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DIMENSIONAL CHANGES IN FFTF AUSTENITIC CLADDING AND DUCTS
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Westinghouse Hanford Company
Richland, Washington 99352
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ABSTRACT

As the standard cladding and duct material for
the Fast Flux Test Facility driver fuel, 20%
cold-worked 316 stainless steel has prov1ded %ood
service up to a fast fluence of 16 x 10% n/cm® in
extreme cases. The titanium-stabilized variant
of 316 SS, called D9, has extended the useful
1ife of the austenitic alloys by increasing the
incubation fluence necessary for the onset of
volumetric swelling. Duct flat-to-flat, length
and bow, pin bundle distortion, fuel pin diameter
and length, as well as cladding volumetric
swelling have been examined for high fluence
components representing both alloys. These data
emphasize the importance of the swelling process,
the superiority of D9, and the interrelation
between deformations in the duct, bundle, and
individual pins.

INTRODUCTION

The behavior of titanium-stabilized D9 alloy
and 316 stainless steel (SS) in fueled tests has
been compared previously for relatively Tow
fluences achieved in both the Fast Flux Test
Facility (FFTF) and EBR-I1."° The use of DS has
extended the useful life of austenitic alloys in
sodium-cooled fast reactors by increasing the
incubation fluence necessary for volumetric
swelling. This paper discusses some of the
higher f]uence dimensional change data (up to
25 x 10% n/cm®, £ > 0.1 MeV) from an ever-
increasing number of D9 ducts and fuel pins and
reviews earlier data from 316 SS components.
Radial, axial, and volumetric changes were con-
sidered as well as component bowing. Al1 of the
cladding data derive from actual fuel pins con-
taining uranium/plutonium mixed-oxide in a 0.91-m
(36-in.) fuel column. These wire-wrapped pins
were uniformly 5.84 mm (0.230 in.) in diameter
with cladding thickness of 0.38 mm (0.015 in.).
A1l of the duct data were obtained from 3.18 mm
(0.125 in.) thick ducts each containing a bundle
of 217 fuel pins. These data continue to be used
by various investigators as a way to validate
materials performance correlations and as a
complement to data from nonfueled irradiated
materials.

As the standard cladding and duct material
for the FFTF driver fuel, 20% cold-worked (CW)
316 SS has provided good service in cores with
peak fast f1uences of approximately
12 x 10% n/cm Selected assemblies_have geen
allowed to run to as high as 16 x 10% n/cm
although large numbers of such swelled assemblies
could not be accommodated in a typical core
because of refueling difficulties.

Cold-worked D9 alloy cladding and ducts have
been used on a number of experimental assemblies
in FFTF. The nominal compositions of 316 SS and
D9 used in FFTF are compared in Table 1. The
principal variation is of course in titanium, but
other elements vary slightly also. Compositions
for two cladding heats of D9 are given because
the two subsets of cladding made from these heats
behaved differently. None of the c]addlng/duct
alloys currently on high exposure assemblies is
from the high phosphorous/high boron variants of
D9 which promise even greater reductions in
radiation-induced dimensional increases.

Although ferritic alloys have even better
resistance to swelling, austenitic alloys are
attractive because of their greater high tempera-
ture strength.

Table 1. D9 Composition.

Ni cr Mo Si Mn Ti c
AISI 316
(Nominat ) 13.5 17.5 2.5 0.6 1.75 .- 0.05
D9 (Early
Cladding
Heat) 15.2 13.8 1.46 | 0.92 1.76 | 0.23 0.052
D9 (Later
Cladding
Heat) 15.8 13.7 1.65 0.80 2.03 0.34 | 0.39
D9 (Duct
Heat) 16.1 13.5 1.50 | 0.97 | 1.70 | 0.20 0.048

EXPERIMENTAL MEASUREMENTS

Fuel assemblies of interest were first )
removed from the FFTF core and cleaned of sodium



coolant using a water wash. The dimensions of
hexagonal ducts were then measured in the Core
Component Measuring Machine® in the Interim
Examination and Maintenance Cell at FFTF. This
instrument measures radial distance and axial
length as well as bow of an irradiated duct.
Radial dimensions were measured every 2° around
the duct circumference at selected axial posi-
tions resulting in flat-to-flat and corner-to-
corner determinations accurate to 0.102 mm
{0.004 in.}. Length and bow measurements are
judged to be accurate to 0.381 mm and 0.635 mm
(0.015 in. and 0.025 in.) respectively. These
postirradiation measurements agreed very well
with in-situ duct length measurements made using
the fuel handling machines in the FFTF core.
Preirradiation duct dimensions were nominally
116.2 mm (4.575 in.) flat-to-flat and 3.1 m

(121 in.) long. Bow was defined as a maximum
deviation from a line joining the ends of a duct.

~ After removal of the duct from each individ-
ual assembly, the bundles of pins were inspected
and individual pins were selected for detailed
examination. Postirradiation axial and diametral
dimensions of fuel pins were determined by either
laser or contacting devices. Typically, diameter
profiies were performed at several circumferen-
tial orientations. These data were compared to
previously measured as-fabricated base values.
Cladding volumetric void swelling (one component
contributing to cladding and duct diameter
change) was determined by immersion density
measurement performed on defueled irradiated
cladding rings sectioned from fuel pins or on
samples machined from duct faces.

DUCT BEHAVIOR

Reference 4 emphasizes the importance of
monitoring the dimensional changes of in-core
ducts in that the life-limiting factor for the
FFTF driver fuel systems was the deformation and
increased withdrawal loads associated with duct
swelling. It is also obvious that ducts cannot
be allowed to grow indefinitely in length without
hindering the operation of fuel handling
machines.® The peak flat-to-flat dimensional
increase observed in FFTF for 316 SS (20% CW)
ducts occurred in an asgembly irradiated to a
fast fluence of 16 x 10% n/cm® (E > 0.1 Mev).'
The maximum dilation was approximately 7.6 mm
(0.300 in.) at an axial position slightly above
mid-core (Figure 1). Similar maximum deformation
was not regched in D9 alloy ducts until a fluence
of 24 x 10% n/cm® with the peak dilation posi-
tioned stightly below mid-core. These highly
deformed assemblies were irradiated in a core
made up of primarily Tower exposure assemblies;
therefore, one should not infer that an entire
core could be taken to these fluences with
austenitic alloys.

In a number of high fluence ducts, the over-
all profile of duct deformation is superimposed
over a regularly spaced series of localized
strain peaks (Figure 2). These peaks do not
occur at the same axial position for adjacent

®A rather complete history of the run-by-run core
component performance and refueling behavior can
be found in Reference 5.
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FIGURE 1.
Ducts Irradiated in FFTF.
is shown for each.
(4.575 in.) across flats.

Peak Flat-to-Flat Dilation Observed in 316 SS and D9
[Only the most deformed set of flats
Unirradiated ducts were originally 116 mm
Fuel columns were 0.91 m (36 in.)].
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Flat-to-Flat_Measurements for a Single Duct
(316 SS at 16 x 10%

n/cm® peak fast fluence).

Note local peaks in each trace.

duct faces. When the radial displacement data
for each individual duct face are examined (as
opposed to taking a flat-to-flat point of view)
strains that spiral along the duct in a pitch of
305 mm (12 in.) are apparent. This is exactly
the pitch of the wire wrap for the underlying
pins and therefore the Tocalized strains are
taken as an indication of interaction between pin
bundle and the duct. Plots of flat-to-flat
dilation versus axial position thus show a local
peak every 152 mm (6 in.).

Length changes of austenitic ducts measured
after irradiatign have been adequately covered in
several papers."5 These values have ranged from
15.7 mm (0.62 in.) in the case of 316 SS to
10.9 mm (0.43 in.) for D9 at the peak fluences of
interest. The greatest observed residual bow was
measured for an outer row (FFTF Row 6) 316 S§S
assembly which reached 9 7 mm_(0.380 in.) at a
fast fluence of 11 x 10% n/cm®. A1l assemblies
to date have shown the trend of increasing
residual bow with increasing distance from the
radial core center (at a given fluence).

DEFORMATION OF THE PIN BUNDLE

After the duct is removed from an assembly,
the condition of the intact bundle of pins is
observed (Figure 3). In the case of very high
fluence assemblies, a distinct waviness in the
bundle was seen. The waviness corresponds to the
permanent spiral defoermation of individual pins.
These strains are first observed at the point in

1ife where the porosity of the bundle, i.e., the
space remaining for pins and wires to swell into,
is calculated to be zero in some directions.

Pins must then move laterally and/or vertically
to accommodate additional void swelling.
Different swelling rates in wire versus cladding
may also play a role.

The top of the bundle (Figures 4 and 5) also
shows the effects of void swelling. For assem-
blies beyond the incubation fluence of swelling,
the length of pins varies with the fluence
gradient, with temperature and, in the case of D9
alloy, with cladding heat. Thus pins on the side
facing core center will be longer than those on
the opposite side; pins adjacent to the duct will
not grow as much as more centralized pins; pins
clad with different alloy heats will show remark-
ably different stature.

FUEL PIN DIAMETER CHANGES

Peak diameter changes in p1ns from the
highest fluence (16 x 10% n/cm?, E > 0.1 MeV)
316 SS clad driver assembly ranged from 0.43 mm
to 0.71 mm (0.017 in. to 0.028 in.), i.e., a
maximum change of about 12%. Similar pins at
goal f]uence from interior assemblies
(13 x 10% n/cm®, E > 0.1 MeV) exhibited only 6%
diameter change. Fuel pins with D9 cladding did
not exceed 12% diameter change until fast
fluences in excess of 20 x 10%2 n/cm® were reached
(Figure 6).



FIGURE 3.

A Bundle of 217

A
i
i
3
|

CPUEL
COLUMN =

D9 Clad Pins from a High Fluence Assembly.

st

e

e



HEDL B604.065.126

FIGURE 4. The Top of a Bundle of Irradiated FIGURE 5. Top of a Bundle of Irradiated Pins

Diameter (in.)

316 SS Clad Pins. Note the effects of Clad with D9 Alloy. Note the varying length

temperature and fluence gradients. of pins due to differing glloy heats (fast
fluence is 21 x 10°° n/cm®).
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FIGURE 6. Diameter Measurements from CW 316 SS and CW D9 Clad Fuel Pins

Irradiated in FFTF. [Unirradiated fuel pins were 5.8 mm (0.230 in.) in

diameter. Each diameter profile shown is the average of four continuous
traces made at different circumferential orientations.]



Driver pins irradiated on the periphery of
the core for a similar time exhibited smaller
diameter increases because of their lower
overall fluence. However, these outer row
driver pins showed the greatest variation in
diameter from pin to pin because of the steep
fluence gradients at the core extremity
(Figure 7).

Most of the higher fluence pins showed some
degree of ovality. An extreme case is shown in
Figure 8. These asymmetrical deformations are
thought to be related to pinch planes in the
assembly where, as described above, bundle
porosity is scarce.

FUEL PIN LENGTH CHANGES

Length changes of low smear density
austenitic clad fuel pins are generally driven
by the neutron-induced void swelling. Thus the
observed increases in length (Figure 9) are a
measure of the integrated swelling of the
cladding tube as it experiences varying tempera-
tures and fluences at different axial positions.
Measured Tength increases have approached 50 mm
(2 in.) and the use of lower swelling D9 has
delayed the onset of significant length increase
by about 6 x 10% n/cm® fast fluence. The
scatter in the data shown is attributable both
to pins operating at different maximum
temperatures and the use of different alloy
heats as seen visually during examinations of
the tops of intact bundles.

CLADDING SWELLING

Immersion density measurements have shown
that in both the 316 SS and D9 cases, for the
majority of ducts and fuel pins, most of the
diameter change is due to void swelling and not
to creep driven processes. It can be seen in
Figure 10 that swelling of the austenitic alloys
exhibits the classical behavior of neutron
induced swelling i.e., an incubation period
followed by a relatively linear increase in
swelling with fluence. Type 316 SS and alloy D9
have reached 17% and 37% volume increase at
their respective peak fluences of 14 and
24 x 10% n/cm®. When these volumetric measure-
ments are compared on an integrated basis with
pin Tength increases, the behavior is fairly
isotropic. As intended, D9 exhibits a longer
fluence incubation period at the higher tempera-
tures than 316 SS. The D9 alloy in hand has
not, however, fulfilled the promise of early
overly optimistic swelling correlations. This
is probably because these early correlations
incorporated some data from non-D9 generic
titanijum-stabilized material. At lower
temperatures the D9 data shows considerable
scatter. This is partially due to the fact that
the D9 data set incorporates more diverse heats
of material than the 316 SS. However, the lower
temperature data also includes much more duct
material which is prone to more variations in
cold work level than is cladding.
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FIGURE 7. Diameter Measurements from a Large Number of Pins from the Same

Subassembly.

Each curve is the average of several traces each

taken at a different circumferential orientation around a

fuel pin.

Data are from an outer row assembly.
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DISCUSSION AND CONCLUSION

The 1ife-Timiting factor in the FFTF driver
fuel system proved to be the expansion of and
interference between austenitic ducts. Studies
at other facilities® have suggested that bundle-
duct interference can also, in some cases, be a
Tife Timiter in fast reactors. Highly swelled
austenitic fuel pins also tend toward
increasingly brittle behavior with higher
fluence''® (a fact observed by the authors).
Nonetheless, the use of cold-worked 316 SS as a
cladding and duct material has allowed FFTF to
attain and exceed its design goals in flawless
fashion. Dimensional increases have been notable
(up to 7.6 mm increase in duct flat-to-flat and
nearly 50 mm increase in pin length) but not
unexpected. The deformation of irradiated ducts,
the shape and porosity of the pin bundles, the
shape and ovality of individual pins are all
interrelated. They are also simultaneously
related to irradiation conditions and material
swelling and creep rates (with all the various
temperature dependencies). The use of a related
austenitic alloy, D9, has allowed the fluence
goals and expectations set for 316 SS to be
significant]g exceeded (to fast fluences greater
than 17 x 10° n/cmé in recent design cases).
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