of its energy

levels is given by the Boltzmann ter‘m,9
p -YhB
B - exp( ) (11.W)
P kT
m-1 s

with a corresponding spin temperature, Ts' for a two level system. The
equilibrium is reached rapidly through the "flip-flop" terms of the
secular dipolar Hamiltonian in a time roughly on the order of TE' This
is an energy conserving process for spin I=1/2 nuclei with their equi-
distant energy levels in an applied field. After a time comparable to
the spin-lattice relaxation time, T1, the spin system will come into
thermal equilibrium with the lattice such that T5=TL‘ This corresponds
to the establishment of a new Boltzmann distribution at the temperature,

T If the system is to remain isolated such that TszL, then the

Le
condition of T2<<T1 must exist and is generally the case in solids.

Some states are not describable by a spin temperature.9 For
example, since a spin temperature is defined by thz populations of
states, the density operator must be proportional to the diagonal form
of the Hamiltonian. Anything which alters this, such as a sudden change
in field or an rf pulse, produces off-diagonal elements of the density
matrix corresponding to coherences. These coherences, according to the
random phase appr‘oximation,22 decay with a time constant T2. Thus a

minimum time T, must pass before one can reasonably taik about the

establishment of a new spin temperature.
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b. Adiabatic Demagnetization. The demagnetization step can be
defined as adiabatic if a few conditions are met.21 An adiabatic
process is reversible and occurs with constant entropy, therefore no
heat flows in or out of the system, For a nuclear spin system, this
indicates thzt the change in field must be fast compared to T, as
otherwise energy is exchanged with the lattice thereby producing new
Boltzmann populations. Additionally, after each small decrease in the
field, a new state of internal equilibrium must be reached.” For a
system of spin I=1/2 nuclei, this equilibrium is established through the
flip-flop terms of the dipolar coupling which conserve the populations
of the energy levels. This requires that the change must be slow on a
timescale compared to the precession period of the nueclei in the local
fields (t<1/YBloc) which is generally on the order of tenths of milli-
seconds and roughly proportional to T2.8’21 In solids, a rate of
demagnetization can usually be chosen which meets these requirements
since T2<<T1 thereby making the system always describable by a spin
teriperature.

Since the changes are made adiabatically, fast compared to Ty (the
time required to establish a new equilibrium MO) and the flip-flop terms
canserve Mo, the magnetization remains constant with decreasing field
and the spin temperature must therefore decrease. This can be seen by

rewriting the Curie Law (Equation II.2) in the high temperature limit
as,
M = == (11.5)
where C i3 the Curie constant containing several nuclear constants and
TS is the spin temperature of the system. The final spin temperature is

approximated13 by



Bf
T, = T (50 (11.6)

s i
for Bf greater than the local fields and where, i, corresponds to the
initial vilues and, f, the final.

The adiabatic changes in the state of the system and reesﬁab-
lishment of equilibrium with each field step means that the density
operator is always proportional to the instantaneous Hamiltonian.8
Therefore, if the demagnetization proceeds to an intermediate field
level, B; (where Bi>>Bloc)' the state of the system is still described
by the high field Zeeman Hamiltonian as given by Equation (II.3) and
retains the polarization of the high field state. If the field is

allowed to reach a level where Bi<Bloc’ it no longer is easy to describe

the system as being in a purely high field or zZero field state unless

3. Evolution in Zero Field

Tne spin system, demagnetized to an intermediate field, Bi' chosen
such that the Zeeman interaction in this field dominates over any local
spin interactions, is in a state proportional to the Zeeman Hamiltonian.
The system remains in the eigenstates quantized with respect to the
field direction and retains the full high field magnetization, Mz if no
relaxation occurs. Two electromagnetic coils of manageable (i.e.
switchable)} field s' engths are used to maintain this state and provide
the transition to zero field (see Appendix A). Evolution under the zero
field Hamiltonian can be initiated with the sudden removal of B1 as
itlustrated in Figure II.3 by the sharp transition in field. Sudden is

defined in the quantum mechanical sense,23 whereby the change in the
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Hamiltonian (i.e. field) is too rapid for the system to follow, in
contrast to the adiabatic transitions described earlier. The state of
the system is unable to change instantaneously, thus the density
operator immediately before and after the transition in field is
proportional to Iz,L’

Once the field is removed, the system is in zero field. With the
discontinuous change in the field, there has also been a discontinuous
change in the Hamiltonian describing the spin system. The high field
and zero field Hamiltonians do not commute. In fact, the zero field
Hamiltonian is now in an untruncated form\and is best represented in a
molecular based frame of reference. Because the system is not in the
eigenstates of the zero field Hamiltonian, evolution occurs at
frequencies corresponding to the local interactions. Evolution
continues for a time, ts and is described by the time evolution of the
density operator (See Section I.1). Evolution is terminated after the
t, interval by the sudden reapplication of the intermediate field in the
laboratory z direction (with 13<<T2, to avoid the decay of the evolved
state). This traps components of the magnetization in the field
direction (i.e. those proportional to IZ,L) while transverse components,

(i.e. those perpendicular to the longitudinal field direction) decay.g

4. Remagnetization and High Field Detection
The last step of the field cycle illustrated in Figure II.3 is the
detection of the evolution of the nuclear spin system in zero field.
After terminating evolution and preserving the laboratory frame z
component of the zero field state, the sample is adiabatically

remagnetized., As in the case of the demagnetization, the state of tne
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system is conserved while increasing the field under the same adiabatic
constraints. Upon return to the high field, the magnitude of the 2z
component is detected (see Appendix A). The measured signal is a single
data point in the period of the zero field oscillations for a given
value of tye After waiting a delay to allow for relaxation of the
nuclear spins, the field cycle is repeated for the next value of t1.

The detected signal, S(ty), is modulated as a function of tq at the
frequencies corresponding to the zero field interacticns. Fourier
transforming this time domain signal produces the frequency domain

spectrum.

5. Field Cycling with Demagnetization to Zero Field

Other approaches to field cycling are possible and one which is
frequently used involves complete demagnetization to zero field.12—1u
Once demagnetized, the spin system can be probed with rf pulseszu or
continuous rf irradiation as is common in frequency domain
experiments,12—7u or, as developed in the time domain experiments
described in Chapter III,25'26 with pulsed dc magnetic fields. A
schematic representation of two such time domain field cycles are
illustrated in Figure II.4. In the following sections, the features of
these field cycles which differ from the one described previously are
discussed.

a. Demagnetization to Zero Field. Many years ago in an experiment
conducted by Pound27 it was found that after adiabatically demagnetizing
4 system to zero field, such that when BO=O so does M0=O, the full

magnetization was recovered with reapplication of the field. Remagne-

tization oceurred in a time much less than T, which indicated that, by
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Figure II "“: Field cycles utilizing demagnetization to zero field and
pulsed de magnetic fields. The sample is demagnetized to an
intermediate field level then to zero field in two steps. In both (a)
and (b), the equilibrium state of the apin system is caused to evolve
for t, by applying a pulsed dec magnetic field. Evolution can be stopped
by either, (a) suddenly applying a field in the z direction thereby
trapping a component of magnetization before remagnetization and
detection, or (b) applying a second dec pulsed field, remagnetizing the

sample from zero field and detecting the signal as a function of ty.
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some means, the order of the spin system, once corresponding to a magne—
tization, was preserved even in the absence of a field. A demagnetized
state is therefore intrinsically different than an unmagnetized state.
The order is maintained by the nuclear moments aligning with the local
fields. Due to the random distribution of local fields, there is no net
magnetizacion. The order in the local fields decays with a time
constant different than T, and characteristic of the type of order
present (e.g. T1D for dipolar order, T1Q for quadrupolar order).

A remaining question is: What is the nature of the demagnetized
state and how might it be described? Previously it was stated that
during demagnetization the density operator is always proportiona’ to
the instantaneous Hamiltonian. This is true for large numbers of
coupled spins which are describable by a spin temperature. The
transitior by adiabatic demagnetization from high to zero field consists
of the Hamiltonian, and the eigenstates, going smoothly over to that
Wwhich describes the system in zero t‘ield.9 The density operator is then

proportional to an equilibrium condition in zero field such that
Lo Hypl = 0 (I1.7)

For example, as the Zeeman order is transferred to dipolar order, the
Hamiltonian of the system changes from being proportional to H, to
proportional to Hy (which is also HZF)'

For isolated spins or spin I=1 systems, the demagnetization can

8,9 In such

not be described by the spin temperature approximation.
cases, it is more difficult to simply describe the initial condition in

zero field. Equally as difficult ls a simple description of the initial

state in those instances where spin systems, isolated in high field,
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come into contact via the equalization of their energy levels as a
consequence of demagnetization. These circumstances and their bearing
on the zero field experiment are discussed in more detail in Chapter
III.

b. Initiating Evolution with Pulsed DC Magnetic Fields. Without
explicitly specifying the form of the initial zero field state, it can
be safely assumed that after demagnetization the spin system is in an
equilibrium (non-evolving) state in zero Fie1d9 and evolution must be
initiated. Previously, this was accomplisned by a sudden change in the
Hgmiltonian. Since the system is already in a state related to the zero
field Hamiltonian, instead of a change in the Hamiltonian, a pulsed
field can be used to bring about a change in the state of the system.
Two such schemes are illustrated in Figure II.Y4 using pulsed dec magnetic
fields. As described in section I.D.7, if Bi))Bloc' the pulsed field
Acts as a rotation (8) on the density operator causing part, but not
all, of the original diagonal elements to be rotated into off-diagonal
2lements. These off-diagonal elements correspond to coherences between
zero field eigenstates and thus the system, no longer in an equilibrium
stite, begins to evolve under the zero field Hamiltonian.

Evolution continues for t; in a manner identical to that described
before and can be ﬁerminated in two ways. In Figure II.#4a, a field is
reapplied suddenly in the laboratory z direction to trap those
components proportional to Iz.L‘ This state is then remagnetized and
detected as before measuring the change in Iz,L with time. An alter-
native method in Figure II.4b is to apply a second pulse (8') which
rotates the off-diagonal elements of the density matrix back into

diagonal population differences. Remagnetization of this state



37

preserves the populations and transforms it back into high field for
detection in much the reverse of the demagnetization step.

The Zeeman interaction with the pulsed field should dominate over
local interactions so that the pulses act like rotations and no
evolution occurs during their application. For quadrupolar nuclei with
large quadrupole coupling constants and low gyromagnetic ratios, a field
on the order of several hundrec¢ Gauss to a kGauss is then required.
This is much more easily produced as a short intense pulse than for the
longer time required of the intermediate field in the sudden transition
field cyclie. Thus pulsed field cycles have some distinct practical
advantages. Additionally, the second field cycle of Figure II.Y allows
pulses to be used selectively in exciting different nuclei and the
exploitation of the naturally occurring level crossings in the

demagnetization step.
C. Calculation of the Signal

1. General Approach

In this section, an approach to calculating the analytical form of
the zero field signal is presented for the field cycle shown in Figure
II.3. These calculations are based almost entirely on the principles
introduced in Chapter I for the density operator and transformations
between reference frames. The signal after the zero field t period is
calculated as the expectation value of the detected high field operator.
This operator is generally Iz,L' such that the normalized signal is

given by Equation I.Y4
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S(t1) = Tr{p(tl)lz,L} (11.8)

in which p; (t;) is the time evolved state of the initial density
operator under the zero field Hamiltonian, HZF' As given by Equation

(1.9}, the time evolution is written in the zero field frame as

p(tl) = exp(—iHZFt1)p(O)exp(iHZFt1) (II.9)

in which p{0) is the initial density operator prepared in high field and
through demagnetization. One characteristic of the field cycle with a
sudden transition to zero field (Figure II.3) is that the prepared and
detected operators are identical. The initial state has thus far always

been expressed in the laboratory frame as

pL(O) = IZ'L (I1.10)

and Equation (II.8) would then represent the correlation function of
Iz,L with its time evolved counterpart.

For convenience in the calculation of the propagator, the zero
field Hamiltonian is best expressed in its eigenbasis referenced to a
frame descriptive of the zero field state., This frame is most often
chosen to be some molecular based frame in which the Hamiltonian is
identical (homogeneous) for all orientations. When working in a zero
field/molecular frame, the properties of rotation operators must be used
to express the laboratory based operators in the zero field frame. The
normalized signal function, reexpressed by substituting Equation (II.9)
into Equation (II.8) and including the proper transformations into the

zero field frame, is



. -1 . -1
a 1) = Tr{exp(-lﬂzptT)RpL(O)R exD(lHZFt1)RIz,LR } (IT1.11)

The subscript, @, indicates that this expression contains an angular
dependence relating the laboratory fraie to the crystallite molecular
frames by the rotation elements, R(Q)=R(aBY). The angular terms differ
for each orientation and since there is a random distribution of
orientations of crystallites in a polycrystallfne sample, each equally
probable, the signal must be integrated over all possible orientations

to yield a powder average where

s(t,) = [ S,(t,)P(R)dn (11.12)
Q

and for an isotropic distribution P(Q)dQ = sinfdRdadY over the limits of

the Euler angles.3

A few important points can be illustrated by discussing the
relationship between laboratory and zero field/molecular frames. For
the sudden transition field cycle, immediately before and after the
removal of the field, pL(0)=Iz_L. It was stated previously that this
corresponds to a non-equilibrium (evolving) state under the zero field
Hamiltonian and is easily demonstrated by expressing the density

operator in the zero field frame through

p(0) = R(aBY)p ()R ' (aBY)

= IzcosB + Iysinssina + IxsinBcosu (I1.13)

where the angular momentum operators in the final line are in the

aal-ecular/zero field frame. Note that there is no dependence on the
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angle, Y, which may be attributed to the axial symmetry of the initial
condition. The matrix representation in the zero field basis of
Equation (II.13) contains off-diagonal terms corresponding to coherences
which describe the evolution of the system. Thus Equation (II.13) does
not represent an equilibrium state of the zero field Hamiltonian, which

is to say

[p(0), H, . 1 2 0 (II.14)

ZF

indicating from the Liouville-von Neumann equation that evolution occurs

since

[=}%
g=3

(II.15)

&l
cr
h Y
o

Equations (II.14) and (II.15) are a concise general statement about the
conditons required for evolution in zero field.

The general apprcach to calculating the zero field signal can be
stated in a few words.  First, choose a convenient basis set in which
the zero field Hamiltonian is diagonal and calculate¢ the eigenvalues {or
as 1s more often the case, diagonalize Hyp to find the eigenbasis and
eigenvalues). The eigenstates and eigenvalues in a molecular based/zero
field frame should contain no dependence on crystallite orientation.

The initial rcondition, if proportional to a lab based operator, must be
expressed in the zercu field frame. For initial and detected operators
equal to I, |, substituting Equation (IT1.13) into Equation (II.11)

yields

3 (t ) = Triexp(-iH

¢ B . . .
2ty 75 1)(Izcosu + Iysxn651na + IXSLnncosu)

X exp(iHZFt1)(IzcosB + Iysinssina + Ixsinacosa)} (I1.1ha)

and defining the time evolved operator In(t1)=exp(-iHZFt})Inexp(iHZFt1).



Y o . . .
Sn(t1, Tr{(Iz(t1)cosB + Iy(t1)51n851na + Ix(t1)51n8cosa)

X (Izcosﬁ + IysinBsina + IxsinBcosa)] (II.16Db)

The explicit form of I, (t;) consists of terms which are products of spin
operators and frequency containing terms.28 Only certain combinations

of operators will survive the trace operation since

Tr{IjIk} = ij

{11.17)

1.7 =
Tr[Lj.kIl} 0

Taking the trace and powder average yields

Jeosuw, t (11.18)

2
l * | jk1

2 2
§ S Tysid ™ g

where, for example, I K is the (jk)th matrix element of Iy, the

xj
molecular frame operator, and wyp = EJ—EK/(h/Zw), the frequencies of the
zero field Hamiltonian. Positive and negative frequencies are indistin-
guishable and therefore the spectrum is symmetiic around zZero. Fourier
transforming S(t1) yields the frequency domain spectium.

In spite of the fact that the detected operator was chosen to be

I the calculation discussed thus far can easily incorporate

z,L?
different initial conditions or detected operators or both. One must be
consistent in expressing the operators or propagators in a common basis

set or frame. Often careful selection, via symmetry arguments, leads to
a choice of molecular frame which simplifies the calculation. 1In later

chapters, more explicit calculations including features such as dec

pulses, different initial and detected conditions, and transformations

detween molecular and liquid crystalline frames are covered. Having
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demonstrated the general approach, a few specific examples of simple

spin systems follow.

2. Two Homonuclear Spin I=1/2 Nuclei (I-I)
For two dipolar coupled spin I=1/2 nuclei, such as the two protons

in a water molecule, the initial density operator is

= = .1
OL(O) IZ,L IZ1,L + Iz2,L (I1.19)

The protons are assumed to be identical with respect to exchange,
consequently, the constants preceding the operators have been dropped to
facilitate the following calculations. 1In zero field, the Hamiltonian
is the full untruncated form of the dipolar coupling as given by
Equation (I.24) and will be expressed in a molecular based frame. If
the z axis of this frame is chosen to be the internuclear vector (which
is also the z axis of the PAS), the angle B equals zero and the

Hamiltonian reduces to the axially symmetric form

-v°n
Hy = —3 [3121122 - I,°1,] (11.20)
2m

Written in the zero field basis set, the eigenstates are given by

2—1/2

[1> = (Jaa> + |88>)

|2> = —1(2-1/2)(|aa> - ]88>)

~ (II.21)
5 172

[3> = (Jag> + |8a>)

and
> =2 1/‘2(]mB> - |8a>)

where o s defined as m=1/2 and B is m=-1/2 {from <IZ> in the zero field

frame for the state ]I1IZ>). The first three states are commonly



referred to as the triplet manifold and the latter as the singlet state.

The eigenvalues corresponding to these states are

w

b
By =By =5
By - up (11.22)
Ey = 0

with wy = Yzh/an3 and contain no orientation dependence, unlike the
dipolar energies in high field. The energy levels and allowed trans-
itions are illustrated in Figure I1.5. The angular momentum operators
do not couple the singlet and triplet manifolds, and the allowed

transitions occurring only among the triplet energy levels are

(11.23)

olw
3

©13 7 Y23 7

The signal, calculated as for the sudden transition field cycle,
is given by Equation (II.16). The matrix representations of the

28

operators in the zero field basis are left as an exercise, as is

solving for the trace of their products. Calculating the trace yields

2 L2, .2
Sn(t]) = COS 8005w12t1 + sin Bsin acosw23t1

sinzscoszacosm13t1 (IT.24)

Note that only the intensities of the transitions are affected by the
angular terms &nd not the frequencies which corresgord to those above,
This indicates that each relative orientation of the initial state and a

molecular frame, as described by a pair of values of the angles a and B8,
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Figure II1.5: Energy levels and allowed transitions for two identical
dipolar coupled spin I=1/2 nuclei. The eigenstates and energies are
given in the text. Allowed transitions occurring between the tripiet
energy levels are wy3=wag and wy 5. The resulting spectrum consists of
three peaks of equal intensity at *3up’2 (uD=72h/2nr3, the dipolar
coupling) and zero frequency. The internuclear distance can be

calculated from the separation in peaks.



contrihbutes differently to the intensity of the zero field signal but
not to the frequency. This is in direct contrast to the high field case
in which the frequencies depend upon the values of the angular terms
(Equation I1.26). Integrating over the powder to include contributions

from all crystallites and combining terms, the normalized signal is

1 3
- - 3 I1.2
S(tT) 3 [ 1+ 2cos(§th1) ] (I1.25)
Wwhnere S(t1)=1 at t;=0. The spectrum for two identical dipolar coupled

spin I=1/2 nuclei is a triplet of three lines of equal intensity; one at
zero frequency and two at i3mD/2, as illustrated in Figure II.5. An
example of an experimental spectrum is shown in Figure II.6 for the
protons of the water molecules in an inorganic hydrate, Ba(ClO3)2-H20.
The spectrum appears as predicted by Equation (II.25) and from the
frequency separation, the internuclear distance can be calculated.29
Calculations and experiments such as these can easily be extended
to larger spin systems allowing one to determine the geometry of a group
of spins from the characteristic pattern of dipolar couplings in the
zero field NMR spectrum. This area is not covered specifically in this
thesis but has been dealt with extensively in other work.28’30 The
experiment has been successfully applied in determining internuclear
distances in other inorganic hydrates,30 and in determining structures
of four spin system528'31 in good agreement with crystallographic data.
The more complex systems are not deciphered by direct calculation but
rather interpretation is aided by computer simulations. A&n aaditional
2xperiment should also be mentioned in which, instead of detecting only

the magnitude of the signal in high field, the full high ield evolution

-
T
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Figure II.6: Experimental proton zero field spectrum of polycrystalline
Ba(ClO3)-H20. Three lines of nearly equal intensity are observed at
approximately *40 kHz and zero frequency. The distortion in the
intensity of the center line may be attributed to experimental factors.
The lines appearling at two and three times the dipolar frequencies are
not completely understood but may possibly be attributed to couplings
between more than two spins or other types of order present in the

demagnetized state.



is allowed to occur for a time, toe Fourier transforming with respect
to both the zero field £y domain and the high field t2 domain produces a
two-dimensional spectrum showing correlations between the high field and
zero field signals.28 The time domain zero field NMR experiment is the
only technique generally applicable for the observation of dipolar

frequencies in zero field.

3. Two Heteronuclear Spin I=1/2 Nuclei (I-S)

Generally nuclear spins with different gyromagnetic ratios are
differentiated on the basis of resonance frequency. In contrast, the
sudden transition in field or dc pulses in the zero field NMR experiment
excites the evolution of all spin species present since resonance
frequency no longer has a bearing. The following discussion focuses on
the simplest example of an isolated I-S dipolar coupled pair of spins.
The initial state prepared in high field and preserved through demagne-
tization is presumed proportional to the Zeeman Hamiltonian for each
nucleus. The polarization produced in high field must be considered

independently for each nucleus such that

DL(O) = aIz + bs (II.26)

in which a and b are constants describing the relative polarizations of
I and S spins. These constants depend upon the gyromagnetic ratios, YI
and Yg, and are therefore unequal for the two spin types (see Equation
1.10).

In zero field, chemical shirt and resonance frequency differences
vanish and the acting Hamiltonian is the mutual dipolar coupling (and

probably J coupling) of the two spins. The result is that the hetero-



nuclear spin Hamiltonian is indistinguishable with respect to exchange.
The form of the zero field Hamiltonian now includes all additional
terms, such as the flip-flop term, as these become energy conserving.
The Hamiltonian, written in the molecular/zero field frame with the z

axis along the internuclear vector becomes

YIYSh
H = - [31.5. - 1-58] (11.27)
D 3 2 2

2mr

in direct contrast to the high field case, but in analogy to the homo-
nuclear case (Section I.C.5). The eigenstates and energies are
illustrated in Figure II.7 and are identical in form toc the homonuclear
case given in Equation (II.21) except that the states here refer to |IS>

spin combinations. The energies corresponding to these states are

W,

D
By =B= "3
Es = wy (11.28)
Ey = 0

where mD=YIYSh/2ﬂr3 and depends upon the product of the gyromagnetic
ratios of the I and S spins. Unlike the homonuclear case, matrix
elements now connect transitions between the singlet and triplet

manifolds with the frequencies given by

w12 =0
.3
Y3 T Y3 73 9
1 (11.29)
Wiy T Wy T2 Y
Wiy T ¥p

This effect can be attributed to the differences in magnetogyric ratios
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Figure II.7: Energy levels and allowed transitions for two
heteronuclear dipolar coupled nuclel (I-S). Energies and eigenstates
are given in the text. Transitions are allowed between the triplet and
singlet energy levels for certain initial conditions in the
heteronuclear spin system. Peak positions in the spectrum occur at
multiples of the dipolar coupling frequency (mD=YIYSh/2nr3) Wwith the

intensities dependent on the initial polarization of the I and S spins,
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which result in unequal initial populations of the I and S spin states
as shown later in this section.

The signal can be calculated as before using Equations (II.10) and
(11.11) with the detected operator corresponding to either the I or 8-
spins. Since the former has the larger gyromagnetic ratio and higher
natural abundance, sensitivity is expected to be higher., Calculating
the sigral for the sudden transition field cycle with the detection of

I, L is carried out by solving
-1 R -1 .
SQ(t1) = TP(RIZ'LR exp( J.HDtl)R(aIZ,UbSZ‘L)R exp(LHDt1)} (1I.30)

and taking the trace, Sn(t1) equals

Sg(t1) = 2(a+b)00328 + 2(a+b)sin28cos(%th1) +

2(a-b)coszacos(th1) + 2(a—b)si628cos(%th1) (II.31)

Averaging over the powder distribution yields for the normalized signal

S(t]) = %g{(a+b) + 2(a—b)cos(%th1) + (a-b)cos(th1) +

2(a+b)cos (Buyt, )} (11.32)

The intensities of the lines in the spectrum depend upon a and b, the
relative polarizations. The positions of the predicted transitions are
shown in Flgure II.7.

Since the nuclel can be manipulated independently with rf pulses
in high fleld to change the relative values of a and b, the appearance
of the zero field spectrum can be altered. For the usual equilibrium
state with a=1, b=0.25 and lines appear at all four frequencies. By

applying pulses which equalize the populations, the signal reduces to
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S(ty) = g{ 2 + boos(Jwrt,) ) (11.33)

which is identical to the homonuclear case. This is reasonable since
the initial density operator for an I-S pair will be indistinguishable
with respect to exchange when a=b as for the homonuclear case. The
singlet to triplet transitions (m3u, m1u=m2u) no longer occur and are
directly attributable to the differences in populations. Experiments
illustrating the gselection of spectral transitions through the altering
of a and b have been presented elsewhere.32 Spectra characteristic of
more complicated hetéronuclear spin systems such as CH, CH2 and CH3 have
also been discussed theoretically.28:30 additionally, heteronuclear J
couplings have also been observed.32 In later chapters, specific cases
of heteronuclear spin systems (1H,2H), (1H,1uN) and (1H,13C) are
explored. Although, in general, for an arbitrary dc¢ pulse angle all
spins are excited in zero field, this is not rigorously correct. Some
of the experiments to be presented involve the selectivity of spin
species in zero field with pulsed dc fields and the behavior of

heteronuclear spin systems in liquid crystals.

4, Single Spin I=1 Quadrupolar Nucleus
The final case is the quadrupolar spin I=1. Interest in nuclei
such as deuterium frequently arises due to the ease of its substitution
for protons, and its sensitivity as a chemical and structural probe.
The signal for a spin I=1 nucleus in the sudden transition field cycle

of Figure II.3 is calculated from Equation (II.11)
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-1 . -1 .
SQ(t1) = Tr{RIz,LR exp(-lHQt1)RIZ,LR exp(1HQt1)} (I1.34)

in much the same manner as before and evolution occurs under the full
untruncated quadrupolar Hamiltonian (Equation (I.21)). The eigenstates

in the zero field basis set, shown in Figure II.8, are

[1> = 27 72(J+15 + |-1)

[2> = 127 2([+1> = [-13) (I1.35)
and

3> = |o>

and are very similar to the triplet manifold of the two dipolar coupled
spin I=1/2 nuclei when n=0. In contrast, the quadrupolar interaction is
generally not axially symmetric (n#0) and the lowest energy levels are
no longer degenerate. The similarity of these Hamiltonians is discussed
later in Chapter V.

The energies depend upon the quadrupole coupling constant e2qQ/h

and the asymmetry parameter, n,

E, = =K(1+n)
E, = ~K(1-n) (1I.36)
r;‘.3 = 2K

in which K=2n-(e2qQ)/uh for I=1. The signal function, integrated over

all orientations in a powder becomes
S(t,) = § {cos(2mKe, + cos(3-n)Ke, + cos(3+n)Kt,) (11.37)

and the spectrum consists of six lines of equal intensity as illustrated

in Figure II.8 at % the frequencies (in kHz)
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Figure 11.8: Energy levels and allowed transitions for a single spin
I=1 quadrupolar nucleus with np0. The energies and eigenstates are
described in the text. Transitions occur between all three levels at
frequencies corresponding to v,, v_ and Vo=VTVo When n=0, the lowest
two energy levels are degenerate and the system reduces to three lines;
one at zero frequency and two at 1(392qQ/Mh). This apin I=1 case is
very similar to the triplet manifold of two dipolar coupled spin [=1/2

nuclei.
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v, = (3+n)K
(II.38a)
v_ = (3-n)K
and the difference frequency
v, =2mK = v~ v_ (II.38b)

[} [

From the high frequency lines one may determine K and n, which charac-
terize a quadrupolar site. When two inequivalent sites are present, the
spectrum will consist of two sets of overlapping lines and only through
the difference frequencies can the separate lines be assigned to
calculate the quadrupolar parameters for a given site. When n=0, the
two lowest energy levels are degenerate and the spectrum reduces to
three lines of equal intensity (not unlike the I-I case, Section C.2).

An example 1s shown in Figure II.9 for perdeuterated diethyl-
terepnthalate. In Filgure II.9a, the high field powder spectrum consists
of three overlapping powder patterns corresponding to the methyl,
methylene and aromatic sites. In the zero field NQR spectrum of Figure
II.9b, four distinet regions are observed corresponding to the low
frequency Vo lines, methyl, methylene and aromatic sites in increasing
order of frequency. Note that unlike the high field spectrum, the
signal intensity i3S concentrated in a few sharp lines rather than
distributed across a broad frequency range. Five distinct sites on the
molecule are resolved with eZqQ/h and n values presented in the

following Table.
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Figure 11.9: a). Deuterium high field NMR spectrum of peolycrystalline
perdeuterated diethylterephthalate. From the overlapping powder
lineshapes, three separate quadrupolar.sites can be discerned
corresponding to the methyl, methylene and aromatic sites on the
molecule (although only the singularities are evident for the latter
two). b). Zero field deuterium NQR spectrum of the same polycrystalline
samp’e showing only the positive frequencies. Four distinct regions
with well-resolved peaks are evident and correspond to the aromatic,
methylene, methyl and v, lines in order of decreasing frequency.
Quadrupolar coupling constants and small asymmetry parameters can be
=2gsigned to five inequivalent sites on the molecule (as given in Table

II.1 in the text).
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Table 1: Diethylterephthalate 2H Quadrupole Coupling Parameters

Site e2qQ/h (kHz ) n
methyl 48.9 o]
methylene 149,53 0.042

152.76 0.049
aromatic 178.33 0.015
180.53 0.022

These sites could not be determined from the powder spectrium but can
from the well-resolved zero field spectrum. The differentiation of such
similar sites is unusual as the differences in quadrupole coupling
constants is small and the very small asymmetry parameters are often
difficult to measure even in the high field powder spectrum of only one
site.

Although expected to be a very small effect, dipole-dipole
couplings between deuterons have been detected.33'3u In the zero field
deuterium NQR spectrum, this manifests itself as extra lines and/or
structure in the CD2 region of the spectrum and the corresponding Vo
lines. Since these couplings depend on many features such as the
internuclear distance, relative tensor orientaticns and bond angle,
through computer simulation of the zero field spectrum estimates of the
EFG tensor orlentations can be determined without requiring the use of a
single crystal.Bu More extensive examples and details of quadrupolar
spectra are also presented elsewhere,30'3u’5u including the observation
of half-integer quadrupolar nuclei. Quadrupolar nuclei which have been
studied by zero fleld NQR methods include 2-Hydrogen, 14-Nitrogen, 27-

Aluminum35 and 7-Lithium36. Some extensions of these experiments for



increased sensitivity and selectivity as applied to the observation of

2H and 1“N are discussed in the following chapter.
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D. Appendix: Technical and Experimental Details

This appendix includes brief descriptions of the experimental
design, apparatus and implementation of the field cycling techniques
presented in the first part of this chapter. This reflects only one
possible method of field cycling, examples of other approaches and
equipment can be found in a review articles by Noacks, and in the series
Advances In NQR, and others.m-’3 In practice, the steps of the field
cycle involve the simultaneous timing and functioning of many separate
pieces of apparatus as illustrated in Figure II.10. In Figure II.10a,
the placement of the probe, shuttling system and low field coils rel-
ative to the superconducting magnet are shown. Each of these components

is described separately in the sections below and after which an outline

of the overall field cycle is given.

1. High Field Magnet

The polarization of the sample occurs in a 4.2 Tesla persistant
superconducting magnet of reasonable homogeneity with three super-
conducting shims. The fringe field of the magnet is roughly cylin-
drically symmetrical and drops off approximately exponentially as shown
in Figure II.11, At a distance of ~45 cm below the base of the magnet,
the fringe field reaches a value of 100 Gauss. It is in this region
that the electrcmagnetic coils are positioned. The room temperature
bore of the superconducting magnet is 89 mm in diameter (without room
temperature shim coils) and generally allows ample room to house a room

temperature probe and shuttling system.
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Figure II.10: Schematic of the different components of the field
cyc.ing apparatus. In (a), an ovarview of the entire system showing the
placement of the rf probe, shuttling system and low field coils relative
to the high field magnet is illustrated. Expanded views of each of
these regions are shown in (b)-(d) an@ are described in separate

sections in the text.

61



1000 - -1

900 r—

800 —

Magnet Fringe Field vs. Distahce

700 —

600 —

500 [~

Gauss

400 -

300

200 —

100

| P | | [ ! | J
0 10 20 30 40 50

Distance From Magnet Base (cm)

XBL 8610-10172

Figure 1I1.11: Magnetic field Bo vs, distance. The fringe field was
measured axially below the magnet. The distance scale corresponds to
zero being at the base of the magnet dewar, roughly equal to the lower
opening of the bore. The high field center of the magnet is ~-35 cm

above this where the fleld reaches a maximum value of -42 KGauss.
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2. Sample Shuttling

a. Container. The sample is packed into a cylindrical nylon or

Kel-F shuttle (Figure II.10b) with a tight fitting cap sealing either by

~a pressure tight fit or an O—riné. The typical sample volume is approx-
imately 0.20 cm3 although smaller volumes are often used for better zero
field or dc pulsed field homogeneity, or when limited amounts of sample
are available.

It was discovered empirically that liquid crystal samples are most
easily prepared directly in the shuttle to avoid evaporation of the
solute. For liquid crystal samples which contained CH,Cl,, a specially
inert O-ring is required as the usual Viton or Buna varieties absorb the
solute. The most successful O-rings found are Kalrez, manufactured by
Dupont Co. (Finishes and Fabricated Product Dept., Tralee Park, Wilming-
ton , DES. 19898; size 1/8 x 1/4 x 1/16 inches). The translucent
material of the shuttle allows for the determination of the clearing
points upon heating. Often an excess of material is added and discarded
upon sealing the shuttle to insure the absence of bubbles in the
samples. The shuttles very seldom leak and samples remain intact for
many months.

b. Shuttle System. The sample shuttles fit closely into a
standard walled 10 mm o.d. (~8 mm i.d.) glass tube (Figure 1I1.10).
Transporting the shuttles at room temperature is easily accomplished
using air, nitrogen and/or vacuum. Gas can be applied to both ends of
the shuttle tube or, switching between air for the upward shuttle and
vacuum for the downward one, only on the lower end. Switching between
the upward and downward transits is conducted with a logic controlled

cxrcuit37 switching ~60 V and driving a commercially available three-way
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solenoid valve. (Most reproducible switching results when using a dec
activated valve.) The sample travels a distance of approximately 75 cm
between the high field rf helmholtz coil and the zero field switching
coils. Transit one way takes approximately 200 msec using a gas
pressure of 5 psi. The movemen. of the sample must meet at least two
criteria for a successful experiment; one, the time to travel to zero
field (including the switching of the coils, ~5-50 msec) must be shorter
than T, to maintain the polarization, and two, the change in the field
with time must meet the conditions for adiabatic demagnetization. Short
relaxation times are the more serious problem as these are not under the
experimentalist's control (at a given temperature) whereas regulating
the shuttling speed more easily controls cthe demagnetization. Relax-
ation times are generally fleld dependent21 which adds an additional
level of complication in deciding which samples will work. The sample
is positioned and stopped at either end of its trip by plastic stops
which also help to support the shuttle tube. The shuttling procedure is
reasonably reproducible in terms of time and impact. Irregularities in

tne shuttling introduce noise in the ¢, domain of the experiment.38

3. Zero and Intermediate Field Coils
Specific design features of the coils and electronics are
described elsewhere37'39, and only a brief description is given here.
Two requirements exist for the switching electromagnets. The first is
that a homogeneous region of zero field is produced over the sample, and
the second is that the change in the intermediate field occurs or the
order of a microsecond. The homogeneity of the field scales with the

volume ¢f the coil, as does it3 inductance. Unfortunately though, the



rise time, t, of the turn on of the coil is directly proportional to the
inductance and inversely proportional to the series resistance (1=L/R).
Additionally. the available current for producing the field in the coil
is inversely related to this resistance. Thus, although theoretically
the shut off of the field and the zerc field region could be controlled
with one coil, conflicting requirements of homogeneity and speed make
rwo more practical. As shown in Figure II.10a and 10c, the region under
the magnet is occupied by two coils labelled the auxiliary coil and the
shielding coil used to perform the fleld step in the experimental
sequence. These are also referred to as the 81 and 52 coils, respec-
tively, in Figure II.12 where the profiles of the fields from the coils
during the field cycle are shown.

a. Zero Field Coil. The larger, more homogeneous coil By cancels
the field over the volume of the sample. The cylindrical coil is wound
in two sections (as shown in Figure II.10c) to produce a gradient
designed to match the gradient of the fringe field, Bp, around 100 G.39
To first order in the field gradients, this effectively matches and
cancels the field. The 81 coil, due to its size, has a much slower
switching time on the order of a few milliseconds to a few tens of
milliseconds depending on the inductance placed in series with the coil.
The coil operates with a logic controlled feedback network to produce a
regulated current of ~7-10 amps with a voltage of 20-30 volts.39

The coll is aligned and shimmed using a Hall effect Gaussmeter
(F.W. Bell, Inc., Model 8114). Routinely fields of <0.1 G and generally
as low as 0,025 G or better are obtained by careful shimming. To cancel
inhomogeneities in the zero field region or misalignment of the coil, a

set of three static orthogonal shim coils (one gradient z, two trans-
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Figure I1.12: Schematic of the coil apparatus and graphs of field vs.
time for the switching electromagnetic coils. The field, Bo,
corresponds to the high field magnet used to polarize and detect the
nuclear spins. The coils By and B, correspond to the zero field (or
shielding) coil and the intermediate field {or auxiliary) coil,
respectively. At right, the field profiles of the different coils are
illustrated. At top, the fringe fleld of the B, coil experienced by the
sample when shuttled to the low field region. The next two graphs
represent the switching of the homogeneous zero field coil, By, and the
rapid switching intermediate field coil, BZ' When combined into the
field cycle, the field profile appears as shown at bottom. The steps 1-
6 are described in the text (Section D.4).



verse) are mounted on the coil. These operate with a power supply

producing in the

X or y directions: 0.8 G/amp (1 amp full)
z direction: 0.4 G/cm per amp (4 amps full)

over a volume of approximately a 1 cm3. For solids, the homogeneity
limitations are not as stringent as those for liquids or liquid crystals
in which the natural linewidths are very narrow and the couplings
relatively small.

b. Intermediate Field Coil. While the slower, more homogeneous
bucking coil is turning on, the sample must remain polarized before the
sudden transition in field. This is accomplished with the second
intermediate or auxiliary field coil, Ba, producing a field, Bi’ which
reinforces the fringe field, Bf, of the magnet. The 82 coil is on when
the sample reaches the low field region and the nuclear spins see a
field of B; *Bp . After the bucking coil has turned on completely to
cancel Bf' the sample remains in a field Bi>>Bloc‘ The field, Bi’ must
be greater than the local fields in order to maintain and detect high
field states. If Bi<Bloc' the spin system may disorder to some extent
depending on the relative sizes of the fields and result in a loss or
distortion in signal. It is the sudden switching off of this field
which initlates the zero field period. Since this coil need not produce
as homogeneous a field and must be switched rapidly, it is much smaller
in size. In fact, the intermediate field coil is usually wound directly
on the glass shuttle tube andAa typical coil consists of ~20 turns of 28
AWG wire with a length of ~1 cm and an i{.d. of 1 cm.

For the transition to be sudden requires that the switching time



15<<1/mmax, where w ., is the maximum frequency in the zero field
spectrum. This generally dictates that Ts is on the order of 1 usec
which is obtainable using a small inductor and large series resistance
such that L/R=14 is small. The series resistance limits the current to
the coil and therefore the maximum field, but working with R=5-25 @ and
a coil of the size described, fields of ~400-100 G can be produced and
switched in a few hundred nanoseconds. For proton dipolar coupled
systems in solids, 100 G is usually a more than adequate field strength
and for samples such as liquid crystals the field can be much lower.
For quadrupolar nuclei or nuclei with low gyromagnetic ratios, fields of
300-400 G are beginning to only marginally meet the required magnitudes.
The field is governed by a logic controlled high power current
pulser for which there are limitations in the accessible power and
electronics to switch and produce high fields.39 The power supplies
used are generally not regulated as the field level, if greater than
Bloc’ need not be absolutely constant. 1In fact, there is often a
noticeable droop of ~5-10% in the output voltage with pulses longer than
a few milliseconds. The pulsers generally operate at 180 V switching
between 7-30 amps. Excessive duty cycles which result in resistive
heating can damage the coils and/or pulsers and must be avoided. The
intermediate field coil 1s required to be on for both the turn on and
off of the By coil which requires that a fairly large field is produced

for a few to several tensg of milliseconds.

4. The Basic Field Cycle
A composite of the field switching is fllustrated in the last

diagram of Figure II.12 in which the numbers refer to the steps of the
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basic field cycle as follows:

1. The samples originates in the high field magnet for a time
greater than T1 to polarize the nuclear spins. Downward gas pressure
(from the top) or vacuum (from the bottom) is applied to move the sample
from high field through the fringe field to the intermediate field level
(~100-200 msec).

2. Both the By and By coils are turned on. B, turns on quickly
(few tenths of usec) producing a field, B;, at least as large as the
local fields and in the same direction as the fringe field. The B,
field maincains the spin magnetization, while simultaneously, the slower
81 coil (tens of msec) turns on to its regulated level cancelling the
fringe field.

3. After By is completely on (field level = Bi)' the By coil is
turned off rapidly. As the sample is now in zero field, evolution of
the spin system is allowed to procéed for a time ty.

4. The evolution is terminated by rapidly reapplying B,.

5. The By coil is turned off producing a field Bi+Bf' then B, is
shut off.

6. The sample is adiabatically remagnetized to high field by
applying upward air pressure. The shuttle back to high field may occur
anytime after step U4 as there is no neccessity in waiting for the coils
to switch off as the sample can just as easily be remagnetized from any
field level as from Bf. The signal is detected using one of the rf
pulse schemes described in Section 5 of this appendix and recnrded.

The cycle 13 then repeated teginning with step 1 and incrementing

the time period £y for a second point in the time domain signal.
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5. Pulsed DC Magnetic Fields
The use of pulsed dc magnetic fields 3avoids many of the problems
associated with controlling large fields for relatively long periods of
time. A brief, intense dc pulsed field can be much larger in amplitude
and can be produced using a larger current. In addition, a certain
amount of flexibility is added to the experiment in the choice of pulse
direction, amplitude (B;) and duration (1), i.e. pulse angle 8=YB; 1.
The same pulsers and coils described earlier can be used for the pulsed
experiments. To produce the field cycle of Figure II.H4b the sequence of
the basic field cycle is slightly altered. After completing step 1,

removing the sample to the fringe field, steps 2-5 are replaced by:

2. The bucking coil, B1, is turned on slowly to adiabatically
demagnetize the sample to zero field. The rise and fall times of this
coil may be tailored to meet adiabatic constraints through the series
inductance used.

3. The B, coil is turned on for a brief dc pulse (few usec) of the
desired features mentioned above. The zero field period las%s for £q-

4. A second dc pulse is applied at the end of the t1 period.

5. The By coil is then turned off, adiabatically remagnetizing the
sample to Bf.

Step 7 occurs as before. With added pulsers, coils and alterna-
tive sequences of events, more complicated dc pulsed field schemes can
be imagined

The rise and fall times of the dc pulsed fields should also be
sudden as described previously. For many experiments using dc pulses in

zero field, a compromise between field strength (related to current and
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resistance), coil homogeneity (related to coil size and inductance) and
rise times (related to inductance and resistance) is met to obtain the
correct behavior. Homogeneity plays an important role in the de¢ pulsed
field experiments since, in order for the pulse to act as a uniform
rotation over the entire sample, the pulsed field must be reasonably
homogeneous over the sample volume. This is often accomplished by using
larger coils (longer solenoids or helmholtz's) to increase homogeneity.
The increased inductance requires a larger series resistance for a rapid
rise time. This resistance of course decreases the available current
and field but, for homonuclear proton dipolar coupled or liquid crystal
samples, quite useable fields are produced. To avoid droop of the dc
pulses over long sequences, regulated power supplles are used for
increased stability of the pulse amplitudes.

To obtain a desired pulse angle, either the length of the pulse or
its amplitude can be altered. For large fields, the available 0.1 psec
setability in length corresponds to a large change in rotation angle.
Fine tuning of the pulses is instead easily accomplished through alter-
ing the voltage leve!. If the power supply does not have a variable
output, a variac can.be inserted between the ac source and the supply to
adjust the output voltage of the power supply. This allows one to
establish a given pulse angle accurately, but may not allow simultaneous
setting of many different pulse angles.

To change the "phase" of the pulsed field (e.g. to give an x or y
pulse), as ls required ln some experiments, coils must be placed in
different directions In space as dc flelds have no variable phase as do
rf flelds. The design of a set of three orthogonal coils is shown in

Figure I11.13. The form for supporting the wires was machined from 1"



Inserted to preserve pagination

72
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Figure II.13: Design for three uvrthogonal Iintermedlate fleld coils. A
nylon form 13 machined to hold two transverse saddle shaped colls on the
four sections and an internal solenoid coll. The solenold produces a
field colinear to the main field of the magnet. The solenoid and coil
form fit snugly about the 10 mm shuttle tube. The characteristics of

these colls are described in the text.



nylon. The two helmholtz coils are 13 mm long by 13 mm in diameter at
the center. They consist of 20 turns (10 on each side) of 28 AWG wire
spaced radially from the center of the coil form. The angle of the
helmholtz was chosen to be the maximum possible (90°) to increase field
homogeneityuo yet avoid overlap and coupling of the coils. The centcr
solenoid is 10 mm i.d. by 12 mm in length. These coils have re¢asonable
homogeneity over the usual sample volume of 0.2 cm3 (r=0.3 em, h=0.7 cm}
and even better over a 0.1 cm3 volume (r=0.25 em, h=0.5 c¢m) which was
often used for liquid crystal samples. The fields produced with these
coils using 180 V, 25 @ in series (~7 amps) were ~40 G. The rise and
fall times were ~0.2-0.4 psec from the beginning of the pulse. (Note
that the pulser3 have a "deadtime" of ~0.5 usec before a pulse is
produced.} The individual helmholtz coils were found to behave essen-
tially identically. The pulses could be timed and applied immediately
after one another with no overlap. To produce six phases of pulsed
fields in the three orthogonal coils, six directions of current must be
controlled. A bidirectional current pulser was designed to switch
between two directions of current in a single coil and a circuit diagram

and description can be found in reference 37.

6. High Field Detection
To measure the magnitude of the signal in high field, a component
of transverse magnetization which is detectable by standard NMR means
nust be created. To do this, an rf pulse or series of pulses is
applied. Four examples of detect.on sequences are given in Figure
II.14, In the first, a 90° pulse 1s applied to the spin system and the

signal is detected. Generally only the magnitude of this signal is of
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Figure II.14: High field detection sequences. a). A 903 pulse is
applied and the transverse component of magnetization is detected.
Often only the magnitude of the signal is required, thus only the first
point of the free induction decay (FID) is sampled. b). Solid echo
sequenc2 used to avoid probe and receiver recovery by echoing the signal

at a later time. 1In solids, 6, generally equals 90° and the height of

y
the echoed signal is detected., The full FID signal can be detected in
(a) and (b). A pulsed spin-locking or multiple echo sequence, (c¢) and
(d), may be used to prolong the decay of the magnetization and allow for

repeated sampling of the signal. The 8, pulses are generally <90° often

y

obtaining maximum signal with 8 =45°. The echo amplitudes are averaged

as a single t, data point for iicreased signal-to-noise. The difference
between (c¢) and (d) is in the first echo pulse and delay. The sequence
Iln (c) is generally used for a single component system. rhe sequence in
(d) uses a Hahn echo to separate out the long and short lived signals on

the basis of T,.
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interest (see Section B.4) and thus only the first point is recorded.

W as shown in Figure II.14b aids in

For solids, the use of a solid echo
detecting the quickly decaying (because of short T2) signal. This
avoids losing the signal, while the probe and receiver electronics are
recovering, by echoing it at a later time.

Since one is generally interested only in the magnitude of the
signal, there is no need tp allow evolution of the signal during the
high field time tp. To increase signal-to-noise, a "pulsed spin-
locking" or multiple echo train may be used to extend the decay of the
magnotization.u2 This type of pulse sequence is illustrated in Figure
II.14c where the echo amplitudes are detected between pulses. Thus one
repeatedly samples the signal with its decay governed by a time constant
approaching T1p rather than T,. The averaged data recorded as a single
ty point in the zero field time domain signal. Sample heating is not
found to be a problem with these detection sequences as the duty cycle
is low.

When wishing to observe only the solute signal in liquid erystal
samples, the signal from the liquid crystal aolvent must be removed.
This is possible due to the very different T2 relaxation times of the
two components. A similar multiple echo sequence, shown in Figure
II.14d, is used. In the initial stages, a 902 pulse is applied. This
produces transverse components of the liquid crystal and solute magneti-
zations which decay with time constants, TZ,lq and T2,s' respectively.
Since {n general T2,1q<<T2,3' walting a time ‘>>T2,1q results i't the
liquid crystal signal decaying to zero. By applying a 180° pu.se {Hahn
Ecno“3), the solute aignal alone refocuses at 271 and is repeatedly

echoer and sampled.
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For stability in the experiment, the first pulse of any of the
sequences is cycled between the phases x and %¥. This inverts the sign
of the signal while spectrometer artifacts and dec drift are unaffected.
Subtraction of the phase cycled signals should rid the time domain
signals of these instabilities. This is an important feature as the
experiment can require many hours of signal averaging, especially in
those samples with long relaxation times. Drift can occur over time in
the rf electronics, amplifier output, cr in such areas as the probe
tuning (due to mechanical shock), and temperature fluctuations (liquid
crystals are especially sensitive). A discussion of the probe
electronics can be found in reference 54,

One field cycle produces a single t4 data point in the time domain
cycle. The field cycle is repeated after waiting a few times T1 t.
allow for relaxation of the nuclear spins and is repeated for a new
value of ty. The increment in time, At1, is directly related to the
range of spectral frequencies as 1/At1=Full bandwidth (kHz). According
to the Nyquist theoremuu, a signal must be sampled at least two times a
period to avoid "folding in™ or aliasing of the signal to lower
frequency. For example, if the highest frequency in the spectrum is 100
kHz, the signal must be sampled at least with At1=5 usec as this gives a
bandwidth of *100 kHz. (Recall that the zero field spectra are
symmetric around zero frequency).

The high field detection sequences should be optimized to excite
as much of the signal as possible. Due to the brnad lines of many
powders or quadrupolar nuclel this is often difficult. Thus the high
field part of the experiment includes many of the rigors of any typical

by

NMR experiment in solids. Additionally, if one desires to detect the
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evolution of the sample under the high field Hamiltonian in t.o, there
are a wide variety of pulse sequences other than those presented here
which can be applied to correlate specific high field information with

the zero field spectr'um.2

T. NMR Spectrometer

A solid st.’ : NMR spectrometer has been modified for the field
cyeling experime.cs and required no alterations from the basic NMR
instrument except for the addition of the coils, shuttling system and
coil electronics which are all external to the basic spectrometer
electronics. Additionally, the computer capabilities to control the
various aspects of the experiments must be available. The spectrometer
is a homebuilt instrument based on a 4.2 Tesla magnet and operating at a
frequency of 185.03 MHz for protons. A complete description of this
spectrometer i3 given elsewhere"l5 and only those aspects which have been
altered or adapted are discussed. The data collection and manipulation
is controlled by software written specifically for the spectrometer

ué

systems in this laboratory and works in conjunction with the pulse
programmer Jnit, The pulse sequences and timing of the zero field and
high field instrumentation is controlled by a homebuilt pulse programmer
based on its own independent microprocessor and microcode.“7 This unit
generates the timing and gate words controlling the sequence of
experimental events. Timing is based on a 10 MHz clock therefore the
amallest timing lncrement {s 100 nsec. There are ~16 independent logic
output gates divided among the tasks as follows: four rf gates, five dc

pulsed field controls, one zero field coil logic control line, one

shuttling trigger, one temperature controller blank, one deblanking of
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the receiver pulse, one data sampling trigger and one scope trigger.

The basic limitations of this pulse programmer unit arises when
attempting to output many short timing words which causes the unit to
"elock-out" its memory. These difficulties often arise with complicated
rf or zero field pulse sequences and caution should be exercised as the
resultant behavior is not to be trusted. For the basic field cycle,
delays for shuttling and coil turn on are often long enough to avoid
clocking out of the memory.

Two alterations have been made to the pulse programmer for use on
this particular spectrometer. The pulse programmer contains two types
of memory units; a RAM and a FIFO. The RAM is generally used for long
repetitive sequences such as the pulsed spin-locking and signal
detection. In order to facilitate the operation of more complex
sequences, the RAM has been "split". Splitting the RAM memory merely
allows the one physical memory unit to be accessed at independent
starting locations allowing it to act as two RAM memories each half the
size. But, since there is only the one RAM memory present, all RAM
output statements should begin with 01. To access the split RAM, the
"flag" statements in the FIFO which call the RAM into a2tion should be
either PA 01 Q0 or PA 03 00. The former executes the statements in the
first 128 steps, and the latter in the following 128 steps. Note that
the RAM is loaded sequentially and that the first half must be filled
(even with dummy statements that are never executed) in order that the
second half begins being loaded at the proper memory location. The
split in the RAM need not te 50:50 as was chosen here and can be divided
differently with the proper hardware changes. Of course, the full 256

steps of the total RAM memory can be accessed for a single execution by
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calling the RAM from the FIFO with only the PA 01 00 statement. The
second change consists in the size of the FIFO memory. The basic pulse
programmer designLl7 incorporates FIFO memories which can hold 16
executable steps. These chips (Fairchild 9403's) were replaced with
Fairchild 9423 memory cnips which hold 64 steps. Hopefully this will
ald in execution and timing problems. Unfortunately, precise
information on the loading and emptying times of this FIFO memories 1is

not available but can easily be found experimentally.

8. variations in the Experiment

Alternatives to sample shuttling, field control and field pulsing
are all possible. 1In the following sections, a few alternative
approaches to the zero field experiment are very briefly discussed.
These changes may or may not be technically more difficult, but for one
reason or another have features which make them attractive.

a. Direct Observation in Zero Field. Extremely high sensitivity
detectors would be required to directly observe the oscillating magneti-
zation in zero field. Recently in experiments by other groups, such a

MB_ quadrupolar signalsLI9 and

device has been used to detect spin noise
other low frequency signalsso. These devices, known as superconducting
quantum interference devices (SQUIDs), are flux to voltage transducers
and can be frequency independent.51 Experiments with direct detection
would be extremely advantageous as the two dimensional point-by-point
fleld cycle would be reduced tc a one dimensional experiment with a
great reduction in time. The high sensitivity might be expected to

allow for the detection of very small amplitude signals such as those

due to the polarization produced in small dipolar or quadrupolar local
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fields. 1I° possible, this reduces the necessity of using a large
polarizing field., Experiments along these lines are being developed and
are disaussed elsewhere in more det:ail.37’39

b. Removal of the Polarizing Field. Another experimental approach

is to cyecle the field by removing the polarizing field through switching

the high field coil. Switchable coils with reasonably large fields (up

to 1.5 Tesla) are often used in field dependent relaxation studie55'52

and can be switched on a timescale of a few milliseconds.5 Although the
switch off is not sudden, it is more rapid than mechanical shuttling.
Combined with an intermediate field coil to maintain the polarization,
the range of samples could be greatly extended to those with short
relaxation times for which M, would not survive the field cycle. Some
of the high field sensitivity would be sacrificed for the ability to
switch the field in using a lower field level . In addition, homo-
geneity and reproducibility of the field level might not be as stable as
with a persistent field.

c. Variable Temperature Zero Field Experiments. The integration
of a variable temperature fileld cycling system has numerous applications
t0 zero field NMR experiments. Low temperature field cycling apparatus
are in use for many zero field NQR exper‘iments13 generally operating at
77 K to insure the long relaxation time required for the frequency
domain field cycle. Many of thz low temperature systems in use involve
either the transport of an entire sample cryostat13 or the mechanical
transport of the sample.53 Many such apparatus are iesigned arcund
electromagnets whereas here, the system would have to be incorporated
into a superconducting solenoid system.

The ability to control the temperature provides a means of
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effecting the relaxation times of different samples making their obser-
vation possible. Even more intercsting is the prospect of measuring the
dynamics of molecular systems. The zero field NMR and NQR spectra of
solids have narrow lines, unlike powder spectra in large magnetic
fields. The changes due to motional averaging should then be more
easily observed in the changes in frequencies and lineshapes in the zero
field spectra.55 Observing the spectra as a function of temperature
should lead to a great deal of information on the molecular dynamics.

Previously, a design for a low temperature shuttling system was
presented.5u This design was a direct adaptation of the existing zero
field set up, since the gas transporting the sample was simply temper-
ature regulated, and the shuttling tube was replaced by a dewared glass
tube. This design posed many problems as the temperature control and
the shuttling gas were one and the same. Often to control the tempera-
ture accurately required that a lower gas pressure be used. This of
course detrimentally affected the shuttling of the sample. Special low
temperature valves were also required to switch the gas. The rf probe
was designed with the helmholtz rf and intermediate field coils outside
of the dewar which lead to problems with signal-to-noise and probe
arcing.

A new design was developed during the course of this work which
hopefully improves upon many of these problems. It was decided that the
most efficient way in which to move the sample and control the temper-
ature was to do these independently. Therefore a piston with a stroke
length of ~60 cm (ajustable to ~t5 cm) was designed to move the sample
in approximately 300-500 msec. The piston operates using room temper-

ature compressed air av pressures from 20-50 psi. The high pressure gas
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is controlled by the switching of electronically controlled solenoid
valves. Tue sample is fixed on the end of a rigid fiberglass rod of
3/716" diameter. A glass dewar, supported by mounting to the probe,
encloses a region between the rf coil and the zero field coils in which
the sample travels. The temperature controlled nitrogen gas impinges on
the sample from the lower end making either high or low temperature
regulation possible. With th;s arrangement the temperature can be more
easily controlled and is independent of the movement of the sample. The
rf coil and intermediate field coils are housed inside the dewar system
allowing for increased signal-to-noise, lower rf power requirements and
larger pulsed dc fields. Leads from the coils pass through the dewar
allowing all rf and zero fleld electronics to remain at room temper-
ature. The ideal combination for a variable temperature experiment
which can be invisioned consists of a switchable high field coil or a
zero field detector and a temperature controlled sample region. This
requires no movement of the sample and can be designed for temperature

regulation of a limited sample region.
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III. PULSED ZERO FIELD NMR AND NQR

A. Introduction

In the previous chapter, the basic outline of time domain field
cyeling methods was presented. These approaches, although extremely
useful for observing simple dipolar' coupled or quadrupolar spin systems,
are not at all selective in either the excitation of the nuclear spins
or in determining the subsequent course of evolution of the spin system,
since a sudden transition in field or an arbitrarily chosen pulsed field
simultaneously excites all nuclear species in zero field. It is
desirable to gain a degree of control over these aspects of the
experiment and, in analogy with hiéh field NMR with radiofrequency {(rf)
pulses, pulsed dc fields applied in zero field are one such approach.

DC pulses can be used in field cycles with demagnetization to an
intermediate field (i.e. after the sudden removal of the field) or after
demagnetization to zero field. Incorporating pulsed fields into the
latter has technical advantages already enumerated in the preceding
chapter. An additional advantage of the pulsed fields is the
experimental flexibility allowed in their duration, magnitude and
direction. With these variable parametefs, the uses of pulsed fields
can go much beyond simple pulsing to initiate evoluticn into the realm
of coherently manipulating the nuclear spin system in zero field.
Numerous reasons for applying pulses in zero field are imaginable. Many
of these are identical to the uses of rf pulses in high field
experiments1; among them, to alter the state »f the magnetization before

evolution and observe its behavior, to select spectral transitions, as



mixing pulses in two dimensional correlation experiments, decoupling of
heteronuclear spin systems, refocussing pulses, composite pulses and
isotope selectivity.

In this and following chapters, experiments on polycrystalline
solids which explore the use of pulsed de¢ fields in zero field are
presented. In the first section, the basic behavior of nuclear spins
under such fields is discussed. From this foundation, the uses of
pulses in observing zero field NMR and NQR spectra, in two dimensional
pulsed correlation experiments, for increasing pulsed field homogeneity
and for isotope selectivity are examined. Pulsed fields are also
combined with sensitivity enhancement via level crossings for the

detection of quadrupolar nuclei.
B. Pulsed DC Fields in Zero Field

Before incorporating dc field pulses into the field cyecling
schemes of zero field NMR and NQR, an introduction to the
characteristics of the pulsed fields and to the behavior of the spin
system is given. Much of what is described is analogous to the
application of rf pulses in the typical high field NMR experiment and
may not seem surprising. Oftén though, the differences which arise
between working in high and zero field or with rf vs. dc pulses require
creative approaches to succesfully manipuiate the nuclear spins.
Stepped dc fields, those turned on continuously to a fixed level, have
been frequently used in many experiments ﬁo study the relaxation
behavior in low field or to test the predictions of spin temperature

theories.2'3 While the applications of brief dc field pulses are
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relatively unexplor‘ed.“’5
1. Effects of Single Pulses
A pulsed field acts as a rotation on the nuclear spin system as
first described in Chapter I.D. For an effective pulse, this requires
that the field, B;j, of the pulse is much larger than the local fields of
the dipolar or quadrupolar spin interactions. When working in the limit
of the Zeeman interaction of the spins with Bi.being greater than the

local fields, the dc pulse is formally described as

DL(T) = exp(—incr)pL(O)exp(incr) (111.1)

acting on the state of the spin system as described by the operator p
expressed in the laboratory frame. The operator for the pulsed field is
given by

H (111.2)

de = Y1Biln,L
where n=x,y or 2z, corresponds to the direction in the laboratory frame
of the pulsed field. A pulse angle, 8, 1s defined by

6 = YBir (I11.3)

and thus Equation (III.1) becomes

pL(e) - exp(-ieIn'L)pL(O)exp(ieIn'L) (III.4)

For example, if a sample 1s demagnetized to an intermediate field
level, Bi' applied in the laboratory z direction and then suddenly
demagnetized as illustrated in Figure III.?, the initial condition for

all crystallite orientations in zero field is given by I, L- Applying a
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Figure 111.1: Field cycle employing pulsed dc magnetic fields after a
sudden transition in the intermediate field. Demagnetization from a
large field, B,, to an intermediate z field, By (>Bloc)' results in a
zero field state proportional to Iz,L immediately after the sudden
transition in field. A single dc field pulse, P, or several pulses
repeated n times can be applied in any direction in space immediately
after the removal of the field. The effect of the coherent manipulation
of the magnetization in zero ficld can be monitored by reapplying the
field in the z direction, and remagnetizing to B, where the magneti-
zation is sampled. Field cycling and pulsed dc field times are not
drawn to scale and no evolution of the spin aystem is allowed before or
after the pulse.
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pulsed field, P, in the laboratory z direction causes no change in the
initial state since a torque is not applied by the field to the initial
magnetization. This can be shown by solving Equation (III.Y4) to find
that DL(T)=DL(O)- If, though, the field is applied in either the
laboratory x or y directions, the result is to rotate the magnetization

such that

pL(e) = exp(-xelx‘L)IZ,Lexp(xelx’L)

= —Iy’L31ne + Iz'Lcose (111.5)

producing components proportional to Iy and Iz. If the intermediate z
field is suddenly reapplied immediately after the pulse, the z component
of magnetization is trapped and can be detected in high field.

Measuring the amplitude of the magnetization results in an oscillating

function, S(t1), proportional to cos® as can be calculated from
S(t) = Tri{p(0)p(1)} = Tr{Iz,LpL(t)} (I11.6)

S(1) represents the projection of the final state on the initial state
which, in this case, can be considered the scalar product of two
magnetization vectors. The theoretical curve and an experimentally
obtained example are shown in Figure III.2. The pronounced decay of the
signal with time is not predicted and may be attributed to several
factors which are discussed later.

The above situation is identical to that in high field where rf
pulses cause the nutation of the magnetization, Iz,L' Unlike high fijeld
NMR where the frequency of the irradiation (YBO) affects only one

nuclear species, in zero field all nuclear spin species are
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Figure III.2: Theoretical and experimental curves of the longitudinal
magnetization vs. single pulse applied in zero fleld. The pulsed field
is applied in a direction transverse to an initial state proportiopal to
Iz,L’ which is also the detected component (see Figure 1). The signal
oscillates according to [Izlcose as shown in (a) for 1deal pulse
conditions in the absence of relaxation. In (b), an experimental curve
of the signal from a sample of CH;Cl, in a nematic liquid crystal shows
the same general behavior, but decays due to field inhomogeneity and

other effects.
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simultaneously irradiated by a de field and the effective pulse angle
(e-YBir) varies with Y. DC fields are used since the resonance
frequency is zero for all nuclei. As for an rf pulse, a dc pulse will
still excite over a range of frequency given by sinwt/wi. In Figure
III.2 the behavior of one spin species (here, 1H) is shown as only this
nucleus is detected in high field.

If the sample is instead demagnetized completely to zero field,
the situation is different as the pulses are now applied to an

equilibrium zero field state for which

[D(O).HZF] =0 (III.7)

in which p is proportional to the components of a second rank tensor.
The effect of a single dc pulse on such a system can also be observed.
The pulse, referenced to a laboratory based frame, must be reexpressed

.

in the molecular/zero field frame of p and Equation (III.4) becomes

pa(6) = Rexp(-16I_ R™'p(ORexp(i6I IR (IIL.8)
where R=R{aBY), the rotation operator. As a simple test of these %deas,
consider the following experiment illustrated in Figure III.3. The
sample, initially in high field, is shuttled down to zero field where it
is subjected to a single dc pulse of varying length, then shuttled back
to high field where its proton pulsed spin locking signal is recorced.

The high field signal for a pulse of length t using Equation (III.6) is

-1

- . =1 X
Sn(r) = Ter(O)Rexp(—lﬂdcr)R p(O)Rexp(lHdcr)R 1 (III.9)

Because of the powder distribution of crystallites, R(aBY) differs for
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Figure I11.3: Fileld cycle for the application of a single dc magnetic
fleld pulse after demagnetization to zero field. The sample is shuttled
adiabatically from the large magnetic field to zero field. The pulsed
ficld is applied for a time t (few psec) with a corresponding pulse
angle given by 8=YB; 1. The direction, duration and amplitude of the
pulse is variable. After remagnetization, the signal is detected as a
function of t.
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each orientation as does the orientation of the rotation axis in the
crystallite molecular frame. The pulses correspond to rotations by the
angle 6=YBt about an axis oriented at some values of a and B in the
molecular frame. The expression for the signal is the correlation
function of the initiai zero fleld state and its rotated counterpart.
Simulations in Figure III.4 illustrate the effects of a pulse applied in
the laboratory z direction on different crystallite orientations. The
periodicity of the signal can be found by solving Equation (III.9) for a
given orientation.

For a powder sample, Equation (III.9) must be averaged over all
possible orientations, l.e. over all a, B and Y, Figure III.5a shows
that the average behavior over a powder is periodic as a function of t
and that the signal magnitude for 6=27 is nearly equal to that for 6=0.
This experimental result i1s for the protons in polycrystalline
Ba(ClOB)z-HZO, a dipolar system consisting of strongly coupled pairs of
protons within the water molecules, and similar behavior has been
observed in other systems. Assuming that a single spin temperature

describes the demagnetized state3 as discussed in Chapter II,

p(0) = HD (II1I.10)

for the pairs of protons. Performing the integration over the powder
distribution, the signal function calculated by substituting Equation

(III.10) into Equation (III.9) is

S(t) = 1/5[1 + ZCos(YIBdcr) . 20032(YIBdcT)]S(1=O) (III.11)

This agrees with the experimental results showing local maxima at nrm as

{llustrated in Figure III.5b, but predicts no signal decay.
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Figure III.4: Simulations of the signal amplitude as a function of dec
pulse angle in the field cycle of Figure III.3, for different
crystallite orientations. The initial condition 13 assumed to be equal
to HD. Because of the axial symmetry of the initial condition only the
angle 8, between the z axis of the PAS/molecular frame and the direction
of the pulsed field (laboratory z axlis), is necessary. For the
orientation shown at top left, where the pulsed field is along the
direction of the local field (8=0), no change is seen to occur. For
orientations close-to B=u5°, the signal goes through a single period
over tﬁe range 0-2w§whereas for the orientation perpendicular to the
field directioi, B=90°, the signal goes through two periods in 2n. Note
that for all crystallite orientations shown the signal returns to its

initial value with a 2 de pulse.
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Figure I11.5: Signal as a function of a single dec field pulse applied
in the laboratory z direction after demagnetization to zero field
(Figure IIT.3). The pulse angle is given by esYHBit where t is on the
order of a few microseconds, and B;>>By,,. The magnitude of the proton
magnetization from a sample of Ba(C103)2'H20 is detected and shown in
(a). For comparison, the theoretically predicted signal function
(Equation III.9) is plotted in (b) for an initial condition equal to Hp.
The detected signal shows the predicted periodicity and after a nx2a
pulse, the magnetization is nearly equal to its initial value. The
damping effect may be attributed to imperfections in the pulsed field

homogeneity and amplitude.



Experimental curves such as those shown in Figures III.2 and 5 are used
as a means of calibrating the pulsed field.

A component of the dipolar ordered state in zero fleld is not
effected by the pulse as seen by the constant term in Equation (III.11).
This corresponds to a projection along the field direction of a
component of the zero field state from each orientation. The actual
direction of the applied field in the laboratory frame does not affect
the behavior of the spin system &s a whole when p(O)uHZF. This is due
the isotropy of space and a random distribution of all crystallite
orientations. The direction of the pulsed field has some significance
when the initial condition or detected operator still bears a

"direction", that is to say, it is proportional to a laboratory based

operator.

2. Fleld Homogeneity

The decay of the experimental signals can be partly explained by
the inhomogeneity of the pulsed fields together with evolution and
relaxation which occurs during the dc pulse.1 Ultimately, even under
ideal pulse conditions, the signal loses coherence and decays due to T,
and TZ processes. Evidence for evolution under the internal Hamiltonian
during the dc pulse has been seen in quadrupolar systems in which the
damping effect is more pronounced as the condition Bi>Bloc is only
marginally met. A formal description of this effect will not be given
explicitly although evidence of its presence is seen in some of the
experimental results. Certainly, this is not a regime in which one
would chose to work and although ore remedy is obvious (use larger

fields), it 1s not always obtainable practically.6

102



103

Inhomogeneous pulsed fields result in a more severe damping of the
observed signal and the efficiency of the pulsed field has great bearing
on the experiment. Empirically, it was found that changing either the
size or form of the coil or sample greatly altered the homogeneity as is
expected.7 Of course, there are drawbacks to larger coils (see Chapter
II) and reducing the sample size is not desirable due to the loss in
signal. The decay evident in the previous signals and its dependence on
experimental parameters can be 1llustrated by plotting the signal
magnitude at specific pulse angles such as 180°, 360°,...,nx7 as shown
in Figure III.6. A completely undistorted signal (no relaxation,
evolution or inhcmogeneity during the pulse) would show no change in the
level of the signal. For a given dc field strength (~40 G) and a small
dipolar coupling (~0.5 G), the decay increases for larger sample
volumes, indicating the presence of field inhomogeneity over the sample
(Figure III.6a). This can be attributed primarily to field inhomo-
geneities by measuring the signal from a small sample volume at two
different dc field levels (~40 G and ~100 G in Figure III.&b).
Comparison of these signals shows that there is no change with a change
in field, and one can assume that the lower field is already in the
limit, Bi>>Bloc' as expected since the ratic of the lower field to the
dipolar coupling is already ~80:1. Finally, the effect of the relative
field strength and dipolar coupling is made by using different samples
(Figure III.6c), one with a large dipolar coupling {(~10 G), and a second
smaller one (~0.5 G) wiﬁh a pulsed field of ~40 G. The decay is seen to
be more pronounced with the larger coupling. (Note that in this latter
case both samples are large, thus inhomogenz2ity is also a factor,

although it should be equal for the two sauples volumes.) The zero
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Figure III.6: Comparison of different experimental factors on the
behavior of the signal as a function of a single dc pulse in zero field.
An undistorted signal, one that is only affected by relaxation, would be
expected to show little decay from the initial value. In (a) with a
small dipolar coupling, a change in sample volume shows the effect of
decreased field homogeneity over a larger sample. The field is
approximately 40 G unless, stated otherwise. Increasing the field to
~100G as shown in (b) for'the same size dipolar coupling, illustrates
that the decay in (a) is not due to evolution under a weak pulse. A
weak field will however not act as effectively over large samples with a

large dipolar coupling as compared to a small coupling as in {(c).
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field relaxation times are all substantially longer than the pulse
lengths used.

Minor differences in coll designs can be significant in their
behavior in pulsed experiments. Two examples are discussed, that of a
solenoid and a helmholtz of approximately the same size. Both coils
produce fields in the laboratory z direction, but the helmholtz is less
efficient as the field per amp produced is smaller. The field from a
finite length solenoid (a helmholtz coil is modelled as two solenoids
contributing to a field centered between them) is calculated by solving

the equation8

1/2 - z 1/2 + 2
B (Tesla) - 2N [ — s> 5 ] (I11.12)
Nr©+ (1/2-2) dr + (1/2+z)

1, r equals the coil radius, z the distance

where 2rk'= 6.3x1077 TA™'m™
from the ¢oil center, 1 the coil length, I the current and N the number
of turns. The calculated profiles of the flelds over the length of the
two coils are shown in Figure III.7. For the same length coils, the
field from the helmholtz does not drop off as rapidly as does the field
for the solenoid. As the coils increase in length, the curves are
expected to flatten out and the fields become more unif‘or‘m.8
Experimentally, the coils are seen to behave quite differently.
In Figure III.8, the signal as a function of pulse angle is shown for
the two coils., The helmholtz is more homogeneous as predicted from
Figure III.7 and its effect is improved when the sample size is reduced.
A computer program, INHOM.FOR, was written toc simulate the behavior of

the coils. The signal 1s calculated numerically according to Equations

(II1.9) and (III.10), and due to the rather complex funciion of z, as
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Figure III.7: Calculated profiles of the field produced by a solenoid
or helmholtz pulsed dec field coll. Each coil is approximately 1 cm long
by 1.2 cm in diameter producing a field in the laboratory z direction.
The field is calculated over the length of the coil, and is assumed to
be eylindrically symmetric. The fleld produced by the solenoid,
although larger per amp of current, drops off more rapidly over the
length of the sample than that of the helmholtz. The dashed lines in
the representative sample length indicate the length of a smaller sample
often ugsed for improved homogeneity. The predicted field droop over the
solenoid is ~16% and ~8% for the helmholtz.
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Figure III.8: Experimental curves of proton signal vs. pulse angle for
a single z field pulse in the field cycle of Figure III.3. The sample
for all three is Ba(C103)2-H20. A solenoid coil with a field of ~125 G
and a large sarple results in the curve seen in (a) wheie there is a
pronounced decay of the signal due to pulsed field inhomogeneity. 1In
(b), a field of ~250 G from a helmholtz coil over the same large sample
volume shows some improvement. The best behavior is seen in {e) for the
helmholtz coil with a small sample and a field »f ~155 G. Most direct
comparison can be made between (a) and (c) di 2 to the comparable field
strengths. Fourier transfo~ming these signals and measuring the line
widths predicts a distribution in field of ~20% for the solenoid and ~7%
for the helmholtz. Note that due to the much larger field in (b), the
0.1 psec increment in t produces a large change in @ as in evidence by
the fewer data points and jagged appearance of the signal.
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given by Equation (III.12), a linear or quadratic approximation to the
fleld homogeneity over the sample was incorporated. The latter is
generally found to more closely model the experimental situation and
therefore is used in the simulations. The simulations include only the
effect of inhomogeneity, calculated by aasuming different pulse angles
over different regions of the sample. The sample is also assumed to be
centered in the field. Misalignment of the relative positions of the
coil and sample will greaﬁly exacerbate any effects.

The resulting simulations shown in Figure I1II11.9 model the
experimental results reasonably well. The percent variations in the
fields used were obtalned by Fourier transforming the experimental
signal and assuming that the distribution in Bi is related to the
linewidth. The percent inhomogeneities found by this method are
actually very close to those predicted by calculation in Figure III.7
The performance of the helmholtz is slightly better than predicted and
the solenoid slightly worse and may be due to exeperimental factors not

accounted for in the simulations.

3. Composite Pulses
The design and implementation of radiofrequency pulse sequences is

a well explored area iIn NMR. Pulse sequences which take advantage of
the phase, amplitude and duration of the radiofrequency irradiation can
be devised to produce a desired response from a nuclear spirn system.
Composite pulses9 have been used in NMR for spin decoupling10,
broadband, narrowband and bandpass excitation11, spatial 5e1ectivity12,
14

multiple quantum excitation13 and more Composite pulses generally

consist of a sequence of closely spaced pulses whose net effect is the
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Figure II1.9: Simulaticons of the behavior of the solenoid and helmholtz
coils using the program INHOM.FOR. The contribution of the field
inhomogeneity is included by calculating different pulse angles over
different portions of the sample. Using 2 quadratic approximation to
the field profile over the sample and perceht inhomogenelties predicted
from Figure II1I.8a and 8¢, the simulations are shown for the solenoid
and helmholtz in (a) and (b), respectively. The theoretical data
matches the experimentally obtained data reasonably well, especially in

the latter case.
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same as that from a single pulse of a given rotation angle. These can
be used to correct for resonance offzets and/or pulsed field
inhomogeneity which would otherwise distort the desired response from a
gingle pulse. 1Ir specific cases, the desired behavior in exciting the
nuclear spins can be tailored to be broadband or narrowband in some
characteristic of the irradiation (i.e. amplitude, bandwidth, etc).
Broadband behavior is required, for example, to overcome the
inhomogeneity of the dec pulses. Narrowband excitation is important in
the selectivity between spins and isotopes; for example, if one wishes
to apply a zero field pulse to carbon-13 spins without affecting protons
or deuterium (a feat easily accomplished in high field NMR because of
the frequency differences). The ability to use pulses selectively is
discussed later in Section D of this chapter.

As in high field NMR, one hopes that the excitation of the nuclear
spins is uniform across the sample, that is to say, the spatial
inhomogeneity of the field is a minimum. As an alternat:ive to using
larger more homogeneous colls, composite pulses can be implemented in
the de pulsed zero field experiment as in high field NMR experiments.
In this section, composite w pulses, which are not sensitive to pulsed
field inhomgeneity, are produced by applying dec fields in different
directions in the laboratory frame. Unlike high field NMR, a pulsed dec
field does not have the feature of a variable phase, although the
amplitude and duration of the field can be easily altered. Producing
the analog of a phase shifted pulse sequence in zero field, requires a
cross coil configuration. In this case, a system composed of three
orthogonal coils with uniform characteristics such as inductance,

homogeneity and field strength was designed. High power current pulsers



which provide for rapid reversal of the direction of current flow were
designed to provide the complementary 180° phase shifts to the x, y and
z coils. Thus, six basic directions ("phases") and their linear
combinations of pulses can be manipulated in the composite pulse
sequence. Technical details on the coils and current pulsers appear in
Chapter II.

The composite pulse sequence used is a very simple 90x180y90x
first suggested by Levitt and Freeman for inversion of nuclear spins in
the presence of resonance offset and rf 1nhomoger~.eity.""a'c The
combination of these pulses more effectively acts as a 180° pulse while
compensating for field inhomogeneities. The behavior of the spin system
in zero field i3 identical to that in high field if the field cycle
produces an initial condition proportional to Iz.L' It 1{s fair to
assume for a homonuclear spin system with smdll dipolar coupiings, as
will be used, that resonance offset effects are minimal as there are no
chemical shifts in zero field, yet the 3spins must be excited over a
range of dipolar or quadrupolar couplings (the zero field analog of
resonance offset). One can simply picture the compensation of the on
resonance 90x180y90x pulse by observing the trajeetory of the
magnetization as shown in Figure III.10. 1In addition to the 180°
inversion pulse, multiples of 180° also prove useful in the zero field
experiment, thus the simple three pulse sequence is extended in the most
straightforward manner by éoncatenating the composite 180's.

A sample of CH2012 in a nematic liquid crystal, a system which
when demagnetized in the field cycle shown {n Figure III.1 has an
initial state proportional to Iz,L (see Chapter IV). Instead of only a

single pulse in zero field, the pulse P in Figure III.1 represents the
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Figure II1.10: Trajectory of a magnetization vector under a single
pulse of 180$ and a composite 903180?803 pulse. The final position of
the magnetization for a single (1802+A) pulse is shown by the arrow for
one value of A corresponding to the error in the pulse angle. The
trajectory of the tip of the vector under the composite pulse is shown
by the bold line., The first nominal 903 pulse places the magnetization
vector somewhere in the zy plane above the xy plane. The nominal 1802
rotates the magnetization about the y axis. The final nominal 902 pulse
places the vector near the -z axis closer than the single 180° pulse.
The error in the 90° pulses 1s compensated for by the 180° pulse where
an exact rotation 180° would place the magnetization vector at the -z
axis, Other errors in pulse lengths will shoWw similar trajectories
corresponding to a distribution of final positions near the -z axis.
360° composite pulses can be produced by applying a second 9021803902 or
9031803902 pulse which brings the magnetization up the other side of the

sphere toward the +z axis.
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application of one or several dec pulses which can be repeated n times.

A comparison of single pulses of nominal pulse angles of nx180° and
composite pulses are shown in Figure III.11. The single nx180° pulses
were extracted from an experimental curve of signal intensity vs. pulse
length such as that shown previously in Figure III.2. Single pulses are
seen to produce a curve which decays with increasing pulse length. This
is the case of a small coupling and small sample (see Figure I11.6) and
the effect 1s therefore primarily due to the inhomogeneity.

Using composite pulses, the nx180 and nx360 rotations of the
magnetization are seen to show some improvement as the result of
compensation, In both the single and composite pulse cases, cummulative
errors in the pulses result from long sequences. When larger pulse
angles are needed, the efficiency can be improved to some extent by
phase cycling the second pulse of the composite sequence. Figure

III.11c illustrates this effect by using (90x180y9°x-90x180y90x)

sequences. The compensation is improved on aubsequent pulses and can be

understood by the fact that the reverse sense of rotation of the 180y
and 180y pulses corrects for some of the error due to the 180 pulse and
returns the magnetization more effectively to the +z axis.

These experiments illustrate simple applications of composite
pulses, originally designed for high field radiofrequency irradiation
but applied i{n zero field. Rotations of the magnetization by integer
multiples of 180°, and the desire for other large angle rotations arises
from the fact that in 2zero field different nuclear species can be
selectively excited with the proper choice of dc pulses. The degree of
selectivity or successful excitation of the spins depends upon the

uniformity of the pulsed field over the sample. Other uses might be
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Figure III.11: Experimental comparisons of single and composite dc
magnetic field pulses. The sample is CH2C12 in a nematic liquid crystal
which has a proton dipolar coupling of approximately 2 kHz. Pulsed
fields used were on the order of U5 G for all directions. In (a)},
single pulses of nx180°. chogen from a function of signal intensity vs.
pulse length, are shown to cause the magnetization to decay rapidaly with
increasing pulse length. 1In (b), using concatenated composite pulses of
90x180y90x the behavior is slightly improved. To reduce the cummulative
errors in repeated 180° pulses, a phase cycled pulse 90,180590, was
alternated with 90x180y90x in (¢) yielding an improvement in the

longterm behavior.

118



found in better refocussing pulses to improve zero field homogeneity (as
in the echo experiments to be discussed in Chapter IV) and the use of
composite pulses in two dimensional zero field experiments. The use of
phase shifted pulsed dc flelds might be combined with the wealth of
composite and spatially selective pulses already designed for rf
irradiation.9'1° More sophisticated de pulses and pulses sequences
which are zero field analogues of rf NMR experiments can easily be
imagined.

A number of applications of these ideas are envisaged such as the
selective excitation and evolution of protons in the presence of a
heteronucleus such as carbon. This would be a zero field analog of
observing a high field decoupled spectrum when only one nucleus is
excited, and the heteronuclear dipolar or quadrupolar couplings are
removed. 'Possible approaches involve the "quenching" of the coupling by
selectively averaging the Ix, Iy and\.Iz components of spin angular
momentum of the heteronucleus. Hopefully higher order terms of the
dipolar coupling will also be removed. This is analogous to the
naturally occurring quenching of the coupling of spin I=1 nuclei in zero
field.15 With dec pulses, there ls the added complication of irradiating
one spin species yet leaving the nucleus to be detected remains
untouched except for evolution under the desired Hamiltonian. Not all
high field pulses sequences are directly transferable to the realm of
pulsed dc experiments, due the added terms of the zero field
Hamiltonians which must be dealt with (i.e. no high field truncation to
assist the experimentalist) and the fact that pulsed fields do not
appear as uniform rotation axes in the molecular frame for all

orientations in zero field. These complexities make the problem much
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more challenging to approach and answers might best be sought via
computer simulations as the calculations of the signal under pulsed

fields quickly becomes overwhelming.

C. Field Cycling with Pulsed DC Fields

1. Initial Conditions and Demagnetization

The preceding section introduced the behavior of nuclear spins
under dc pulses after being demagnetized to low (p(O)aIZ'L) or zero
field (p(0)aHyp) in field cycles such as those shown in Figures III.1}
and III.3. Only iln certain cases, used as experimental examples thus
far, can the lnitial state after complete demagnetization to zero field
be easlly characterized. States which are simply described during
demagnetization are those of tightly coupled spin I=1/2 nuclei for which
a spin temperature can be defined.3 Since the development of the spin
system in time, its behavior under pulsed fields and the appearance of
the spectrum all depend upon the initial zero field state, the dynamics
of demagnetization to zero fleld are discussed in more detail. The
comments made are based upon more complete discussions found in several
excellent texts on the subject.3’16'17 Related discussions can also be

18 4 present, considerations are limited

found in another thesis.
primarily to systems of only one spin species. In later sections,
particularly Section D.1, a description of level crossings which occur
between the energy levels of heteronuclear systems is presented.

a. Coupled ayastems. When a nuclear spin system 1s tightly

coupled, that 1s to say mutual spin flips or spin diffusion through the

system can rapidly establish an equilibrium state, the system can be



described by a spin temperature3'16 as described in Chapter II.B.5. An
appropriate spin system will be defined by a collection of single spins
with equidistant Zeeman energy levels in which the couplings to other
nuclei introducing a "width" to the levels. (This is not a rigorous
treatment as in reality the spins should be treated collectively and
Izi=m; of individual 1 spins is not a good quantum number.) The
relative width and the separation in energy levels is a measure of the
degree of coupling in the system.

Energy and population conserving flip-flop transitions occur
between the levels. The establishment of an equilibrium state
corresponds to the most probable distribution of the populations among
any two energy levels as given by Equation (II.4) and a single spin
temperatuée can be defined if the ratio ls independent of m.3 When an
external parameter of the system, such as the field, is changed
adiabatically, the populations are conserved and the system reaches a
new spin temperature. For a tightly coupled, homonuclear system this
process is always reversible when conducted in a time, t, where
T2<<t<<T1. Throughout adiabatic demagnetization to zero field, the
density matrix describing the system is always proportional to the
instantaneous Hamiltonian. An example would be a dipolar ccupled spin
system of spin i-1/2 nuclei, such as protons in a solid, in which the
Zeeman levels are equidistant and strong dipolar couplings exist. The
zero field demagnetized state would then be equal to the dipolar
Hamiltonian, HD' with its corresponding eigenstates and energies.

b. Isolated aystems. Isolated spin systems are generally not
describable by a spin temperature.3 Spin systems which are weakly

coupled, either due to proximity or low isotopic abundance, can be



considered isolated. Also systems in which the energy levels are
unequally spaced, thereby preventing energy conserving transitions
involving all pairs of levels, behave as isolated systems. Hetero-
nuclear spin systems, in which the differences in resonance frequencies
are greater than the dipolar coupling, are effectively isolated since
cross relaxation or transitions between pairs of Zeeman levels are only
weakly allowed. Separately, the heteronuclear spin reservoirs may or
may not be tightly coupled subsystems in and of themselves, thus
allowing independent spin temperatures to be defined for each. For
times greater than T, of a separate subsystem and less than the time for
a mutual spin rlip to occur, a separate spin temperature can be ascribed
to each. If the cross-relaxation time is greater than T1, the state of
the entire system can be described by a common spin temperature equal
only to the lattice temperature.

An example of an isolated spin system is that of a quadrupolar
spin I=1 system such as deuterium.a’16 A spin I=1 system can not be
described by a single uniform spin temperature at all times. If the
system is allowed to reach equilibrium in a large applicd magnetic
field, then the populations of the Zeeman energy levels correspond to
the most probable distribution of the spins among the levels as given by
a Boltzmann distribution. For nonzero quadrupolar coupling constants,
the three energy levels correspond to quadrupolar perturbed Zeeman
levels and are unequally spaced. Assigning a spin temperature to the
spln system imposes a condition on the populations. Only for equally
spaced levels (in a spin I=1 system when equ/hao), a flip-flop exchange
of one spin by +1 and another by -1 does not change the populations of

the levels and a single uniform spin temperature can be defined. For
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unequal levels, a change in the populations of any two levels will alter
the relative populations of other pairs of levels, and a single uniform
spin temperature can not be assigned. It often becomes useful though to
assign a spin temperature for a limited time to a given pair of levels.

There exists no mechanism in isolated systems which will uniformly.
reestablish equilibrium populations for all levels, as does the flip-
flop term of the dipolar Hamiltonian for equidistant levels, and rapidly
establish a new spin temperature. A new Boltzmann distribution can be
reached, but only {n a time greater than T1, when the spin temperature
of the entire system corresponds to the lattice temperature. Since the
system cannot be described by a single spin temperature in times less
than T1, a simple description of adiabatic demagnetization does not
follow as before. If the field is changed adiabatically, the
populations prepared in high field can be expected, according to the
adiabatic theorem16’21, to remain unchanged and transfer smoothly to the
zero field eigenstates. The trajectory of the energy levels from high
field to zero field must then be determined as accidental degeneracies
of the levels can alter the transfer of populations to the zero field
states. In high field, HZ>>HZF, the eigenstates correspond to those of
the high field Hamiltonian. Similarly in low fields, Hz<<HZF, the
eigenstates approach those of the pure zero field Hamiltonian.

In intermediate field regions, the states are less well defiped.
The behavior of the eigenstates for a spin I=1 nucleus as a function of
field and orientation were calculated using the program DEMAG.FOR. The

analytical solution begins by setting up the high field state.

H = HZ + HQ (I11.13)
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The Hamiltonian is most easily expressed in the zero field basis, given

in Chapter 1I.C, as

H = HQ + DxIx + Dny + DzIz (III.14%a)
or in matrix form as
=(1+n)K -iDz Dx
= -(1- LW
H iDz (1-mX Dy (III.14%p)
D D 2K
X Yy

where the molecular frame components of the applied field, related by
the angles a and B, are given by D, =DsinBcosa, Dy-sinBsina. Dz-DcosB
with D=YB. The eigenstates and eigenvalues can be solved for through
diagonalizationr of Equation (III.14b). There is an orientation
dependence and field dependence to the eigenstates and eigenvalues, such
that the demagnétization differs for each crystallite orientation.

Using analytical expressions for the eigenvalues,22 the program searches
for degeneracies in the eigenvalues which correspond to crossings of the
energy levels. If no level crossings are found, the states follow
smoothly from high fleld to zero field with the populations unchanged
and ordered the same with respect to energy level. When crossings
occur, the correlatlons between states before and after the crossing are
found by solving for the maximum overlap between eigenstates.

It was found that crossings only occur for particular
orientations; in fact, those in which the field direction ls along one
of the princ.,al axes of the quadrupolar tensor. These crossings are
illustrated in Figure III.t2. The infrequent number of level crossings

is convenient as, when levels cross, no rate of demagnetization conforms
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Figure III.12: "Illustrations of spin I=1 energy levels as a function of
field and the allowed level crossings.. (The zero field eigenbasis is
given in Chapter II.C.) Level crossings were found to occur only for
those orientations where the applied fleld is along one of the principal
axes of the quadrupolar tensor. 1In (a), the field is along the x axis
and no crossings oceur. In (b) and (e¢), the field is along the z and ¥y
axes, respectively. Energy level separations in high and zero field are

not shown to scale.
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to the adiabatic condition when AE=0. If the crossings do not occur, or
are avoided, adiabatic constraints still hold. The frequent occurrence
of avoided crossings is not surprising and a clear discussion of the
principles is presented in the book on quantum mechanics by Cchen-
Tannoudjl et al.23 The two possible outcomes are shown in Figure III.13
where the levels may either cross or avold one another. When a coupling
or perturbation term is present in the Hamiltonian, an avoided crossing
occurs where the unperturbed energies would approach one another and
cross. Under the effect of the coupling, the energy levels ar2 mixed,
the perturbation becomes more significant close to the crossing region
and the states repel one another. Thus over almost the entire powder
distribution, the demagnetization is independent of orientation. Only
populations survive the demagnetization and the state of the system in
zero fleld, written in the eigenbasis of the zero field quadrupolar
Hamiltonian, has the populations corresponding to those prepared in high

field such that

-1
Pop = [ ] . ] (IIT.15a)

where the density operator is related to HQ5'18

2 2
(Ix Iy) (III1.15b)

Unfortunately, approaching the problem by computer simulation requires a
knowledge of the values of eZqQ/h and n, two parameters which are the
goal of the measurement, to correctly simulate the frequencies. Of
course, the simulations can always be used in retrospect to model the

zero field spectrum and is discussed in the following sections.
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Figure II1.13: Illustration of an avoided level crossing. The
unperturbed energy levels would follow the dashed lines as the field is
reduced through the level crossing region. 1In the presence of a
perturbation or coupling, the energy levela do not cross. The energles
of the perturbed levels approach those of the unperturbed

asymptotically.
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2. Zero Field NMR and NQR with Pulsed Fields

To apply dc magnetic field pulses in obtaining zero field spectra,
many schemes are possible: Two simple examples of the field cyeles and
pulse sequences were shown in Figure II.U4, After demagnetization to
zero field, the reduced density matrix is diagonal i.a the zero field
bagsis set and is proportional to second rank tensor interactions. The
form of the initial state in zero field depends on the dynamies of the
demagnetization and the type of spin system. An initial dc z pulse
results in off-diagonal terms which evolve for a time t; under the zero
field Hamiltonian., Detection of the zero field evolution may be
accomplished by application of a suddenly switched field in the same
direction as the first pulse and remagnetization to high field where the
z compenent of the magnetization is sampled. This field cycle is
illustrated in Figure II.4% and the high field signal is formally given

by

-
H

1
exp( 1HZFt1)Rexp( 1eIz’L)R

Solty) = Tr{RI, 'R

(Ir1.16)

R -1
p(O)ReXP(lSIz.L)R exp(iHZFt1)}

For a homonuclear system of spins I=1, the signal produced in this case
is analogous to directly detected magnetization in a pulsed NQR
experiment where the sigﬁal is sinusoidal and begins with zero
intensity.2u This is due to the orthogonality of second rank (the
initial density matrix) and first rank tensors (the detected operator).
That is to say, when pulsing an equilibrium zero field state, a magneti-

zation develops in time along the direction of the pulsed field. This



can be seen by calculating the analytiec form of Equation (III.16) for

p{0) equal to Equation (III.15) and is reproduced from reference 18,

S(t,) = LE] [(2sin28 + sind)(sinw,.t, + sinw_,t. )]
T 2371 3 (111.17)
1 . . . .
* 15 [(251n2e+sine)(31nw23t1+251nw12t1) + (sin26+251ne)51nm31t1

The intensities as a function of the first pulse b are given in
reference 18 and maximum signal intensity is obtained for &
approximately equal to w/4. Pulsing in the z direction and detecting in
this direction will show a time varying component of magnetization at
frequencies corresponding to sin(wt1), where w is any of the possible
quadrupolar frequencies of the system. Due to the sinusoidal dependence
of the signal, at t1-0 no component proportional to Iz.L exists and the
maximum value for different transitions occurs at different times
corresponding to mt1.

Alternatively to detect zero field evolution, a second pulse
applied after the ty period returns a portion of the off-diagonal
elements to the diagonal as shown in Figure II.4b. Upon remagnetization
these population differences are measurable by standard high field pulse

sequences. The signal in high field is given by

' -1 -1
Sn(t1) = Tr{p(0)Rexp(-ig Iz.L)R exp(—iHZFt1)Rexp( ielz,L)R
(II1.18)

-1

x p(0)Rexp(16I, L)R_1;xp(iH )Rexp(ie'lz R}

zrt L

where 8'=2n-8. The magnetization detected in high fleld is assumed to
be proportional to the remagnetized zero field state. Again, as for
other de pulsed experiments with demagnetization and remagnetization to

and from zero field, the signal is calculated by taking the trace with
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respect to the initial state in zero field.

This field cycle can be used to detect evolution in zero fleld
under either the quadrupolar or dipolar Hamiltonians for the initial
conditions described previously in Section C.1. If the range of
couplings 1s broad and/or extends over many spins, the zero field
dipolar spectrum is expected to be structureleas.18‘19 Yet when
structure is discernible in the zero field spectrum, the system may not
correspond to one describable by a spin temperature. As a test of these
ideas, a gseries of proton dipolar spectra taken as a function of pulse
angles were compared to the calculated signal intensites for a system
corresponding to a dipolar ordered state in zero field. The sample was
Ba(ClO3)2°H20 whose spectrum, as shown in Figure II.6, is a relatively
simple three 1line pattern corresponding to the principal intramolecular
coupling between the protons. Intermolecular coupling is evident in the
broad lines (~7 kHz), which reduce in width with dilution with
deuterium, and possibly by the presence of the 2v and 3v lines. The
experimental spectra in Figure III.1l4 were obtained using the field
cycle shown in Figure II.Ub with pulse angles of (8, 6'=27-8). The
signal can be calculated for an initial state p(O)xHD by numerically
solving Equation (III.18) averaging over all crystallite orientations.
Numerical simulagion. using the program PLTSIM.FOR, is generally the
eagist approach to calculating the signal under dc pulses. The
dependence of the signal intensity for two dipolar coupled protons is
shown as a function of pulse angle in Figure III.15. The signal is
symmetric around a 180° pulse angle such that either the & or 2w-8 pulse
can be applied first.

Theoretical and experimental results are compared in Figure III.16
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Figure IIX.14: Experimental zero field proton spectra of Ba(ClOS)z'HZO
using the field cycle of Figure II.4b, The pulse angle on the left
corresponds to the value of € in the two pulse sequence given by (8,27-
8). The spectra show the predicted three line pattern and all have the
same phase. The relative amplitude of the outer peak shows significant
changes with pulse angle. The integrated intensity of all the spectra
is identical and are not plotted to scale.
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Figure III.15: Calculated signal intensity for two dipolar coupled spin
1=1/2 nuclei in the field cycle of Figure II.4b with the program
PLTSIM.FOR which assumes an initial condition equal to Hpy. The pulge
angle given corresponds to the first pulse in a (9,27-8) two pulse
sequence. Both the evolving signal and the nonevolving signal oscillate
in amplitude and are symmetric about 180°, Maximum evolving signal is

produced when @-45°,
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Figure I1I.16: Comparison of theoretical peak intensities and

experimental values from the spectra of Ba(C103)2'H20 as a function of 6

in (8,278) zero field pulse sequence of Figure II.4. The experimental

intensities closely follow the theoretical values for an initial

condition equal to Hp. The behavior is expected to be symmetric around

the 180° pulse, although with longer pulses, the behavior of the

experimental signal begins to deviate slightly. This may be attributed

to imperfections in the pulses.
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by plotting the integrated intensities of the outer peaks. The behavior
of the signal in the theoretical and experimental cases is very nearly
identical. This is also true for the comparisons of simulations and
experimental data of the coil characterization curves, presented in
section B.2, in which the initial condition was also assumed to be
proportional to Hp. While these experimental spectra and simulations
support the idea that the demagnetized state of this particular sample
is equal to HD, no general conclusions can be reached as to what samples
will or will not behave similarly wien demagnetized. Barium chlorate
monohydrate has often been used as a standard sample in characterization
of the colls, and as such, was chosen for these experiments to test
assumptions made as to the behavior of the spin system reported thusfar.
The experimental spectra shown in Figure III.14 where obtained
using a homogeneous z helmholtz coil and small sample volume. All the
spectra were found to have the same relative phase. Apparent artifacts,
manifested as distortions in the relative phases of the peaks with pulse
angle, were found to occur when weak fields or inhomogeneous pulsed
fields are used .20 Theoretically, no phase changes are predicted.
Additionally in deuterium spectra, unusual phase behavior in the peaks

18 In thase cases the pulsed fields were

has also been seen to occur.
weak as Bi'Bloc and may contribute to the distortions. More comments
will be made on this subject in a later section.

The NQR spectra of a perdeuterated sample also demonstrates a few
aspects of the field cycles. In these pulsed experiments, it is not
possible to find pulses which excite evolution uniformly over the

powder. Thus the signal is necessarily somewhat reduced from the

previously described experiment with a sudden transition in field
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(Figure II.3), 3s only a portion of the total spin order evolves in zero
field. Figures III.17a and III.17b illustrate the results for the
sudden transition field cycle, and the demagnetization and pulsed direct
2H detection zero field experiments conducted on perdeuterated 1,4~
dimethoxybenzene. As expected, the frequencies obtained in both are
identical and the linewidths agree within experimental error. The
assignments to two inequivalent aromatic sites (tnose close to and far
from the methoxy groups) and the methoxy deuterons match previous
results.25 As expected, the signal-to-noise is slightly lower in the
demagnetization experiment, due to the pulse excitation over the powder
and possible contributions of relaxation in low fields,

The intensities differ in the experimental spectra shown in Figure
III.17. For the sudden transition field cycle (Figure III.17a), the
three lines of a given quadrupolar nucleus-are expected to be of equal
intensity as described in Chapter 2, section C.4 and essentially is
found in the spectrum shown in i#igure III.17a. The intensities in the
pulsed experiment can be modelled by computer simulation assuming an
initial state equal to that of Equation (III.15) used in Equation
(III.18). A computer program, QUAD.FOR, easily. incorporates different
pulse angles and averages over a distribution of crystallite
orientations. The intensities are independent of eZqQ/h and n.

The signal intensity as a function of pulse angle for the three
transitions of a spin I=1 gquadrupolar nucleus with ns0 are shown in
Figure III.18. A similar figure appears in reference 18 as a result of
calculating the coerficlénts found analytically along with a series of
spectra as a funection of pulse angle which roughly follow the predicted

behavior. A component of the signal which does not evelve, but
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Figure ITI.17: Zero field NQR spectra of 1,4-dimethoxybenzene
(CH3006HMOCH3). a). Sudden transition zero field spectrum of
perdeuterated dimethoxybenzene obtained using the field cycle described
in Figure II.3. Peaks at frequencies corresponding to the methyl and
aromatic deuterons are resolved. b). Pulsed direct detection zero field
spectrum of perdeuterated dimethoxybenzene obtained using the field
cycle of Figure II.4b. As the magnitude of the observed signal is
dependent on the d¢ pulse lengths used (9-900), peak intensities are now
scaled differently with respect to (a). Relaxation effects occurring
during the different length field cycles in the sudden and pulsed
experiments are manifested in the different relative methyl and aromatic
signal intensities of (a) and (b). c). Indirect detection via protons
of the deuterium NQR spectrum in 60-70% aromatic deuterated 1,4-
dimethoxybenzene. (Note that in this sample the methyl groups were not
deuterated.) Clearly resolved v,,v_ and Vo transitions are observed
with no evidence of proton signal. Signal-to-noise for the aromatic
deuterons is improved relative to the sudden and pulsed zero field

methods .
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oscillates in magnitude, appears as zero frequency signal in the
spectrum. The most complete excitation over the powder occurs when this
component is at a minumum, although the intensity is not divided equally
among the remaining three transitions. HKMaximum signal is obtained for
different transitions with different pulse angles but overall excitation
is good for 0=60° (8'=2m-6) as seen in Figure III.18. The calculated
intensities are seen to match the experimental spectra {(Figure III.17b)
reasonably well for 6=90°, 1In spite of the altered intensities, the
frequency information obtainable from these spectra is still extremely
useful .

As a finali comment, in previously reported deuterium experi-
ments,18 the NQR lines in the pulsed experiments were seen to show
unusual phagse behavior which is not predicted theoretically. The phase
changes were found to increase with increasing pulse length (i.e. larger
8). The lines which were most strongly affected, those at higher
frequencies, correspond to eZqQ/h values of ~150-180 kHz (or ~200-300
Gauss). The pulsed fields used were only marginally larger than this
(1-2 times), if that large. Thus the pulses might be expected to act
not only as rotations, and some evolution during the pulse might be
expacted to occur., The effects of pulsed d¢ flelds are a function of
many parameters; amplitude of the field, coil homogeneity and rise times
of the field. It would seem that the apparent frequency dependence,
pulse length dependence, weak fields and inhomogeneity effects indicate
that the change is more likely due to experimental factors. Unfortun-
ately, at the time of these experiments, larger pulsed fields were not
available for deuterium studies. Weaker fields were seen to show a

different dependence of the phase on pulse angle. Experimental results
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Figure III.18: Calculated intensities of the spin I=1 transitions under
the field cycle of Figure II.4 with the pulse angle corresponding to 8
in a (9,21-8) dc pulse sequence. The intensities are not a function of
equ/h and n based on an initial condition equal to the demagnetized
high field populations. A4 large portion of the signal does not evolve.
The evolving components oscillate in intensity with the Vg and v_
transitions having the same angular dependence (note this does not
correspond to their sum). The maximum evolving signal occurs at 8=60°
where the nonevolving portion {8 near a minimum. The signals are

symmetric about 180°.

¥

.



142

discussed earlier on dipolar coupled systems, in which the field is
generally many times larger than the spin interactions, support this

suggestion.

D. Indirect Detection and Selective Pulsing

In the previous section, it was shown that in a homonuclear system
one can initiate evolution under the zero field Hamiltonian by simply
pulsing a system which is initially in a stationary (diagonal) state in
Zero field. For example, this allows one to observe the NQR spectrum of
a quadrupolar system. Consider a case in which the spin system consists
of two isotopic species. An experiment with a sudden transition in
field or pulsed dc field initiates evolution for all spin species, as
long as the spin interaction with the switching field 1s large compared
with zero field interactions. Thus any evolution of the spin system
present in the detected signal produces a zero field spectrum containing
both dipolar and quadrupolar frequencies. It is worth though
considering pulsed experiments on completely demagnetized statest'26
which are better suited for indirect detection experiments as lev=!
crossings between heteronuclear spins occur during the field cycle. 1In
this section, a time domain variation and extension of experiments
developed by Hahn and others27 is described. This method relies on the
application of pulsed dc magnetic flelds after demagnetization, as in
the field cycle of Figure Il1.Ub, to initiate evolution and selectively

irradiate isotopic species (e.g. protons and deuterons) in zero field.



143

1. Introduction to Level Crosaing and Selective Pulse Experiments
a. Sensitivity Enhancement via Level Crossings. Double resonance

NQR methods have long utilized level crossings for enhanced detection of
quadrupolar nuclei with small quadrupoclar coupling constants. These
techniques were first developed by Hahn and other527 for use in
frequency domain experiments. In this section, a description of the
demagnetization behavior of a system composed of two spin species and
its bearing on NQR measurements is presented. Much of the following
brief overview is the same as for the frequency domain experiments and

28 and Edmonds29 where more detailed

is based on review articles by Blinc
descriptions are given. Additionally, the demagnetization behavior of
heteronuclear spin systems is also extensively covered in Goldman's
book.3

The basis of the approach is that, as a natural consequence of the
demagnetization of a heteronuclear I-S spin-system, pairs of I and S
energy levels become equal at some finite value of the field. At this
level crossing field, the I and S systems can couple and transfer polar-
ization via mutual spin flips. The transfer of polarlzation increases
the sensitivity of the experiment by increasing the $ nuclear spin
polarization and by allowing for detection of the S spin evolution via
the more sensitive I nuclei (i.e. double resonance). These methods are
particularly applicable in NQR for nuclei which are unaccessible by
direct observation due to their low interaction frequencies29 and are
difficult to study by NMR due to the broad lineshapes. While the NQR
experiment allows one to use a polycrystalline'sample, NMR experiments
overcome the problems by using single crystals. Single crystals do

provide more complete information on the quadrupolar interaction and the



orientation of the quadrupolar tensor, but are not always obtainable for
all materials.

The system of interest consists of an abundant high Y spin I=1/2
nucleus such as protons (I) and a second, lower Y, spin S=1 quadrupolar
nuclear species (S), such as deuterium or nitrogen, in reasonable
proximity. In high field, the separation of the Zeeman levels of the
protons is much greater than that of any of the quadrupolar perturbed
Zeeman levels of the spin S=1 nucleus. The polarjizations, as related to
ti: difference in populations, is much greater for the I spins than for
the S spins. 1If the differences in resonance frequencies are large
relative to any coupling, then the two systems can be considered as
uncoupled and may have separate spin temperatures.3 It i3 assumed that
a spin temperature is always well defined for the proton system but not
so for the quadrupolar nuclei, unless enough time has elapsed for the
system to be in equilibrium with the lattice.

If the field is decreased, the energy level separations change
with the field and at some field level, B, the separation in the I
Zeeman levels becomes equal with the energy level separation of one pair
of the S levels. Level crossings generally do not occur in the sudden
transition field cycle as the level of the field never gets low enough.
The spin systems couple and via mutual spin flips come to a common spin
temperature. A common spin temperature is definad only for that pair of
quadrupolar levels which cross. Since the polarization of the I spins
is larger, with demagnetization the I spins become quite cold. When
contact 1s made with the S energy levels, the S system 1ls "cooled down"
with a resulting increase in the polarization. Because the protons are

more abundant and tightly coupled, the I system has a larger heat
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capacity and is assumed to have changed very little by a single contact
with the S spins. A new spin temperature is rapidly reestablished in
the I system.

The level crossing can be described by the change in the
populations of the energy levels (labelled + and -).29 The populations

before (I) and after (I') a single level crossing are given by

n
=

(1, + 1) = (1, + 1))
(I11.19)

L]
=

(s, + 5. = (s, + 5]

which merely indicates that the total number of spins, Ni' of each type
are conserved. Through the mutual flip-flops, energy is also conserved

such that ' '
S_+I_=9S_+1I_ (III.20)

and follows similarly for the + states. Finally, since the two systems
have reached a common spin temperature at the same energy level

separation

[

(111.21)

(=] l =]
-1 =~
¥

w

+
+

from Equation (II.4) whereas they were unequal before level crossing.

As the fleld 13 lowered further, the I levels become resonant with
other pairs of S levels and with each crossing a transfer of
polarization oceurs. The order in which the pairs of levels cross
during the demagnetization is dependent on the energy levels and their
separation in the field which in turn is dependent on crystallite
orientation. The result of this irreversible proce333 is an increase in
the polarization of the S spins. The demagnetization of the I and S

systems 1s reversible up until the first level crossing occurs. When
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the field, B, is decreased below the level crossing value, the systems
are no longer in contact. For spin S=1 nuclei, any spin-spin coupling
is quenched when B approaches zero. 19

In the NQR experiment, the spins would be irradiated in zero field
with rf to induce transitions (generally to saturate the tranaitions) in
the S system.29 This corresponds to a heating of the S syétem.
Remagnetizing the sample results in the level crossings again between I
and S spins, but in the reverse order from before. Since the S spins
have been heated, they produce a rise in the I spin temperature. By
detecting a change in the I magnetization in high field as a function of
irradiation frequency in zero field, the evolution of the S spins 1s
detected indirectly. 1In order that the experiment succeed, the
demagnetized order of the I spins can not be destroyed by the
irradiation in zero field. Difficulties arise when trying to detect low
frequency NQR transitions (<100 kHz), as’ the proton dipolar system
absorbs in this region. Often in frequency domain NQR experiments, low
frequency lines are obscured by the proton sign3129 which may extend
from 0-50 kHz or more.

The time domain field cycle, such as that in Figure II.4b, is
nearly identical to the frequency domian version except for the
irradiation/evolution period in zero field. 1In the time domain
experiment, evolution is initiated by a pulsed field and terminated
after t1 by a second pulse before remagnetizing the sample. The I spin
signal, detected as a function of time in zero field, indirectly maps
out the evolution of the S spins. Because of the large heat capacity of
the I spins, multiple contacts between the S and I spins can be made by

cycling the fleld to above the level crossing value.28'29 The effect of



multiple contacts between the spin reserveirs is cumulative. The
cycling of the field must be adiabatic and the number of contacts
possible depends upon the T1D relaxation time of the I spins.

The theory presented thus far is a very simple depiction of the
actual dynamics of the situation. For a three level S spin system, the
population§ of separate levels are involved in more than a single level
crossing. The I and S populations can be solved for from Equations
(III.19-21) throughout the field cycle taking into account each
subsequent change with a level crossing. Examples given by Blinc28 and
Edmonds29 describe the theoretical increase in sensitivity and its
dependence on various experimental factors such as relative numbers of I
and S spins and relaxation times. These calculations are based on many
assumptions as to the dynamics of the demagnetization. The rate and
efficiency of the polarization transfer has great bearing on the
gsensitivity of the experiment. One assumption that has been made is
that the transition rate through the level crossing field is slow
relative to the transfer rate of polarization. If the transfer rate is
given as 1/W (Wwhere W i3 the probability of a flip occurring), then the
crossover time where the energy level separations are within the
linewidths (Aw-wI—wS<11new1dth) must be slow compared to the transition
rate and fast compared to T1 or a new Boltzmann populations are
established.

Modelling the dynamics of the level crossing is a very complex
problem. Although it can be easily calculated theoretically for
individual orientations, in reality it depends upon the rate of
demagnetization, the coupling of the spins, relaxation times,

irradiation or evolution in zero field, and the reverse processes upon
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remagnetization. The order in which the crossings occur for each
crystallite may change due to the orientation dependence of the energies
in the S system and requires that the level crossing effects be averaged
over the powder., Additional level crossings are also possible when two
spin flips occur for ove "flop", e.g. at twice the energy. The proba-
bility of this occurring 1s low but would alter the final populations.
The more likely event 1s the simultaneous level crossing of two pairs of
S levels with one pair of I levels when there are near degeneracies of
the S levels and the I levels have some width due to dipolar couplings.
For example, when S=1 and n~1, then vo*v_=1/2v+. For low frequency
quadrupolar coupling constants, low frequency transitions or small
values of n {where v,=v_.), one or more pairs of levels can cross
simultaneously.

It has been assumed that the relaxation times in low and zero
fleld are long enough to allow for the polarization transfer, the
irradiation/evolution period and the remagnetization step. The
experiment requires that the polarization of the I spins persists over
the entire field cycle, that is, that T1 and TTD of the 1 spins are
long. The limits on the relaxation times of the S spins are not quite
as stringent since the polarization and detection is through the I
spins. Different limiting cases are calculated by Bline28 with
predicted intensities for each spin I=1 NQR transition after level
crossing. A few comments on the measurement of pertinent relaxation
parameters. A rough measure of the Ty in high field of the I spin
system determines the overall repetition rate of the field cycle. Since
the S polarization results from the level crossings, the T1 of the S

system is not as important, unless of course it is extremely short and
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cross relaxation effects will not persist. The relaxation time in zero
field of the demagnetized I spin order, T y(I), can be measured by
cycling to zero field with no irradiation or pulsing. A measure of the
signal as a function of time in zero field should yield a rough estimate

of the relaxation time from

M(t) = Moexp(-t/T1) (I11.22)

where Mo is the initial magnetization. This measurement assumes that
the changes caused in the I polarization by the I-S level crossings are
negligible. A rough measure of T1Q(S) is possible by field cycling to
zero field, followed by irradiation to saturate only the I spin system.
After remagnetizing, the detected signal reflects only what has occurred
in the S system as transmitted to the I spins during remagnetization. A
time domain version with d¢ pulses would consist of selectively pulsing
the spins to destroy the order in the I system while ieaving the S spins
untouched . .

b. Spin Selective DC Pulses. The selectivity of dc pulsed fields
and the application to the indirect detection experiment has been hinted
at previously and now is presented in more detail. 1In a heteronuclear
system, by using a pulsed field which acts as an identity rotation for
one spin species, it is possible to effectlvely rotate that part of the
total density matrix corresponding to only one and not the other
species, An ldentity rotation is that which leaves the state of the
system unchanged after the pulse. By observing the signal as a function
of pulse angle (Section III.1), it i3 evident that this is corresponds

to a nx2r pulse for all crystallite orientations.

Neglecting the heteronuclear dipolar coupling between a system of
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protons and deuterons15, the density operator for a system demagnetized

from high to zero fleld can be written in the molecular frame as

p(0) = Py * pg (I11.23a)

where

[p(0) , Hyl =0 (III.23b)

and Hyzp is the pure dipolar Hamiltonian for protons (I) and the
quadrrupolar Hamiltonian for deuterons (S) in zero field. It will be
necessary to evaluate the effect of applied dec pulses in the laboratory

frame where the density operator p becomes
p(0) = R(aBY) " p(OIR(aBY) (III.24)

where R(aBY) is the rotation operator relating the lab to the molecular
axes in terms of the Euler angles a, B and Y, (Note that this is just
the reverse of warking in the zero field frame. Expressing operators in
the laboratory frame is chosen here for convenience in calculating the
effects of the pulses.) A similar expression transforms the zero field

Hamiltonian into the laboratory frame:

1

HY = R(agY)~

ZF HZFR(uBY) (III.25)

Note that, from expanding the exponential, one finds that R'1exp(th)R =
exp(iR"HRt). Computationally, the matrix representation of the
exponentiated operator is simpler if H or R™'HR is diagonal, thus
calculation of the left or right hand side 1s chosen accordingly. At
time t=0, a dc pulsed magnetic field ls applied for a time t. The

density operator DL(T) is written
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DL(T) = exp(-inct)pL(O)exp(inct) (111.26)

where Hy, = -[Y;I, + YgS,]1B; and describes the de pulsed field.
Choosing the laboratory z axis parallel to the pulsed de field, and
using the equality, exp(A+B)=exp(A)exp(B; if [A,B]=0, to calculate the
effects of the pulse separately on the I and S components of p, Equation
(III.26) becomes

pL(T) = exp(iYIIzBir)pILexp(-iYIIzBi1)

(111.27)
+ exp(iYsSzBit)pSLexp(-leSzBit)

and pulse angles of GI-YIBiT and eS’YSBiT may be defined.

Since the effective pulse angle depends on the gyromagnetic
ratios, and 1s therefore different for the protons and deuterons, it
allows a selective means for their manipulation., Thus in a system of
deuterors and protons one should be able to selectively excite and
induce evolution of only the deuterons. 1In general, the effect of a
pulse depends on the relative orientation of the spin system and field;
however, for any particular species a 27 pulse given by 9=Y311 leaves
the density operator unchanged for all orientations and makes selective

pulses possible.

2. Experimental Results
By combining the principles of level crossings and the field cycle
to zero field with pulsed dc magnetic fields, a selective indirect
detection experiment 1s possible, Using dc pulses that are multiples of
2m for the crotons in the field cycle of Figure II.4% (i.e., 8g=YgByoT

or es-(YS/YI)eI for the deuterons), the zero fileld spectrum of 60-70%



ring deuterated 1,4-dimethoxybenzene~d, (CH3006DMOCH3) shown in Figure
III.17c was ottained. No signal is observed due to the protons, only
the characteristic v,, v_ and Vo lines due to the two crystallograph-
ically inequivalent aromatic deuterons. The experimental results for
the dimethoxybenzene samples shown in Figure III.17 allow for comparison
. of the signal-to-noise obtained in each of the different versions of the
experiment., The length of each FID is roughly equal and the dwell time
is equal for these three experiments. The pulsed direct 2H detection
(Figure III.17b) and the sudden (Figure III.17a) versions used 4 and 3
times as many signal averages, respectively, as the indirect detection
version (Figure III.17c). Thus the aromatic signal-to-noise obtained
via the indirect detection method is at least twice as good as in the
others. Studies of partially deuterated diethylterephthalate and its
perdeuterated analog provide further agreement with this result.
Arbitrary pulse lengths produce proton signal in heteronuclear
systems which can obscure low frequency (<50 kHz) 2H lines. Figure
III.19 demonstrates this point in a series of indirectly detected zero
field NQR spectra of diethylterephthalate—du (CH3CD200206HHCOZCD2CH3)
obtained by the method outlined above. Proton signal is clearly visible
in those spectra where the nx2n condition is not met for the protons,
but is eliminated with two nx2w dc pulses. Diethylterephthalate
contains two crystallographically inequivalent methylene deuterons since
the methyl-methylene bond is tilted out of the plane of the -C0206H4C02-
moiety30 thus producing the six line spectra for two uncoupled
quadrupolar nuclei with nonzero n. The magnitude of the observed sigral
depends upon the demagnetization and upon the pulse lengths used,

therefore the relative peak intensities are scaled differently in the
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Figure III.19: Indirect detection zero field NQR spectra of diethyl-
terephthalate-d, (CH3CD,CO,CgHyCO,CD,CH3) (23% dy). a). DC pulses used
which do not satisfy the nx2w criterion for the protons, thus signal due
to both proton and deuteron evolution is observed. The proton signal
appears as a broad hump below 50 %Hz. b). Same as (a) except that dc
pulses now used cause the proton signal to appear inverted relative to
the deuteron signal. c¢). DC pulses equal to nx2w allow for selective
detection of only the deuterium NQR spectrum. Low frequency lines can
be clearly resolved with no interfering signal from proton evolution or
absorption. Three lines may be assigned to each of two crystallo-
graphically inequivalent methylene deuterons. Calculated values of
(equ)/h and n from the observed frequencies are: A: (equ)/h=153.1 kHz,
n=0.051 B:(e?qQ)/h=149.8 kHz, n=0.039.
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spectra of Figure III.19. A further advantage of the 1lnitial selective
21 pulse on the protons is that the density operator o1 undergoes no t1
dependent evolution; therefore, the dynamics of the level crossing
should be sensitive only to deuterium evolution.

Although the use of selective pulses and indirect detection has
been presented as a method of obtalning deuterium NQR spectra, the
principles are entirely general and can be applied to any system in
which there is sufficlent contact between the observed and detected
nuclel. As an example, the 1uN zero field NQR spectrum obtained from a
sample of polycrystalline ammonium suifate is shown in Figure III.Z20,
obtained by the sequence in Figure II.4b with indirect detection by the
protons. All six lines are resolved for the v, , v_ and Vo transitions
of the two inequivalent 1ul\l sites and yield values of (eZqQ)/h and n in
agreement with single crystal r'esults31 and other field cycling experi-
ments In which the Vo lines do not appear‘.32 Under other conditions the
proton signal would obscure the low frequency lines but here thz use of
the selective 2m pulses for the protons greatly reduces their contri-
bution to the signal. Compensation for pulse imperfections of the dc
pulsed fields should provide increased discrimination against the proton
signal.

A few comments on the differences between selective excitation and
decoupling should be made for clarification. 1In the previously
described experiments, only the quadrupolar nuclei are excited and
caused to evolve as nx2m pulses are used for the protons. The initial
state of the proton system in zero field 1s assumed to be unchanged from
its equilibrium state and therefore no evolution under the homonuclear

dipolar Hamiltonian occurs. The quadrupolar nuclei meanwhile evolve
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Figure III.20: Indirectly detected pulsed zero field 1"N NQR spectrum
of (NHu)Zsou with selective 27 pulses for the protons. Peaks
corresponding to two inequivalent sites are labelled A and B. Residual
proton signal appears below 40 kHz but has been reduced enough to allow
for resolution of the 1”N NQR lines. From the frequencies observed at
room temperature, (e2qQ)/h and n can be calculated. Site A:
(e2qQ)/h=154.5 KkHz, n=0.688, Site B: (e2qQ)/h=115.9 kHz, n=0.747. (At
296.1 K, Batchelder and Ragle give values of I: (eZqQ)/h-15u.53 kHz,
n=0.688, II: (e%qQ)/h=115.71 kHz, n=0.749.)
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under the guadrupolar Hamiltonian. Thus there are two separate and
distinct systems which are excited independently and evolve indepen-
dently in zero field. Only because the dipeclar coupling between S=1 and
I=1/2 spins is already quenched in zero field, does no evolution under
the heteronuclear dipolar Hamiltonian occwr. This is fortuitous since
the NQR spectrum would be complicated by the added couplings and the
proton system would be altered by contact with the deuterons.

The selectivity in the zero field experiment is an important
feature in field cycling experiments. Unlike double resonance NQR
experiments, the spectrum of a quadrupolar spin system can be obtained
without the interference of low frequency proton signal. The time
domain version of the field cycle offers the same sensitivity advantage
obtainable by indirect detection without the loss of information due to
proton background. Quadrupolar nuclei with small quadrupolar coupling
constants are readily observed and resolution of Vo lines for spin S=1
systems permits spectral interpretation without resorting to double
transition f‘r‘equencies33 or double irradiation3n techniques. 1In
addition, the indirect detection experiment depends more on the
relaxation times of the protons than those of the deuterons. This can
be of utility when the deuteron T, is inconveniently long, or when T1Q
is inconveniently short. As long as the 2H T1Q is on the same order as
the zero field time period, one can conceivably obtain the deuterium
spectrum via the protons. Many double resonance NQR experiments are
conducted at very low temperatures to provide the long relaxation times
required for the irradiatlon period in zero !‘ield.29 Irradiation in
zero field can cause power broadening of the resonance lines29 which is

not a concern in the time domain experiment.
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3. Isotope Selectivity with Composite Pulses

Selectivity between isotoplc species in NMR is generally based on
differences in Larmor frequency, wo=YBO, or by rf amplitude w1=YB
selective pulses.12 Variations in rf amplitude can be used to
selectively invert or irradiate gpecific nuclear species. In NMR
imaging experiments, it is often desirable to spatially select a region
based on the inhomogeneities of the Bo or 31 field. For example, for a
given nucleus and Y, the nuclear spins in a particular volume may be
selectively inverted by using a field strength which varies with
distance such that YByt=w for only that volume. Similarly, by applying
2 static field gradient, a region may be selected by the distribution of
resconance frequencies. For best isolation of the spins of interest, the
excitation should occur over a narrow range and many composite pulses
which are narrowband in m1-YB1 are being developed.12 These spatially
selective composite pulgses can be directly adapted for spin isotope
selectivity in zero field experiments.

Any pulse which is designed to be narrowband in YBi, acts as an
isotope selective pulse in zero field on the basis of the magnetogyric
ratio for a constant fleld. The analcgy between spatially selective and
isotopically selective pulses is easily seen and is {llustrated in
Figure III.21. Previously, the selectivity by zero field pulses was
based on the particular rotation angle used for a given spin species.
Both species were always irradiated and the resulting pulse angle on the
second spin is determined by the ratio of magnetogyric constants. This
of course does not aliow a choice of the pulse angle which initiates

zero field evolution and may not provide optimal excitation. Nor does
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Flgure IIX.21: Nuclear spin excitation in high field and zero fleld.

In high field NMR experiments, spin speclies may be selectively
irradiated on the basis of Larmor frequency w,=YB,, or as shown at top,
by irradiation which is narrowband in m1-YB1 (L{.e. over a range of By
fields). 1In zero field, the differences in magnetogyric ratio provide a
handle for selective irradiation throvgh the relatlionship, mi-YBi.
Excitation of a single spin type by narrowband irradiation in zero fleld
provides for manipulation of initial states and thelr subsequent

evolution in zero field.
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it allow much flexibility in the excitation scheme. 1In selective
excitation experiments with de fields, when both spin species are
pulsed, the desired result for one of the spins is that it is
unaffected. By using a composite pulse which is narrowband in YBi, this
result can be obtained by actually doing nothing to one isotope, that
13, not irradiating the second species at all.

Before discussing experimental examples, a brief review of the
features of 1H-13C spin pairs, originally presented in Chapter II.C, is
covered. The appearance of the zero field spectrum for such an I-S
dipolar coupled pair of spins depends upon the initial polarizations.
For equilibrium polarizations of ~NIZ+SZ, the spectrum consists of seven
lines. By altering the relative polarizations with rf pulses in high
field before demagnetization, it has been demonstrated that lines
corresponding to only certain transitions in the I-S manifold are
obser'ved.36 Examples of these results are shown for a sample of 13CHCl3
in a smectic liquid c¢rystal phase, described in Chapter IV, in Figure
III.22a-c.

Selective d¢ pulses can be used to alter the initial condition of
a heteronuclear spin system in 2ero field prior to evolution and thereby
discriminate against specific spectral frequencies. Exanples of zero
field selective pulses are show in Figure III1.22d-f acting on an initial
condition, I,+S;, prepared in high field by an rf pulse. Since this
state 1s proportional to longitudinal magnetization (populations) it
survives the field cycle unchanged. The resulting zero field spectrum
for thig initial condition is that of Figure II1.22c. By applying an
isotope selective pulse of 180° to either the I or S spins, transitions

corresponding to an initial zero field state of 1(—Iz+sz) are produced,
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Figure III.22: Spectra of '3CHCL; (I='H, S=3C) in an unaligned smectic
B liquid crystalline phase with different zero fileld initial conditions
produced 1n high field and zero field. 1In (a) the characteristic gseven
line spectrum results with the initial condition equal to the
equilibrium populations, uzz+sz. A change in initial condition to I,+S,
can be produced by applying a 75° pulse to the I spins in high field as
shown in (b). Similarly the populations of one spin species can be
inverted relative to the other (-I,+S,) by applying a 105° pulse to the
I spins in high field before demagnetization. Zero field analogs using
composite de pulses can also be used to selectively invert one spin
species. The initial condition for (d~-f) produced in high field before
demagnetization is Iz+Sz. In zero field only one spin is inverted
vefore zero field evolution with (d) a 180° 13¢ pulse (720° Ty pulse
which leaves the protons unchanged), {e) a narrowband 180° composite
pulse (180x180i1802) applied to the protons, and (f) a narrowband
composite pulse (180x180?180i) applied to the carbons. The resulting
gpectra all show the spectral frequencies indicative of an initial state

proportional to #(~I,+S,).
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respectively. Because the carbon and proton magnetogyvric ratios
conveniently differ by a factor of ~U, the simplest selective pulse is a
720° 'H pulse which is approximately a 180° '3¢ pulse. The spectrum for
—(IZ—SZ) is shown in Flgure III.22d. As mentioned before, not all
combinations of YI and YS produce pulse angles which are useful or
integer multiples. 1In this first example, both species are irradiated
when it is advantageous to irradiate only a single spin species. Since
the pulses are not without their imperfections, the desired behavior may
not be obtained in a longer pulse sequence. For example, narrowband
selective pulses would be ideal for saturating the I spins to determine
T1Q of the S spins,

. Experimental results using the zero field dc analog of Shaka and
37

Freeman's 180x180y180§ spatially (YB,) selective inversion pulse are

presented in Figure III.22e-f. The pulses can be applied to either the
carbon or proton nuclei and are seen to be more efficient at exciting
only the desired transitions than the single 720° 'H pulse.
Urifortunately, n~t all useful pulse angles for zero field excitation are
available in narrowband composite sequences, but the design of such
pulse sequences 1is growing. Similar composite pulses are available to

14b

produce 90° narrowband behavior and might also be useful. The

simplest composite pulszes to implement are those of easily determined

pulse angles such as 90°, 180°, 270° and 360°, with 90° relative phase
shifta (i.e. pulse directions) in zero field.

E. Two Dimensional Zero Field Experiments

Two dimensional NMR methods involve recording the NMR signal as a



function of two time variables with subsequent transformation to produce
a spectrum described by two frequency var‘iables.38 Applications of
these experiments are generally to weakly coupled liquids, and the fre~
quenciles observed depend upon the specific excitation pulse sequence
used. Common examples are those which show correlations between chemi-

cal shifts and scalar couplings,38 between different chemical

shifts38'uo exchanging or cross relaxing dipolar coupled nuclei,u1 and

multiple quantum transitions.39b By measuring the connectivities
between spectral transitions, a determination of structure, conforma-
tion, dynamics or assignment of an otherwise intractable one dimensional
spectrum is possible.

In Zero Fleld NMR and NQR, well-resolved, sharp line spectra are
observed in polycrystalline solids. In zero field, quadrupolar fre-
quencles label specific chemical sites while dipolar couplings should
induce connectivities between zero field trénsitions of neighboring
spins. In this section, the principles of two-dimensional NMR are
applied to the detection of quadrupolar nuclei in zero applied magnetic
field. The two dimensional experiments are possible through the use of
pulsed field cycling methods. Through a combination of these
bechniqges. the connectivities in the NQR transitions of a spin I =1

nucleus are shown.

1. One Dimensional Zero Field NQR Spectra
The characteristics of a zero fleld NQR spectrum for a spin I=1
nucleus were described in Chapter II. Values of n and e2qQ/h, which are
descriptive of a quadrupolar system, may be calculated for a given

chemical site assuming that the pair of corresponding v_and v, lines is
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distinguishable, If there are two ocr more ilnequivalent sites, the NQR
spectrum will consist of a superposition of six or more lines.
Therefore, resolution of the difference frequency Vo lines at very low
frequencies is essentlal in assigning the one dimensional spectrum.

The one dimensional zero field NQR spectrum of the methylene group
of polycrystalline diethylterephthalate was shown in Figure III.19c.
The spectrum was obtained using the selective indirect detection method
which has been described previously. The low frequency lines arz re-
solved and allow for calculation of quadrupole coupling constants and
asymmetry parameters for the inequivalent sites as reported in Chapter
II.C.4. If more sites were present, it becomes evident that overlapping

lines would make assignment difficult.

2. Two Dimensional Zero Fleld Experiment

The correlations between the NQR frequencies can also be observed
by probing the connectivities in the spin I = 1 manifold through a two
dimensional version of the fleld cycle. The simplest form of the field
cycle, in which the zero field interval is divided in half, is shown in
Figure III.23. The sample is demagnetized to an intermediate field,
Bint» which is switched off suddenly to initiate evolution. The system
evolves under the quadrupolar Hamiltonian for the time tq. application
of a short dc pulsed fleld transfers coherence between the energy levels
of the spin 1 system. Evolution in zero field continues after the pulse
for a time, t2' Reapplication of the field and remagnetization provides
for sampling of the magnetization in high field. In success’ve field
cycles, the zero fleld periods are incremented independently to produce

a time domain signal as a function of t, and t, which when Fourier
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Figure III.23: Field cycles for two dimensional zero field experiments.
a). The sample is demagnetized to an intermediate field, Bing* which is
switched off suddenly to initiate evolution in zero field. The
evolution period is divided into two time periods, tq and ta, by
reapplication of the field. If the dc field is applied as a brief
pulse, 1t will act as a rotation on the spin system and mix coherences.
Evolution then continues for t, and is terminated with a sudden
reapplication of the intermediate field and remagnetization to high
field. The signal is sampled as a function of the independently
incremented time variables. If the applied field is longer in duration,
~0.5-1 msec correlations between dipolar coupled groups of spins should
develop. b). Using demagnetization to zero field, indirect detection of
the zero field NQR spectrum is possible. The short pulsed dc magnetic
fields are used to initiate zero field evolution for t;, to mix
coherences as in (a), and to terminate evolution after t,.
Remagnetization after the zero field period again provides for the 1H—EH
level crossings and the detection of the signal in high field. c¢). The
preparation of the spin system and ty evolution period are identical to
that shown in (a). Applying a brief dc pulsed field will effectively
store the magnetization, and prevent the decay of coherences under the
applied field. Cycling the field slowly to an intermediate level show
provide for cross relaxation between groups of spins. Evolution is
reinitiated for t2 by a second dc pulse then halted and detected in the

same manner as in (a) and (b).
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transformed prcduces the two dimensional zero field spectrum. An
approach to the formal analytical calculation of the signal is presented

elsewher'e18 by solving

1

exp(—LHZ t1)

—1 -
s{tq) = Tr{RIzR exp( 1HZFt2)Rexp(—ieIz)R F

-1 . . -1 .
RI,R exp(lHZFtT)Rexp(LGIz)R exp(LHZth) (III.28)

for the field cycle of Figure III.23a and where & is the mixing pulse.
The task of calculating the signal analytically is extremely time
consuming and might best be handled numerically for variable zero field
pulse angles and other initial conditions.

Other initial conditions are also possible in this experiment. 1In
actual practice, for the increase in sensitivity and potentially shorter
1H Ty relaxation times, the signal can be detected indirectly via the
protons as described previously. The field cycle of Figure III.23b uses
demagnetization to zero field followed by pulsed dc magnetic fields to
initiate and terminate zero field evolution. Of course, the behavior of
the spin system has the same dependence on the natural guadrupolar fre-
quencies, as in the version with sudden transitions in the intermediate
field, although now the intensities of the spectrum will also be a func-
tion of the initial and final dec pulse angles and the dynamics of the
level crossings. A short dc pulsed field can be applied to mix
coherencea in the same manner as in Figure III.23a.

In addition to observing quadrupolar freguencies, connectivities
between dipolar coupled groups of spins might be established by altering
the mixing period of the experimental field cycle. Assuming a deuteron-

deuteron dipolar coupling of vD-T kHz, application of an intermediate



field, as in Figure III.23c, for ~1 msec (-1/vD) or longer should allow
a coherence transfer between dipolar coupled spins. Thus correlations
based on spatial proximity can also be developed. 1In cases where the
coherences do not persist for longer than a few milliseconds, signal
might be conserved if the evolving magnetization is stored as popula-
tions by application of a dc pulse as shown in Figure III.23c. The
decay is now described by a time constant related to T1z which is ex-
pected to be longer than the decay of the coherences in solids. By
slowly cycling the field to an intermediate value, the energy levels of
inequivalent deuterons may be brought into contact. This is similar to
the signal enhancement approach via repeated level crossings used in

frequency domain double resonance NQR exper‘iments.29

3. Experimental Results

As an experimental verification of the applicabllity of these
field cycles, the two~dimensional zero fleld spectrum of the high fre-
quency v_ and v, lines of the same methylene sites in polycrystalline
diethylterephthalate-du is shown in Figure III.24. The field cycle of
Figure III.23b was employed to indirectly and selectively detect only
the deuterium NQR signal with all dc pulse angles equal to multiples of
2n for the protons. A mixing pulse of 3x2rm radians in the laboratory z
direction for the protons is approximately a 165° deuteron pulse which
is close to the 180° pulse predicted from Equation (III.28) to give
maximum Intensity in the cr‘osspeaks.18 The diagonal peaks fall along
the Vi=vs line and reproduce the one dimensional spectrum. Off-diagonal
peaks correspond to the v_/v, connectivities in the spin I = 1 manifold

and are illustrated by the connecting lines. One connected pair of
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Figure 1II.243: Two dimensional zero field NQR spectrum of the high fr-
quency v_/v, transitions of polycrystalline diethylterephthalate—dy.
The spectrum was obtained through the field cyele described in Figure
III.23b. By using pulses which were multiples of 2 for the protons,
selective excitation of only the quadrupolar transitions {3 possible.
The transfer of coherence between states in the spin I = 1 manifold was
produced with a short dc pulsed field. Diagonal peaks along the vy = v,
line correspond to the one dimensional spectra as shown in the
projections. The peak positions of the one dimensional spectrum are
indicated by the stick spectra. Cross peaks indicate correlations
between the v, and v_ transition of an individual deuteron site. The
connectivities are 1llustrated by the connecting lines.
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lines belongs to one deuteron of the CD2 group and the second pair
belongs to the other inequivalent deuteron.

NQR transitions in frequency domain evperiments are often assigned
on the basis of weakly allowed double transition peaks.,33 double
irradiation of two NQR 11ne529, or by the shift in frequeqcies due to
application of a low fie1d3u since the low frequency lines are often
obscured or unobser‘ved.29 Time domain techniques have the low frequency
detection capablilities, resolution and selectivity to assign transitions
on the basis of Vo lines. All of these appr.aches are plagued by _..e
problem of increased complexity of the spectrum with increasing numbers
of quadrupolar sites. Two dimensional zero field NMR experiments can
address many of these problems by utilizing the cross-peak correlations
to determine connectivities. A large variety of experimental
conditions, produced with different field cycles, can be envisioned with
the use of pulsed magnetic fields to maﬁipulate the spins in zero field.
The greatest increase in sensitivity and experimental expediency would
result by directly detecting the zero field oscillations via an
extremely sensitive detection apparatus such as a SQUID. Thus, the
experiment presented here would no ionger have the third time period of
nigh field detection and as such would be two-dimensional in the truest

sense.
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IV. ZERO FIELD NMR OF LIQUID CRYSTALS

A. Introduction

1. Liquid Crystalline Phases

Many pure organié substances exlist in phases, or rather
"mesophases", intermediate between the solid and liquid states. Whereas
a crystal has a regular packing in a three dimensional lattice and a
liquid shows no correlation between the centers of gravity of the
molecules, a liquid crystalline system displays some orientational (and
possibly some low dimensional positional) ordering of the elongated
molecules. Local ordering is generally brought on by collzctive
interactions between the molecules, and uniform aligument of the sample
may be induced by the application of a magnetic or electric field.
There are two bavic categories of liquid crystals: thermotropie, in
which the mesophase formation and behavior are temperature dependent,
and lyotropic, in which the resulting phases are dependent on
concentration. The former class of compounds 1s explored in the
following experiments.

The study of the liquid crystalline phases, their characteristics
and behavior, is an extremely extensive area of research involving many
diseiplines and approaches. It is inconceivable that one chapter could
accomplish a complete introduction to the amount of information
available. Thus several relevant texts should be mentioned which
introduce the physics of liquid crystals and their study by NMR. Among

1 2 4

these are books by de Gennes', Emsley and Lindon<, Emsley3, Gray ,



Chandrasekhar5, Luckhurst and Gr‘ay6 and review articles by Diehl and
Khetrapal7. Khetrapal and Kunwars, and Doaneg. An exhaustive review of
many areas of liquid crystal research with extensive lists of references
can be found in the Handbook by Kelker and Hatz.m These are only a few
among many references,.which can be consulted for more detailed
information on the areas briefly described in the following sections, in
addition to the wealth of published scientific articles.

A particular liquid erystal may display one or many phases with
variations in temperature. The major classes of thermotropic liquid
crystals are nematic, cholesteric and smectic each of which, especially
the smectics, can have many subclasses. Each subclass is distinguished
by ~he degree and type of order present. In describing the liquid
crystalline phase, discussions will focus on a local domain of the
sample, A domain is considered a region of the liquid crystal sample in
which there is some short-lived cocherence in the alignment of the
molecules. These domains may or may not align uniformly over the entire
sample in the presence of a field. This field dependent behavior is
covered in Section 2, while a discussion of the phases of interest
follows.

a., Nematic. These are the lowa2st ordering phases and always occur
before the isotropic phase. Nematic phases are the most liquid-like as
there is no positicnal order of the centers of mass of the molecules,
but rather a preferred par.llel alignment of the long molecular axes as
shown in Figure IV.1. The average alignment can be described by an
axis, n, called the director. There is rapid, random diffusion (-I()_6

em? 871) of the molecules, rapid fluctuation (1()'8-10'9 s) about the
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Nematic Phase

XBL 8611-9257

Figure IV.1: Nematic liquid crystalline phase. The elongated molecules

are aligned on average with respect to the director as indicated by the

arrow. There is no positional order on a local secale, only a preferred

orlentational order,



director, and rotation (10"19-10712 g) about the long molecular axes.

This leads to a cylindrical symmetry about n, where n and -n are
equivalent. In most common nematics, the uniformly aligned phase is
uniaxial and can be described as a monodomain with a single director
axis.

b. Cholesteric. Cholesterics are potentially interesting for
study by zero field NMR and are only briefly described. Cholesterics
are a chiral form of the nem2tic phase. A cholesteric phase has a
helical distortion which consists of the director axes of regions of the
sample changing orientation with distance about a given axis. This
changing orientation of the directors occurs regularly and continously

2 The

about this axis such that a helix is swept out by the directors.1'
pitch of the helix is generally many times greater (~few 1000 AR) than
the molecular dimensions. Within the planes still described by the
local diréctors, the phase has nematic properties. Such phases can be
produced from either a pure optically active material, or by the
addition of this material as an impurity to a non-optically active
nematic phase; the helical pitch i{s a rfunction of either the molecular
structure of the pure compound or the relative concentrations of a
mixture., In the presence of a magnetic field, cholesteric phases may
have their tuist axes either perpendicular (negative cholesteric) or
parallel (positive cholesteric) to the field direction.

c. Smectic. These phases generally occur in a lower temperature
range than the nematic. Smectic phases are the most ordered but, even
among the different smectics, the type of ordering changes

substantlaily. A feature common to all smectics, as shown in Figure
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IV.2, 1s that the molecules form layers which are generally not
positionally correlated. The layers are ~20-30 8 in thickness with a
well-defined interlayer spacing and the molecules diffuse more freely
within, than between, layers. The molecules within the layers may or
may be translationally ordered which distinguishes some of the more
common smectic phases. These are:

Smectic A: Inside the layers there is no long range order of the
molecules, which orient perpendicular to the layer plane, as shown in
Figure IV.3. Thus this phase is like a two dimensional liquid. The
phase i3 uniaxial as the molecules are free to rotate about their long
axes, the director axes and layer normal are nearly parallel and, n and
-n are equivalent. Except for the layer structure, smectic A phases and
nematic phases are nearly identical. Often smectic A samples align in
an applied magnetic field.

Smectic C: Here the molecular axes are tilted with respect to the
layer normal. In the presence of a field upon cooling from the nematic
or smectic A phases, the molecules align with the field and the layer
planes will be tilted. A random distribution of the planes in the
azimuthal angle about the fileld direction forms a cone shaped domain.
The tilt angle, §, is characteristic of a particular sample and is
constant for a given temperature. The tilt can be attributed to the
fact that the layer spacing (d=lcosf) is less than the molecular length
(1) and the molecules must therefore tip to fit within the 1ayer's.1
Rotation about the long molecular axes might be expected to be hindered.
The phase is considered biaxial in that the molecular Srientation can

not be described by a single uniaxial director‘.g A director axis which
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Figure IV.2: Smectic phases are characterized by the arrangement of the
liquid crystal molecules in layers which are generally not positionally
correlated. The preferred direction of the molecular long axes can be
eithier parallel or tilted with respect Lo the layer normal. Trans-
lational diffusion occurs freely within the layers and to a lesser
extent between them. As shown here for a smectic A type phase, the
molecules are randomly ordered within the layer and align perpendicular

to the layer plane thus the director and layer normal are colinear.
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Figure IV.3: Schematic drawing of the molecular ordering within the
layer for three different smectic liquid crystalline phases in which the
molecules all align perpendicular to the layer plane. The smectic A
phase at left shows no positional ordering of the molecules. The
molecules are free to rotate about their long axes; the area swept out
by this rotation is shown by the circles. - In the smectic B phase, at
center, the molecules are also free to rotate about their long molecular
axes although there is a hexagonal positional order within the plane.
The smectic A and B phases are both uniaxial. The simectic E phase shows
a molecular packing in which the molecules osclllate between one of two
positions (represented by the ellipses) within the layers. There no
longer is the freedom of rotatfon about the long molecular axes which
leads to a biaxiality of the phase. The CH2012 probe molecules are
expected to reside between the liquid cryatal molecules and exhibit the

local symmetry.
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describes the direction of the tilt is generally uniform except in
certain smectic C* phases. In the smectic C*, formed from a mixture
with a chiral component, the tilt directors follow a helical
distortion.'

Smectic B: This is one of the smectic phases with a greater
degree of order within the layers. The ordering within the layers is
often considered more "solid-like" as there is a rigid periodicity in
two dimensions as shown in Figure IV.3. 1In the smectic B phase studied,
the molecules pack parallel to the layer normal in a hexagonal lattice.
The molecules are free to rotate about their long axes so, in spite of
the increased order, the phase is still uniaxial.

Smectic E: The smectic E phase is very similar to the B phase
except that the molecules pack in an orthorhombic arrangement in the
layers as shown in Figure IV.3. The molecules are also aligned parallel
to the layer normal. One major difference between B and E phases is,
that in the latter, the molecules can no longer freely rotate about
their long axes hut instead oscillate about thelr long axes by angles
less than 180°. This produces a herringbone-like pattern in the packing
and is expected to produce a biaxiality of the phase.

All of the above mentioned phases can consist of a single pure
compound or a mixture of two or more components. Mixtures can be formed
only when the components are misicible which generally is dependent on
the similarities in chemical composition and molecular symmetry. Other
small organic molecules also dissolve quite readily in the liquid
crystalline system which acts as an orienting solvent. When mixed with

another liquid crystal or solute, the melting point and temperatures of
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the phase transitions are usually depressed and not necessarily by a
constant amount. Often by mixing components, one can produce a specific

phase which exists over a desired temperature range (see Appendix).

2. Magnetic Field Dependent Behavior

Measurements cf molecular ordering in liquid crystalline systems
are often conducted in large applied magnetic or electric fields. The
mode of alignment depends upon many features such as: the strength,
direction and duration of the applied field, the magnetic
susceptibility, concentration, dimensions and temperature of the
sample.10 Large dc fields cause the liquid crystal mclecules to orient,
on average, at a fixed angle with respect to the field direction. 1In
the presence of a magnetic field, the individual molecules feel a torque
and attempt to align to minimize the free energy. This is due to the
anisotropic magnetic susceptibility of the molecules which determines
the direction and degrer of alignment in a magnetic field. The magnetic
susceptibility, x, relates the molecular diamagnetic moment, M, to the

applied field B by

M (Iv.1)

1T %50
where i,j=x,y,z. Foir uniaxial nematics, the magnetic susceptibility ecan
be represented by a symmetric tensor with elements equal to x“ and {L
relative to the long axis of the molecule. An anisotropy of the
magnetic susceptibility, Ay = x" - %L results when these two components
(which are usually negative) are unequal, and its sign is determined by
their relative magnitudes. For liquid crystal systems in which there

are strong molecular correlations and cooperative effects, the
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contribution to the free energy of many molecules overrides thermal
energies (which is not the case in a liquid) and they align. The long

range order leads to a reduction in the free energy given by2

G = —AXBZ(3COSZB-1)/6 (Iv.2)

where B is the angle between the director and the field.

Examples of the alignment in the nematic phase for the two
possibilities of Ax>0 and Ay<0 are shown in Figure IV.4. For molecules
with a positive value of Ay, the domain directors align with the
magnetic field (8=0 to minimize G in Equation (IV.2)) as shown in Figure
IV.4%a. 1In contrast, the molecules with a negative value of Ay align on
average perpendicular (8=90°) to the field direction, as illustrated for
a single domain in Figure IV.4b. The molecules have the same rotational
and translational freedom in both cases although in the latter the
domain director axis can have any direction in the plane perpendicular
to the external field. Other phases such as smectics behave differently
in the presence of a field. Whereas nematics readily align, an aligned
smectic phase is often only produced if the temperature is reduced from
an isotropic or nematic phase in the presence of the f‘ield.3 Uniform
alignment is not always obtainable as there is a dependence on factors
such as the preparation and the rate of cooling of the sample. Easily
aligned samples, such as nematics, are frequently used as NMR solvents,
and aligned smectic phases are frequently studied by NMR analogously to
single crystals as they will not reorient with rotation. Some smectics,
such as A and C, may align in a magnetic field thereby leaving the
experimentalist with no option of an orientation dependent study for

these phases. Similarly, large enough fields have also been found to
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Figure IV.4: Alignment of nematic liquid crystal molecules with
positive and negative magnetic susceptibllity anisotropies in high and
zero flelds. The molecules align on average in a single direction
described by a director axis. The molecules fluctuate rapidly about the
director axis and rotate about their long axes. 1In the presence of a
large field, the director axis of a domain of the system with Ax>0 is
aligned with the field as in (a) while it is perpendicular for a system
with Ax<0 as shown in (b). The arrows indicate the quantiz.ilon axes of
the spin interacticons in high field. In the absence of a magnetic
field, the director axes of a domain determine the quantization axes (as
shown by the arrows in (c) and (d)) of the spin interactions in zero
fleld. Note that while the molecules remain aligned in both cases, the
direction of the quantizatieon axis does not change between high and zero

field in the Ax>0 case, while for Ax<0 it does.



"untwist™ a cholesteric phase.z’11

In the absence of a magnetic field, the average orientation of the
director is determined by convection and interactions with walls and
surfaces of the container of the sample.'I The degree of order, in or
out of the field, is also concentration and temperature dependent. In a
macroscopic sample, n is a function of position throughout the sample
owing to these effects. In the bulk sample, order on a local scale
persists over some distance known as the coherence length. This
distance is generally a few microns, and in the presence of a field can
be used to describe the length of the transition region between
competing anchoring effects and orientation by the f‘ield.1 The magnetic
field strength dependence of the alignment on a macroscopic scale is
studied by light scattering13, optical“‘l and magnetic15 birefringence

16 measurements. On a molecular scale, NMR

2,3,7

and magnetic susceptibility
can be used to measure the ordering.
In a strong enough applied field, regardless of the ordering of
the liquid crystal molecules, the field direction determines the
relevant NMR spin interaction frame as illustrated by the axes in Figure
IV.4a and 4b. After the removal of the field, the relevant axis system
is determined by the motional and symmetry properties of the liquid
crystal molecules. This is illustrated for single sample domains in
Figure IV.Y4¢ and ud, and would describe the entire system as a
monodomain in the former if it had been aligned in a magnetic field. 1In
contrast, although the director axes in Figure IV.4d are all
perpendicular to the original field direction (2), they are randomly

distributed in the xy plane as shown in Figure IV.5 and therefore, a
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Figure IV.5: Cross section perpendicular to the field direction for a
liquid crystal sample Wwith Ax<0. The separate domains are characterized
by director axes, all perpendicular to the field direction, with a

random distribution of director orientations in the xy plane.
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single director axis does not describe the entire system. Thus between
high field and zero field, or Ax>0 and Ax<0, the interaction frames
which aptly describe the spin systems may differ. 1In the absence of a
field, the orientational, motional and symmetry characteristics of the
thermotropic liquid crystalline phase determine the magnitude and form
of the zero field NMR Hamiltonian. Thus through the observed spin

interactions in the NMR experiment, one can gain an understanding of the

molecular ordering.

3. NMR of Liquid Crystals

a. Order Parameters. The next obvious question is: How does one
describe the ordering of the liquid crystal molecules? The molecules
are fluctuating rapidly and randomly in position and orientation yet on
average are aligned in a given direction. If the molecular system can
be related to the director axes, which may or may not be aligned with
the laboratory/field frame, then the angular terms which relate these
frames will be descriptive of the ordering of the system. In all cases
that follow, the molecules are assumed to be rigid and therefore the
ordering can be described by a probability function, P(a,B), of the
director axis having some average orientation, given by the polar angles
a and B, in the molecular frame.2 The parameters describing the order
must reflect the physical realities of the situation, to begin with they
must be continuous functions of the angles and vanish in isotropic
phases.

Since the interactions to be studied are generally second rank

tensor interactions, an order matrix or tensor can be used to express
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the director frame quantities in terms of the molecular fixed axis
system.1'2 For a nematic phase with a uniaxial director frame, this is

expressed as

XY 2

=¥
Tii 2 SijTij (1v.3)
i,J

and the elements of S are given by

1
sij =3 <3coseicosej sij> (Iv.4)

where 6 is the angle between the uniaxial director frame z axis and the
molecular axes i and j. In this case, the S matrix is a 3x3 cartesian
matrix which is symmetric, such that sij' 512 and traceless, 1.e.
IS;1=0. Thus there are a maximum of five independent elements. The
elements of this matrix are generally called the Saupe order
par‘ameter‘s17 and can be related to motional constants or averages of the
Wigner rotation matrix eleruents7'8 (see Chapter I), The latter will

become most useful in the calculations to follow and the relationships

between the five S and the Wigner Dm,m' elements are given below.6
Szz = <Dgo> = %(300528.- 1>
Sex” Syy = Jg (<D§2> + <D§_2>) = %<sin28c052a>
sxy - ﬁ ((Dg_2> - <D§2>) = %(sinzssianD (1v.5)
S % (<Dg_1> - <D§1>) = %(sinecosﬂcosu>
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sinBcosfsina>

N J\w

- 12 «0? 2 -
syz = J;(<D01>+<D0_1>)

where B and a are the angles relating the uniaxial director to the
molecular frame. The'order parameters range in value from 1 to -1/2.
The symmetry of both the }nolecular system and the phase determines the
number of order parameters necessary to describe the situation. Some
examples of the effect of molecular symmetry operations are given

below.7

Table IV.1: Molecular Symmetry and Required Order Parameters

Symmetry No. of Independent S Elements S Elements
3 fold or 1 s
greater axis 2z
2 perpendicular 2 S _,8. .-8
planes - zZ XX Yy
1 plane 3 Sxx’ Syy’ Sxy
none S sxx’ Syy' Sxy
S._, S
xz' “yz

b. Nuclear Spin Interactions in Liquid Crystals. As stated
previously, the crder parameters can be extracted from a measure of the
second rank tensor nuclear spin interactions such as dipolar and
quadrupclar couplings. Unlike isotropie liquids in which these
interactions are averaged to zero, the anisotropic liquid crystalline
envirorment ‘merely scales the interaction and, due to fast random

molecular motions, removes the intermolecular dipolar couplings thereby



producing narrow line spectra for small spin systems. The behavior of
the liquid crystal system in NMR experiments can be understood if one
considers the form of the Hamiltonian in an applied field which aligns
the sample. For example, the dipolar Hamiltonian in the average
director frame may be written in spherical tensor notation as

2

T M 2

Hy = 0 (=07 T, Ay <D, (8)> (Iv.6)
m

here T2 n and A, m represent director frame spin operators and
’ »

principal axis system (PAS) spatial variables18, regspectively, and the

D (2) (R=a,8,Y) term effects the transformation between the two

m',m
frames. For two dipolar coupled spins, the internuclear vector which is
the z axls of the PAS frame is taken to be coincident with the z axis of
the molecular frame. If the molecular frame 1s not chosen .3 coincident
with the PAS frame, for rigid molecules, there still is a fixed relat.ve
orientation of the PAS and molecular frames. Thus an additional angular
term relates the order parameter of the molecular frame to the PAS

frame. The brackets in Equation (IV.6) indicate a time average over the

D terms which accounts for fluctuations of the alignment of the

m',m
molecular frame with respect to the director frame. Assuming that the
field aligns the sample in the field direction (Ax>0), the director axis
will be coincident with the laboratory z axis. Truncation of the spin
part of the Hamiltonian by a large magnetic fileld leaves only the T20
term nonzero, Furthermore, only the m'=0 term of the traceless second

rank tensor Az,m. 1s nonzero since the dipolar interaction is axiaily

symmetric in the molecular/PAS f‘rame.18 Therefore, the effective high



field laboratory frame dipolar Hamiltonian for a proton pair is given by

) 2 -
Hy = ToghagPoo(®> = ToohaeSys (1v.7a)

12122 - 11'12) (IV.7b)

2
*’h s, (31

Uﬂ2r3 z

where the uniaxial order parameter S, is given by

2 2, _
Sup = Pgo(W> = 1/2¢3c0s8 - 1> (1v.8)

and B is the instantanecus angle between the director and the proton-
proton internuclear vector. Thus by measuring the dipolar coupling for
a rigid proton pair, the value of S,, can be determined. If the proton
pair is on the liquid crystal molecule, then the order parameter
corresponds to the ordering of the liquid crystal molecules.

hs has become obvious, relating many interaction frames is a

necessary part of the calculation. For example, descriptions of the

system can easily include a few, if not more, transformations from the
PAS frame + Molecular frame -+ Director frame -+ Lab Frame

depending on-the phase and the selection of frames. The number of
transformations is often simplified as in the case above in which the
first and second frames are chosen to be coincident as were the third
and fourth. Only those transformations which reflect rapid molecular
motions on the timescale of the experiment are expressed as an average.
In Chapter III, high field and zero field spin operators were

distinguished by subgcripts. Because of the uimber of reference frames
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required here, and their frequent coincidences, subscripts will not
always be used but the relevant frames should be clear based on context.
Apologies are made in advance for any confusion.

The spin system can consist of either the liquid crystal molecules
themselves or a probe molecule dissolved in the liquid crystal which is
constrained to the symmetry of the phase by dispersive and steric
forces.7'8'19 This aids one in studying the liquid erystalline phase
via simpler spin systems (without requiring selective isotopic
labelling) and greatly aids in spectral simplification and inter-
pr‘etation.7'8 For example, in Figure IV.6, the high field spectrum of a
fully protonated liquid crystal is shown. The broad featureless
lineshape provides little information. The ordering of a rigid solute
molecule (or part of the molecule) can be described by an order tensor,
S, which describes the average alignment of the solute spin system
molecular frame with respect to the director axis. The S parameters
corresponding to the solute differ from those of the solvent, yet
reflect the local symmetry and type of ordering in the phase.
Unfortunately, there is no simple relationship between the two S
matrices. The allowed motions of the solute reflect the anisotropic
rolecular tumbling in the liquid cgystal medlum by characteristically
averaging the dipolar interaction.i'2 Thé Hamiltonian of a two spin
solute molecule dissolved in an aligned nematic (Ayx>0) has the same form
as that in Equation (IV.7) and the spectrum consists of two lines due to
the scaled dipolar coupling. The order parameter of the solute, S, may

be calculated from the observed splitting 6 by Szz=un2r3/3Y2h6.
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Figure IV.6: High field NMR spectrum (180 MHz 1H) of a fully protonated
nematic liquid crystal sample. Due to the large number of dipolar
coupled spins, no structure is resolved in the spectrum and little
information on the molecular ordering is available.
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B. Nematie Phases in Zero Field Experiments

Until recently, the behavior of a liquid crystalline system in the
absence of an applied magnetic field could not be studied by NMR. Field
cycling time domain zero field NMR techniques now provide a means to
measure both the bulk ordering aqd molecular opder parameter without the
influence of an applied field. Descriptions of the zero field NMR field
cycling experiments were presented previously and require little change
when applied to liquid crystal samples. The field cyeling schemes used
in these experiments are presented with each case as ﬁhere are differing

requirements for the application of dc pulsed fields.

1. Observations of the Alignment in Zero Field

Several features of liquid crystalline systems make their study by
zero field NMR of interest. Because the molecules are aligned by a
magnetic fleld, one wonders what will occur with the removal of the
< field. Does the hulk ordering of the sample change, as shown in Figure
IV.7, and does any change occur in the local molecular ordering as
characterized by the order parameter? It has been suggested that the
degrée of ordering may differ on a macroscopic and molecular level in
spite of the small energies of the order director flucr.uations.20 The
order parameter and fluctuations are important parameters in describing
relaxation measurement321, which give an indication of dynamics in
liquid erystal systems, and it is thus instructive to directly measure
the ordering in high and low fields.

The system chosen for study was composed of a CH,Cl, probe






Figure IV.7: Ordering in nematic liquid crystals. (a) In the presence
of a magnetic field, B, the average orientation of the director (shown
by the arrow) is aligned along the magnetic field direction and the
dipolar coupling corresponds to the truncated high field terms. (b)
Order in the nematic remaining immediately after removal of the field.
The sample maintains its uniform average alignment along the laboratory
Z axis. Due to the rotational moticna and symmetry of the liquid
crystals, the dipolar Hamiltonian is also truncated with respect to the
z axis in the absence of a magnetic field. (c) Disordered system where
the alignment of the directors is no longer in the laboratory z
directicn. The average orientation of the molecules on a local scale is
described by the local director, The dipolar Hamiltonian of a domain is

now truncated with respect to this director axis.
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molecule dissolved in p-pentyl phenyl 2-chloro-4-(p-pentylbenzoyloxy)-
benzoate (Eastman Kodak 11650, Ax>0). The high field NMR spectrum of

22 o

this nematic system was obtained using a 90x—1—180y-1 echo sequence
reduce the effects of high field inhomogeneities where the signal
intensity is measured as a function of 1. The minimum time for the
incremented variable t was selected, based on the T2 relaxation times of
the two components, to echo only the solute signal and not that of the
liquid crystal ltself. The resulting dipolar spectrum is shown in
Figure IV.8. The alignment of the proton-proton internuclear vector
with respect to the director, n, may be described by a single order
parameter SZZ=0.055 * 0,001 as calculated from the observed splitting in
accordance with Equation (IV.7) using a value of r=1.771 A for CH5Cl,.
Previous work (section II1.C.2) has shown that polycrystalline
samples of isolated proton pairs yield a three line frequency spectrum
when subjected to the sudden transition experimental sequence of Figure
IV.9. The three lines are of equal intensity and occur at zero
frequency and *vD=372h/8w2r3. If this sudden transition experiment is
applied to the CH2012/11650 system, using a high field echo as above to
detect only the solute signal, one obtains tpe one line spectrum shon
in Figure IV.10. This line at zero frequency corresponds to the central
line of the triplet found in the polycrystalline case and yields no
dipolar information on the solute. Contained in the seemingly
uninformative gpectrum is, however, a great deal of information on the
ordering of the nematic liquid crystal. This can be understood by
remembering that the spectrum reflects the Hamiltonian of the system in

zero fleld which is in turn determined by the liquid crvstalline
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Figure IV.8: High field 1H NMR spectrum of CH2C12 in

(Ay>0) taken as a funetion of t with the pulse sequence shown at upper

right. The molecular order parameter cof the solute Is calculated to be

22=0+055 * 0.001 from the observed splitting.
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Figure IV.9: Schematics of zero fileld experimental field cycles. (a)
This basic field cycle with 2 sudden transition in field has been
described previously in Chapter II. (b) Sudden z/pulsed y field ecycle.
This field cycle is identical to (a) except for the application of
pulsed dc magnetic fields (P and P') corresponding to rotation angles
given by e=YBdctp. For 90; pulses the density operator at the start of
the t, period {3 now proportional to I, in the lab frame. Detection of
this transverse component i3 completed by the final pulse and
application of a fleld in the z direction to preserve the magnetization

before remagnetlization to high field.
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Figure IV.10: Spectium of CHyCl, in Eastman 11650 (Ax>0) using the
field cycle of Figure IV.9a. The single line at zero frequency
indicates that no zero field evolution occurred during the time ty. The
spectrum appears as expected for an ordered nematic in which the axis of

quantization is the same in high as in low field.
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environment.

a. Spin Hamiltonian in Zero Field. Consider the case of a liquid
crystal system which remains aligned along the original field direction
(Ax>0) in zero field. The zero field director frame dipolar Hamiltonian
for a molecule of the nematic phase, Equation (IV.6), is unchanged from
that in high field and is equal to HS of Equation (IV.7). This is due
to motional averaging about the director oriented along the laboratory z
axis as in Figure IV.7b. Rotation about the long molecular axes and the
uniaxial nature of the liquid crystal require that the terms in Equation
(IV.6) with m' and m not equal to zero vanish (i.e. no dependence on a
and Y). 1In contrast to the high field case, the truncation can be
accomplished solely through the spatial terms of the Hamiltonian.

Again, the solute Hamiltonian has the same form as that above since the
nematic environment imposes a preferred orientation and motion on the
solute molecules.

The sudden transition experimentél results reported above can now
be interpreted. Even in the absence of an applied field, a uniformly
aligned sample with n along the laboratory z direction, Figure IV.7, has
a zero fileld Hamiltonian equal to the truncated laboratory frame dipolar
Hamiltonian. The sudden switch-off of the intermediate field in the
zero field experiment of Figure IV.9a initiates zero field evolution
only 1if [p,HZF]fO. Since p(0) is proportional to Iz,L before the

transition, this condition is not met. Calculating the signal from
o [¢]
S(t1) - Tr{Izexp( iHDt1)Izexp((iHDt1)] =1 (1Iv.9)

shows that no evolution occurs in zero field and the resulting spectrum
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for an ordered sample in zero field is simply a line at zero frequency.

The zero field dipolar spectrum of an aligned sample should still
be obtainable by the use of a pulsed dc magnetic field to change the
initial condition from p(0)=Iz’L to some other operator that does not
commute “ith Hg. In this case, as shown in Figure IV.9b, a pulse can be
used to rotate the initial magnetization to the xy plane of the
laboratory frame. If the direction of the de field is defined as the
laboratory frame y axis and a 90° pulse is applied, then the density
operator after the pulse is equal to I,- Since [Hg,lx]fo evolution is
initiated. Exact calculation of the zero field signal is quite easy as
the initial state, dc pulses and zero field Hamiltonian are all

referenced to a common frame for an aligned sample, and

: 0 .
s(t1) = Tr{Izexp( 16'Iy)exp( 1HDt1)exp( 16Iy)Iz

0 i .
exp(iBIy)exp(‘iHDH )exp(:.e'Iy)} (IV.10)

A second pulse, e'=360°-e, is required to transform the evolving state
back into one proportional to I, before remagnetization. For example,
rearranging terms and taking into account that 8=90°, Equation (IV.10)

becomes
) )
S(t1) = Tr[Ixexp( 1HDt1)IxexP(lHDt1)} (IV.11)

which is ldentical to applying rf pulses in high field. Unlike previous
calculations, this requires no transformation between frames (other than
that already ascribed to the order parameter), nor is there any average

taken over director orientations as only one is present in an aligned

sample. This 1s analogous to a single crystal in zero field except that
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the Hamiltonian is truncated.
A two proton spin system, in an oriented liquid crystal with aAy>0,
is expected to yield the following normalized signal for an arbitrary de

pulse angle from Equation (IV.10) as given by

2 L2 3
S(t1) = cos 8 + sin ecos(zszzmnt1) (IV.12)

where 8 is the angle of the dc¢ pulse and wD=2nvD=Y2h/2nr3. To confirm
that the sample is indeed aligned and that dipolar signal can be
observed, an experiment was performed with the sequence of Figure IV.%.
Figure IV.11 presents the results of a series of these sudden z/pulsed y
experiments. The angles of the dc pulses corresponding to P and P' in
Figure IV.9 were determimed by the calibration procedure described
previously. The spectra consist of two lines corresponding to either
the zero frequency or tvD lines of the polycrystalline case. The
predicted behavior for an aligned sample under different dec pulses is
observed. For 9=90°, all the signal evolves as the local fields and
magnetization are perpendicular. Calculation of the order parameter of
the solute from the zero field spectrum yieids, Szz=0.054 * 0,.001. The
molecular order parameter measured from these spectra in zero field is
the same as that found in high field within an experimental error based
on the linewidths and small scale temperature fluctuations which may
oceur in the course of the experiment.

The removal of the sample to low or zero fields might be expected
to show a change in the bulk alignment of the liquid crystal molecules.
If the sample were to disorder, the predicted zero field spectrum would

be different. For example, one case is that where the local ordering
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Figure IV.11: Spectra of the CH2C12/11650 gystem obtained via the
sudden z/pulsed y field cycle of Figure IV.9b. DC pulses used were (a)
900,2703 and (b) 1803,1803. The observed spectra show the dependence on
pulse angle as predicted by Equation (IV.12) which was obtained assuming
an ordered nematic liquid rystal in zero field. The molecular order
parameter may be measured from the observed frequencies and was found to
be Szz=0.05H + 0,001, which is unchanged from high fleld within an
experimental error of 2%. Linewidths of ~45 Hz may be attributed to
residual fields.
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within a domain remains the same, while the alignment of the local
directors of these domains changes orientation as f{llustrated in Figure
IV.7c. Assuming that the allowed motions and fluctuations within a
local domain are the same as in the monodomain, then the director frame
order parameter of the solute will be the same for all orientations
since the director frame Hamiltonian is unchanged. The distributions of
director orientations will manifest themselves as changes in the
intensities of the lines in the zero field spectrum as discussed in
Section II.C.2, (This i3 similar to a distribution of "crystallites" in
which the degree of disorder may or may not lead to an isotropic
distribution of director orientations.) Thus ordered and disordered
nematics may be distinguished by the characteristic appearance of their
zZero field spectra since the relative intensities of the zero field
lines will be indicative of the degree of disordering.

If the alignment is altered before reaching zero field, a sudden

v

transition experiment would be expectedzto show evolving signal. In the
limit of an isotropic distribution of the local directors, the »
normalized zero field signal for the sudden transition experiment or the

sudden z/pulsed y version with both de pulses equal to 90° is given by

S(t,) = 17301 + 2c0(ds we)] (1v.13)

which is the same form as that predicted for the proton pairs in a
polycrystalline hydrate. Improperly prepared samples, such as those
with large bubbles, result in observable zero field NMR signals due to
the disruption of uniform alignment caused by surface effects and/or

mechanical mixing. An example of such a spectrum showing broad peaks at



the dipolar frequencies is compared to the same material in Figure IV.12
using the sudden transition field cycle. A schematic picture of the
possible disordering induced by a bubble appears in Figure IV.13. This
effect was found to be exacerbated when using liquid crystal samples
with very low viscosities although even here disordering was not

observed in samples with no bubbles.

2. Demagnetization and Other Pulsed Experiments

Further studies were also performed to observe the effect of
complete demagnetization on the liquid crystal system. The field cycle,
shown in Figure IV.1l4a, consists of demagnetization to zero field
combined with a pulsed version of the experiment. A spin temperature
argument suggests that the density operator describing the initial
demagnetized state in an aligned sample (Ax>0) should be proportional to
Iz,L since ﬁhe motionally averaged dipolar and Zeeman Hamiltonians
commute.23 This predicts that the zero field signal is described by
Equation (IV.12) and is confirmed experimentally since spectra produced
with the same dc pulses appear identical to those in Figure IV.11. Thus
the resulting state is not one characteristic of a demagnetized dipolar
coupled system as described in Chapter III. If the demagnetization were
to produce an initial condition other than Iz,L then one expects an
entirely different functional dependence for S(t,).

The effects of residual fields on the linewidths can be decreased,
in any of the zero field experiments described, by employing a
transverse dc 180° pulse to form a zero Field echo. Figure IV.15 shows

the results of a 180° refocussing pulse applied in the middle of the
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Figure IV.12: CH,Cl, in the nematic phase of EBBA with Ax>0. The
spectrum shown in (a) results when the sudden transition field cycle of
Figure IV.9a is used. The lack of dipolar signal indicates that the
sample remaing aligned; there is only a zero frequency signal from non-
evolving magnetization. Samples in which large bubbles are present do
display dipolar signals as shown in (b) which can be explained by
disruption of the ordering of the liquid crystal molecules.
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Figure IV.13: The uniform alignment of the sample is disrupted through

the presence of a bubble in the sample. This effect may be due to
either sample mixing in shuttling and/or surface effects. A possible
scenario is shown above in which the director axes are anchored by a
bubble and caused to point away from the z axis. This distribution of

directors will alter the relative intensities of the zero field lines.
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Figure IV.14: Other zero field experimental field cycles used in the
study of liquid crystals. (a) After demagnetization to zero field, de
pulses are used to initiate and terminate the zero field evolution
period t; as described in Chapter II. (b) Same field cycle as (a)
except that the t, period is now divided in half by a 180° refocussing
pulse. This pulse removes the effect of residual field inhomogeneities
in the z direction. (c) Zero field dc pulse sequence for the production
of dipolar order in zero field. The directions of the dec fields are
shown. The sequence 90x—1-u5y takes the initial state of I, to one of
dipolar order in the lab frame. After the delay, A, the HSy pulse
transforms the state lnto observable ftransverse magnetization.
Application of a 90, pulse and the z fleld allows for observation of

this evolution as a function of ty in high field.
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Figure IV.15: Zerd field echo spectrum of CH2012 taken using the zero
field echo sequence, Figure IV.t4b, which removes the effect of the
linebroadening residual fields. Shown i{s the spectrum using the dc
pulse sequence 90?-&1/2—180?-t1/2—2703, where all pulses are applied
along the laboratory y axis. A linewidth of ~15 Hz is obtained. The
lines at one half the dipolar frequency and zero frequency are artifacts

due to pulse imperfections.
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evolution period as illustrated in Figure IV.14b. After a 90° y pulse

on the initial state, Iz,L' the signal can be calculated from

s(t1) = Tr{ngxp(—iHZFt1/2)exp(-1nIy)exp(—1HZFt1/2)

Ixexp(iHZFt]/Z)eXp(1nIy)exp(1HZFt1/2)} (Iv.1da)

where HZF“”Z + H%, and HZ is the interaction with an inhomogeneous

residual z field such that it commutes with Hg. The resulting signal is
3
S(t1) cos(zszszt1) (IV.14L)

As expected, this pulsed dc field variation of the Hahn echo
experimentzu yields decreased linewidths which are measured here as ~15
Hz. This is due to reversing the sense of evolution under the residual
fleld term without altering the evolution in £ under the bilinear
dipolar Hamiltonian and can easily be seen by the fact that linear terms
in IZ change sign with a 180° pulse while the bilinear terms in HD do
not. Lines at one half the zero field frequency appear as artifacts in
the echo spectrum and can be accounted for by imperfections in the dc¢
pulses.

The initial condition for an aligned sample with Ay>0 is equal to
Iz,L and the zero field Hamiltonian in the laboratory frame is identical
to that of the secular dipolar Hamiltonian in a high field rotating
frame at resonance. With this understanding of the system, a multiple
de pulse sequence was attempted in zero field. A sequence was chosen to
produce a dipolar ordered state in zero field, in the same manner as one
would in high field, as such a state was not obtained by demagneti-

zation. A zero field version of the Jeener-Broekaert sequence25 was
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performed, but unlike high field NMR techniques, separate coils were
used for each orthogonal (9D° "phase shifted") pulse direction. Using
the field cycle of Figure IV.14c, the sample was demagnetized to an
intermediate field then suddenly demagnetized to zero field where the
pulse sequence 90x-r-45y—A—H5y-t1—90x was applied. Immediately after
the final 90x pulse the sample was remagnetized and the high field
signal recorded as a function of tg. The preparation part of the
sequence (through the first usy) has the effect of creating a density

operator given by

p = pHD * Ppg (IV.15)

which contains both a dipolar order term and a double quantum term.26

Here the delay A used in the sequence was chosen to be long enough to
allow any remaining single and double quantum coherences to decay to
zero. Accumulation of the high field magnetization as a function of t1
yields the interferogram of Flgure IV.16. As expected the signal
arising from the created dipolar order grows in sinusoidally in t (in
analogy to the quadrupolar case presented in Chapter III.C). Fourier
transformation of the signal produces the spectrup shown in Figure

V.16,

3. Positive and Negative Magnetic Susceptibility Anisotroples
The form of the dipolar Hamiltonian in zero field was furthe~
exXplored by the use of samples with positive and negative magnetic
susceptibility anisotropieé. As stated in section A.2 of this chapter,

the quantization axes of the spin systems and director orientations in
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Figure IV.16: Interferogram from the zero fleld version of the Jeener-
Broekaert experiment using the pulse sequence shown in Figure IV.14c.
The 1 used in the preparation of dipolar order was 160 psec and the
delay § was chosen to be 20 msec to allow for the decay of any other
coherences. The sinusoidual appearance of the interferogram, 5(t,), is
as expected for the conversion by a 353 pulse of the uipolar order to
observable single quantum coherence. Fourier transformation of the
interferogram ylelds the dispersive zero field spectrum shown below
consisting of lines centered at t“D' The linewidths and splittings of
the zero field lines may be attributed to dec pulse imperfections and

residual fields.



high and zero fields differ with the ordering of the liquid crystalline
phase. In order to observe the evolution of a spin system in zero
field, the initial state of the spin system in zero field and the zero
field Hamiltonian must not commute. For liquid crystals which remain
aligned with the field direction, this is not the case; it was
demonstratsd that in such instances pulsed de fields can be used to
alter the initial condition and observe the dipolar spectrum of a solute
molecule dissolved in a nematic liquid crystal. In this section, we
exzlore the alternative possibilities of changing the zero field
Hamiltonian through the use of liquid crystal systems with different
magnetic susceptibilities.

The samples consisted of approximately 5 weight percent CH2C12
dissolved in EBBA (p-Ethoxybenzylidene p-butylaniline, Frinton
Laboratories) with a Ax>0, or ZLI 1167 (EM Chemicals, a ternary mixture
of propyl-, pentyl- and heptyl~ bicyclohexylcarbonitriles) with a Ax<0;
An interesting feature of these two nematics is that in binary mixtures
they display an unusual temperature dependent phase behavior.27 The
apparent anisotropy in the magnetic susceptibility ranges from positive
to negative with changing temperature and, at a certain transition
temperature, appears to be zero.28 High field and zero field NMR
spectra of the neat phases were obtained to compare the order parameters
of the solute with and without the presence of a large magneﬁic field.
The high field dipolar spectrum of CH2012 in EBBA appears in Figure
IV.17. As with the previously discussed nematic liquid crystal sample,
this system has also been found to remain aligned on the time scale of

the zero field experimental field cycle and the spectrum was shown
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Figure IV.17: High field and zero field spectra of 5 wgt % CH2012 in
EBBA (Ax>0). The high field spectrum in (a) was obtained with a 90,-t-
90x sequence with 1 chosen to detect only the solute signal. The order
parameter calculated from the observed splitting is 0.064 + 0.001. 1In
(b}, the zero field spectrum using the field cyele of Figure IV.9b with
de’ pulses equal to 90 and a 180x refocussing pulse. The order parameter
measured in zero field (S,, = 0.063 * 0.001) is identical to that in
high field within experimental error. The intensities and dependence of
the signal on dc pulses are indicative of a sample sStill aligned with

the original field direction.
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previously in Figure IV.12., Thus in order to observe the zero field
spectrum, the field cycle with 903 dec field pulses must be used to
produce signal. Refocussing pulses can also be employed in the field
cycles of Figure IV.9 and Figure IV.17b is the resulting zero field
dipolar signal of CHyCl, in EBBA taken with a 1803 echo pulse in the
field cycle of Figure IV.9b. The uniaxial order parameters measured in
high field (S, = 0.064 £ 0,001) and zero field (S,, = 0.063 * 0.001)
are identical within experimental errors.

On the other hand, zero field evolution can be initiated by using
samples with 4x<0 in which the axis of quantization for the nuclear
spins changes on going from high to zero field. Unlike the Ax>0 case,
no de pulses are needed to initiate zero field evolution and the sudden
transition field cycle of Figure IV.9%9a was used with a 1802 echo pulse.
The high field and zero field spectra of CH2012 in ZLI 1167 (Ax<0)
appear in Figure TV.18a and 18b. 1In this case the observed frequencies
of the dipolar coupling are different in high and zero field. Due to
the perpendicular alignment of the liquid crystal molecules, one would
expect the zero fleld dipolar splittings to be twice as large as those
in nigh field as will be discussed in the following sections.

a. Spin Hamiltonian in Zero Field. The dependence of the high or
zero field NMR spectrum of a liquid crystal/solute system on field
strength, the sign of Ay, and initial condition can easily be understood
through the form of the NMR Hamiltonian. Some of the earlier discussion
is repeated here., In the absence of an applied field, the liquid
crystalline phase alone determines the truncation of the Hamiltonian.

Only two frames of reference are needed to describe the spin inter-
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Figure IV.18: CH,Cl, (5 wgt %) in ZLI 1167 with Ax<0. The high field
spectrum was obtained with a 90x-r-180x-1 sequence with t chosen to echo
only the solute gsignal. The high field splitting observed in (a) is
reduced by a factor of -0.5 relative to that in zero field due to the
truncation of the Hamiltonian with respect to tile field. The high field
order parameter is calculated to be 0,100 # 0.001. The zero fleld
spectrum in (b) was obtalned using the sudden transition field cycle of
Figure IV.9a with a 180z refocussing pulse. The order parameter is
identical to that calculated in high field within experimental error
with S,, = 0.101 * 0.001.
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actions in zero [.eld, the principal axis system (PAS) of the dipolar
interaction and the director/zero field frame of the liquid crystal.

The Hamiltonian in zero field can be written as a product of second rank
spherical tensor operators as given in Equation (IV.6). Due to the
axial symmetry of the two spin dipoclar interaction and the uniaxial
nature of elther of the nematic phases, there can be no dependence on

the Euler angles, Y or a, in the Hamiltonian. Therefore, with

2 . ~iam' 2 -iYm
Dm‘m(aBY) = e dm,m(B) e (IV.16)

in Equation (IV.6) the only term which survives is that with m and m'
equal to zero and the director frame Hamiltonian reduces to that given
by Equations (IV.7) and (IV.8). This truncation holds regardless of the
orientations of the 1iquid crystal molecules. That is to say, there is
no dependence on the bulk alignment of the molecules as the interaction
need only be considered in the local director frame. Thus for samples
with Ax>0 or Ax<0 the form of the zero fleld Hamiltonian is identical.
This similarity in zero fleld is apparent for CH2C12 in EBBA and Z1I .
1167; the spectral splittings differ due to different order parameters,

S, but the general appearance of the spectra is the same.

22?
Although the zero field Hamiltonians have the same form -for the
two phases, 1t may not yet be evident why dc pulses are required in the
case with Ay>0 to initiate evolution in zero field, but not when Ax<O.
Using any of the field cycles described thus far, the initial condition
prepared in high field is proportional to Iz,L' and if this commutes

with the zero field Hamiltonian evolution does not occur with the sudden

transition in field as described previously. For example, if the sample
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in zero field remains aligned along the original field direction, then
the zero field Hamiltonian truncated with respect to the director axis
has the same quantization axis as in high field and commutes with Iz.
Applying a 90° dc pulse to initiate evolution, the normalized signal as

a function of ty is calculated according to Equations (IV.10)~(IV.12):
- s - 3
S(t]) a Tr[Ixexp( 1HDt1)Ixexp(1HDt1)} cos(zszszt1) (IV.17)

where wy = Yzh/2nr3. This calculation does not take into account an
echo pulse or residual field which can easily be incorporated as in
Equation (IV.14).

When Ax<0 the form of the zero field Hamiltonian is truncated
identically with respect to the director frame, but if the liquid
crystal sample remains aligned perpendicular to the field direction, the
zZero field and high field frames are no longer coincident. The
magnetization no; precesses about the local dipolar fields in zero field
after the sudden transition in field. This can be pictured as if the
liquid crystal (or the averaged local field) is shifted by 90° as a
consequence of the phase rather than the magnetization by a pulsed
field. 1In order to calculate the zero field spectrum, a transformation
between the laboratory frame of the initial condition and zero
field/local director frame must now be included. The normalized signal

as a function of t, becomes identical to Equation (IvV.17),

-1exp(-iHDt1)RIz LR—1exp(iHDt1)}

S(t1) = Tr{RIz,LR

3 (1v.18)
- COS(ESzzth1)

where R = exp(—i¢Iz)exp(—ier) and 8=90° for the fixed relative
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orientation of n and the laboratory z axis for Ay<0, It is clear that
there is no ¢ dependence in the signal function due to the overall
symmetry of the phase around z. Thus the transformation by R(Q) with
8=90° produces an initial condition, expressed in the director frame,
having the form of Ix‘ In both cases represented in Equations (IV.17)
and ({V.18), all the magnetization evolves 1f the alignment is uniform
over the sample. The intensities in the zero field spectrum, and the
dependence on the field cycle used, are again indicative of the bulk
alignment of the sample.

b. Spin Hamiltonian in High Field. 1In a similar ma.aner, the
relative scaling factors of the high field spectra may be understood by
describing the Hamiltonian in high field. The Hamiltonian can again be
represented by Equation (IV.6) although now an additional transformation
from the director frame to the laboratory/field frame is required and

can be written as

2
2 S (oqym 2 2
Hy LD T2_mA2nDnm,(weq:)(Dm,m(aBY)) (Iv.19)
m,m’,n

where the Dﬁm(we¢) term relates the director and lab frames. This
angular term 1s not averaged over molecular motions since the
fluctuations of the director with respect to the field direction are
slow on the timescale of the experiment.1’9 Since the liquid erystal
and laboratory/field frames are uniaxial, only the angle 6 is needed to
make the transformation and Doo(e)-1/2(3cosze—1). For Ax<0, 6=90° and
the DSO(B) term in Equation (IV.19) equals -1/2, while for Ay>0 the

angle is zero and this term is equal to 1. The high field spectra are



then scaled by these factors of 1 or -1/2, in addition to Szz, as 1s
apparent in Figures IV.17 and IV.18, respectively. The order parameters
for the Ax<0 case can be calculated to be Szz = 0,100 = 0.001 and S,, =

0.101 ¥ 0.001 in high and zero field, respectively.

4. Summary

The molecular order parameters of nematic liquid crystal/solute
mixtures have been measured in high and zero field and have been found
to be the same in both cases. The resulting values do not differ by
more than an experimental error which is less than a few percent.
Several conclusions can be reached based on the frequencies and
intensities of the zero field spectra, and the apparent dependence of
the signal on the dc pulses used. Due to the short duration and
relatively low fields used for the dc magnetic field pulses, only the
3pin states are perturbed and not the spatial ordering of the liquid
crystal molecules. Experimental evidence suggests that fields of the
order of 1 kG need be applied to change the alignment of the molecules
in a time on the order of seconds.g'29 Most notably, the nematic
systems were not seen to disorder in low (£200 G) or zero fields when
left in these fields for times on the order of 10-500 msec. For those
samples studied, the zero field spectra are indicative of aligned
systems showing no change from high field. Nematic liquid crystals may
be expected to remain aligned in zero field on relatively long
timescales, as thermal fluctuations would be slow in bringing about

9,10

disordering , unless some perturbation such as the application of an

appropriate large field causes more rapid reorientation of the sample.
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It might be interesting to look for changes in the ordering of chiral
phases in zero field which are "untwisted" by an applied field and
steric forces cause it to r'etwist.3O An attempt was made to look at
cholesteric samples for which it was found that the Ty was too short.
The relaxation time is related to diffusion through the helix which is
an effective relaxation mechanism.3'

For systems with Ay»0, the ordering of the sample remains along
the original field direction and dc pulses are necessary to produce
dipolar signal in zero field. Since the alignment of thg liquid crystal
molecules with Ax<0 is perpendicular to the laboratory z axis, signal
results with the sudden transition in intermediate field. High
resolution spectra may be obtained with refocussing pulses and allow for
more accurate determination of the order parameters. In mixtures of
liquid crystal solvents with Ax<0 and Ax>0, in concentrations and at
27.28'

temperatures close to their phase transition region preliminary

results indicate that although these samples are very sensitive to these
experimental limits, even removal of the field does not cause a change
in the aligned state.

In general, demagnetization experiments on nonoriented samples are
expected to produce initial conditions other than Iz,L' However, due to
the unchanged ordering and molecular motions of the CHEClZ/nematic
systems (Ax>0) in the demagnetization experiment, the magnetization
remains quantized along the laboratory z axis. Thus demagnetization
experiments on the nematic systems produce an initial condition no
different than that in experiments utilizing an intermediate field to

maintain the spin order. DC pulses along various directions of the
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laboratory frame may then be ‘successfully used to produce a new spin

order. Examples of such have already been shown in the composite pulse

experiments and the isotope selective pulses in Sections III.A and D.
Extensions of these zero field experiments are easily envisioned

3238 and 1yotropics3ed

to more complex systens such as smectics, discotics
which do not order uniformly in an applied field. High field studies of
such materlials are hindered due to orientational disorder and thus might

be productively studied in zero field. Examples incorporating the first

class of materials are presented in the following section.

C. Smectic Phases in Zero Field Experiments

1. Introduction

Nematic/solute systems have been extenslvely studied by high field
NMR t,echnilques.‘2'7'8 The alignment of the sample has a profound effect
on the NMR spectra of these materials since all molecules have an
equivalent average orlentation with respect to the applied field.
Admittedly, nematic phases are convenlently studied by such methods as
the molecular motions and large fields truncate the dipolar Hamiltonian
to produce discrete, narrow lines. Even in the absence of a large
magnetic fleld, the spatial averaging in the liquid crystal retains the
truncated form of the Hamiltonian. Lower temperature smectic and
cholesteric phases, as well as most lyotropic liquid crystalline phases,
do not possess the property of uniform alignment in a magnetic I‘ield.3
Thus in the high field NMR spectra of such systems one find {nhomo~

geneously broadened lines due to the random distribution of molecular



orientations with respect to the applied field. The usefulness of the
zero fleld NMR experiment lies in the ability to obtain sharp well-
resolved spectra on such disordered materials.

Smectlic phases often show a complex and diverse arrangement of the
molecules as discussed in Section IV.A. Some phases are uniaxial and
are describable by a single order parameter while others are biaxial and
require more order parameters. Biaxiality is generally attributed to
the type of molecular ordering and to a partial rotational freeze-out of
the molecular motions which can be observed through the angular
dependence of the spectrum of an aligned sample.g’33 The biaxial order
parameters can be related to a motionally induced asymmetry in the spin
interactions.3? Biaxlial smectics (primarily smectic C phases) have been
studied in several cases, either optically35, by NQH36 or by NMR37
methods. The latter requires oriented samples produced by sample
rotation38, ac electric fields39 or attempting to uniformly align the
phase through cooling down the sample from a higher temperature phase in
the presence of a f‘!.eld."o’ln Once an aligned sample is produced then,
like a single crystal, it must be studied as a function of many
different orientations with respect to the applied field. In most
cases, the blaxiality is often a subtle effect and 1ts observation has
often been in dispute or is difficult in unaligned samples.9’37 In this
section, the high field and zero field NMR spectra of several smectic

phases are presented.

2. High Field and Zero Field Spectra

The smectic phases studied were room temperature A, B and E phases



as described Section IV.A. The smectic A phase was produced using ~2
wgt % CH2012 in 8CB {octylecyanobiphenyl, EM Chemicals). In this phase
the molecules align perpendicular to the layer normal and are free to
rotate about their long axes. As shown in Figure IV.3, there is no
positional order to the molecules in the layer, and they diffuse rapidly
throughout the layer (more rapidly than in B or E phases).’ The smectic
A sample was found to spontaneously align in an applied field. The
smectic A case, due to the sample alignment, is indistinguishable from
that of a nematic phase and calculation of the signal follows
identically as before. Thus the high field spectrum, as shown in Figure
IV.19a, consists of the doublet characteristic of a dipolar coupled pair
of spins scaled by the uniaxial order parameter. In zero fiz.d using a
field cycle such as Figure IV.9b with 903 dc pulses and a 1802 echo
pulse, the zero fileld spectrum of Figure IV.19b results. The order
parameters for the aligned, uniaxial phase in high field and ze 2 fiéld
are 0.077 * 0.002 and 0.0T4 + 0.001, respectively.

The molecules are arranged in more complicated intralayer
structures in the B and E phases as shown in Figure IV.3. The smectic B
phase has a rotational freedom of the molecules although they are
arranged in a hexagonal pattern. Since in this particular B phase the
molecules align parallel to the layer normal, the phase is uniaxial. 1In
contrast, the smectic £ phase has restricted rotational freedom of the
molecules about the long molecular axis which 13 expected to lead to a
biaxiality of the phase. The room temperature smectic B and E phases
consist of mixtures of the same two components: 4-n-butyloxybenzyl-

idene~-4'-n-octylaniline (40.8) and 4-n-octyloxycyanobiphenyl (80CB).
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Figure IV.19: CH,Cl, (~2 wgt %) in BCB Smectic A phase. (a) The high
field spectrum was obtained with the standard echo. The order parameter
was calculated to be Szz = 0.077 £ 0.002. The zerb field spectrum in
(b) was obtained using the fleld cycles with 90° de pulses of Figure
IV.9b and a 180y echo pulse. The order parameter measured in zero field
is Szz = 0.074 # 0.001. Both high and zero field spectra are indicative
of an aligned sample (indistinguishable from the aligned nematics).
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The smectic B phase consists of ~5 wgt % CH,Cl, in 60% 40.8 and 40% 80CB
mixture by weight. The smectic E phase consists of ~7 wgt % CH2012 in a
50:50 mixture. The phase diagram of mixtures of these components can be
found elsewhereuz; as an example, the neat 50:50 mixture has the

following phase transition temperatures

K +15% Sg +52,9%> Sp +83%+ S, +1049+ Sy* 1 +107.5% I

Neither of these phases aligns in a magnetic field unless heated to the
isotropic or nematic phase and cooled in the presence of a field. Since
the zero field experiment does not require an aligned sample, the
unaligned multidomain samples were used. The transition between B and E
phases can also be accomplished with a change in temperature for a given
sample mixture as seen above. The change in lattice structure, E being
a compressed version of B, and the n-fold versus 2-fold rotation are
indicative of a thermally activated motional processuOD. The mechanisms
leading to the biaxlality are just beginning to be understood with their
study becomirg ¢f interest in the last 10-15 years.

Beca'ise the smeetic B and E samples are not aligned in the field,
a distribution of director orientations results. This produces a high
field powder spectrum which is broadened by the frequency dependence on
the orientational distribution. The smectic B case is described first
since it 1s conceptually easier. Since the phase is uniaxial, the
Hamiltonian in the director frame for the two spin solute system is

equal to that of Equation (IV.7) since the phase is uniaxial
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dir 2
H = T20A20D00(080) (IV.20)

The director frames and laboratory/field frame are no longer coincident,
as for an aligned sample, and a second transformation to the laboratory

frame must be included to give

lab 2 2
B .y AyoTon oo 82D (W69) (Iv.21)

Only the T20 term remains in high field and with no ¢ or Y dependence

Equation (IV.21)} becomes

lab 2 2 2,
B = Ay TogDao (B)>DG,(8) = AT, oS, 1/2(3c0s“6-1) (1v.22)

which represents the angular distribution in 6 of the randomly oriented
directors. The high field spectrum is shown in Figure IV.20a and
consists of the typical powder pattern scaled by the uniaxial order
parameter, S,,, which can be calculated from the separation of the
gingularities. Since this phase 1Is not aligned it behavea like a
polycrystalline powder and dc pulses are not required to initiate
evolution in zero field. Thus using the fleld cycle of Flgure IV.9a,
the predicted three line spectrum corresponding the the axially
symmetric dipolar coupling of the two protons results and is shown in
Figure IV.21. The linewidths are not a function of the phase but rather
the effects of residual fields as 1s discussed in Chapter V. From the
separation of the lines, the order parameter can be calculated. High
field and zero field values are 0.041 % 0,002 and 0.042 * 0,002,
respectively.

The high fleld powder spectrum of the smectic E phase in Figure

IV.21a shows a broadened lineshape that can be attributed to the
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Figure IV.20: High field and zero field spectra of CH,Cl; (~5 wgt %) in
an unaligned Smectic B phase. The high field spectrum of the solute (a)
shows a powder spectrum scaled by the uniaxial order parameter, Szz =
0.041 + 0.002, as calculated from the separation of the singularities.
The signal in the center of the spectrum is most likely liquid crystal
which was not completely removed by the echo., The 2zero field spectrum
in (b), taken with the sudden transition field cycle of Figure IV.9a
{with no echo pulse), shows the expected three line spectrum of two
dipolar coupled protons of an unaligned sample. The calculated order
parameter is Szz = 0,042 £ 0,002, The linewidths are due to residual

field effects and are not a property of the phase.
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Figure IV.21: High field and zero field spectra of CH,Cl, (~5-10 wgt %)
in an unaligned Smectic E phase. The high field spectrum (a) shows a
proadened lineshape characteristic of a nonaxially symmetric coupling.
Poor resolution makes determination of the singularities, necessary to
calculate the value of n and iy, difficult. In (b), the zero field
spectrum shows six well-resolved narrow lines due to the nonaxial
symmetry of the dipolar coupling. The asymmetry induced by the
biaxiality of the phase can be calculated from the spectrum.
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asymmetry of the dipolar coupling induced by the biaxial phase. This is
not unlike what has been seen before for the quadrupolar spectrum in a
similar phaseuoa. If features of the lineshape are well enough resolved
to determine their frequencies, the value of n and Szz”D can be
calculated in a manner similar to that of a spin I=1 system.?+%02 rhis
is often difficult in the powder spectrum, especially when n is small.
The zero field spectrum is quite sensitive to the perturbations and
small induced asymmetries due to the narrow lines. As shown in Figure
IV.21b, an additional splitting of ~200 Hz which yields a pattern of six
lines (and one at zero frequency due to residual field effects) is
directly attributable to the nonaxial symmetry in the dipolar tensor.
The relationship between the phase biaxlality, the asymmetry parameter

and the biaxial order parameters is shown in the following calculation.

3. Expressions for the Hamiltonian
Three frames of reference, shown in Figure IV.22, are defined:

the axially symmetric PAS/solute molecular frame of the dipolar
interaction (2' axis is designated), the director frame (x,y,z) which
describes the alignment of the liquid crystal molecules with respect to
the layer normal, and the domain frame with its Z axis coincident with
the layer normal and its X axis rotated by an angle of f¢ with respect
to the symmetry axis in the smectic plane. The Hamiltonian can be

written in the domain frame for the second rank dipolar interaction as

2

' (20U} > (1v.23)

2
dom o Soym TT 2
HD Lf 1) T2_m L_L.A2n<Dm,n(aBY)D

m=-2 m'n
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Figure IV.22: Relationships between reference frames used in describing
the Smectic E phase. (a) The z2' axis of the molecular/PAS frame of the
dipolar coupling (H-H internuclear vector) is related to the (xyz) frame
of the liquid crystal order .director by the angles o« and 8. The angle Y
is not required due to the axial symmetry of the coupling in the PAS.
The domain frame has its Z axis (layer normal) parallel to the z axis of
the director frame. The molecules, as shown in cross section through
the plane in (b), are aligned at an angle ¢ with respect to the symmetry

axis of the liquid crystal.
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where Dm.n(aBY) transforms between the molecular frame and director
frame, and Dmm.(¢ew) between the domain and director frames. In the PAS
frame only the A20 spatial term is nonzero, thus n=0 and summing over m

yields the nonzero terms

dom
Hy'" = Typhaq) <D ,O(ueo)D_2 , ($80)>
ml
+ T, A, 5 <02, (a80)D2 , ($00)> (1v.21)
207204 "m0 Oom! -
m'

T2 2
+ Ty phopl, <Dy (eBO)D, , (480)>

mt

Substituting in for the second rank tensor operators for the spin and

18

aspatial terms'” gives

dom —Y2h
HD = ;;:5— [(3Iz1Iz2 I I ) L.<D (uBO)D , (680)> (1v.25)

m'

3 - 2 2 2 2
+\E (L Teo™ Iyl 2 <DC,(aBOID; , (460)> + <Dm,0(uBO)D_2m,(¢60)>]
ml

9

Using Doane's notation?, the expression simplifies to

2 <S + S >
=Y"h |3 2-2 22
H., @ «——— ¢S >[(3II-I'I)*—_—(II-II ):I
D 2.‘"’3 20 z17z2 1 72 2 <SZO> x17x2 yl-y2
-Yzh

(1V.26)

<8, [(3121 Lo,=I;71) + ”(Ix1Ix2' Iy1Iy2)]

21'rr3

where the terms contained in n are the biaxial order paramters and <Syp”

i3 the uniaxlial order parameter which scales wD=Y2h/2nr3.
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The S parameters can be dealt with separately In order to express
them in terms of the angles relating the different frames. Much of the
following discussion can be found in Doane's review article for the spin

I=1 case.9'3u‘ The simpler <520> term is

.5 2 2
Spp> = ) <Dm,0(uﬂY)D0m, (¢0uw)> (1v.27)
m'
At this stage there are theoretically as many as five elements with the
summation over m'. Because there is a two fold symmetry axis

6

perpendicular to the layer normal

L L. L " _,mn_ L
Doy = (=1 2 = (-1 (1v.28)

and summing over m' results 1in the following nonzero terms

2 2 2 2 '
<320> = <DDD(B)D00(6) + (D_ZO(GB) + DZO(GB))D02(¢B)>

- <%(300528—1)%(3c0329-1) + %(SinzBCOSZG)(Sin290052¢)) (1v.29)

1 2 1.2
= <8, 5(3c0870-1) + (5., Syy)(ESi“ 8cos2¢) >

Because S is generally much less than Szz' more so for a rod-like

xx—syy
molecules, the last term can be dropped. This term describes the
molecular biaxiality9'3u. i.e. fluctuations of the liquid crystal
molecule about unequal molecular axes, rather than the phase biaxiality.
The director, describing the alignment of the liquid crystal molecules
long axes, 1s asaumed to be along the z axis of the domalin as the

molecules align to a very high degree with respect to the layer normalg.

thus 620 for the phase and <520>’<Szz>'



The <SZ-2 + 822> term can be dealt with similarly. The brackets
represent an average over the molecular motions. The motions of the

molecular frame with respect to the director frame (aBY) are assumed to

be independent of the diffusion or jumps between positions 1n the domain

which results in the blaxiallity of the phase.g'u1 Asssuming that these

are independent allows cne to factor the terms to give

S, p* Spp> = z:<D§'0(u80)><D§m(¢00) * Dme,(¢00)> (IV.30)
o'

The summation and substitution for the Dy, terms will not be shown in
detail but results in nine real terms. This number can be reduced to
five by consldering liquid crystal phases which are apolar (i.e. the
molecules can be exchanged end for end) and, as mentioned previously,
there is a two fold axis perpenuicular to the layer normal. The
expression for n, containing the five terms of the <32-2 + 322>
summation, can be related to the spin I=1 expression solved for by
Doane? which for 8=0 becomes

- 3<sin23c0320><c052¢> . 3<sin2800520><c052¢> (1v.31)

2885¢” <3c08°8-1>

n

The Hamiltonian of Equation (IV.26) has energies corresponding to

wnS

D zz
By =~ —>5— (1+n)

w S

D"z2
E2 - -5 (1-n) (Iv.32a)
E3 - mDSzz

for the elgenstates



[1> = 1/2(!(100 + | 88>
|25 = ~127"2(|aa> ~ |88 (IV.32b)
[3> 1/2(|ch> + | Ba>)

expressed in the zero field eigenbasis for two dipolar coupled spin

I=1/2 nuclei. The zero field signal can be calculated from
-1 -1 .
SQ(t1) = Tr{RIzR exp 1HDt1)RIzR exp(lHDt1) (1v.33)

where Hp is given by Equation (Iv.26). Averaging over all orientations

ylields for the normalized signal

S(t1) = %icos(mDS nt, )+ cos(-w S, (3 n)t )

+ cos(—m S, (3*n)t ) (1v.34)

In the 1imit of n=0, Equations (IV.26)-([V.29) above reduce to that of
the axially symmetric Smectic B case. The spectrum in Figure 1IV.21
appears as predicted and thus from the frequencies of the lines values
of 5,5, = 0.045 £ 0,001 and n = 0,208 * 0,001 can be calculated. The
peak seen at zero frequency is due to residual field effects explained
in Chapter V.

Unfortunately, due to the dependence of n on several angular
factors as given in Equation (IV.31), the problem is under*‘determined by
the single measurement. When 6«0 in a well ordered phase, the <cos2$>
term is nonzero for partially restricted rotation about the long
molecular axis. This term is representative of a birotational freeze
out of the rotation in a two fold potent1a1.33'3u The phase biaxiality

is related to the fact that an axis, within the layer plane, must be
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associated with the phase to describe the molecular ordering. This axis
is not defined in a uniaxial phase. Due to the symmetry of the frames
chosen here only the angle ¢ is required. Doane has also studied this
same phase mixture using 2H NMR experiments on oriented samples.u1
Several models are presented for the restricted motion of the liquid
crystal molécules. The most likely models are those involving molecular
jumps or diffusion between four positions with relative orientations ¢,
¢+m, —~¢ and ~¢+n where ¢=22=0.5o or on site librations with an amplitude
of 2¢. Both motions were combined with m-flips of the liquid crystal
molecules about the Co axis through the aromatic ring to account for the
averaging seen in the quadrupolar case. The jump mechanism is feasible
based on diffusion measurementsll3 and the value of 22° is reasonable
based on X-ray data.m4 Since S,, of the ordering of the solute PAS
frame is known and with ¢=22°, the <sin23c052u> term can be solved for
from the value of n. The calculated value is found to be 0.0043, and as

expected is small since it represents the molecular fluctuations about

axes other then that described by Sz

4. Summary
The smectic phases discussed here were chosen to represent several
aspects of the study of such phases where the differences between
aligned and unaligned, and uniaxial and biaxial samples were shown. In
those cases in which there is rapld n~-fold rotation about the Liquid
crystal long molecular axis, no component perpendicular to the rotation
axls is expected to survive and thus n must equal zero. The order

parameter of the liquid crystal molecules is then a measure of the
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degree of molecular alignment and the fluctuations of the long molecular
axis. In fact, most smectic phases are biaxial due either to a
molecular biaxiality which reflects the fluctuations about the short
axes of the molecules, or a phase biaxiality in which there is hindered
rotation of the molecules. Biaxiality has been observed directly in

1L'N NQR spectrum or

only a few cases through the induced asymmetry in a
through aligned samples. In the zero field spectrum, the non-axial

symmetry is readily and clearly observed.
D. Heteronuclear Spin Systems in Liquid Crystals

Heteronuclear spin systems in solids have previously been studied
by zero field NMR. Inequivalent nuclear spins behave identically to
homonuclear spins except that they can be manipulated independently in
higH and zero fields, and additional zero field transitions become
allowed. In combination with liquid crystal solvents, these spin
interactions can be observed in a variety of anisotropic media which
often yields interesting effects in the appearance of the zero field NMR
spectra. This section presents the simplest case of an I-S (I=1H.
S=13C) spin pair in nematic and smectic liquid crystalline phases.

In order to produce dipolar signal in an aligned nematic with
Ax>0, dec fleld pulses are required. This can be attributed to the
symmetry of the homonuclear dipolar Hamiltonian in zero field and the
initial state of magnetization prepared in high field (i.e. they
commute). An alternative approach involved using nematic phases with

Ax<0. Here the behavior of a third slituation, involving heteronuclear

249



250

spin systems, is presented.

1. High Field and Zero Field Hamiltonians
A comparison of the high field and zero field Hamiltonian will
begin the discussion since the differences are of the more interesting
aspects of studying heteronuclear spin systems in zero field. For a
13C-1H pair, the high field NMR Hamiltonian in a uniaxial phase may be

written as

O _ I -ws - YIYShSz
Y S°z

Z 2
-—1r——§—— (ZIZSZ)(3cos 8-1) - JI,s, (1V.35)
g

where Szz=1/2<3c0528-1> is the order parameter of the I-S internuclear
vector relative to the liquid crystal director and scales only the
anisotropic dipolar interaction. Note that the high field Hamiltonian
contains only the secular terms of the dipolar and indirect couplings.
The high field proton spectra of 13CHCl3 in aligned nematic phases
appear in Figure IV.23 showing the doublet patterns for which the peak

separations are given by

a -0°
Aw ZSZZmD +J for Ax>0 and 8=0

- - ~aq®
Aw Szsz J for Ax<0 and 6=90

where mD=YIYSh/2ﬂr3. One can see how liquid crystals with differing
magnetic susceptibility anisotropies can be used to differentiate
between the contributions of J and wp in the spectra. Using a value of

u6, the order parameters for the Ax>0 and

210 Hz for J"5 and r=1.073 A
Ax<0 cases are 0.115 £ 0.001 and 0.082 + 0.001, respectively.
Heteronuclear spin systems in zero field have previously been

discussec in Chapter II.C. In the high temperature limit, the
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Figure IV.23: High field 1H spectra of 13CH013 in nematic liquid
crystal phases. (a) 13CHCl3 in EBBA (Ay>0) shows the predicted doublet
pattern for a two spin system from which an order parameter of Szz =
0.115 + 0.001 is calculated. (b) '3CHCI in ZLI 1167 (Ax<O) shows a
doublet scaled by -0.5 in addition to the order parameters S,, = 0.082 £
0.001. The signal &at the center of the doublet is most probably due to
residual liquid crystal signal.



equilibrium initial condition produced in high field can be written as

the reduced density matrix

p(0) a aIz,L+ bsz,L (IV.36)

in which the coefficients a and b represent the relative polarizations
of I and S spins. As there are no Zeeman energy differences in zero
field, the I and S spins are identical with respect to exchange and
additional terms in the Hamiltonian become energy conserving. For the
general case in zero field, the Hamiltonian is then written in the

director frame as

YIYshSzz
HZF= - ——;;:5—- (3IZSZ— I's + n(IxSx-IySy))

- J(Izsz + Iysy + IxSx) (Iv.37)

and follows from the same description presented previously for the

8 and

homonuclear cases., The full J coupling, except anisotropic terms,
dipolar coupling, including any possible asymmetry term (see Section

IV.C), are now included. Truncation of the Hamiltonian by the liquid
crystalline environment retains the same terms as for the homonuclear

case. The energy levels and allowed transitions are illustrated in

Figure IV.24, where

w
22 D J
51 _—E__ (1+n) - 3
(Iv.38a)
S__w
__2Zz D, . d
E, = 5— {1 n) T
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Figure IV.24: Zero field energy levels and allowed zero field NMR
transitions for a pair of I-S spins (I=1H. S-]3C). The most general
scheme with n#0 is illustrated based on the Hamiltonian, eigenstates and
energies glven in the text. The energles depend upon the indirect
coupling constant, J, and the dipolar coupling (waYITSh/ana) scaled by
the liquid crystal unixaxial order parameter, Szz. The asymmetry in the
dipolar coupling (n#0) removes the deg2neracy of states 1 and 2
resulting in six allowed transitions. Only positive frequencies are
shown as the gpectrum is symmetric about zero. When n=0, levels 1 and 2
are degenerate, thus introducing a 2zero frequency transition and .

reducing the total number to 4 as shown in Chapter II.
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(IV.38b)

for the zero field eigenstates given previously in Equation (IV.32)
including the singlet state, |4>=27172(|a8>-|8a>). Note that
trangitions are now allowed between the singlet and triplet manifolds

unlike the homonuclear case.

2. Zero Field Spectra
The sudden removal of the intermediate field, as in the field
cycle of Figure IV.9a, initiates evolution at the dipolar frequencies if
the initial condition does not commute with the zero field Hamiltonian.
If the liquid crystal is aligned with the director axes along the
laboratory z axis, such that the z axes in Equations (IV.36) and (IV.37)

are coincident, then for a=b, the commutator is

[p(0), HZF] =0 (Iv.39)

and no s{gnal will result. This is evident since if a=b then the
density matrix in Equation (IV.37) is identical to a homonuclear system.
If though, the coefficient a is not equal to b, as is generally true for
equilibrium S-13C and I-‘H polarizations, it can easily be shown that
the commutator in Equation (IV.39) for a heteronuclear pair is not equal
to zero and thus evolution will occur even in a sample aligned along the
original field direction. Of course, even if a=b, evolution will also
occur when, as for a polycrystalline sample, “here is a distribution of

director axes,
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The normalized signal can be calculated for an arbitrary
orientation of director frame, described by the angles 8 and ¢ with

respect to the laboratory z axis, from
-1 ~1 s
S(tl) = Tr{RIzR exp ( 1H2Ft)R(aIz + sz)R exp(lHZFt)} (1Iv.40)

in which the detected operator is I, and R=exp(-i¢Iz)exp(—iSIy). For

any single orientation of director with n=0 this reduces to

2 , 2 1
Sﬂ(t1) = N{(a+b)cos“8 + (a-b)sin ecos(ESzsz+J)t1

- 2 - 2 3
+ (a-b)cos ecos(szzmD J)t1 + (a+b)sin ecos(zszsz)t1} (Iv.41)

where wD=YIYsh/2nr3 and N is a normalization constant. The angular
factor depends on a single value of ® for a liquid crystal sample which
remains uniformly aligned in zero field. For example, nematic liquid

crystals with Ax>0 Will have 6=0° and Equation (IV.41) becomes

S(t1) = N{(a+b} + (a-b)cos(SzzwD-J)t1} (Iv.u2)

Similarly, for a nematic liquid crystal with Ax<0 the angle of alignment

with respect to the laboratory 2z axis is 90° and

S(5,) = Ni(a=b)cos (55, ,u +)t, + (avbleos(Is, w e ) (1v.43)

272z

Experimentally this means that separate transitions of the heteronuclear
spin manifold will be selected by the ordering of the liquid crystal
system. Spectra of 13CHC13 in nemaiic phases with Ay>0 and Ay<0 are

shown in Fligure IV.25 and demonstrate this effect. The order parameter
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Figure IV.25: Zero fileld NMR spectra of a 3¢y pair in nematic liquid
crystals. (a) '3CHCl; (6 wgt %) in EBBA, Ax>0. Zero field signal
results after a sudden transition to zero field with lines corresponding
to Awgy and Am3u of Figure IV.24 and Equation (IV.42) with n=0. The
calculated value of the order parameter is S,, = 0.115 £ 0.001. (b)
13CHCl3 (6 wgt %) in ZLI 1167, Ax<0. The spectrum shows the other
possible transitions in the singlet/triplet manifold (Am1u=Aw24 and
Am13=Am23 for n=Q in Figure IV.24). The relative intensities of the
peaks in the spectrum do not match precisely with those given by
Equation (IV.43) in the text for equilibrium populations and may
possibly be due to relaxation or demagnetization effects. The order

parameter was found to be S,, = 0.083 * 0.001.
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can be calculated from the spectrum using values of J=+0,210 k]-[zu5 and
r=1.073 A5, Tnis ylelds values of S ,=0.115 * 0.001 (4x>0) and
szz=0.083 + 0,001 (Ax<0) for the two nematics.

Nonaligned samples, such as smectic B (axially symmetric) and E
(nonaxially symmetric), have a distribution of director orientations and
describing the signal in these cases requires that Equation (IV.41) be
averaged over the angle 6. An axlally symmetric heteronuclear dipolar

coupling (n=0) produces the spectrum shown in Figure IV.26 and the

signal is given by the normalized expression below

S(t1) = N{(a+h) + 2(a-b)cos(1§szsz+J)t1

+ (a—b)cos(szzwD—J)t1 + 2(a+b)cos(%szzwD)t1} (IV.48)

Due to the symmetry effects of the liquid crystalline phase, the
Hamiltonlian may be nonaxially symmetric (np0) as defined previously for
the Smectic E phase., This asymmetry lifts the degeneracy of the two
lowest energy levels and increases the number of peaks in the spectrum
such that

S(t,) = N{(a+b)cos(S, u mt, + (a=b)eas (38, u (1-n)+d)t,

+ (a-b)cos(%szsz(Hn)w)t1 + (a—b)cos(SzzwD-J)t1

+ (a+b)cos(ls

38,500 (3-M)t, + (a+b)cos(1§szzmn(3+n))t1} (IV.45)

The spectrum of a nonaxially symmetric dipolar coupled pair is shown in
Figure IV.27. This spectrum illustrates the most general form of the
heteronuclear dipolar Hamiltonian for two spins as all possible

transitions in the singlet/triplet manifold are present. An interesting
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Figure 1IV.26: 13CHCI3 in an unaligned Smectic B phase liquid cryscal.
The seven peaks correspond to the transitions with n=0 of Awq o,
*Au13-Am23. *A“3u and 1Am1u-Am2u between the triplet and singlet energy
levels. 1In ord2r to account for the positions of the peaks in the
experimental spectrum the sign of S,, must be negative in Equation
(IV.u44), The calculated value of S, 1s found to be -0.080 + 0.001.
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Figure 1V.27: 13CHC13 in Smectic E phase 1iquid crystal with a
nonaxially symmetric dipolar coupling (np0). The twelve peaks in the
spectrum correspond to all possible allowed transitions in the
singlet/triplet manifold for two heteronuclear spins. The slight
linebroadening and artifacts at low frequencies are most likely caused
by small residual fields., The uniaxial order parameter was found to
lave a negative value of S,,= - 0.062 + 0.001 and an asymmetry parameter
of n = 0,186 + 0.002,
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result arises when calculating the order parameter for the Smectic B and
E cases. In order to account for the frequencies in the spectrum, the
sign of S must be negative for the proper relationship of the dipolar
and J coupling terms, which are written wif.n the same sign of the
Hamiltonian, and J being positive.)'l7 The order parameters for the
smectic phases are then Szz=—0.080 * 0.001 and Szz=—0.062 + 0.001 for
smectic B and E, respectively, with an asymmetry parameter of n=0.186 %
0.002 in the latter. The relative change in sign of the Szz parameter
between nematics and smectics may be indicative of the different average
alignment of the solute molecules being trapped among different parts of

the liquid crystal molecules.uB

E. Appendix: Liquid Crystal Samples and Experimental Details

1. Experimental Aspects
a. Sample preparation., Sample preparation is also mentionad

briefly in the Appendix of Chapter II. Samples were made homogeneous by
thoroughly heating and mixing the liquld crystal solvent/solute mixture
above its clearing point (isotropic phase) using a carefully regulated
hot water bath as extremely high temperatures can decompose the liquid
erystals. The precision in determining the clearing points is only good
to within a few degrees. Ascertaining the phase is probably the most
difficult aspect of sample preparation. Clearing points are only useful
for determining the nematic to isotropic transition and the liquid-like
nematic phase is often eaﬁily recognizable at room temperature. Other

phases are not easily identifiable by sight and one can not assume from
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one known transition temperature that the others will be depressed by
the same amount. Therefore, the liquid crystal samples chosen were
those which had the desired phase over a reasonably broad and accessible
temperature range to allow for the addition of a solute.

b. Field Cycling. The pneumatic shuttling system employed for
translation of the sample and the electronics for producing the zero
field have been described in Chapter 1I. Minimum air pressures were
used to reduce the physical shock of shuttling the sample. The
possibility of complete disordering and subsequent reordering in the
time of the field cycle is ruled out by the behavior demonstrated under
pulsed dc fields. The samples were generally found to be extremely
stable under field cycling conditions. Some samples which were found to
be less stable are those consisting of mixtures of two liquid crystal
components where upon shuttling the sample separated or changed phase.
This may be due to problems with miscibility or using mixtures near a
phase transition.

The most serious experimental problems involved temperature
fluctuations over the course of the experiment. These vere generally
small (<x2°) but can affect either the liquid crystal phase or alter the
value of the order parameter. Samples such as nematics were more
sensitive than the amectics to these effects. Thermal fluctuations can
result in linebroadening and/or a shift in the spectral splitting in
subsequent spectral acquistions. Other experimental aspects such as
concentration or fleld gradients/inhomogeneities will also broaden the
1ines.7'8 Eddy currents, produced by the switching coils, result in

time varying magnet fields and recuire that long delays be included in



the field cycle to allow for their decay.

c¢. Experiments to detect disordering. Several attempts were made
to detect a change in the alignment of the sample in low or zero fields.
The field cycle consisted of the usual sudden transition or
demagnetization cycle with an extension of the time spent in either the
irtarmediate fleld or zero field. 1Initiating evolution after this time
interval would be expected to show any changes in the system. The
limits on the time allowed were determined by the relaxation time in low
or zero fields (~ few 100 msec) and the stability of the electronics.

On this timescale, no changes were seen to occur.

d. Relaxation times. The proton relaxation times of the solute
molecules in most nematics and smectics were generally on the order of a
few seconds in high field and 100 msec or more in low fields. An
example shown in Figure. IV.28 illustrates the magnitude of the solute
signal as a function of time in zero field from which a rough estimate
of the zero fileld T1 is gained. The relaxation times of the liquid
crystal molecules is generally so short in high or zero field that only
the evolving solute magnetization 13 detected. Several experiments were
conducted on selectively deuterated or protonated liquid crystals but no
zero fleld signal was ever observed. The solvent and solute signals can
be separated in high field by waiting a delay on the order of a few 100
usec between initial echo pulses. When working in a more homogeneous
magnet to obtain the high field spectra, a delay on the order of
milliseconds is required. Thus using the high field echo may be
unnecessary, as only the solute signal is observed to oscillate, except

its use removes the large background solvent signal.
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Figure IV.28: High field spectra of CH,Cl, In Eastman 11650 as a
function of time in zero field. The sample is shuttled to zero field
using of the field cycle of Figure IV.1l4a with no dec pulses to initiate
evolution in the aligned sample. The sample is allowed to remain in
zero field for a given amount of time before L-ing remagnetized to high
field where the high field spectrum or signal amplitude is measures. As
shown in this figure, the amplitude of the signal decays and from such
the zero field T4 can be calculated. No change in the system ordering
is observed with demagnetization to zero field and immediate

remagnetization as 1s the case for t{=0 milliseconds.

267



2. Samples

a. Solutes. Dichloromethane and 13C—chlorof‘orm were chosen as

simple convenient two spin .sly.sll',em::).u9 Both solutes readily dissolve in

the liquid crystals and, in moderately low weight percents (-5 %},

produce sufficient signal without altering the phase ranges by more than

a few tens of degrees. CH2C12 and CHCl3 have previously been studied by

NMR in liquid crystal solvents.10

large, indicating a small degree of alignment, these solute molecules
were still sensitive probes of the phases. Other solutes with simple
spin systems might be found which align to a higher degree.

b. Liquid Cryatals. Compounds which show liquid crystalline
phaszs generally consist of long organic molecules with one or more
rings in the structure. This ring structure helps to introduce the
diamagnetic sugceptibility; samples with Ax>0 generally have aromatic
structures, while samples with Ay<0 generally have cyclohexane rings.
The following section includes some details about the liquid crystals
used. Temperatures are reported in degrees C. The notation is as

follows: Kacrystalline, S=smectic, N=nematic, and I=isotropic.

t. 11650: p-pentylphenyl-2-chloro-4-(p-pentylbenzoyloxy) benzocate
(Kodak) MW 493.0 ax>0  K=+39%sN+1220-1
Stable solute/nematic mixture at room temperature with a
broad range. Fairly viscous and stable under shuttling.
2. EBBA: p-Ethoxybenzylidene p-butylaniline (Frinton)

MW 281.L4 ax>0 K+350+N+780 1

Although the order parameters are not
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3. ZLI21M:

4, ZLI1167:

5. ZLI1537:

6. ZLI1538:

7. MBBA:

MBMBA:

8. HOAB:

Reasonably stable nematic at room temperature with most
solutes. Some sample separation may occur with shuttliig.
mixture of cyanobiphenyls and cyanotriphenyls. (EM
Chemicals) Low viscosity liquid crystal with nematic phase.
Used to see if disordering occurred.

Mixture of propyl, pentyl and heptyl bicyclohexyl-
carbonitriles (EM Chemicals) Aax<0

n=3 K+58%+N+80°+I n=5 K+62%+N»82%1 n=7 K+71%n-83%1
No data on mixture. Stable nematic phase with all solutes.
ethylbicyclohexylcarbonitrile (EM Chemicals)

Ax<O  K+299+8,>460N-48°+1

Similar behavior to Y4 with narrow phase ranges.
butylbicyclohexylcarbonitrile (EM Chemicals)

Ax<0 K+289+5, 45497901

Similar to 4 and 5. Useful smectic A range. Aligns in field
N-(p-methoxybenzylidene)-p-butylaniline

Ax>0 MW 267.4  K+200+N+479-+1
p~methoxybenzal-p-methylbutylaniline

K+220+§+24,5%1

The latter is chiral and in small weight percents (<12%)
with MBBA forms a chiral phase with the helix axis
perpendicular to the fleld. Very narrow temperature range
and with solute/isotropic transition is near room
temperature. Short relaxations times of solute.
4-4'-bis-(heptyloxy)azoxybenzene

K*7”°*SC*93°*N*122°*I
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9. ZLI3488:

10. 40.8:

11. 80CB:

12. 8CB:

270

Frequently studied smectic C phase. Predicted biaxiality.
Ferroelectric RT smectic C* Mixture

Composition unknown, obtained via H. Zimmermann from Merck
Darmstadt K+<30%+8561°+5, +66°+Ch»85%1

Aligns in magnetic field, no observable biaxiality.
4-n-butyloxybenzylidene-4'-n~octylaniline (Frinton)

MW 365.6 K+320+55+48°+5, »60°»N+76%1

See 11. \Unstable neat smectic B phase.
4-n-octyloxycyanobiphenyl (EM Chemicals/BDH)

MW 307 K+54%+5, +67°N+80%-1

Used in combination with 10, these 1liquid crystals show room
temperature A, B and E phases. Reasonably stable phases if
mixtures not near phase transition except for A which
separates due to low miscibility.

octyleyanobiphenyl (EM Chemicals, K24)

8x>0 K+21.5%+5,+33.5%N+40.5%1

Similar to 11 in structure. Narrow but useable and stable

smectic A phase with solute. Aligns in a field.

Results using all the compounds listed were not reported in this

chapter.

This 1s generlly due to the fact that the behavior of the

nematics with Ax>0 or Ax<0 was identical in terms of alignment,

demagnetization, solutes, similar order parameters, etc. A principal

application of liquid crystals with Ax<0 and Ay>0 comes about when it is

des{rable to spin the sample for higher resolution. Depending on

whether the rield is produced by a superconducting magnet (Bz along
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spinning axis) or an electromagnet (Bz perpendicular to spinning axis),
it is useful to use one or the other sample where spinning would
otherwise cause the sample to reorient about the spinner axis. 1In the
mixtures of Ay>0 and Ax<O (primarily 2 and 4), it is very difficult to
prepare the exact concentration to produce the phase transition at room
temperature. Temperature regulation is the most direct approach for
observing the transition, but even so Tc ogccurs over a very narrow ~1-2°
range. Chiral systems, such as 7 and 9, and Smectic C phases, such as
8, are interesting systems to study as there is predicted to be a
biaxiality to such phases and a non-uniforn alignment with respect to an

applied field direction.
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V. NONAXIALLY SYMMETRIC DIPOLAR COUPLINGS

A. Introduetion

NMR is an excellent tool for the study of motion in condensed
matter since one observes a time average over the motion resulting in an
average chemical shift, quadrupolar interaction, or dipolar coupling.
Small amplitude motions can result in an asymmetry in the dipolar
coupling, although such motions typically do not result in easily
observable changes in the high field NMR powder spectrum. Zereo field
NMR should be sensitive to small amplitude motions which will result in
splittings or extra lines in the frequency spectrum. In the previous
chapter, an asymmetry in the dipolar coupling was found as a result of
the biaxiality and restricted motions in a liquid ecrystalline phase. In
this chapter, two further examples of motionally induced asymmetries in
dipolar coupled systems are presented. The first case is a study of the
libration of the water molecules in a polyerystalline hydrate by proton
and deuterium zero field experiments. The second involves the effects
of proton jumps in a hydrogen bonded carboxylic acid dimer. As a
coneluding section, the relationship betgeen the induced asymmetry and
the effects of residual fields in the zero field NMR experiment is

presented.
B. Librational Motions in a Polycrystalline Hydrate

1. Molecular Motions and Tensor Averaging

a. Dipolar tensor. The characteristic motion of the water



molecules in a typical hydrate are rapid 180° flips about their Co axes1

and librations about three axes.z'3 To a good approximation the
librational modes correspond to rotations about the x, y, and z ax633 of
the molecular coordinate system shown in Figure V.1 and are commonly
referred to as rocking, waving and twisting, respectively. The
influence of the motion on the proton zero field spectrum is treated by
calculation of its effect on the dipolar Hamiltonian, HD._ The rapid
180° degree flips have no effect since they merely exchaége the two
protons. Waving has no effect since it leaves the orientation of the
internuclear vector r uncharged. The dipolar Hamiltonian is therefore
motionally averaged by only two of the librational modes. The resulting

motionally averaged Hamiltonian, HD', is given in the molecular frame by

-
Hp' = < Ry(8,)R (8,0 HpR,(8,) "R (8,077 >

. =1 -1,
= I,°<R,(8,)R (8 JDR (&) 'R (8,0 >°I, (v.1)

(]
—
2
H

where By and 0, are the librational angles about the x and z axes

z

respectively, and the brackets signify a time average over the

librational motion. To second ordsr In the angles 8 characterizing the

libration, we can write the motionally averaged tensor, D', in angular

frequency units asz'u

1-3¢9°> 0 0
z 2 2
D= d 0 -2+3<85>+3<e5> 0 (v.2)
0 0 1—3<ef>
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Filgure ¥.1: The three librational modes of the water molecules in
barium chlorate monohydrate. In this molecular coordinate, system the
H20 molecule lies in the plane of the paper with its C2 axis parallel to
the 2z axis. From top to bottom these modes are referred to as waving,
twisting and rocking. Waving does not produce a reorientation of the
internuclear vector, thus only twisting and rocking have an averaging

effect on the dipolar tensor.



where d=72h/2nr3. Application of the rotations in the reverse order of
Equation (V.1) produces the same expression for D' to this order of

approximation. An unequal intensity in the amplitudes of the two

librational modes produces a nonaxially symmetric average dipolar

tensor. This is made more clear by defining A4 = D', and n= (D';,-

D'33)/D'22 and rewriting Equation (V.2) as

-A(1-n)/2 0 0
p' = 0 4 0 (v.3)
¢l 0 -a(1+n)/2

Calculation of the sudden transition experiment zero field
spectrum for this case proceeds in a manner analagous to that described
previously. The eigenvalues for the Hamiltonian in Equation (V.1) can
be solved for using Equation (V.3). The normalized high field signal

expected for a powder sample is given by
S(t.) = cos(B(3emt )} + cos{A(3-n)t } o+ cos{Snt (v.)
1 T 1 T 1 z" .

where t1 is the evolution time in zero field. The proton zero field
spectrum of a static water molecule, n=0 in Equation (V.4) above, would
consist of lines at zero frequency and at 1vd=372h/8w2r3, where r is the
internuclear distance of the two protons. The effect of the motion is
to split the lines of the static spectrum by an amount proportional to
the asymmetry of the dipolar tensor. These moticnally produced
splittings or additional lines in the zero field spectrum are in sharp
contrast with the shoulders on broad powder patterns which occur in the

high field case.
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b. Quadrupolar Tensor., The zero field spectrum of a motionally
averaged spin I=1 nucleus follows from a treatment similar to that
above. Explicit expressions for the dependence of the quadrupole
coupling constants and asymmetry parameter on the librational amplitudes
have been calculated.z'u Both the quadrupole coupling constant and
asymmetry parameter depend on all three librational modes as well as the
exchange frequency characterizing the 180° flips. In barium chlorate at
room temperature, however, the flip frequency is sufficiently high that
one need only consider an average over the two orientations.1 The 180°
flips average the static quadrupole tensor, which has its principal axis
along the 0-D bond, to one with its principal component either along the
02 axis or perpendicular to the molecular planevof the water molecule.5
The asymmetry parameter is also affected, its value near unity is a
consequence of the motion.6 One notes however that librational

amplitudes are a function of the reduced mass of the molecule, hence the

amplitudes and NQR frequencies will differ slightly in HDO and D20.

2. Zero Field Experiments

a. Proton zero field spectra. The proton zero field spectrum of
i1sotopic abundance barium chlorate has been presented before in Chapter
II. Intermolecular dipolar couplings produce linewidths of approx-
imately 7 kHz thus obscuring the splitting due to the motion. The
effect of isotopic dilution by deuterium on the linewidth of the proton
Zero field spectrum is shown for a series of dilution levels in Figure
V.2. An increase in the amount of structure in the spectrum is seen as
the level of protonation decreases. The spectrum from a 10% protonated

sample, Figure V.3, shows all three lines predicted by Equation (V.4)
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Figure V.2: Proton zero field spectra of barium chlora®2 monohydrate as
a function of isotopic dilution by deuterium: (a) iso'r~ulc abundance,
(b) 60% protong, (c¢) 31% protons, (d) 10% protons. Siructure due to the
asymmetric dipolar tensor of dilute water molecules 1s observed as the
Intermolecular contribution to the linewldth is reduced. Unpaired
protons in the dilute samples contribute to the line centered at zero

frequency.
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Figure V.3: a). Proton zero field spectrum of 90% deuterated
Ba(ClO3)2'H20 obtained with the field cycle shown at the inset. Here
only the positive frequency portion of the spectrum is displayed. All
three lines characteristic of the motionally averaged non-axially
symmetric dipolar tensor are resolved, appearing at 1.37, 41.8 and 43.4
kHz with linewidths of approximately 2 kHz, considerably narrower than
that obtained with the fully protonated material. b). Zero field
spectrum from the field cycle with 90° de pulses shown in the inset.
This experiment employed a de field of 0.010 Tesla oriented orthogonal
to Bo' The spectrum is essentially identical with that of the sudden

experiment .



for the asymmetric dipolar tensor. A value of n=0.047 % 0.004 can be
calculated from the observed splitting.

By combining Equations (V.2) through (V.4) one can use the
experimental splittings and a value of r=1.52 angstroms, obtained from
neutron diffraction measurements7, to calculate <ex2>=0.044 and
<ezz>=0.070 (radians?). Ideally for the zero field calculations one
would like to use the value r' given by r"=<1/r'3>"”3 where the brackets
signify averaging over the librational and vibrational modes. 1In the
absence of this information the neutron diffraction data seems
reasonable, however, as Pedersen‘s8 calculations have found the
internuclear distances, Fas varying from 1.52 to 1.55 & and that
<1/r3>=0.98(1/rg) which 1s a rather negligible difference. A detailed
treatment of this subject is beyond the scope of this chapter, however

3

it is clear that corrections due tc dif‘ferences9 in <1/r3>, l/re. and
2

<1/r3 will have little effect on the calculated <87>'s.

A second experiment was performed to determine if the observed
splittings could be due to residual magnetic fields present during the
zero field evolution period. The fleld cycle 1s shown in the inset of
Flgure V.3b. 1In this experiment a 90° dc pulse was given immediately
after the sudden switch-off of the intermediate field and a second was
applied after the £y period. This sequence, being identical with the
sudden experiment in every other detail, has the effect of simply
changing the relative orientation of the stray field with the initial
condition of the magnetization. The spectrum obtained with this
sequence, Figure V.3b, is essentially identical with that of the sudden

experiment. Results of computer simulations of the effects of stray

fields2u indicate that residual flelds >1 gauss are required to produce
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splittings comparable to those seen in Figure V.3. Experimental
measurements typically place an upper limit of 0.025 gauss on the
magnitude of the stray field and thus this is not considered to be an
effect in the splitting.

b. Deuterium spectrum. Although the rapid 02 flips do not
manifest themselves 1n the proton spectrum, they are readily observable
via their effect on the deuterium quadrupolar spectr‘um.z’s’6 The
deuterium zero field NQR spectrum of a 50% deuterated sample of barium
chlorate was obtained at room temperature using the indirect detection
method which is described in detail in Chapter III to selectively
observe only the 2H signal. Since room temperature deuterium low field
T1’s are of the order of milliseconds, an indirect detection method is
necessary to observe those deuterons in the HDO molecules. 1In the
spectrum, shown in Figure V.4, the v,, v_, and v, lines are all clearly
resolved and from their frequencies one calculates equ/h =122.7 kHz and
n=0,960 which is in good agreement with earlier work.2 Combining the

zero field proton and deuterium data with the quadrupole coupling

2 2

congtants of the gstatic molecule found by Chiba,“ one can calculate <ey>
for the Hy0 molecule. In brief this is done by 1) calculating <e)2(>HDO
and <e§>HDO using the formulas in reference 8 to correct for the reduced
masses, 2) using these expressions to calculate <e§> from the zero field
HDQ data, and 3) calculating <e§>H20 by the reverse procedure in step 1.
Using the explicit expressions for the field gradient tensor averaged by
libration and the C2 flipping, one obtains <By2>=0.123(radiansz). The
librations have a relatively minor effect on the quadrupole spectrun,

6

the value of n near unity is primarily a consequence of the C2 flips.

An advantage of the dipolar measurements is that the static dipole
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Figure ¥.3: Indirect detection zero field deuterium NQR spectrum of 50%
deuterated barium chlorate monohydrate. All three lines expected are
resolved from which one calculates equ/h-122.7 kHz and n=0.96 in
reasonable agreement with single crystal results of the perdeuterated
material where values of equ/h-121.5 kHz and n=0.976 * 0.007 were
obtained. The intensities and phases of the peaks are a complicated
functicp of the level cryssing dynamics, initial zero field state and dc
pulse angles, and are therefore not easily calculated. The bump at
approximately 40 kHz is due to residual proton signal and its small
relative size gives an indication of the selectivity of the indirect

experiment for the deuterons.



interaction is inherently axially symmetric and any asymmetry is

observed the direct result of motion.

3. Discussion

The non-axially symmetric dipolar tensor produced by libration is
readily observable via the proton zero field spectrum. The agreement
between the results of the two versions of the zero field experiment, as
well as the results of computer simulations, rule out the pcssibility of
splittings due to residual fields. FResults for the mean square
amplitudes of the librational modes are in fair agreement with earlier
data,z'8 especially when one considers that the exact librational modes
might differ slightly from the inertial rotaticns assumed.3 The zero
field NQR results for HDO demonstrate the high resolution of the
experiment and the precision with which .it can measure the asymmetry
parameter. The parameters relating to the motion are underdetermined
with a single NQR experiment since the quadrupolar frequencies are a
function of the three librational modes, the rate of the 180° flips, as
well as the values of (eZqQ/h)o and n,, the parameters of the static
molecule. The room temperature deuterium NQR measurements of a hydrate
are usually inaccessible to frequency domain techniques because of their
relatively short T;'s and low quadrupolar frequencies. In general the
2H and 1H results provide complementary informatiow on the motional
characteristics of the system since they possess unique principal axis
systems and hence are affected differently by the different motions
which occur in a systém. The zero field measurements have the
significant advantage of being made with a powder sample whereas the

earlier measurements required a single cr'ystal.2 This aspect should
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allow study of subtle motions in systems inaccessible to single crystal
measurements including amorphous and polycrystalline materials. In
addition, temperature dependent studies can be compared to computer

simulations to understand the dynamics of the system.10

C. Protor Jumps in a Carboxylic Acid Dimer

1. Introduction

A second example of a motionally induced asymmetry is found in the
dipolar coupling between the carboxylic acid protons in a hydrogen
bonded dimer. In p-toluic acid (methyl benzoic acid), like many
carboxylic acids, the molecules form dimers in the solid state.H
X--r'ay11 and NMR12 data have shown that the protons are in a state of
dynamic disorder at room temperature. The motion of the protons between
two sites relative to the oxygen atoms is expected to lead to an
asymmetry in their dipolar coupling. This motion has been previously
studied via single crystals where the asymmetry was obser'ved12 and
should be directly observable in the zero field NMR spectrum. NQR
studies of the 170 atoms in the carboxylic acid sites have corraborated

the fact that the protons jump back and forth between sites rather than

the -COOH moieties undergoing 180° flips.'3

2. Motionally Averaged Dipolar Tensor
This case can be considered to be identical to that of the
twisting libration in the water molecule. Choosing a molecular axis
system such that the internuclear vectoﬁ‘of the protons in the dimer, as

illustrated in Figure V.5, lies in the xy plane of the molecule and that
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Figure V¥.5: Zero field proton spectrum of p-toluic acid, 981 deuterated
at all positions except the carboiylic acid protons as shown at top.

The protons of the dimer jump between equivalent positions on the two
carboxylic acid oxygens. The shoulder of the high frequency dipolar
peak suggests the presence of a motionally induced asymmetry in the
dipolar coupling. The large peak at zero frequency is due to unpaired

protons.
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the jumping protons cause the internuclear vector to change positions
symmetrically by an angle ¢ about the y axis. (This corresponds to a
twist aSout the z axis out of the plane.)

The average tensor can be calculated as the sum of the dipolar

tensors at either of the two positions

B = x,D; + X0, = x,R_($)D,R71(#) + xR, (~0)D,R; (=)  (V.5)

1 272

where Dy and D, are the two tensors differing in orientation in the
molecular frame by *¢ and, X4 and Xy are the mole fractions or
populations of each site. The internuclear vector for the two positions

is assumed equal based on crystallographic data for a closely related

noadisordered carboxylic acid dimer'.w Thus D; and D, are equal and

assuming equal populations of the two sites as expected =zt room

12

temperature due to the low energy barrier’'“, the matrix form of Equation

(V.5) becomes

1-3sin%¢ O g
p-d/ o 1-3c08%% 0 (V.6)
0 0 1

where d=Y2h/2nr3.

3. Zero Field Spectrum
For the static case, the spectrum is expected to be the usual
three line spectrum. The eigenvalues for the Hamiltonian can be derived
from the averaged tensor in Equation (V.6) and the zero field spectrum
Wwill also be given by an expression similar to that of Equation (V.4).
The zero field spectrum is shown in Figure V.S5. From the value

calculated by Meier et a1.'? for a jump angle of $=18.6° = 2° and a
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value of r=2.33 * 0.005 A, peaks are expected at 13.0, 11.52 and 1.48
kHz. The spectrum does not clearly show resolved splittings but the
features in the high frequency peak suggest an asymmetry and appear at
apponimately the correct frequencies. The low frequency peak is not
resolved due to the large zero frequency peak due to residual uncoupled

protons.
D. Quenching of Residual Fields by Nonaxially Symmetry Dipolar Couplings

1. Introduction

This discussion was motivated by the observation that in recent
zero field NMR experiments, the spectra due to axially symmetric dipolar
couplings were broadened by residual fields, whereas those due to
nonaxially symmetric couplings were not. It is well known that dipolar
couplings involving integer spins can be quenched.15 This quenching
effect has been gseen to increase with the increasing asymmetry of the
quadrupolar interaction and is reduced in the presence of a magnetic
(local dipolar or applied) f‘ield.15'16 The study of NQR lineshapes in
the presence of a modulating field has long been of 1nte;est as a means
of assigning NQR transitions and for determining asymmetry
parameters.17'18 Additionally, analytic expressions for the Zeeman
effect on the energy levels of a spin I=1 nucleus have also been
r‘epor‘ted.17 In this section, an analogous case of the quenching effect
of residual fields with the onset of the asymmetry in the homonuclear
dipolar coupling between two spin I=1/2 nuclei (a pseudo spin I=1 case)

in zero field NMR is discussed.



2. Zero Field NMR Theory with Residual Field Effects
a. The Hamiltonian. Generally the dipolar Hamiltonian is treated
as axially symmetric (n=0) in the principal axis system of the
interaction. However, through motional or symmetry effects, the
resulting Hamiltonian in a molecule fixed frame may become nonaxially
symmetric (nz0). With this in mind, the zero field dipolar Hamiltonian
for two homonuclear dipolar coupled spin I=1/2 nuclei, with the z axis

chosen to be along the internuclear vector, can be written

2
Y h
H = ___3 [31

D - I1‘I2 + {1, I, - I, I, )] v.7)
2mr

z1122 1x™ 2% 1y~ 2y

The Hamiltonian has no angular dependence in the laboratory frame and is
identical for every crystallite in a powder sample. The energies for

the triplet manifold of two dipolar coupled spin I=1/2 nuclei are

-~
D
By =By =5
n=20
E3 = up
~up
E1 =T(1 +n) (v.2)
~w
D
EZ-=—2—'(1 n) n#0
E3 = up

where mD=Y2h/2wr3. The eigenstates and energy levels for this system,
written in the zero field basis set, are illustrated in Figure V.6. The
additional n dependent term is seen to lift the degeneracy of two of the

levels Wwhen ng#0. The dipolar coupled system is entirely analogous to
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Figure V.6: Unperturbed triplet manifold energy levels, eigenstates and
predicted spectral transitions of the zero field homonuclear dipolar
Hamiltonian with n=0 and n#0. The eigenstates are written in terms of
the zero field basls set for two spin I=1/2 nuclei and for both cases
are given as [1> = 27 '/2(|aa>+|885), |2> = -1271/2(|aa>-|88>) and

[3> = 271/2(|ag>+|Ba>). The zero field energy levels are independent of
orientation as can be seen from their respective energies E,, E2 and E3
given in the text. The n term of the Hamiltonian 1ifts the degeneracy
of the two lowest energy levels. The lines which appear in the zero
field spectrum are of equal intensity in the abseince of a perturbation.
The zero frequency line in the n=0 cases arises from nonevolving

magnetization corresponding to the degenerate energy levels.



the quadrupolar spin I=1 case. The similarity has been noticed for the
S=1 EPR case where expressions for the lineshapes in the presence of a
spin-spin coupling and a field have been calculated.19 Due to this
similarity, the effects of coupling to a local dipolar field (a
nonresonant I=1/2 spin) or a residual field (due to incomplete
cancellation in the zero field region) should be similar to that found
previously for quadrupolar spins.15

b. Perturbation by Reéidual Fields. A rough estimate of the
effect of a small residual DC field on the dipolar Hamiltonian is made
first by perturbation theory. These calculations have been presented
before for nrO.ZO and are repeated here for comparison to the n=0 case.
The magnitude of Zeeman interactions with the residual field, Bres' is

assumed to be much smaller than the dipolar interaction. The zero field

Hamiltonian now contains an extra term:

Y2h

2

Hyo = =

7F (3r_,1_, - I1‘12 + n(lele ~I,,1.,0] + (v.9)

3 21722 y1'y2

YBres[(sinecosq;(Ix1 *I,) ¢ sinesin¢(Iy1 + Iyz) *+ coso(I,, + Izz)]

The angular terms relate the residual field, assumed to be in the lab z
direction, to the molecular frame. If ng0, one can easily show that the
perturbation does nothing to first order as the matrix elements of Ix,

I, and Iz are zero.]s'ls’21 To second order in the perturbation the

y
resulting energy levels for nz0 are
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wpy 02 2D§
B, == —5(1=n) + xe= (v.10)
2 2
. } . . 2Dy X 2Dx
3 D wD(3—n) wD(3+n)

where the D terms contain the orientation dependence of the residual
field in the molecular frame: DX=YBressinecos¢, Dy=YBressinesin¢ and

D:=YBrescose. The perturbation is seen to shift the energy levels
quadratically in second order and the low frequency transition (E1 - EZ)
is affected most strongly. The shift in eng%gy levels is different for
each crystallite orientation due to the angular dependence in the D
terms and results in a linebroadening effect when averaged over all
orientations. From these expressions, it is evident that as n increases
the shift in energy levels decreases.

When n=0, due to the degeneracy of two of the zero field energy
levels, degenerate perturbation theory must be used to describe the
situation. 1In this case, the degeneracy is lifted to first order

linearly in the residual field. To second order the resulting energy

levels for n=0 are

2 2

it Sl 24
1 2 Zz 3/2wD + Dz
uy 17207 + ni)
E, =-~— +0D - —o2—. (v.11)
2 2 Z 3/2mD Dz
1/2(Di + D;) 1/2(Di + Di)
E. = w. + +
3 D 3/2wD + Dz 3/2mD - DZ

The effective perturbation is larger for n=0 as it is a first order



effect. The spectrum in either case will involve a distribution of
Equations (V.10) and (V.11) over all relative orientations of Bres®

¢. Numerical Simulations. The effect of the residual fields can
be illustrated through numerical simulations. The residual field is
chosen to be along the laboratory z axis as this is generally the
largest component present in practice. Of course the actual direction
of the residual field has no effect on the form of the zero field
Hamiltonian. The simulations calculate the shift in energy levels for
each relative orientation of the field direction in the molecular frame.
The normalized signal, S(t1), is then calculated as a sum over all

orientations from
S(ty) = Tr{RI R exp(-1Hygt; RI,R 'exp(iHgpt)]} (v.12)

where R = exp(—i¢IZ)exp(-ier) is the transformation between the lab and
zero field frames. The appearance of the spectrum depends most strongly
on the relative orientations of the initial condition and the residual
field and, of course, the relative magnitudes of the zero field
interaction and the residual field.

The simulated spectra, produced with the program RESID.FOR, for a
given residual field and increasing n values appear in Figure V.7. For
n=0, the linebroadening of the high frequency line is significantly
greater than for an individual line with np0. The low frequency peak is
most strongly affected as predicted from the perturbation theory
calculations and the component at zero frequency results from the fact
that the residual field and initial magnetization are colinear, thus a

component remains along the z axis and does not evolve. As expected
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Figure V.7: Numerical simulations of zero field NMR spectra of two
homonuclear dipolar coupled spin I=1/2 nuclei with a residual field of
0.025 G in the laboratory z direction and increasing values of n. The
first spectrum with n=0 shows substantial broadening of the high
frequency lines. The zero frequency peak corresponds to nonevolving
magnetization proportional to Iz,lab and is not strongly affected by the
field. With a nonzero value of n, the low frequency lines are most
affected by the residual field showing broadening and a decrease in
intensity. 1In addition, a peak appears at zero frequency ‘' .ich should
not occur when n#0. This peak is a component of the magnetization which
does not evolve but rather remains along the residual field. The effect
of the residual field decreases noticeably as individual lines broaden
very little (although are altered in intensity) with larger values of n.
(Note that the spectra are not plotted to scale as Ehe integrated

intensity is in fact constant.)
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this peak increases in size with increasing levels of the residual
field. 1In the limit of a residual z field which is greater than the
local interactions, a large proportion of the magnetization will remain
locked along the field direction although interesting low field NMR

phehomena result with the sudden transition in intermediate rield.22

3. Experimental Results
The quenching effect has been experimentally observed in two

liquid crystal systems. The zero field NMR spectra of these systems,
consisting of a CH,Cl, probe molecule in Smectic B and Smectic E phases,
have been presented in Chapter IV. Both are disordered powder-like
phases, the former with axial symmetry and the latter a biaxial phase
thereby inducing an asymmetry in the dipolar coupling tensor. The
spectra display inherently narrow lines due to the lack of
intermolecular dipolar couplings. Typically a residual field of
approximately 0.025 G results from shimming the zero field region with a
Gaussmeter. The liquid crystal samples, with very small dipolar
frequencies and narrow lines, have made it necesary to improve upon
this. The zero field NMR spectra taken under identical experimental
conditions are compareq with computer simulationg in Figure V.8. Tne
spectrum of the axially symmetric dipolar interaction shows the effect
of a residual field in the broadening of the outer lines and narrow zero
frequency peak. In the case of a nonzero n in the biaxial phase, the
effect of the residual field is reduced although the decreased intensity
of the low frequency lines and the peak at zero frequency are clear
evidence of its presance.

The effects of residual fields can be removed from the zero field
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Figure ¥.B: Experimental spectra of CH,Cl, in Smectic B (axlally )
symmetric, n=0) and E (nonaxially symmetric, ns0) phases and computer
simulations of the effect of a residual field. For n=0, the high
frequency lines in (a) are broadened considerably relative to the line
at zero frequency. The simulation below in (b) was produced with a
residual z field of 0.0175 G and is broadened slightly with a Lorentzian
function. In (c) the linewidths with ns0 are quite narrower than Ln the
former case. The simulation shown in (d) uses the same residual field
as (b) and shows the expected broadening of the low frequency lines, the

altered intensities and zero frequency peak.
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spectrum by using a dec pulsed field as a refocussing echo pulse in
analogy %0 a high field Hahn echo.23 For samples such as aligned
nematic liquid crystals, a 180° pulse applied in the middle of the zero
field t1 interval will refocus the magnetization and remove the
linebroadening. For powder samples with n=0, the normalized signal

after a dec pulse in the laboratory x direction can be calculated from
S(tq) = Tr{RI,R™ 'exp(-iH gt /2)Rexp (~i71,)R™ 'exp(~iH,pt,/2)
RI,R™'exp (i pt/2)Rexp (171, )R Texp(itypt,/2) ) (V.13)

which for the normalized signal averaged over all molecular orientations

is
S(tq) = 1715(5 + UC033/2(Szszt1/2) + 60033/2(Szszt1)) (v.14)

where Szz is the liquid crystalline order parameter which scales the
dipolar interaction., The analytic expression shows that not all the
signal is refocussed and will show no effect of the residual field. A
certain component evolves for only half the t1 period and is then
broadened by the residual field to half the width of the original line.
The experimental spectrum of the Smectic‘B phase with a 1802 de pulse is
shown in Figure V.9. The high frequency lines are narrowed appreciably

and the half frequen2y broad lines are evident.

4. Conclusions

The residual field quenching by dipolar coupled spin I=1/2 nuclei
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Figure V.9: Experimental spectrum of CH2612 in Smectic B phase after
the application of a 180° de refocussing pulse in the laboratory x
direction in the middle of the zero field period. The signal appears as
predicted in the text with a portion of the magnetization refocussed
into narrow lines at the higher dipolar frequencies. At half this
frequency, magnetization which evolves under the residual field for only
one half the zero field period produces a broadened line.
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has been shown experimentally and is in agreement with predictions made
from perturbation theory and numerical simulations. This effect is
analogous to that seen for integer spin systems in NQR experiments (1).
The simulations assume a residual field in the laboratory z direction
but can easily incorporate any field direction, As stated above,
altering the direction of the residual field will not affect the zero
field Hamiltonian when averaged over a powder distribution, but altering
the relative orientations of the initial condition and residual field
will affect the appearance of the spectrum.zu Through pulsed dc field
experiments which remove the effects of very small residual fields, high

resolution spectra of disordered materials are obtained.
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VI. COMPUTER PROGRAMS

Five computer programs which were written in the course of this
work are included in this chapter. Fortran and executable versions are
stored on magnetic¢ tape. Comments are included in the prosrams to aid

in their interpretation.

1. INHOM: Computes the effect of a single dc magnetic field pulse
on a zero field state proportional to the dipolar Hamiltonian. The
effects of pulsed magnetic field inhomogeneity, to a linear or quadratic
approximation of the change in pulse angle over the sample, can also be
included. Single crystal orientations or averages over a powder can be

calculated over a wide range of pulse angles.

2. PLTSIM: Calculates the zero fleld NMR spectrum for two dipolar
coupled spin I=1/2 nuclei assuming an initial state equal to HD. The
signal is calculated for the demagnetization field cycle using two dec

magnetic field pulses. An output file for plotting is produced.

3. DEMAG: Predicts the final demagnetized state in zero field for
a single spin I=1 nucleus as a function of initial crystal orientation,
equ/h and n valueg., The output indicates numerically whether one, two,
or more level crossings occur during the demagnetization. A matrix of
these level crossing values, produced as a function of crystal
orientation angles 6 and ¢, can be displayed visually on the Lexidata

using a program written by D.B. Zax.
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4. QUAD: Calculates the zero field NQR spectrum for a single spin
I=1 nucleus under two dc magnetic field pulses applied in zero field.
The initial condition is that found by program DEMAG and corresponds to
the high field populations being carried over to zero field. An output

file for plotting is produced.

5. RESID: Computes the perturbation of a small residual z field
on the spectrum of two dipolar coupled spin I=1/2 nuclei, with or
without a non-zero asymmetry parameter. The initial condition is

assumed to be Iz,L as for the sudden transition field ecycle.
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errogram to calculate sidnal intensities

for two dirolar courled srins after a3 sindgle adlf
pulse in zf. Initial state = H(D). Sindle crustal
orientations are weidhted bw sin(th) and summed.
Sidnal in arbitrary units, scale with no. divisions,
DC coil inhomodeneities are also considered

to 2 linear or auadratic aerproximation.

this prodram is INHOM! incremented calculations of
rulses and orientations. anmt ?/3/84

compPlexkid m(3»3)rn(3:+3)rrm(3)srn(3)sst
complexkXlé w(3)sxrywrzrsera(3)yrb(3)

double precision P(3)srr(3»3)sd(3)rthrddrai
double precision aartracrstcrsarsrisrdelrdivsas
dimension f(3)

fet(brl) = -(b¥x1)

tymeX»‘this prodram will calculate the zero field
intensities’

tymreXy‘'3s 3 fct. of 3 sindle zf mrulse for a
homsonuclear ’

tyreXs‘dirolar courled rair of rroton serins demad.
to zf.°

tymeXs ‘enter initial pulse andle in dedrees,”’
accerttsas

tureXs ‘enter increment in pulse lenath and no. of
reretitions”

accestXrairnn

tueeXy‘enter coil inhomoseneity (X field) and no.
of divisions’

acceptXsdelrsdiv

tuymeXsr ‘enter functional dependence of inhomodeneity’
tyreXs ‘(O0=noner 1=linear» 2=quadratic)’

accertt, ft

Pt=rt-1

tumeXy ‘enter initial andle of cryst., orient. in deds.’
accerstX,rt

tureXs ‘enter increment in orientation angle and no.
of reretitions’

accerttrtismm

pi=4,0katan(l1.0)
del=del/100
€a=(33%(pi/180.0))
t=(L%(ri/180.0))
ac=(3ix(pi’/180.0))
te=(tix(p»i/180.0))

p(1)=-1
p(2)=2
p(3)=-1
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Set us functional derendence of field over coil

it (ft) 10:,20+,320
1=1

g0 to 40

1=1

40 to 40

1=2

calculate zero field sidnal for nn increments of
deo Pulser and an increments of theta

do 800 ii=1,nn+t1
st=0,0
ar=0.0
ar=gat(acx(ii-1))
do 600 kk=lrmmtl
th=t+(tck(kk-1))

rotation matrices to be calculated with value
of (th) calculated above

r(1,1)=0,5%x(1+dcos(th))
r(1r2)=(2%%~-.5)Xdsin(th)
r{1:3)=0,5%(1~dcos(th))
r(2s1)=-(2%X%X~.5)%kdsin(th)
r(2+2)=dcos(th)
r(2r3)=(2%%~.5)kdsinlth)
r(3s1)=r(1,3)
r(3s2)==r(1,2)
r{3s3)=r{l1y1)

calculation of unitary transforms and multisrli-
cation by initial density matrix

now to take into account the inhomodeneitwy

S=00°

do 500 JJ=0sdiv
b=JdJd/div
as=artarkdelX(fct(brl))

do 1310 i=1,3
Pi)=(2-i)*{as)

do 111 i=1,3
x=cexmr(cmpPlx(0.0,f(1)))
do 111 J=1,3
m(ird)=xkr(ird)
n{ird)=(condg(:))Rrliyd)
do 140 J=1,3

do 130 i=1,3

y=0.,0

z=0.,0



120

130

135
140

nnNnNnn”n

n

400
500

nNNNNN
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do 120 k=13
u=gtr(ksidEm(krJ)
z=ztr(kridXn(keJ)
rml{i)=yw

rn(i)=z

do 135 i=1,3
mlird)=p(idXrm(1i)
ntisd)=rn(i)
continue

now to use subroutines to calculate the final
matrices to gfive the intensities and freauencies

call matml(nsmsrd)

do 400 i=1,3
wlid=p(idXn(isi)
s=gt+w(i)
continue
continue

weishting of sindle crustal orientations after
incrementingd the andle (th) to produce pPowder ‘sum’.
Noter if only sindle orientation is counted,

then all are weishted the same.

it (ti.ea.0 .and. mm.ea.0) then
wat=1

else if (th .ea. 0) then
wadt=0,1Xgin(ti)

clse
wdtasin(th)

end if

st=stidskudgt

continue

outmut for plotting

print¥sarx(1B80/pi)sreal(st/(mmtl))
continue :

stom
end

subroutines

sybroutine matml(asbrral

matrix multiplier a=axb
commlexXisd 3(IsI)rb(393)rra(3lrs
do 14 i=1,3

do 12 J=1+3

50,0

do 11 k=1,3



11
12

13
14

ssstalisk)Xb(ked)
rald)=s

do 13 J=1,3
alisdd=ra(d)
continue

return

end

311




onNnnonoonNnnnNnaAa

on

srosraa to calculate 2ero field intensities

and freauencies for two dirolar courled srins
under adlf w/pulses in zf. Crwstal orientations
are weishted by sin(th) and sumned.

this rrogram is PLTSIM! incremeneted calculations of
rpulses and orientations with the ortion of producing
a3 smec file for rplottinsg. amt ?/2/84

characterxi3sfname

coarlex ru(3)yrv(3)sm(323)rn(3>»I)srm(3)srn(3)rat,
complex btrstsc(3r3)rd(3r3)rasu(I)susvrXewrzrasby
complex s»rra(3)yrb(3)

dimension (I} s, (I)rr(3r3)rP(3)sa(3)stn(3),»
dimension nrt(3)rfrea(3)

real nt

tumreXs’'this Program will calculate the zero’
tureXr’field intensities and freaguencies for’
tupeXs’a homonuclear dirolar courled Pair of’
twreX,’eroton seins.’ .

tureXr‘enter internuclear distance in andgstroms’
accertXrh

tureXy‘enter initial Pulse andgles alrhar beta (desds).’
tyreXs’where almrha is the first pulse in zfield.,’
accertXraashb

twreXy‘enter alrha and beta increments and no. of
repetitions’

accertXraisbirnn

tumreXs’enter initial andle of crwstal orientation.’
accertirt

turefr‘enter increment in orientation ansle and no.
of reretitions’

acceptXrtiram

pi=4,0%3tan(1,0)

dd=(4.00467€~20)/((hXx1e~-8)%X%3)

23=(a2ax({,i/180))

bb=(bb%(pi/180))

t=(tx(pi/180))

be=(biX(»i/180))

ac=(aix(pi/180))

to=(tix(mi/180))

P(1)==1%(dd/1000)

p(2)=2X(dd/1000)

P(3)=-1%(dd/1000)

more information for outeput format

tureXr‘output to spec file? if uvesrture 0.°
acceptXrll

if (ll.ne.0) s0 to 1

turpeXsr’'what bandwidth will wou be plotting?(in khz)?’
accept¥rbw

calculate zf signal for nn increments of hetar
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and of alerhar and am increments of thets

do 900 ii=is,nn+t
at=0.,0

bt=0.0

st=0,0

do 700 kk=1r,mm+1
br=0,0

ar=0,0
br=bb+(bok(ii-1))
ar=aat(acx(ii-1))
th=t+(teX(kk-1))

rotation matrices to be calculated with value
of (th) calculated above

r(1:1)=0.5%(1+cos(th))
r{lr2)=(2%%X~,5)Xsin(th)
r{113)=0.5%(1-cos(th))
r(2¢1)=-(2%%X=.5)%ksin(th)
r(2s2)acos(th)
r(2s3)=(2%Xx-.5)%sin(th)
r(3rl)=r(1:+3)
r(3r2)=-r{(1,2)
r{(3,3)=r({1,1)

calculation of unitary transforas and multirli-
cation by initial density matrix

m3trices for second andle calculated first

do 10 i=1,+3
e(i)=(2-i)¥~br

do 11 i=1,3
ezcexr(carlx(0,0se(i)))
do 11 J=1,3
c(isdl)=aXkr(ird)
d(ird)=(conJd(a))Xkr(irJ)
do 40 J=1+3

do 30 i=1,3

v=0,0

u=0,0

do 20 k=1,3
vaytprlkei)Xo (ki)
usutr(krl) Xd(kesd)
rv(i)=y

ru(i)=u

do 35 i=1,3
c(irdd=m(idXrv(i)
dlird)=ru(i)

continue

for first zero field pulse andle
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do 110 i=1,3
P(i)=(2-i)%x(ar)

do 111 i=1,3

xacexr (cmPlx(0.,0:P(i)))
do 111 J=1,3
m{ird)=xXr(isd)
n(ird)=(conJiga(x)rxr(ird)
do 140 J=1,3

do 130 i=1,3

u=0,0

2=0,0

do 120 k=1,3

yeytrlkei) Xa(krd)
z=z+rlksidkni{ksJ)
ral{i)=u

rn{i)=z

do 13% i=1,3
ml{lrd)=p{idXkrm{i)
n({isdd)=rnli)

continue

now to use subroutines to calculate the final
matrices to sive the intensities and frequencies

call matml(dscrra)
c3ll matal(nemsrd)

calculation of final intensities and frequencies

a=0.0

b=0,0

§=20.0

do 400 i=1,3

do 300 J=1,3
Ww(d)=d{ird)EN(Jri)
g(J)=p(i)~p ()

if (#(J).ea.0) b=b+w(d)
if (#¢J).1t.0) a=a+wlJ)
if (2(J).8t.0) s=s+u(J)
continue

continue

weight sindle crustal orientations and sum to
det mrowder ‘sum’

if (th ,ec. 0) then
wEt=0.1%sin(tc)
else
wadt=gin(th)
end if
at=attaXwdt
bt=bt+bxwdt
st=stiskudt
continue
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outeut to file

nora=attbt+st

if (ll.ea.0) do0 to 800

rprintXs’for alrha and beta rulses ofi’
erintXsarXx(180/Pi)brx(180/r1)
rrintXy’initial orientations inc.s ress.’
printXstX(3460/Pi)stisnm

=rint 730

format (/r1xs’intensities’r14xs’freauencies(khz)’s/)

print 750r3t/norme»(1)-P(2)
print 750sbt/normrp(1)-p(3)
print 750rsst/normep(2)-2(3)
format ((£10.3s710.3)¢5%»710.3)
g0 to 900

creation of seprec file for rlotting

frea(l)=p(1)-p(2)
frea(3)=,(2)-p(3)
frea(2)=p(l)~»(3)

tn(1)=gt/norm

tn(2)=bt/nora

tn(3)=st/norm

tusreXr’srec file name (speckX.da)?’
accert810, fname

format(a)
oren(unit=Irname=rnanerstatus="new’)
hzet=(bwXx1000)/1024

irtg=3

write (3,840) isrts

format(i3)

write (3+850) hzpt

format(r10,3)

do B70 i=1,3
nrt(1)=512+Jnint(1000Xfrea(i)/hzmrt)
write (3+860) net(i)etn(i)
format{i5,f210,3)

continue

»rint 875

format(//)

printX,‘the scec file!”’

print 880s fname

format (1xsa15)

erintXy’has a bandwidth of!’
print¥sbuws 'khzyfor the follcwind exetl. info.’
do0 to 710

continue

stos

end

subroutines
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subroutine matal(ssbrra)
matrix multimslier axaXb
comrlex a8(3s3):0(393)sra(3)rs
do 14 i=1,3

do 12 J=1,3

5=0.,0

do 11 k=1,3
s=s+aliskIXbl(ksd)

ra(J)=s

do 13 J=1,3

alird)=racd)

continue

return

end
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rrosran DEMAS

2 rprosram to calculate the demagnetized
state of 2 sPin one nucleus

amt 6/11/864

complex ize(333)riex(3r3)siww(3+3)2c(393)27(3»3)
complex 2z(3¢3)sz222(393)risal{3¢3)rr{3+3)rs(3+3)
comrlex 0(3s3rex(393)suw(393)12(353)r0x(323)10%(313)
comrlex 0z2(3+3)9022(3F93)s0222(Jr3)1u(3r3)

dimension st(I)rpor () rhtenpr(3)5irts(100,100):1xP(3)
comaon nstrasetarthrrh

nst=3

tureXy “Input value of e2al@/h and eta.’
accertX,quadrets

tureXrInput no, of reretitions in theta and ehi.’
acceprtXynrers

tureXsy ‘Input initial field value (dauss).’
accertXsho

ri=4,0Ra2tan(1,0)

azauadx(0,25)

damana=6,45e-1

tc=2.0/float(nrers-1)

»0=180.0/float(nrers—-1)

Setting up the auadrurclar hamiltonian

28=3.0%a
bbu-1,0%a
cosetaka

gatting us the initial matrices

do 10 i=isnst

do 10 J=isnst
PCird)=camrln{0,0+0.0)
clird)=cmprlx(0.0,0.0)
isa(irJ)=carlx(0.,0+0.0)
izelisrJ)=camrlx(0.0+,0.0)
iex(irJ)=carlx(0.0+0.0)
iyw(isd)zcarlx(0.0:0.0)
iww{lyI)=carlx(1.050,0)
iww(3rl)=carln(1.0+0,0)
ize(1r»2)xcarlx(0.,07-1.0)
ize(2s1)=carlx(0.0,1,0)
iex(2v3)=carlx(1.0r0.0)
iex(3s2)=carlx(1.0s0.0)
do 11 i=1,3
ise(irid)=cmrl%(-2.050.0)
isa(iri)=aXisaliri)
continue

Now finish the hamiltonian by multipluing
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and addinsg the matrices

call maatml(izesizernstszarc)
call matadd(frcrenst)

call matadd(Psisarnst)

call matml(iexsiexsnstrccsc)
call matadd(fs;crnst)

call mavml(ivurivvrnster-ccrc)
call matadd(Pfrcrnst):

Loomring over theta and phi values
note that each theta and phi combination represented

erintXrnrers

do 400 iii=1snrers

tang=-1.0 + tcxfloat(iii-1)
th=acos{tand) '

do $00 JdJd=isnreps

rh=(0.0 + PcXfloat(jii-1))%(pi/180)
ihold=0.0

Calculate the level crossings before the next ster

abit=10.0

h=500.0

hinc=1.0

call levelx(hshinc:500,1xf)

counta=-1

do 20 ii=1snst

i (IxP(ii)) 14,14,15

d0 to 20

count=count+ti

kk=count+2

htemp(kk)=1xf(ii) + abit

continue

it (count) 24,27,28

hc=0.0

in==-1

g0 to 100

hc=shtenr (2)

in=0

g0 to 100

in=1

if ((htear(2)-htear(3)),1@.0.0) then
hn=htear(3)
hb=htemr(2)

else
hn=htear(2)
hb=hterr (3)

end if

d0 to 100

Now diesdonalize the hamiltonian and store rorpulations
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call ztera(horiexrivyrizesr)
call matadd(rsfrnst) ’
call heigen{(rsusnst)

call order{rrurnst)

do 12 ii=irnst
pop(ii)=r(isi)

if (in) 509460:70

No level crossing

ihold=273
d0 tao 400

One level crossing

call zterm(hcriexrivwrizerr)
call matadd(r,frnst)

call heisen(rsxsnst)

call order(rsxsnst)

find overlar u and x

call matraaml(usxrnstrox)
call overlar(oxsnstrihold)
ha=hc-2.0%abit

call zterm(hariexriyyrizersr)
call matadd(rsfsnst)

call heiden(rr9rnst)

call order(rrsysnst)

find overlar x and v

call matraml(xryrnstrow)
call overlams(owsnstrihold)
d0 to 400

Two level crossings

call ztera(hnsiexrivysizesrr)
call satadd(rsfrnst)

call heisen(rsxsnst)

call order(rexenst)

find overlasr u and x

call matraml{usrxrnstrox)
call overlar(oxsnstrihold)
ha=hn-2.0%abit

call zterm(hariexrivwrizerr)
call natadd(rsfrnst)

call heigen(rryrnst)

call order(rswrnst)

firnd overlar x and 4

call matraml(xsyrnstroy)
call overlar(owrnstrihold)
call zterm(hbriexriyyrizerr)
call matadd(rsfsnst)

call heiden{rrzsnst)

call order(rrzrnst)
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find overlamrs w and z

call matraml(wszrnstroz)
call overlam{(ozrnstrihold)
he=hb-2,0%abit

call zterm(hcriexrivwsrizerr)
call matadd(refsnst)

call heigen{(rrzzynst)

call order(rrzzynst)

find overlasr z and zz

call matraal(zyzzynstsozz)
call overlam(ozzsnstsihold)

produce final density matrix for zero field Prodraa
the numbers srroduced were used to rlot a3 two
dimensional ma> on the lexidatar each color
rerresented the »sresence or absence of 3 level
crossing and which levels cross

it (ihold.ea.273) then
st=l

else if (ihold.ea.266) tlien
pt=2

else if (ihold.,ea.141) then
rt=3

else if (ihold.,ea.84) then
pt=4

end if

irts(irdd)art

rrintksimts(irJ)

continue

continuye

stop

end

Subroutines
subroutine zterm(horiexsivurizerr)
sets us field terss of hamiltonian

comeplex r{3s3)siex(313)riww(3:3)rize(3,3)
comrlex ut(3r3)suwt(3r3)r2t(3,3)

comeon nstrarsetarthsrh

daana=4.45e-1

do 10 i=1lynst

do 10 J=1rnst

rlird)={0,020,0)

womgdammaXho

dx=woXsin(th)*Xcos(#h)
dy=woXsin(th)xsin(ah)

dz=woXcos(th)

do 11 i=1lsnst

do 11 J=1lrnst
r{ird)adxRiex(irid+duXivulis)+daRize(ird)
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continue

return

end

subroutine matal(arbrnsrxrd)

3 matrix multirlier c=a3x%xb

comrlex al(nsn)rb(nsn)irdinsn)rrvi(é4)ss

do 14 i=1,n-
do 12 J=1sn
5=0,0

do 11 k=1lsn
s=6+3(irk)XD(KrJ)
rv(J)=s

do 13 J=1lsn
dlisd)=xtrv(d)
continue
return

end

subroutine matadd(arbsn)
adds two nxn comprlex matrices

comrlex 3(nsn)eb(nrn)
do 10 i=1,n

do 10 J=isn
alirJd=a(ird) + b(ird)
return

end

subroutine order(rrusn)

orders the eidenstates by enerdy 3s heiden does not

a=a3+b

aluaws return theam in the samse order

coarlex rinsn)ru(n:n)rt(3:3)
dimension e(3J)

do 10 i=lsn
e(i)=real(r(iri))

continue

do 11 ii=1sn

if (e(1).4t,e(2) ,and. e(1).4t.,e(3)) then

t(iirl)=u(iirl)
it (e(3).1t,.e(2)) then
t(iis2)=u(ile3)
£0iiesI)=y(ii2)
else
t(iis2)=y(iie2)
t(iir3)=uCiinr3)
end if
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else 1f (e(2).8t.e(l) .and, e(2).s8t.2(3)) then
t(ids2)dmu(iin2)
it (e(l).2t.e(3)) then
t(iir2)auliirl)
tCiieII=u(ile3)
else
t(iir2)=u(iir3)
t(iir3)suliirl)
end if
else if (e(3).st.e(2) .and, e(I).dt.e(1)) then
t(lisl)d=u(iis3)
it (e(1),5t.2¢(2)) then
tCidr2)=uCiirl)
t(iirI)=u(iisr2)
else
tCiir»2)au(iis 2)
tCiisI)=uiinrl)
end if
end if
continue
do 12 i=1yn
da 12 d=l,sn
uCisdd=t(isJ)
continue
return
end

subroutine matraml(arbrnro)
a2 matrix aultislier o=a-adJjointxb

comarlex a(nend)sb(nrn)rcv(b4)rsrol(nrn)
do 14 J=1sn

do 12 i=1sn

£=20.9

do 11 k=1sn
s=stconde(a(kei))Xb(keJ)
cvi{il=g

do 13 i=1,n

o(irdd=cvii)

continue

return

end

subroutine overlam(asnrihold)

looks fOr max overlar of eidenstates and assisgns

final state after level crossing

coarlex alnyn)
real max
dimension iJ(3)
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indx(iisddrkk)=il + 8%JJ +64%kk
ii=1
Jd=2
kk=4
ihold=0.0
ihold=indx(iisJdirkk)
do 10 J=isn
id(1)=1i
id(2)=dd
1Jd(3)=kk
if (real(a(ird)).ge.real(a(2y4))) then
maxareal(a(ir,J))
aa=1
bb=J

else
aax=real(3(2yJ))
aa=2
bb=J
end if
if (real(3(3rJd)).dt.max) then
2a=3
bb=J
end if
it (aa.ne.bb) then
tear=ij(as)
1jtaa)=ii(bb)
ij(bb)=tear
ihold=indx(iJ(1)+id(2)9iJ(3))
end if
continue
return
end

subroutine printarn)

comrlex a(nrn)

do 10 i=1sn
rrintXs(a8(isd)rd=lrn)
continue

return

end

subroutine levelx(hshincrynslx?)

a3 rrosram to calculate the level crossing field
of the serin 1 eidenstates froam analwtic solutians

of the enersies

dimension e(3)rv(3)1xP(3)
common nstraretartherh
danna=(5.45e~1)
pi=4,0%atan(1.0)
ea=(1,0+eta)xXa
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eb=(1.0-eta)xa

ec=-2,0%a

x=0.0

wy=0,0

z=0,0

ix=0,0

iy=0,0

iz=0.0

1xf(1)=0.0

Ixf(2)=0,0

I1x?{3)=0.0

do 100 ix=1lsn+1

v(1)=0.0

v(2)=0.0

v(3)=0.0

hh=ah -~ hinck{(i-1)

d=gsamaxhh

pm~(dXX2 + (aXX2)2(3,0 + etaxx2))
aa=aX(d¥x2)X(((cos(th))XX2)tcos(2xth)tetax
({(sin(th))2x2)%(cos(2%xrh))}
ab=eaxebXec

aa=aatab
c=(aa/2.0)%(((3.0/abs(p) ) XXI)XX,5)
beta=acos(c)

do 10 J=1,3

k=Jj-1
ctr=cos{(betat+float(k)%*2.0%ri)/3.0)
cotm((4.0%xabs(»))/3,0)%%,5
e{J)mctr¥cnt

continue

v(l)=abs(e(1)-e(2))
v(2)=abs(e(l1)-e(3))
v(3)=abs(e(2)-e(3))

if (v(l).1e.,1.0) then

x=x+hh
ixmix+l

end if

it (v(2).1le.1,0) then
w=wthh
iymiwtl

end if

if (v(3).1e41:0? then
zaz+hh
iz=iz+l

end if

continue

if (ix.n@,0,0) IxP{1)ax/(ix)
if (iwine.0.,0) 1xP(2)=wu/(iyw)
it (iz.ne,0.0) 1xP(3)=2/(iz)
return

end
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srasrae to calculate zero field intensities

and freauencies for 3 sindle smrin 1 nucleus

under adlf w/rulses in zf., Ipitial condition
corresronds to HF pomrs. Sindle crwstal orientations
are weighted in phi by sin(th) desendence

this srodram is QUAD?! incremeneted calculations of
sulses and orientations with the option of eproducing
a spec file for plottind. amt 10/86

characterxiSyfname

camerlex ru(I)rrv(3)m(3y3)rn(3:3)rral3)rrn(3)ratsbty
complex stre(3¢3)rd(3sT)rarwi{3)rusrvexrsyrzrarhesy
complex ra(3)rsrb(3)stharthbrerhisr(3»3)sthsrthzrzt,
complex zzst(3s3)srcviI)ycb(3)

dimension e(3)rm(3)»P(3)srd(I)ren(3lrtens(4drnt(4),
frea(4)

double precision aaseta

tureXs‘this Program will calculate the zero’
twreXr‘field intensities and freauencies for’
tureXs‘’3 single spin 1 nucleus.’

tureXs’enter e2al/h (kHz) and eta’

accestXsaareta

tureXy‘enter initial sulse andles alrha and beta

in dess.’ .

tuseXs 'where alpha is the first pulse in zfield.’
accertXraarbb

tupeXs ‘enter 3lmha and beta increments and no. of
reretitions’

accertXsaisbirnn

tureXy ‘enter increments in theta and Phi (equator)’
accertXsttrince

Setting us 311 those handy little numbers for later

riz=4,0%223tan(1.0)
aa=aaX.25
aa={2aX(wi/180.0))
bb=(bbX(ri/180.0))
bo=(bix(»i/180.0))
acx(ai¥(pri/180.0))

The auadrurolar enersies and paopulations
in zf eisenstates

en({l)i=aax(1teta)
en(2)=-2%aa
en(3)=aaX(l-eta)
r(1)=1

p{(2)=~1

P(3)=0

more information for output format
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tumreXs‘Outrut to srec file? if uwasrture O0.°
accertXrxxx .
ift (xxx.ne,0) g0 to 1

tureXy ‘what bandwidth will wou be rlottind?(0-? khz)”’
accertXsbu

calculate zf sidnal for nn increments of betas
and of alrhar and tt increments of thets

ar=0.0

br=0.0

do 900 ii=1lrnn+l
ar=aa+(acx(ii-1))
br=bb+(bcx(ii-1))
tha=0.0

thb=0,0 =
ths=0.0

thz=0.0

Locrind over tﬁeta

it (tt vne. 1) tine=2,0/(tt-1.0)
do 701 11=1,tt

at=0.0 .
bt=0.0
st=0.0
zt=0.0
cl = -1,0 + tincxfloat(ll-1)

theta=acos(cl)
impzjnint(float(incr)xabs(sin(theta)?’)
irv (im» .,ea., 0) irmr=1

pinc=2Xpi/irs

Loorind here for phi derendence

do 700 kk3lsrism
phi=pincxfloat(kk-1)
erhiz=cexr(carlx(0,0r2hi))

rotation matrices to be calculated with value
of (theta) and (mhi) calculated asbove

r{(ls1)=s.5%(1+cos(theta))Xcondd(erhi)
r(1r2)=(2%%-,5)xsin(theta)
r{1,3)=.5%(1-cos(theta))x(erhi)
r(2s1)=~(2x%-,8)%sin(theta)kcondg(erhi)
r(2:2)=cos(theta)
r(2:3)m(2%%-.5)xsin(theta)X(erhi)
r(3s1)=conJde(r(1,3))

r(3:2)m=(r(1+2))

r{(3s3)=conJds(r{ls,1))

Unitarw transform between basis sets
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t(1s1)=(2%%=,3)
t(1+2)=0.0
t(1,3)=(2%%=,5)
t¢(2,1)=0.0
t(2,2)=1.0
t(2:3)=0.0
£(3s1)=(2%%-.3)
t(3:2)=0.0
t(3,T)=~(2%X%-.3)

calculation of transformed sulses

natrices for second andgle beta calculated first

nnNnNnnNn~n

do 10 i=1,3

10 e(i)=(2-i)x=-br
do 11 i=1,3
azcexr(onmlx(0.0r0(i)))
do 11 J=1.3
c(irsdd=aXr(isd)

11 diisi)=(conJg(a))¥rlis.d)
do 40 J=1.3
dag 30 i=1,3
v=0,0
u=0.0
do 20 k=1+3
vav+condg(r(ksi))kclks i)

20 vrytcondg{rlkri)IRd(k,J)
rv(i)=y
30 rul{i)=u

do 3% i=1.,3
ctirdd)=rv(i)

3s d(isdd=ru(i)

40 cantinue
call uvamu(tscrov)
call uamu(tsdrch)

tor first zero field sulse andle

nnon

do 110 i={,3
1i0 P(i)=(2-i)%(ar)
do 111 i=i,3
x=cexer(cmrlx(0.0,P(i)))
da 111 J=1,3
alisd)axRri{isd)
111 n(ird)=(canJdd(x))Rkr(ird)
da 140 J=1,3
do 130 i=1,3
w=0,0
20,0
do 120 k=1,3
wxydcondg(r{ksi))km(ked)
120 zwztconds(rckridIRn(ksJ)
rm(i)my
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180
200
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300
400
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700

701
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ra(i)=z

do 135 i=1,3
m{ird)=rm{i)
n{isd)=rn(i)
continue

call uamu(trmrcy)
call uvamultsnrch)

naow to use subroutines to calculate the firal
matrices to give the intensities and frecuencies

do 200 i=1,3

do 180 J=1,3
c(irdd)am(idkec(ird)
alisd)zp(i)Rm(ird)
continue

continue

call matmxl(drcrra)
call matmlinsmrrb)

ceslculation of final intensities and freauencies
for a2 siven thets and ehi

3=0.0

b=0.0

£=0,0

22=0.0

do 400 i=1,3

do 300 J=1,3

w(J)=d(isi)En(dsi)

dl{J)=abs(en(i)-en(J))

if (abs(2(.y)-0.0).1@.1d=4) zz=zz+ulJ)

it (abs(a(Jj)~(2%etaxaal)).le.1d-4) a=at+wl(J)
it (abs(g(Jj)-((3-etald¥aal)).le.1d-4) b=b+wl(d)
if (abs(d(Jj)=((J+eta)*aa)).le.1d~-4) s=stw(d)
continue

continue

Sum over »hi values first and weight by dehi

at=at+axeine
bt=bt+bxmine
st=st+skminc
zt=zt+zzkprine
cantinue

Now toc sum aover theta

tha=that+at
thb=thb+bt
ths=ths+st
thz=thz+zt
continue



outrut to file

nnn

rnorm = thz+thatthbiths

dnore=2Xrnorm
if (xxx.ea.0) g0 to 800

710 rrintky’For 2 srin 1 nucleus with e2al/h and eta?’
rrintXr4Xaareta )

srintdy‘for alrha and beta pulses ofi’
PrintXsark(180/P1)brk(ig0/ri)
print 730 .
730 format (/sixr’intensities’rd40xy’freauencies(khz)’»/)
print 750rreal(thz)/rnorasaaxd.0
print 75Csreal(tha)/rnormr2¥etakaa
print 750rreal{thb)/rnormr(3I-eta)kaa
rrint 750sreal(ths)/rnormy (I+eta)Xaa

750 Pormat (£20.5+5%9720.3)
g0 to 900

<

[ creation of ssec file for Plotting

c

800 tyreXy‘srec file naae (sreck,da)!l’
acceprt810rfnane

810 forast(a)
oren(unit=3ynamesfnamersstatus=’new’)
ists=4

frea(1)=0.0
frea(2)=2Xeta%aax1000

frea(3)=z(3-eta)Xaax1000
frea(4)=(3+eta)Xaax1000
tens(2)=real{tha)/rnorm
tens(3)=real(thb)/rnorn
tens(4)=real(ths)/rnorm
tens(1)=real(thz)/rnorn

hzrt=(bwx1000)/512

write (3:,840) imsts
840 format(i3)

write (3,850) hzet
850 format(£10.3)

do 870 i=1,4
nt(i)=1+inint(Prealil/hzrt)
write {3,840) nt(i)stens(i)

860 format(i5»r10.3)
870 continue

eprint 875
873 ftormati(//)

rrintks'the spec file!’
print 880s fname

880 format (1x,81S)
PprintXx,‘has @ bandwidth of:’
rrintXrdbwr‘khzsfor the following exetl. info.’
g0 to- 710

200 continue
stor
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end
subroutines

subroutine srin(a)
comrlex 3(3¢3)

do 12 i=1,3

do 11 J=1,3
rrintky a(irJ)
continue

return

end

subroutine uamu(usbrv)
ynitary transform b=u-adioint¥biu

comprlex u(3s3)»b(3s3)rvisd)
call matraml(usbsv)

call satal(bsusv)

return

end

subroutine matraal(asbrov)

astrix multirlier b=a-addointxb

comrlex a8(3:3)yb(3Ir13)scvi(b4)ss
do 14 J=1,s3

do 12 i=i,3

s=0,0

do 11 k=1,3
s=stconJdd(alksi))Xb( ks J)
cv(i)=sg

do 13 i=1,3

b(irJ)mov(i)

continue

return

end

subroutine matal(asbrra)
matrix multislier a=axp
coarlex 2(3»3)sb(3:s3)rra(3)rs
do 14 i=1,3

do 12 J=1,3

sx0,0

do 11 k=1,3
s=s+a3(isk)Xb(krJ)

ra(J)=s

do 13 J=1,3

atirsJ)=raly)

continue

return

end
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prosram to calculzte the effects of »
residual field (2) in zero field on
2 non~axially swmmetric dirolar tensor

Prosram RESID AMT &/29/86

eaual increments of dcos(theta) and increments in
rhi deterained by sin(theta) weidhted bw d(phi).
Total intensitw normalized to 2 units. Warninsg:!
this rrosrsa asw not work when the residual field
interaction arerroaches the serlitting due to eta.
Alsor the eigenvalues and eidenvectors returned
from heiden are sorted by enerdy level, This maw
not hold for sll cases.

comrlex u(3r3)s 8(3»3)s h(3s3)y Ty @(3)r w
dimension reak(2,1024)

common nstrn

nst = 3

n =3 .

tuyreXxsr ‘ Inrut residual field strendth in Gauss.’
accertXs res

resk = res X 4200.0

twereX, ’ Inmut disolar couslindg scaled bw S (kHz)s
and eta.’

accertXy dd» eta

note that dd is 1/3%spectral freauencyu

ddd = ddx1000.0

ri = 4,0xa3tan(1.,0)

tureXxs ‘ Inerut no. of increments in thetas and phi
(at eauator).’

accertXs ttr ince

i» = ince/340

twreXs ’ Input full bandwidth in kilohertz.’
accertXxs, bduw

hzet = bdwX1000.0/1024,0

tyreXy ’ Quteut to file for elottind? (O0=nori=yes)’
accertXs imlat

it (irlot .ne, 1) g0 to §

tumreXxs ‘ Input number of srec file for plotting.’
acceptxy, ifl

rrint¥s ’ Fieldes Courlinay Eta, Theta Inc.s Phi Inc.»

Bndwth’
rrintX, res, dds etar tt» incers bdw
i?t (irlot .ea, 1) m»rintX, “Serec file no. ’ ,ifl

The following mastrix a(nsn) is I(zslab) and also
the fore of the residual field.

it (tt .ne, 1) tine = 2,0/(tt-1.0)
do 700 ii = 1, ¢t

cl = ~1,0 + tincxfloat(ii-1)

thetas = acos(cl)

irpr = Jnint(isk360%kabs(sin(theta)))

331
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if (ise .eq, 0) isp = 1
erinc = 2%pi/iee

do 600 JJ = 1, imss

phi = pinckrlost(Jdi-1)

xxx = sin(theta)®cos(ehi)
yyy = sin(theta)xsin(rhi)
Zz2z = cos(theta)

3(1s1) = camlx(0.0+0,0)
3(1:,2) = yyydcarlx(1.0:0.0)

8(193) = xxx¥cmrlx(1,050.0)
3(2,1) = 3(1,2)

2(2+2) = 3(1+1)

a(293) = zzzXcarlx(0.0+1.,0)
a(3rl) = a(1,3)

a(3+2) = condg(a(2:3))
23(3,3) = 3(1,1)

Set ur initial Hamiltonian

The matrix h(nsn) is the initial state including the
dirolar toerms and the residual field,

do 11 i = 1,3

da 10 J = 1,3

h{isd) = cmmlx(0.0,0,0)
u(ird) = camlx(0,0:0.0)
continue

cantinue

h(1:1) = ddd2camslx(2.0,0.0)
h(1r2) = a(152)%Xresk

h(153) = 3(1,3)%resk
h(2r1) = 2(2r1)%resk
h(2,2; = ddd¥caslx{~{(1-eta)»0.0)
R(293) = 3(2,3)%resk
h(3s1) = 3(3s1)%resk
h(3s2) = a(3,2)%resk
h{3r3) = dddXcmelx(-(1+eta)»0.0)

Now dissfonalize this matrix
call heidgenthsrusnst)

if (eta .ea. 0) g0 to 15
call sort(hru)

do S0 i=1rnst
e(l) = hiiri)

Now find the I(z:lab) in the zero field basis
call vamu({usarney)

Now find iJ and Ji elements for intensities and
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scale by sndular rouder terms and find enersies
Save this information in an arrav for srlotting

w = 0,0

do 300 i = 1y nst

do 200 4 = 1» nst

w o= alisJi¥a(dri)

ift (real(w) .1t., le-4) g0 to 200
f = e(i) - e(d}

isnt = 512 ¢+ dnint{real(f)/hzrt)
peak(lrimnt) = ipPnt

reak(2rirnt) = reali{w)kpinc + Peak(2sipPnt)
continue

continue

continue
continue

Outrut to »lotting file

k = 0.0

supm = 0,0

printXy ¢ Point Nuaber and Intensities!’

do 701 iii=1,1024

if (peaki{2,iii) .ne. 0.0) print¥, meak(1,iii),
*Qak(2s1ii)

summ = summ + peak(2siii)

i? (reak(2siii) nes 0.0) Kk = k + 1

continue

it (imrlot .ec. 0.0) g0 to 9200
call defile(’spec’rifls0)
write(1,703) k

format(is)

write(1:,710) hzet
fornat(eld,.s)

do 800 i = 1,1024

it (reak(2s1i) ,ea. 0.0) 10 to 800
write(1,730) Jiftix(reak(1,i)):
reak(2si)/ (suamn/2)

foraat(isér, el4.6)

continue

close (unit=01)

stoe
end

subroutines
subroutine sort(a:b)

sorts the hamiltonian and eidenvectors

, based on maznitude of eidenvalues

C ey,
—
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coarlex 3(323)r b(393)r BwoTk(3»3)y bwork(3:3)
dimension s(3)r t(2)

do 15 i=1,3

(i) = real(a(iri))

rmaxl = amaxl(s(i)rs(2)rs(3))

it (rmaxi .ea. s(1)) then
iflag = -1

else if (rmaxl .ea. $(2)) then
itlas = 0

else if (rmaxl .ea. s(3)) then
itlag = |

end if

it (iflas) 100:200,300
d0 to 400
do 220 i=1,3

awork(irl) = a(ir2)
awaork(isr2) = a(isl)
awork(is3) = a(ir3)
bwork(irl) = b(is2)
bwork(is2) = b(isl)
buork(ir3) = b(i.,3)

do 230 i=1,3
3(1s1i) = 3work(2,1)
3(2ri) = gwork(1l,i)

3(3ri) = awork(3si)
b(1ei) = bwork(2,i)
b(2ri) = bwork(1l,si)

b(3ri) = bwork(3si)
d0 to 400 .
do 320 J=1,3

awork(drl) = a(jr3)
awork(dr2) = 3(ir2y
awork(Je3? = a(Jrl)
bwork(drsl) = bl{Js3)
buwork(Jr2) = b(ds2)
bwork(Jr32 = b(Jsl)

do 330 .j=1,3

alled) = auwork(3rd)
3(2»J) = 3uwork(2,4)
2(3sd) = 3uark(1ysd)
b(1sJ) = buork(3rJ)
b{(2sJ) = buork(2,J)
b(3rJ) = buwork(irJ)

do 413 iwis2

tii) = real(a(it+lri+l))
FrREX2 = 3max1(t(1),t(2))
if (reax2 .ea. t(1)) 20 to 400
do 520 k=1.3

awark(ksl) = alksl)
awork(ke2) = alk:3)
awork(ks3) = alks2)
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bwork(ksl) = b(krl)}
bwork(ks2) = b(ks3)
bwork(ks3) = b(ks2)
kmi,3

do 530
a(lrk)
al(2yk)
a(3srk?
b(1sk)
b(2sk)
b(3sk?
return
end

awork(1,k)
swork(3rk)
awork(2sk)
buwork(1sk}
bwork{3,k)
buark(2sk)
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