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"Thinty spokes unite at the wheel's hub;

1t is the center hole [Literally, "grom theirn not being"]
that makes it useful.

Shape clay into a vessel;

It is the space within that makes it useful.

Cut out doons and windows for a room;

1t is the hotes which make it useful.

Therefore profit comes from what Lis there;

Usegdulness from what is not Zhene."

- Lao-tzu

*Calligraphy done by Dr. Tai-sen Wang at the request of the author.
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ON STOCHASTIC COOLING OF BUNCHED. BEAMS FROM FLUCTUATION AND KINETIC THEORY

Swapan Chattopadhyay
ABSTRACT

A theoretical formalism for stochastic phase-space cooling of bunched beams in
storage rings is developed on the dual basis of classical fluctuation theory and kinetic
theory of many-body systems in phase-space. The physics is that of a collection of
three-dimensional oscillators coupled via retarded nonconservative interactions deter-
mined by an electronic feedback loop. At the heart of the formulation is the existence
of several disparate time-scales characterizing the cooling process. Both theoretical

approaches describe the cooling process in the form of a Fokker-Planck transport equation
in phase-space valid up to second order in the strength and first order in the auto-
correlation of the cooling signal. With neglect of the collective correlations induced
by the feedback loop, identical expressions are cbtained in both cases for the coherent
damping and Schottky noise diffusion coefficients. These are expressed in terms of
Fourier coefficients in a harmonic decomposition in angle of the generalized nonconserv-
ative cooling force written in canonical action-angle variables of the particles in six-
dimensional phase-space. The formulation includes nonlinear pick-ups and kickers, multi-
dimensional cooling with coupled degrees of freedom and intrinsic electroﬁic noise of the
feedback system. The effect of dynamic signal suppression arising from feedback loop
induced collective correlations manifests naturally in a consistent solution of kinetic
theoretic hierarchy for simple cases. For general situations, the existence of disparate
time~-scales allows one to use simple fluctuation theoretic results but with transport
coefficients dynamically suppressed by factors determined independently from the well-
known Vlasov theory. The general coupled-mode matrix for the longitudinal and transverse
sighal suppression for bunched beams is derived and solved in the limit of no synchrotron
band overlap. ~The distinctive feature of synchrotron band overlap in the bunched beam
Schottky signal for a higher bandwidth-system is discussed. The signal suppression
matrix describing the tensorial collective response of a coasting beam with coupled
transverse>cooling is also derived. Comparison of analytic results to a numerical simu-

lation study with 90 pseudo-particles in a model cooling system is presented. Estimates



of transverse cooling rates for bunches in a prototype high-energy storage ring with

typical large bandwidth feedback systems are provided.



1. PROLOGUE

Stochastic cooling, invented by Simon van der Meer of CERN, Switzerland in 1968
[100], is the technique of increasing the phase-space density of charged particle beams
in storage rings by an electronic feedback system that can resolve and affect smaH.
microscopic samples of the phase-space of the beam. Intense particle beam sources are
important research tools in general. The particular motivation that led to the concep-
tion of stochastic cooling was the desire to produce intense antiproton (p) sources.
Such sources allow for proton-antiproton colliding beam physics experiments with suffi-
cient luminosity and center-of-mass energy to cross the threshold for the creation and
laboratory manifestiation of the much anticipated massive (80-90 GeV) Intermediate Vector

O,Nt). These bosons are believed to mediate the weak interaction between

Bosons (Z
particles and to be the source of the "weak neutral current," discovered at CERN,
Switzerland and Fermilab, U.S.A. im1973 [44].

Productive experiments with opposed beams of matter and antimatter in a storage ring
require both beams to be dense enough to ensure a large number of collisions or a high
event rate. For p-p physics, this implies that one has to accumulate a dense enough
bunch of antiprotons. Unlike protons, antiprotons are not readily available from any
natural source; they must themselves be created in high-energy collisions. Typically
antiprotons are created by colliding a beam of high-energy protons against a metal target
and then steered magnetically into a specially design»ed storage ring, called the Accumu-
lator Ring. The production process is extremely inefficient; on the average every mil-
lion or so high-energy protons striking a target produces one relatively low-energy
antiproton. According to a simple estimate for CERN ([36], [92], [96]), one must collect

bunches of antiprotons (and protons) each made up of at least 1011

particles in order
to obtain a useful number of proton-antiproton collisions in the colliding beam machine
at CERN. Collection and "stacking" of successive bunches of antiprotons every 2.4 sec-
onds leads to an accumulation rate of 5 x 1011 p/day. Thanks to the relatively long
(at least 32 hours in its rest frame) lifetime of the antiprotons ([2], [20]), it is thus
feasible to gather enough antiprotons to do effective p-p physics, provided one is
willing to wait about a day in accumulating the p's.

However, storing a large number of individual p pulses into a relatively small
phase-space volume, determined by the phase-space acceptance of the storage ring, poses

an extremely difficult problem. Antiprotons emerge from the target with a range of

velocities and directions. Viewed in their own frame of reference the antiprotons form



a gas and their random motions define a certain kinetic temperature. If this temperature
is too high, some of the particles will strike the walls of the accelerator and the beam
will be depleted. Thus the transverse temperature T; must be reduced. The average

transverse temperature of antiprotons produced by proton beams is

(p,)?
KTy =%
where
<pl> ~ 300 MeV/c
and thus

(k1)) = 5 x 10° ev.

J
The typical transverse temperature accepted by a high-energy storage ring is [36]

(k1)) = 1.2 x 10 ev.

Moreover, after a few injections of antiprotons, nearly any conceivable storage ring will
have its phase-space completely filled. One thus needs to "cool" or compress the anti-
proton beam in phase-space (i.e. to reduce its random motions) in order to keep it as
concentrated as possible before it enters the main accelerator and collider ring. This
was the original motivation for phase-space cooling.

Nature provides us with a process of dissipating the extra thermal kinetic energy
of charged particle beams circulating in a storage ring in the form of synchrotron radi-
ation, which helps in overcoming beam degradation and increasing the luminosity ([21],
[551, [58], [91]). This natural process is extremely efficient for lighter mass parti-
cles like electrons and positrons [94]. Significant contributions to particle physics
have been made by many electron-positron storage rings around the world and still larger
ones are being.designed (LEP at CERN). However, by the same token, this kind of device
is Tlimited eventually by the rapid increase with energy of the radio frequency power
which 1is needed to compensate synchrotron radiation that slows the particles down in
longitudinal directed collisional momentum. Heavy-particle (p-p) storage rings at very
high energies are not limited by synchrotron radiation power. However, one is then

forced to face the problem of inventing an artificial external dissipitative process, to



keep the beams highly dense in phase-space, required to ensure a sufficiently high event
rate.

One such external dissipative process, designed to increase the phase-space density
in heavy-particle beams where there is no significant synchrotron radiation damping, is
known as "electron cooling," proposed by G. I. Budker of Novosibirsk, U.S.5.R. in 1966
[23]. In this scheme an electron beam moves parallel to a heavy-particle beam at the
same longitudinal speed. Coulomb interactions damp the motion of the heavy particle
beam, because the light electrons carry most of the energy away from each Coulomb scat-
tering with a heavy particle. In the language of statistical thermodynamics, the beams
can be described by temperature and'entropy as well, Thus laws of thermodynamics apply
when two beams are brought together. The electron beam has lower longitudinal and trans-
verse temperatures than the heavy particle beam and the latter will be “cooled" as the
two beams relax to a temperature equilibrium. Electron cooling is very rapid at proton
or antiproton energies of a few hundred MeV or less, but the cooling rate fé]]s off
rapidly with energy ([22], [70]).

Another dissipative process, based on active external intervention through an elec~
tronic feedback system, was conceived at CERN and has come to be known at Stochastic
Cooling. Stochastic Cooling is the damping of transverse betatron oscillations and lon-
gitudinal momentum spread or synchrotron oscillations of a particle beam by a feedback
system. In its simplest form (Fig. 1 below), a pick-up electrode (sensor) detects the
transverse positions or momenta and longitudinal momentum deviation of particles in a
storage ring and the signal produced is amplified and applied downstream to a kicker
electrode, which produces electromagnetic fields that deflect the particles, in general
in all three directions. The time delay of the cable and electronics is designed to
match the transit time of particles along the arc of the storage ring between the pick-up
and kicker so that an individual particle receives the amplified version of the signal
it produced at the pick-up. If there were only a single particle in the ring, it is
obvious that betatron oscillation and momentum off-set (or synchrotron oscillation for a
bunched beam) could be damped. However, in addition to its own signal, a particle
receives signals from other beam particles (Schottky noise), since more than one particle
will be in the pick-up at any time. In the limit of an infinite number of particles, no
damping could be achieved; we have Liouville's theorem with constant density of the
phase-space fluid. For a finite, albeit large number of particles, there remains a
residue of the single particle damping which is of practical use in accumulating low

phase-space density beams of particles such as antiprotons.
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Typical Stochastic Cooling Feedback Loop in a Storage Ring

Fig. 1

A real beam with a finite number of particles is practically empty almost everywhere
in phase-space, with zero mathematical volume (point set of measure zero), as opposed to
a continuous fluid (with finite measure). The finite number of particles gives rise to
small but non-negligible statistical fluctuations in the phase-space density, especially
for small samples of the rather grainy phase-space. These fluctuations can be used to
obtain information about the average phase-space coordinates of the small sample. This
information can then be used to exchange empty phase volume with volume containing par-
ticles in such a way that the latter are concentrated into a smaller phase-volume. This

is in principle what is done by stochastic cooling (Fig. 2).
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Phase-Space Cooling in Any One Dimension

Fig. 2

The information about the individual particles is essential and the rate at which
it can be acquired determines the cooling rate. The feedback system acts to correct on
each revolution the mean deviation in some property (say the transverse position <x> or
longitudinal momentum <ap> of small circumferential sections of beam particles., The
sample length 1is determined by the resolution (rise time TS) or the bandwidth W =
1/TS of the system. The quantity NTS/T0 = Nfolw js a measure of the size or popu-
lation of the sample of particles treated by the feedback system (T0 = revolution
period of nominal particle and N = total number of particles in the beam). The larger
the number of particles in a sample, the less precise is the information about the phase-
space co-ordinate of a single particle and hence a lower cooling rate. The bandwidth W
and the total number of particles N are thus critical to the cooling rate.

For a single pass, we have in general an insignificant amount of cooling because of
the quite small signals induced in nondestructive sensing devices and because of the
relatively large sample size obtained with the available bandwidth of practical amplifi-
ers (a few GHz). At present, the method therefore is useful only for circulating beams
with repeated interactions, e.g. storage rings.

For effective cooling, however, one needs an all important 'stirring process' in
phase-space -- kinematic mixing. For zero spread in the azimuthal velocities of the
particles, cooling would stop once the average sample errors are corrected. However, due
to the spread in revolution frequencies, particles slip away from each other in phase
space and migrate between samples (mixing). The error will reappear, and correction con-

tinues until ideally all particles have zero error. It is important however that there



be 1ittle mixing during the beam's passage between the pick-up and kicker, which will
introduce undesirable phase-shifts in the Fourier frequency components of the kicker
voltage; i.e., the observed sample will change before being manipulated.

while the particle's own pulse is correlated to the particle's arrival time at the
kicker and so can accelerate or decelerate the particle, the pulses of the other parti-
cles are uncorrelated with the arrival time of the particle and so their effect only adds
up in mean square. This causes the particle to diffuse. Since a particle can, on the
average, be accelerated or decelerated only by signals at multiples of its own revolution
frequency, the diffusion in beams with small revolution frequency spread is due only to
those other particles which have the same revolution frequency as the diffusing particle
(i.e. non-overlapping resonances, where nuw(p) = mo(p') only when n =m (integers) and
w(p) = w(p'), p being the azimuthal momentum of ‘the particle around the ring). In a
beam with sufficient spread in revolution trequency, on .the other hand, diffusion of a.
particle with revolution frequency w(p) can be caused by a particle with frequency
w(p') if the overlapping resonance condition nw(p) = mu(p') with n ¢ m and p ¢ p!
is satisfied. 1In a given system of large bandwidth W, there may be many such resonance
overlaps at high harmonics (naw = wy, or = (wo/Aw) where Aw = revolution fre-
quency of a‘nominal beam particle and aw = spread in the revolution frequencies in the
beam). Diffusion of a particle then includes contributions from these over]appihg reso-
nances as well. We will find later that this incoherent blow-up or diffusion effect
varies with the square of the 'gain' of the feedback system, but the coherent cooling
effect with its first power. Hence it is always possible to find an optimum value for
the gain for over-all cooling.

Since the beam can be bunched by voltages at the particle's revolution tfrequency,
the cooling system can cause the particle's arrival times to become correlated -- a
cooperative dielectric type effect. This process is known as the "feedback through the
beam" or the "collective signal suppression". The kicker signal will induce modulations
in the beam, which will propagate coherently around the beam, determined by the collec-
tive response properties of the beam. In general the effect is a collective screening
or shielding of incoherent beam signals by a suppression factor, similar to the dynamical
screening effect in many-body systems. Accordingly, the pick-up detects only these col-
lectively (or dynamically) screened signals and in general both the cooling and the dif-
fusion effects are diminished. The suppression factor is a function of the local beam
phase-space distribution in time and changes as the cooling progresses. The effect can

become significant at late stages of cooling with increased phase-space density. With



suitable phase relationships, this effect may also cause an instability — the collective
instability induced in the beam by the feedback system.

In summary, we may say that:

Stochastic Cooling = (In-phase single particle signal teedback correction) U
(Diffusion due to incoherent Schottky noise of other particles)
U {(Kinematic mixing) U (Collective screening or dielectric
shielding of Schottky signals by the kicker induced

correlations.)

This general introduction to stochastic cooling provides us now with the platform
on which to pose the very specialized problem studied in this report: stochastic cooling
of bunched beams. The average luminosity of p-p collisions over a long period of time
depends not only on the density of particles in each beam and the frequency 6f their
interaction, but also on the life-time of each beam in the colliding mode. In the col-
1iding beam mode operation of a storage ring at the highest energy, the beams are usually
bunched or confined within a small angular extent in the ring by external radio-frequency
cavity fields in order to have increased density in configuration space and hence higher
luminosity. In this high-energy colliding bunched beam mode operation, storing the

bunches in the ring for several hours requires preserving the beam emittance against

(a) intrinsic electronic amplitude and phase noise in the radio-frequency
bunching voltage from RF cavities causing diffusion of the beam on a time-

scale of 8~10 hours ([14], [18], [41], [43], [74])).

(b) beam-beam interaction (non-nuclear!) in the colliding mode leading to a

beam blow-up in phase-space typically in 8-12 hours.

(c) dintra-beam and rest gas scattering of the high-density beams with a dif-

fusion time of again 10 hours approximately [81].

[We note here a very special feature of the intra-beam scattering or multiple
scattering of particles within a beam in a storage ring. Particles in a stor-
age ring exhibit the phenomenon of ‘transition' described by the off-energy
function n, describing the dispersion of the angular frequency w in the
ring with respect to azimuthal momentum p:
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where y is the relativistic energy factor for the particle (particle energy
divided by its rest energy) and +yt the 'transition energy' and « =
lly% the ‘'momentum compaction factor' are properties characteristic of
the particular storage ring. Below transition y < yy and n > 0, an
increase in azimuthal momentum leads to increase in angular frequency w.
Above transition, y > yt and n < 0, an increase in azimuthal momentum
leads to a decrease in angular velocity or frequency w. This is a manifes-
tation of the fact that at higher energies, increments in energy or momentum
leads to decreasingly smaller increases in the velocity of the particle,
ultimately falling short of the amount necessary to compensate for the extra
time required to travel a larger equilibrium orbit path around the ring at
this higher energy.

The influence of the dispersion can be neglected far below transition
energy and the particles in the beam behave like the particles of a gas in a
closed box, with the focusing forces playing the same role as the walls of
the box. Since the collisions within a gas cannot increase the temperature,
the collisions within the beam cannot, below transition, lead to an increase
of the total oscillation energy and the longitudinal energy spread. One can
only expect a transfer of oscillation energies between diffeent degrees of
freedom. Thus there must exist an equilibrium distribution where the intra-
beam scattering does not change the beam dimensions. However, the particles
at the high-velocity tail of the distribution will be continuously scraped
off by the walls of the chamber and will not be confined within the beam,
leading to a degradation and depletion of the beam.

Above transition the situation is changed by the "negative mass" behav-
ior of the particles, described before. The comparison with a gas in a
closed box is not valid here, and it has been shown by Piwinski [81] that the
total oscillation energy can increase, The behavior of the beam under col-
lisions, can be described by a ‘collisional invariant,' derived by Piwinski
[81], and given by:

% <3§A- a) <§ﬁ£}i + <%'2> + <?'2> = constant. (1.2)

where aAp s the momentum deviation (longitudinal) and x' = dx/ds, z' =
dz/ds are the transverse betatron angles for horizontal and vertical direc-
tions regpectively at location s of the distance around the ring. The
factor b is 1 for bunched beams and 2 for unbunched beams. Thus if
(1/v2 - a) is positive, i.e. below transition, the three mean values are
limited. But for negative (1/y¢ - a) the three mean values can increase
so far as they do not exceed other limitations and an equilibrium distribu-
tion does not exist. ’

It is this mechanism of beam heating and diffusion above transition that
we are concerned with in bunched beam cooling, since the high energy p-p

collisions under interest will occur at energies far above the transition
energy of the ring.]

So we need to cool the beams as they collide in order to simultaneously counter the
growth in emittance due to effects (a), (b) and (c) above.

Note that for beam maintenance we only need to preserve the beam emittance, so a
cooling system with a typical cooling time of about ten hours should be sufficient.
However, one may also be interested in real cooling of bunches leading to increase in

phase-space density. Also RF manipulations of beams during various stages of stacking



coasting beams at low intensity in the Accumulator Ring are easier if such bunched beam
cooling is practical [97].

We also note that if the tine for accumulation of high density beams in the accumu-
lator ring prior to injection in the collider is significantly less than the bunched beam
life-time in the collider, the co]liqer can be refillea with new batches of freshly pre-
pared bunches before the bunches have degraded significantly and the luminosity is not
affected by the lifetime of the bunched beam. However increased 1ife-time in the
colliding-beam mode allows for longer accumulation times and hence higher density beams
at injection to the collider.

With the above motivations for bunched beam cooling, we then specifically pose the

following problem:

Given a distribution fo(l) of particles of a 'bunched beam' in action I-space

and an electronic feedback loop characterized by an overall transfer function G,

(a) What are the features that distinguish bunched beam cooling from a con-

tinuous (coasting) beam cooling?

(b) What is the specific form of the time-evolution equation of the bunch

distribution f(I,t)?
(¢) what range of cooling times could be achieved?

(d) Are there ways of improving the cooling rate?

The underlying kinematic mechanisms and the cooling dynamics experienced by the
particles in a bunch in the stochastic cooling of bunched beams differ nontrivially from
the situation of stochastic cooling of continuous coasting beams. These significant
differences arise mainly from the topo]ogicai]y different longitudinal particle orbits
(synchrotron oscillations) in a bunched beam (as opposed to coasting beam free-streaming
particle orbits) and the spatially confined nature of bunched beams as opposed to contin-
uous ring-filling coasting beams. These differences manifest in a qualitatively
distinctive frequency-space structure of the spectrum of single particle and collective
signals derived from and experienced by particles in a bunched beam. While the theory
of stochastic cooling of continuous beams in circular accelerators has been extensively
investigated and developed until now ([5]), {61, [7], [8], [9], [251, [33], [70], [71],

[86]), as will be evident from a look at the history of the. subject discussed in
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Chapter 2, bunched beam stochastic cooling has been a subject of less intensive study

limited to qualitative preliminary analyses only ({10], [11], [48], [69], [71]).
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2. PLAYERS IN THE ORDER OF THEIR APPEARANCE: A HISTORICAL REVIEW OF STOCHASTIC COOLING

Since its conception in 1968 by S. van der Meer, stochastic cooling has been the
subject of much theoretical and experimental work. The reader is directed to the refer-
ences for a thorough review of its development.

For long the idea of stochastic cooling was regarded as too far fetched to be
practical. It was already known at the time of van der Meer's»first proposal in 1972
[100] that systems of a finite number of particles might not be completely subject to
gross phase-space volume invariance (Liouville's theorém for ‘smoothed out' phase-space
distributions) if information about individual particle orbits could be suitably pro-
cessed to modify those same orbits. The means for developing such information, so-called
Schottky scans, was already in use (Borer et al. 1974 [13]) at the Intersecting Storage
Rings (ISR) at CERN, where fluctuation spectra of coasting beams were routine]y used to
measure beam properties. In addition, feedback systems had been in use for many years
(Sacherer 1974 [87]) to damp coherent instabilities of intense beams interacting with
their environments. The damping of individual particle motion, however, required an
electronic feedback system with bandwidth large enough to resolve a relatively small
(compared to the whole beam) sample of particies in the beam in phase-space. The pace
of research increased in the early seventies with the knowledge of the availability éf
wide-band power amplifiers. The first and earliest experimental demonstration of sto-
chastic cooling was tried and succeeded only nine years after the invention (three years
after the first publication) in the ISR at CERN (Schnell 1977 [93]). Little power and
bandwidth were available for those experiments, whose purpose was only to demonstrate
that cooling occurred.

The dinventor and the early workers had mainly emittance cooling (i.e., transverse
phase-space cooling) of high intensity beams in mind in order to improve the luminosity
in the ISR, A new era began in 1975 when Strolin and Thorndahl realized the importance
of stochastic cooling, both in emittance and in momentum spread of low intensity anti-
proton beams for the purpose of stacking. Stochastic stack-cooling at low intensity is
different from the original van der Meer cooling and the extension of the theory first
done by Hereward and Thorndahl as well as the design of the momentum cooling hardware
(Thorndahl1, Carron [25,99]) are perhaps as fundamental as the original invention and the
earlier feasibility studies (van der Meer, Schnell, 1972 [92,100]).

Following this broadening of the scope, Strolin and Thorndahl worked out in 1975

p collection schemes for the ISR using stacking in momentum space and Rubbia et al.



[82,83] made first proposals of the p-p scheme for the Super Proton Synchrotron (SPS)
using similar techniques of stochastic cooling and accumulation. This work gave new life
to the idea at a time when the ISR was routinely stacking such high proton currents that
proton beam cooling became unnecessary or even impossible. Furthér mile-stones in
1975-78 were the invention of the 'filter method' of momentum cooling and the refinement
of the theory and of the stacking schemes.

The successful conclusion of the ISR experiments encouraged the CERN workers to go
ahead with much more extensive experiments on the ICE (Initial Cooling Experiment), a
storage ring transformed from the muon storage ring used for the earlier (g-2)
experiments. Longitudinal and transverse cooling systems with approximately 1 kW power
and band-width from 100 to 180 MHz were instalied for ‘these experiments. With 7 x
107 protons of 1 GeV energy, a Jlongitudinal mean cooling time of 15 seconds was
observed. With a different circulating intensity, 3.9 x 108, horizontal and vertical
mean cooling times of approximately 4 minutes were observed. Agreement between theory
and experiment was good. It even provided some exciting physics results on the life-time
of the anti-proton -- a minimum life~time of 32 hours was established (Carron et al.
1978 [26,27]). The ICE studies firmly established the stochastic cooling technique.

Stochastic cooling tests have been carried out with the Fermilab Cooling Ring of
135-m circumference in collaboration with LBL (Lambertson et al. 1980 [61,62]). A
circulating beam of approximately 105 protons of 200 MeV energy was cooled by a factor
of 3 longitudinally in 3 to 4 seconds and by a factor of 3 vertically in a time of the
order of 1 minute. Turning on the radio-frequency bunching voltage, initial indications
of positive bunched beam cooling were also obtained (G. Lambertson, private
communication).

In both these experiments, observed beam life-times were compatible with beam loss
caused only by large-angle single scatterings. Small-angle multiple scattering, usually
the major cause of beam loss, is overcome by the cooling.

The Novosibirsk group in the U.S.S.R. has also carried out a stochastic cooling
experiment on their storage ring NAP-M and report good agreement between theory and
experiment [31,32,78,79].

Cooling of a ‘'bunched' beam has also been observed in ICE at CERN and was applied
for stacking of antiprotons [48]. The stored particles were tightly bunched by an RF
system working at the first harmonic of the revolution frequenéy. Injection and RF were
synchronized in such a way that the new beam could be injected onto the free part of the

circumference without causing losses of the stack. The bucket height was limited to
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ap/p = = 8.4 x 10"4 (hardware 1limit) whereas the injected particles had a ap/p =
2 x 10"3. Injection took place while the RF was on. With momentum cooling the par-
ticles progressively entered the bucket and accumulated in its center until ap/p had
reached about * 3 x 10"4 ("stochastic capture"). A similar equilibrium value had been
observed with low intensity unbunched beams. With the available RF amplitude then the
bunch length was about one half of the circumference. With this simple scheme the num-
ber of antiprotons could be increased by a factor of 100 leading to 15,000 stored
antiprotons. These initial experiments indicated only that bunched beams can be cooled.
On the other hand, the bunching ratio (<3) was small, the bunch length (~ 25 m) much
larger than the sample length (~ 3 m) and the number of particles low.

At present CERN has already completed development of an intense source of anti-
protons and has begun initial collision experiments of p-p with 270 GeV beams. Fermilab
is developing an intense p source and is scheduled to do p-p experiments with 1 TeV
beam by 1985. ‘

In the general scheme of antiproton-proton colliders at CERN and Fermilab, high-
energy protons are focused .on a target; the antiprotons produced are then transported to
a storage ring (cooling ring) called the Accumulator Ring, which provides for cooling for
the transverse and longitudinal temperatures of the antiproton beams and also provides
tor "stacking" of the accumulated antiprotons. Once greater than 1011 antiprotons are
collected, they are injected into a high-energy storage ring and accelerated along with
protons for antiproton-proton collisions.

For the experiments at CERN the particles are directed through a complex sequence
of interconnected beam manipulating devices (Fig. 3). First a beam of protons is accel-
erated to an energy of 26 GeV in the Prbton Synchrotron (PS), the original accelerator
ring at CERN, completed in 1959. The proton beam is then directed at a copper target,
producing a spray of particles, including a small number of antiprotons. Those anti-
protons with an energy of 3.5 GeV and momentum spread ap/p of 0.7 x 10_2 are col-
lected and transferred to a wide-aperture storage ring called the Antiproton Accumulator
(AR}, where they are first precooled repeatedly by the filter method, to reduce their
momentum spread by a factor of 9 in two seconds. They are then moved to a slightly
smaller orbit, from which they are stochastically accelerated with the accumulating stack
ot previously injected bunches and subjected to further cooling in all three phase
planes. -After a few hundred billion (~ 1011) antiprotons have been collected, they
are sent back to the PS ring, where they are accelerated to 26 GeV before being injected

into the SPS ring in the direction counter to protons. The counter-rotating beams are



14

finally accelerated to 270 GeV each in the SPS ring. The beams collide at intersection
sites, at two of which large particle detectors are placed. The nuclear interactions are

so rare that the beam life-time of several hours is not affected by them.

Super Proton Synchrotron

Antiproton
Accumulator

Protons

Intersecting
Storage Rings

Antiprotons

Low-energy Antiproton Ring

XBL 827-7066

CERN p-p Collider

Fig. 3

The reincarnation ot the CERN fixed target SPS into a p-p collider and the con-
struction of the Antiproton Accumulator ring was completed in July 1981. Many cooling
tests have been carried out with good results. The first proton-antiproton éo]]isions
at the designed peak energy of 270 GeV per beam were observed in July. By December, more
than 250,000 such collisions had been recorded. Because 6f the comparatively low rate
at which intermediate vector bosons are expected to be produced in p-p collisions,
however, it was not surprising that none were detected in these early runs. The next
round of experiments, with an order of magnitude or more improved beam intensity and
hence collision rate, may {or may not) reveal the pot of gold!

The single-beam fixed target 1 TeV proton machine at Fermilab, the Tevatron, is
scheduled to be operating in 1985, as a p-p collider, with a total center-of-mass
energy of 2 TeV (2,000 GeV) as opposed to 540 GeV for CERN. The completed Fermilab
machine will have the further distinction of being the first large accelerator to employ

a ring of superconducting magnets.
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The Fermilab Antiproton Source Design Report of February 1982 [97], describes plans
for the design of Tevatron I Antiproton Source, which will meet three successive goals.
The first goal is to produce p-p collisions at a peak luminosity of 1030 zsec']
at the maximum energy achievable with the Tevatron. Since the average luminosity of a
storage ring ultimately depends>on the rate at which the ring can be refilled, the fil-
ling time should be much shorter than the luminosity life-time, which is expected to be
in excess of thirty hours. Hence, the second goal is to be able to refill the ring with
" protons and-antiprotons in 5 hours or less. The third goal is to design the antiproton
source so that the luminosity can be increased to 1031 cm sec 1, when either
advances in cooling technology or improvements in beam life-time are made.

Again the process consists of a complex sequence of beam manipulations using the

Booster Ring, two fixed energy rings, the Debuncher and the Accumulator and the Main Ring

(Fig. 4). The sequence of operations is as follows: One booster-length batch

Freezer

Booster

p'°‘°“

Debuncher i
Linac

Accumulator

XBL 827-7063

Fermilab p-p Collider

Fig. 4

containing 80 bunches of protons is accelerated in the Main Ring to 125 GeV, foliowed by
a time-compaction by bunch rotation in phase-space. The train of 80 shortened (less than
a nano-second wide) bunches is then extracted from the Main Ring. 3 x 1012 protons in

80 bunches then strike a tungsten target producing a train of 80 antiproton bunches,
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which have the same narrow time-spread as the proton bunches. 1.5 x 108 antiprotons
with 8.9 GeV/c are collected and transported to the Debuncher. The momentum spread of
the beam is 3% and tﬁe transverse beam emittances are 20 » mm-mrad in each plane. Bunch
rotation in longitudinal phase-space in the Debuncher leads to momentum compaction an»d a
smeared-out time-structure. The antiprotons spread uniformly around the ring and then
precooled transversely in both radial and vertical emittances.

The antiprotons are then extracted from the Debuncher and injected into the
Accumulator. Successive batches are accumulated by RF stacking each batch at the edge
of the stack.

Between the injections of successive batches onto the tail of the stack, the stack
is stochastically cooled using a stack-tail .cooh‘ng system similar to the type developed
by CERN for the AA ring. A new batch of antiprotons with a density of about 7 p's per
eV is deposited at the edge of the stack tail every 2 sec. The fresh batch is m;)ved by
the coﬁerent force of the stochastic cooling system away from the injection channel and
toward the center of the stack. The strength of the coherent force diminishes exponen-
tially as the particles move away from the edge of the tail, causing the particle density
to increase. Diffusion forces caused by the Schottky noise of the antiproton stack and
the thermal noise of the amplifiers cause the anitprotons to move from a region of high
density to one of lower density. As long as the coherent force is greater than the dif-
fusion force, the stack will build up in intensity until it reaches the central region
where the coherent force is zero. Some antiprotons are lost during transfer and RF
stacking and some diffuse away from the stack into the chamber walls. Allowing for los-
ses, 6 x 107 antiprotons are added to the stack with each pulse. If collection is
allowed to continue for 4 hours, the core will grow to a density of 1 x 105 p's per
eV. The tota]lnurrber of p's in the core will be 4 x 1011. After p accumulation
is complete, bunches of protons, each with at least 8 x 1010 particles, are first pre-
pared in the Main Ring at 150 GeV, then transferred to the Tevatron. Approximately

8 x 1010

antiprotons are then extracted from the stack core, transferred to the Main
Ring, accelerated to 150 GeV and transferred to the Tevatron. The p and p bunches
are then accelerated to full enerqgy and allowed to collide.

Sufficient antiprotons for a luminosity of 1030/cm2-sec can be produced in
4 hours by this scenario, even after allowing for losses in production, cooling and beam
transfer. The Tluminosity is primarily limited by the beam stability, transfer and

acceleration schemes. Improved accumulation system and longer collection times can also

result in an increased luminosity. The potential luminosity of the proposed Fermilab



p source is ekhibited in Table I, which shows the relationship between the accumulated
p's and the luminosity.

In the arena of bunched beam cooling, the possibility of doing a small scale experi-
ment on bunched beam stochastic cooling in the experimental cooling ring at Fermilab
seems bright already. Such an experiment will demonstrate the feasibility or otherwise
of high-energy bunched beam stochastic cooling in the colliding beam mode and provide

much needed insight into the theory of bunched beam stochastic cooling developed in this

report.
Table I. LUMINOSITY PROGRESSION
NB Np NB NT B* g L
(10'}) (o'l (1011 (10t!) (m) (100 ca%sec™]
0.7 0.7 1 0.7 1 0.002 0.5
0.7 0.7 3 2.1 1 0.002 1.5
1.0 1.0 3 3.0 1 0.003 3.0
1.0 1.0 6 6.0 1 0.003 6.0

Nﬁ(Np) is the number of p(p) per bunch, Ng is the number of bunches, Np s
the total number of p, 8* is the value of 8 at center of the interaction region, &
is the beam-beam tune shift/crossing, and L is the luminosity.

Along with the experimental work, there has been a rapid increase in the theoretical
understanding of the basic process ot stochastic cooling of coasting and bunched beams
in particle accelerators. Principal theoretical investigators have been Frank Sacherer
{until 1978) and Joseph J. Bisognano. Sacherer [86] refined the theory for stochastic
cooling based on the frequency domain approach originally developed by Hereward in con-
nection with single particle behavior and collective response of a set of harmonic
oscillators perturbed by a packet of frequencies. Sacherer generalized the theory to
treat both good and bad mixing situations (overlapping and non-overlapping Schottky
bands), advocated the use of the Fokker-Planck transport equation to describe the process
of longitudinal cooling, and studied in some detail the collective response of the beam,
i.e. the phenomenon of coherent signal suppression. Bisognano [5,6,7,9] has developed
an even more rigorous theory of stochastic cooling of coasting beams with no band-overlap
based on the kinetic theory of reduced particle phase-space distributions and correia-

tions (up to two-body correlations). The theory includes the coherent signal suppression
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effect and points to the connection with collective instabilities of the beam in the most
natural way. Later, Bisognano [8] generalized the expression for coherent signal sup-
pression to include the case of overlapping Schottky bands, based on Vlasov Plasma
theory. This latter generalization has also been done by S. van der Meer [104] in an
entirely new way, but with identical results.

This report aims at presenting a theoretical formulation of stochastic cooling of
particle beams in a storage ring as a unified whole based on both the kinetic theory in
phase~space and the fluctuation theory in the frequency space of a collection of three-
dimensional oscillators described most naturally by ‘action-angle' variables in phase-
space and coupled to each other and to themselves by a retarded, non-hermitian (non-
conservative) cooling interaction. The fundamental dichotomy between frequency-domain
and time-domain analyses, characteristic of previous approaches is put into perspective
clearly. The present formulation has the advantage of providing a natural generalization
to a theoretical description of bunched beam cooling, which is a main concern of this
report. In addition, the formulation is capable of describing full three-dimensional
cooling with coupling between different degrees of freedom, the general tensorial collec-
tive response of the beam and includes nonlinear sensing and kicking devices. A
detailed, although by no means complete, description of the collective response of a
spatially confined (bunched) beam (i.e. coherent signal suppression) is also provided.

Table II summarizes the chronological history of stochastic cooling theory, experi-

ment and practice up to the present.

Table IT: HISTORY OF STOCHASTIC COOLING

PREHISTORY
Liouville circa 1850 Invariance of phase-space measure
Schottky 1918 Noise in DC electron beams
van der Meer 1968 Idea of stochastic cooling
ISR Staff (Borer, 1972 Observation of proton beam Schottky noise
Bramham, Hereward,
Hubner, Schnell,
Thorndah1)
van der Meer 1972 Theory of emittance cooling

Schnell . 1972 Engineering Studies



Table II: HISTORY OF STOCHASTIC COOLING (cont'd)

Hereward

Br amham, Carron,
Hereward, Hibner,
Schnell, Thorndahl
Thorndah1, Palmer

Strolin, Thorndahl

Rubbia
Thorndahl

Thorndah 1

Sacherer, Thorndahl,

van der Meer
ICE team

Herr

Herr, MGh1
Fermilab + LBL

Bisggnano

Lambertson et al.
LBL

G. Dome

Linnecar, Scandale

S. van der Meer

Bisognano

CERN SPS
p-p operation

Chattopadhyay,
Bisognano

FNAL + LBL

1972-74
1975

1975

1975

1975

1976

1977
1977-78

1978
1978
1978
1978

1979

1980

1980

1980

1980

1981

1981

1981

1982

Refined theory, low intensity cooling

First experimental demonstration of emittance
cooling

Idea of low intensity momentum cooling

p-accumulation, schemes for ISR using stochastic
cooling

p-accumulation schemes for SPS
Experimental demonstration of ap-cooling
Filter method of ap-cooling

Refinement of theory; imperfect mixing; Fokker-
Planck equations

Detailed‘experinenta1 verification
Demonstration of bunched beam cooling
Qualitative theory of bunched beam cooling

Conception of using stochastic cooling for
Fermilab p~p  scheme

Complete kinetic theory of transverse and longi-
tudinal stochastic cooling of coasting beam with
no band overlap

Demonstration experiment of stochastic cooling of
200 MeV protons at Fermilab experimental cooling
ring

Study of bunch diffusion due to RF Noise

Development of Schottky noise detectors for
bunched beams

Theory of signal suppression with band overlap
for coasting beams

Independent development of Vliasov theory of sig-
nal suppression with band overlap for coasting
beams

Preliminary p-p colliding beam experiment with
270 GeV beams performed

Preliminary Model simulation study of various
bunched beams

The Fermilab Antiproton Source Design Report
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3. SINGLE PARTICLE DYNAMICS IN A STORAGE RING —- THE UNPERTURBED ORBITS

Single particle orbits in circular accelerators or storage rings in the absence of
feedback loops and collective effects, are described in detail in standard texts and
classical review papers ([21], [29], [58], [91]). We briefly sketch here some of the
relevant properties of these orbits, as needed for a theoretical formulation of stochas-
tic cooling in this report, with a relatively heavier emphasis on the longitudinal
(azimuthal) dynamics, since it is the longitudinal orbits that distinguish a bunched beam
from a coasting beam.

Particles in a storage ring are confined transversely by magnetic focusing fields
and execute betatron oscillations about an equilibrium orbit. Longitudinally the parfi-
cles either drift in free-streaming orbits with constant angular velocity (coasting beam
with no acceleration) or execute synchrotron (energy) oscillations about a synchrotrons
particle (bunched beam). The synchronous particle could be either accelerating or moving
with constant angular velocity depending on the phase at which it samples the phase-
locked radio-frequency cavity voltage at each turn. In most cases, the betatron oscil-
lations in directions transverse to the beam are very weakly coupled to the synchrotron
oscillations in energy. This is because the synchrotron oscillation frequencies are
usually very small compared to the betatron oscillation frequencies and the betatron

oscillations average to zero over a long synchrotron period.

Particle
position
X = Radial displacement -
in the median plane
s=v = wR
Z = Vertical displacement

perpendicular
to median plane

Reference
point for
;

Closed ideal
design orbit
in the median
plane

XBL 827-7045
Coordinate System for Single Particle Orbits in a Storage Ring

Fig. 5
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In the orthogonal right-handed coordinate system illustrated in Fig. 5, the orbit
of a particle having the ideal momentum p = P, o©n the design orbit 1is given by
pseudo-harmonic betatron oscillations [91], with both phase and amplitude depending on

the instantaneous wavelengths 8_ _(s) (also called the 'amplitude functions'), which

X,z
satisfy:
1 . 1 2 2
7 B,z B;,z - ﬁ'e;,z * kx,z(s) By,z = 1 (3.1)
sx,z(s+L) = Bx,z(s) (3.2)

where g' = ds(s)/ds, L = C/N is the circumferential length of one period of the N-fold
periodic focusing lattice within the full circumference of length C and kx z(s) are

certain 'field gradients' determined by the magnetic field configuration of the focusing

magnets.

‘ When observed at a particular azimuth s = Soe however, the lateral betatron
motion is indistinguishable from a sampled simple harmonic oscillation at a frequency
(we)x,z = Qx,z”’ called the betatron frequency with betatron displacement, say for

the x-motion, being given by

. X
Xso(tj) = Ax\lex(so) S1n[Qx ® tJ. + éo,so] (3.3)
where tj = 3JT1= %f—j are the times for the jlil passage through the azimuth
X
s= s, (j=0,1,2,...), bo s the phase at zeroth passage (j=0), o the angular
>0

frequency of revolution of the particle, AX an arbitrary constant depending on ini-

tial conditions and

o -l

XeZ  2m

O‘ﬁn

ds
RG] (3.4)
8x,z s

are known as x,z betatron tunes (number of betatron oscillations in one complete
revolution) respectively.

Since for stochastic cooling, it is only the orbit displacements sampled at a par-
ticular pick-up location that is relevant, we will use the following amplitude-phase

representation of the betatron displacements at the pick-up:
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x(t)

A, Sin ¢ (t); x(t) A (Q,u) Cos 8, (t)

and (3.5)
2(t) = A, Sin g, (t); z(t) A,(Q,u) Cos #,(t)

"
L}

where

0
b (t) =0, ut + 6, (3.6)

For linear betatron oscillations with betatron tunes Q independent of oscil-

Xo2Z
Tation amplitudes Ax 7 particles rotate in circles of radius Ax i with frequen-

b ’

cies 0@ in (x, i/Qx) and (z, i/QZw) phase-planes. The variables (I _ =

X,Zw X,z

1/2 Ai - ﬁx Z) represent the familiar canonical action and angle variables for a sim-
] b .

ple harmonic oscillator obtained by a canonical transformation (x,x) » (Ix,ﬁx) and

similarly for the 2z motion.

A particle of momentum p = p_+ ap deviating from the design momentum Po

0
will execute its betatron osciliation about a closed orbit ap(S) (ap/p) where
ap(s) is known as the "dispersion" of the machine. The total horizontal displacement
is x = Xg + up(Ap/p). The change in By and 8, with p has negligible effect
on the amplitudes, buti the wave numbers or betatron tunes get modified to

0, ,(P) = O ,(p) (1 . %) (3.7)

where gx,z are the horizontal and vertical "chromaticities" usually determined and
controlled by the multipole fields (sextupoles etc.) of the focusing lattice.
Longitudinally, the particles in the beam can coast in free-streaming orbits with
constant angular velocity and filling the whole ring, if the purpose is just to store the
beam in the storage ring for many hours. The beam is usually called a "coasting beam".
However for purposes of acceleration and colliding beam experiments with high lumi-
nosity the beam is "bunched" out of necessity; i.e., the beam is confined to a finite
angular extent in the ring by external radio-frequency voltages. The radio-frequency
voltage at a cavity provides the neceésary acceleration to a central synchronous particle
each time it passes the cavity in phase with the voltage and confines the other particles
in the beam in phase-stable oscillatory orbits around the synchronous particle determined

by the potential well created by the rf cavity. Thus the longitudinal dynamics of par-

ticles in a bunched beam is that of oscillatory trapped orbits.
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The equation of motion for the phase ¢ ot a nonsynchronous particle relative to

the phase of the rf voltage is given by:

. quhnmi _ )
o+ D (;1n ¢ - Sin ¢s) =0 ' (3.8)
(2n) EOB Y

where és is the bhase of the synchronous particle relative to the rf voltqge, qV0

is the peak energy gain per revo]ution; h = wrf/mo is the harmonic number of the

rf cavity, W the circular frequency of the rf cavity, ©y the revolution fre-

quency of the synchronous particle (dbsldt = 65 = hwo), Y = E/E0 = E/mc2 the
total energy in units of the rest energy (y = (1—82)'1/2) and n the ‘off-energy
2_p%p
function' detined in Eq. (1.1) where o = vy = ) is the relative change in
p

the orbit length Cp per revolution with respect to momentum p. Equatidn (3.8)
describes the longitudinal synchrotron oscillation in phase generated by‘the rf cavity,
about the phase of the synchronous particle. These phase oscillations are accompaiéd by
oscillations in the angular momentum Pb canonically conjugate to ¢, about the ris-
ing momentum PS of the synchronous particle. There is also a slow radial oscillation
ap(Ap/p) associated with these oscillations.

For a stationary bucket with no acceleration of the synchronous particle ¢S =0

and Eq. (3.8) becomes that ot a simple pendulum

B+ ol sing =0 (3.9)

q V0 hn
w = [ uy . (3.10)
(Zn)Eo B v

Orbits are thus the familiar simple pendulum trapped oscillatory orbits bounded by a

with

separatrix, beyond which there exist untrapped streaming trajectories. In terms of real

angular position in the ring, we have

o=@ +u, t (3.11)
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is the angular position of the non-synchronous particle with respect to the
Typical particle orbits in a

where (:)

synchronous particle and is related to 6 via ¢ = h(:).

coasting beam and a bunched beam are illustrated in Fig. 6(a) and 6(b) below.

Xom
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(a) (b) BL 827-7064

Longitudinal Particle Orbits in Coasting and Bunched Beams

Fig. 6

Orbits are topologically different in the two cases and both the cooling and the
collective dynamics differ nontrivially. For small amplitudes ¢ - ¢S << 1, Eq. (3.8)

becomes
2
. q V0 hn g Cos ¢S
¢+ 3 (6-6)=0 (3.12)
(27) EO By
This is a simple harmonic motion about bs with circular frequency
q V0 hn Cos ¢S
w(d) = [————— 0, (3.13)
(2n) £ 8% v
Again for a stationary bucket with no acceleration (¢S = 0), we have:
2 g (3.14)
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where wg is given by Egq. (3.9). Again, in terms of real angular position e =

@ *ut in the ring, we have:
®+d @ -0 (3.15)

The orbits are thus
e=w°t+a51‘nlp(t)=m0t+®
(3.16)

e=wo+amSCosw(t)=mo+®

where y(t) = g t +w0 describes the synchrotron phase of the oscillating particle.
The amplitude-phase (a,§) representation given in Eq. (3.16) defines circular

synchrotron orbits in (®,®/ms) phase-space with radius a as shown in

S,
Fig. 7 below.

(é/ws)
410 = ot 0

XBL 827-7052
Amplitude and Phase Representation of Rotation in Phase-Space

Fig. 7

Again a familiar canonical transformation from (@,@) to the action-angle

variables (J,y) for a harmonic oscillator yields J = 1/2 a2 and the orbits

@ =423 sin w(t)
® =\/-27 wg Cos y(t)

(3.17)
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We Wi]] see later that for stochastic cooling of bunched beams, it is crucial that
different particles in the beam have different synchrotron freguencies, i.e. the beam
must have a finite spread in synchrotron oscillation frequencies. This implies that we
cannot treat the orbits in a bunch ‘as linear simple harmonic oscillations as given by
(3.14), where all the particles oscillate with the same frequency but rather should
really treat the orbits as solutions of the full nonlinear equation (3.9), corresponding
to a pendulum. It is well known that the pendulum equations of motion can be integrated
in terms of elliptic functions. However, a theoretical treatment of stochastic cooling
of bunched beams using these real pendulum orbits involving elliptic functions becomes
unnecessarily complicated.

we therefore adopt a simple model instead where the nonlinearity of the synchrotron
oscillations is given by some functional dependence on amplitude or action of the syn-
chrotron frequency: W = wS(J), so that different particles oscillating in syn-
chrotron orbits with different amplitudes have different frequencies. However, the shape
of the trajectories are still taken to be sinusoidal as given by Eq. (3.16) but with

y{t) now given by:

W(t) = a () t +y0 . (3.18)

In using this model we have appealed to the well-known fact that for most physical
systems, the eigenvalues or eigen-frequencies are more sensitive to perturbations than
the eigenfunctions themselves. Typically up to first order in perturbations, the eigen-
functions distort insignificantly while the eigenvalues shift by finite amounts.

In particular, an asymptotic perturbation series solution of the pendulum equation
(3.9) in the first order approximation (limiting ourselves to the first two terms in the

expansion for Sin x = x + x3/3£ +...) gives [12]:

S
—
(]

¢o Sin Y(t)

where

and

-2.0. (3.19)
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In terms of the actual azimuthal position (:)A= ¢/h of the particle in the ring,

we thus get:

®, = a Sin y(t) =V2J Sin y(t)

where
W(t) = wi(d) t + 0
and .
[mi(g)]z - [1 - (hg)z] - [1 - %2- J] | (3.20)
Ys
and

For reasonably small amplitude ¢0 far from the separatrix, we then get:

1/2
g (6,) 82 2
e T (3.21)
S
and
1

(3) 2
oy (3.22)

Wg 8

For an arbitrary rf potential V(¢), the synchrotron oscillations are governed by

the Hamiltonian

W= % Pg + V(9) (3.23)

where ¢(t) represent the deviation at time t of the particle's rf phase from the
synchronous value and Pb(t) = é(t) the conjugate momentum. The equation of motion

corresponding to (3.23) is

p+ V() =0 (3.24)
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We can perform a canonical Hamilton-Jacobi transformation (¢’Pb) > (1,E) by

introducing a generating function W(#,E) determined by [40]:

2
1]aw(g,E)1" . B
3 [ T ] V(¢) = E (3.25)

The new canonical variables (t,E) are related to (6,Pb) via

[}
o M(,E) _ dg’ 3.26
T !xk[a—vwn -6

Py = M,E) _ \ZlE-V(e) (3.26b)

o

The solution of (3.26a) is given by ¢(E,t) after inversion and the transformed

Hamiltonian is

H=E (3.27)
The new equations of motion are
T =1 (3.28a)
E=0 (3.28b)
which can be trivially integrated to give:
T=T, +t
(3.29)

E = % = constant.

Thus E and 1 are really the total energy and the conjugate time along the particle
orbit respectively.

We can now define the action variable J(E) by:

J(E) =4;Pb dp = ggVZEE-V(b)] dp (3.30)
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and

ad(E) _

-¢ d - T(p)
o Va2lE-v(¢)]

(3.31)

where T(E) 1ds the period of the synchrotron oscilliation. Corresponding angle variable
y is defined by

2n

b=y s w(Er = e ()t +yC

(3.32)

where

0, (3) = () -

S

Similar analysis can be performed for nonlinear betatron oscillations as well.
Particles in a beam in a storage ring can thus be described as three-dimensional oscil-
lators with canonical action-angle variables (I,y) = (IX,IZ,J; bx,bz,w) satisfying
equations of motion:

i =0 =>{IX,IZ,J} constants of motion
(3.33)

Pe o=t +yd

where w ={wx(lx),wz(l ),wS(J)} describes x and z transverse betatron oscillation

z
frequencies and the longitudinal synchrotron oscillation frequency as functions of cor-
responding éction variables. For linear oscillations w = {me,QZm,ws} are constants
independent ot action and IX =1/2 Ai, I, = 1/2 Ai, Jd=1/2 a2 where (Ax’Az’a) are
-the amplitudes of two transverse betatron and longitudinal synchrotron oscillations
respectively. Oscillation displacements, even in the general case of nonlinear oscilla-
tions, can be Tooked at as functions of action and angle and what is more, they are peri-
odic in the angle variables ¥ = (8,,6,,0) (x= x(I,6), 2= z(Iz,ﬁz), @ =
(:)(J,w)) with period 2.

For coasting beams, there are no synchrotron oscillations; however, we can still

represent the free-streaming motion of particles by action and angle variables as:

J = ZnR(Ape) « - Eo (3.34)



and

where Eo > g

cle in the beam.

30

W= e(t) - ey (t) = (aw) t + 40 < () t +y0,

-

are the energy and revolution frequency of a nominal reference parti-
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4, .GENERAL DISCUSSION OF COOLING DYNAMICS

In this chapter we consider some general aspects of the dynamics and the various
processes involved in stochastic cooling. Although we are primarily interested in
bunched beam cooling, this general discussion considers both coasting and bunched beams
in parallel whenever possible. This chapter then serves both as a review of the basic
concepts of the well-developed theory of coasting beam stochastic cooling and as an
introduction to some of the essential ditferences and distinguishing features of bunched
beams as opposed to coasting beams. These differences will become even sharper in

Chapter 5.

4,1 Stochastic Cooling and Liouville's Theorem

It is usual to think of Liouville's theorem as implying conservation of phase-space
density of particle beams in the presence of electromagnetic fields, whether constant or
variable in space-time. ~ It occupies a central place in beam optics in the beam manipu-
lating devices such as accelerators and storage rings. It is thus appropriate to eluci-
date the compression of the phase-space induéed by stochastic cooling in the context of
Liouville's theorem.

In a nutshell, we can summarize the process of stochastic cooling as follows: the
stochastic cooling feedback loop, by virtue of introducing a nonconservative (non-
Hamiltonian) and dissipative self-interaction force in the dynamics of a single particle,
induces a genuinely non-Liouvillian compressible flow in the projected phase;space of the
physical dynamical variables related to the particles only. The possibility of intro-
ducing such a nonconservative force by a feedback loop alone, however, is dependent cru-
cially on the finiteness of the number of particles in the beam. For a hypothetical beam
containing an infinite number of particles, it would be impossible to introduce such non-
conservative self-forces by means of a feedback loop alone.

In a system of N particles, the motion of the system is defined by the motion of
a point in the 6N-dimensional space of the canonical coordinates and momenta of the par-
ticles (T-space). An ensemble of S systems js represented by a set of S points in

T-space. A precise mathematical statement of Liouville's theorem reads (Khinchin 1949

[56]):



32

“Let S be any measurable (in the sense of Lebesgue) set of points of the
phase-space I of the given mechanical system. In the natural motion of this

space, described by Hamiltonién dynamics (which maps the phase-space onto

t. 6N > FGN),

itself under a one-parameter qroup of diffeomorphisms M7 T the

set S gets mapped into another set St during an interval of time t:
St = MtS. The measure m(St) of the set St
the measure m(S) of the set S. In other words, the measure of measurable

for any t coincides with

point sets is an invariant of the natural Hamiltonian motion of the space T:

d
_t m(St)] -0 .
AP
t=0 ot
N —
V =m{S)
> q

St
E] V= m(St)

XBL 827-7075

Hamiltonian Mapping Generating Incompressible
Liouvillian Flow in Phase-Space

Fig. 8

Physically, one can imagine preparing an ensemble of systems with all possibie ini-
tial coordinates and momenta that occupy a finite non-zero volume V in the phase-space
I'. Obviously the volume V then contains an infinite number of system points. Under
Hamiltonian dynamics, according to Liouville, the image points at a later time t still
occupy the same amount of volume V. The Hamiltonian phase-flow thus resembles that of
an incompressible fluid of volume V in phase space (Fig. 8).

In the absence of mutual interactions among the N identical particles of the sys-
tem, we can consider each particfe to be an independent system with a given initial con-
dition and can look at the motion of N-particles as the motion of an ensemble of N

discrete points in the 6-dimensional phase-space of a singie particle (u-space). In the



limit N » o, the motion of the actual volume in p-space also becomes that of an incom-
pressible Liouvillian flow. However, this motion has little to do with the actual motion
of the N discrete points of the real system, which has zero mathematical volume and is
not really a fluid in phase-space.

A real beam, even when N 1is very large but finite, is empty almost everywhere in
u-space. A useful definition of "physical volume" emerges however [84] when we divide
the yu-space in six-dimensional cells, each large enough to contain a very large number
of particles and yet small enough so that the coordinates do not change appreciably
across their volume and consider only those cells that at a given time are occupied by
particles. The sum of the volumes of all these cells can be defined as the "volume of
the beam or beam emittance" in the case of finite N. Simi]ar]y'a phase-tunction mea-
suring density p(p,q) in phase-space can also be introduced by taking the ratio of the
number of particles in a given cell to the volume of the same cell. So defined p is a
discontinuous function that can be approximated by a smooth one. This is a local averag-
ing process and is very sensitive to fluctuations from cell to cell, which is precisely
what a stochastic cooling system takes advantage of in sensing information about particle
co-ordinates. However, if one considers a large number of particles uniformly spread in
each cell, all the particles occupying a particular cell at an initial time t0 are

'expected to occupy at a later time t another one with the same volume, apart ffom sta-
tistical fluctuations. This expectation is based on the continuity of Hamiltonian flow
and the fact that no two tlow lines can intersect, since Hamiltonian flow is uniquely
deterministic. This approximate conservation of the "physical phase-space volume" of the
beam, whose detinition is based on local averaging and neglecting statistical fluctua-
tions, plays a useful and dominant role in considerations of beam optics and is often
reterred to as Liouville's theorem also. Note that for a set of non-interacting parti-
cles, the actual Liouville's theorem in the o-dimensional u-space, referring to the
mathematical phase-space volume (i.e. the measure of measurable point sets in u-space)
remains étrict]y valid. The fact that the conservation of the "physical phase-space
volume" is only an approximation is where the stochastic cooling concept begins to be

'potentially useful, for the possibility of detecting the graininess of the "physical

phase-space" allows one to introduce suitable force-fields to affect the same.
In using Liouville's theorem, it is important to remember that there should not be
any mutual interaction between the ensemble points and that the phase-space should

include all degrees ot freedom of the system, i.e. the phase-space should describe a
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closed system. The phase-space volume of some smaller subset of the system is not neces-
sarily conserved. External force fields do not constitute additional degrees of freedom.
They appear in the system Hamiltonian as given functions -—_the potential functions, not
as dependent variables. On the other hand other particles that interact with the origi-
nal system or radiatjon emitted by particles of the original system constitute additional
degrees of freedom. Phase-space volume can be interchanged between the original system
and these new degrees of freedom. Thus for example synchrotron radiation can decrease
the phase—spaﬁe volume occupied by a particle beam. For a set of interacting particles
then, Liouville's theorem is strictly not valid in the 6-dimensional space of a single
particle. For conservative interactions, however, e.g. hard-sphere elastic collisions
between neutral particles or electromagnetic interaction between charged particles
(velocity and time-dependent potentials), Liouville's theorem remains valid in the larger
6N-dimensional I'-space of the set of particlies, where each ensemble point represents a
closed system of conservatively interacting particles (provided one neglects retardation
effects of signal propagation and thus ignores the dynamical space of the infinite number
of tield variables at.eaéh point in space-time needed for a Lagrangian description of a
closed system of charged particles). Moreover for investigation of certain processes,
the time-scales of interest are éonsiderab]y shorter than the time-scales over which
significant number of interparticle interactions or collisions takes place. For such
cases, one can visualize each particle as moving under the influence of a self-consistent
conservative time-dependent average or mean field of all the other particles (Vlasov
averaged or Hatree mean field) and Liouville's theorem remains approximately valid even
in the single particle smoothed-out 6-dimensional phase-space for such time-scales. Such
is the case when one uses the collisionless self-consistent Vlasov analysis to study the
collective processes in a plasma, which occur with frequencies much higher than the col-
lision frequency. For longer time-scales inter-particle correlation effects become non-
negligible and leads to systematic transport in single-particle phase-space in general.
However the flow in 6N-dimensional I'-space still remains Liouvillian, apart from the
radiation effects related to the dynamical degrees of freedom of the electromagnetic
tield variabies.

A stochastic cooling system dintroduces inter-particle interactions through the
external electronic feedback loop and so the flow in 6-space is not Liouvillian. What
is more, even the flow in 6N-space is not Liouvillian because the feedback loop intro-
duces nonconservative and dissipative self-correction forces in the single particle

dynamics, depending on the feedback system and the cooled particle alone and independent
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of the phase-space coordinates of the other particles. This is so because we do not even
hope to be able to use all the dynamical degrees of freedom of the system (i.e. the
phase-space coordinates of the beam particles and the infinite number of dynamical
variables of the electromagnetic fields involved in the electronic feedback loop includ-
ing power supplies etc.) necessary for a closed system description. Instead we are
interested in the evolution dynamics of the set of particles in the beam only. We thus
really care about the properties of the dynamics projected onto the subspace of the par-
ticle variables only, in terms of the response functions and transfer characteristics of
the feeoback loop. And in this space of course the cooling interaction takes the torm
of a nonconservative non-Hamiltonian dynamics describing a dissipative process.
Liouville's theorem simply does not apply. This notion of stochastic cooling as a non-
conservative dissipative process is not surprising. Most macroscopic dissipative phe-
nomena such -as kinematic friction can be traced back to a microscopic feedback effect
from a conservative Lagrangian or Hamiltonian dynamicsloperating in an underlying deeper
and larger space of dynamical variables that includes the environmental heat bath. The
process of projection into a smaller subspace necessitates the introduction of noncon-
servative dynamics (e.q. drag forces on a charged particle due to radiation reaction can
only be included as velocity dependent nonconservative forces if one does not wish to
include the deyrees of freedom of the radiation fields in the dynamics of the charged
particle).

The conservative or nonconservative nature of the relevant forces is sensitive to
the level of hierarchial description of the system. As we go deeper into the hierarchy,
however, becoming increasingly systematic and mechanistic, we lose simplicity in describ-
ing aspects of the particulate. Aside from the broad question as to whether the universe
is closed or open in principle, it is only natural to develop laws of evolution or flow
of finite systems in the general context of nonconservative dynamics, with conservative
dynamics as a special case dictated by the particular physical situation. And indeed,
Liouville himself, having proved his theorem on conservation of phase-space flow under
conservative Hamiltonian dynamics in 1837, proceeded in 1838 to study the effect of non-
conservative dynamics on the transformation of volumes in phase-space and presented the
taw of evolution of phase-space volumes and phase-functions for such cases [68], which
we present below.

Under nonconservative, non-Hamiltonian dynamics, one can write equations ot motions
which can again be interpreted as a continuous point transformation in a proper phase-

space, as illustrated in Fig. 8, but now the Jacobian ot the transformation is not unity
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and the phase~space density is not preserved under this transformation. Thus if

(xl,xz,.. ) are the phase-space coordinates of the particles in the beam

sXn
; ,q;}), we can write the cooling equations of motion as:

{p P v

P ’qx’q

X; = ﬁi(‘l"Z""’éi""’lN) (i =1,2,...,N) (4.1.1)

This determines a velocity at each point [x] = (51’52""’5N) of the 6N—dimensional
phase-space. From each initial point [a] = (gl,gz,...,gN) a trajectory starts out
which describes the corresponding solution of (4.1.1). We can now consider an ensemble
of such points 1in the O6N-dimensional phase-space and define a phase-function
p(§1,§2,...,5N;t) = p({x];t) describing the probability density of the fluid element
in phase-space. Conservation of the number of ensemble systems then implies the follow-

ing continuity equation:

N
it) X 13
ap([;t] § % . [51. p([x_],t)] =0

With dynamics given by (4.1.1), we then have

N
folbxlst) . 57 2. [ ([x]) o([x];t)]

(4.1.2)

i
|
<7
~
>
—

(6N) . [ﬁ‘ﬁ“)([x]) p([xJ;t{]

This is Jjust a statement in differential form of the continuity of flow in phase-
space: rate of accumulation inside a volume V is just the difference between the rate
of intlow (inward flux) and the rate of outflow (outward tlux) across the surface S
that bounds V (Fig. 9).

A continuity equation as above is Jjust a general statement of conservation of pro-
bability and is true whether the flow is incompressibie or not. The flow is not incom-
pressible for nonconservative cooling interaction and so the divergence operator a/af

remains outside in front of G. As a consequence the solution of (4.1.2) is not obtained
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[p] =(py . Py, ....Py)

l[al =(gay. Q;. .-, Oy)

XBL 827-7058

Continuity in Phase-Space -~ Flux Across a Surface S
Leading to Accumulation Inside Volume V

Fig. 9

by just taking p constant along each trajectory, but a Jacobian determinant will

appear. If we write the solution of (4.1.1) as a mapping:

Mt: Lta] — [x]
or (4.1.3)
[x] = M([a];t)

with inverse (a] = M'l([x];t) which should always exist in order to have solubility,

then solution of (4.1.2) may be written as:

-1
o((3:8) = ot (00, 050) ALY

where QLM:ELLilLL
dilx]}

Hamiltonian flow:

It

J is the Jacobian determinant ot the mapping (4.1.3). For

26,0 =098 () <0
1

That is the generalized force is divergenceless and the continuity equation becomes
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ap([x]it) 4 Cao([xt) _ de([x]st) _
S 4 s (0D - fellxit) oo

2%,

The Jacobian determinant would simply be ‘'unity' for all time for a Hamiltonian flow.

If on the other hand

2.(.‘] = EJ([X]) ==Y KJ'

vt

for some j with y = constant, the Jacobian determinant is e and we have:

p([XJ;t) = o(M’l([XJ;t);O) et

i.e. a damping force proportional to the particle phase space co-ordinate increases the
phase-space density carried along the trajectory, exponentially in time.

we will use the grand continutiy equation (4.1.2) for compressible flow in 6N-
dimensional phase-space later when developing a complete kinetic theory of stochastic
cooling in Section 9.2.

In the next sections, we gain further insight‘into the nature and properties of the
cooling force §1(51’52""’5N)' In particular we will show that the cooling

force can be decomposed as:

where G(i,i) 1is a nonconservative force, not derivable from a Hamiltonian, describing

the interaction of a particle with itself (self-force or self-action) induced by the
N
transit-time matched feedback loop and Z: g(i,j), the total force exerted by all
J(#i)=1
the other particles in the beam, can be looked at as a conservative force, derivable from

a pseudo-Lagrangian or -Hamiltonian and satisfying the Hamiltonian flow condition:

3%y X

3 : 3 N |
o [51. -5(1,1)] e DO LI (4.1.4)



39

We thus look at the process of stochastic cooling of a beam of particles as the
time-evolution of a ﬁany—body system consisting of a collection of three-dimensional
oscillators, interacting with each other conservatively (Hamiltonian-wise) and with them-
selves nonconservatively (non-Hamiltonian self-action). In other words we are going to
study the nonequilibrium statistical mechanics of a collection of three-dimensional
oscillators coupled to each other via a retarded, nonconservative (non-Hermitian)
cooling interaction.

It is important to remember, however, that the possibility of introducing a noncon-
servative, dissipative force to particles in the beam by an external electronic feedback
loop is crucially dependent on the finiteness of the number of particles in the beam,
Stochastic cooling is the process of acquiring effective information regarding the phase-
space microstructure of the beam (i.e. knoweldge about the preparation at any time of
that particular representation of the ensemble of beam systems which actually represents
the beam under process) in successive approximations and simultaneous application of the
same information to the beam to induce cooling by generating suitable force fields appro-
priately in time. It is obvious that if the béam is infinitely dense, i.e. N> o
(fluid in phase-space) then there is no statistical fluctuations in a sample and hence
no signal containing single particle information can be induced in the pick-up by the
beam. Only information regarding the coherent motion of the beam as a whole would be
obtained. We cannot then effectively use the feedback loop as an intormation processor
of microscopic phase-space and we cannot induce any cooling,

The process of information extraction can never be totally noncestructive. For a
beam containing a large number of particles, this information is not available to us
a priori urnless one uses experimental devices as diagnostic probes to extract this
information, which always disturbs the initial state, even if infinitesimally. In the
process of information extraction, the sensing or probing device gains information, but
always at the cost of heating up the system that is probed, whose entropy thus increases.
"with minimal coupling and adequate observation time, 1ike the practically non-destructive
Schottky signal pick-up electrodes, one may be able to obtain information signals,
extremely small in amplitude but precise enough to resolve small clusters of microscopic
phase-space structure of the beam. The process will of course heat up the beam by finite
but small amount. Once the information is available though, one can apply it back to the
beam with large enough gain and right phase in order to compensate the heating induced
in the act of information gathering and in addition cool the beam by a small but finite

amount. This is what the stochastic cooling technigue does.
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A large amount of power is required to be fed externally into the feedback loop to
amplify the extremely small signals derived at the pickup and to guarantee transmission
of signals with sufficient energy density in the transmission lines required to produce
electromagnetic fields at the kicker strong enough to affect single particle motion in
the beam. This power together with the relatively insigniticant amount of heat deposited
into the loop from the cooling beam, is dissipated across a resistor (50-100 ohms
typically).

Since stochastic cooling is an entropy-reducing process for the beam of particles,
it s tempting to formulate an information-theoretic approach to the process of stochas-

tic cooling. We refrain from such an attempt in this report.

4.2 The Cooling Interaction and the Two Fundamental Processes

We seek to study in general foym the nature of the interparticle interaction and the
self-interaction induceg among the beam particles by the stochastic cooling feedback
loop. For high energy beams under consideration, the direct electromagnetic interaction
between particles in the beam generally becomes considerably weaker than the interaction
between these particles and the external elements in the environment (vacuum chamber
walls, localized cavities or resonators, probes or pick-up monitors etc.). Similarly the
cooperative collective effects arising from the direct interaction is weaker than the
collective effects that are coupled through the impedance or gain of the external ele-
ments and feedback loops. Moreover, interactions within the beam can only cause coupling
between various degrees of freedom and a slow Coulomb diffusion or heating associated
with the overall slowing of the beam. It cannot reduce the total phase volume. In our
model of cooling then, interactions beween the beam particles are always induced by the
external feedback loop only.

The set j = 1,...,N particles in the beam executing betatron oscillations trans-
versely and either free-streaming (coasting beam) or executing synchrotron oscillations
(bunched beam) longitudinally, generate a small electromagnetic signal at the outport Of,
the localized pick-up, which is then transferred to the kicker by a linear electronic
transfer element with certain propagation or transfer characteristics. The kicker then
produces a time-varying electromagnetic field, which is sampled by, say, the 1'Eﬂ
particle in the beam.

Thus an individual particle in the beam, as it passes through the kicker, sees a
time-varying electromagnetic field, which can be described by a scalar potential é(r,t)

and a vector potential A(r,t) in the general case. Since the vector potential A at
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the kicker is derived from currents or velocities of all the particles j=1,...,N in

the beam at the pickup, A 1is a superposition of N terms, each being a function of the
corresponding velocity gJ. Thus the electromagnetic potentials sampled at the kicker

by an individual particle, say the ith, can in general be separated into two parts:

S

{a) a part ¢°, AS depending on its own velocity yi at the pick-up; this is the

coherent selt-action, i.e. the dissipative part and (b) a fluctuating time-dependent
gns. ans
;]

part , whose tine-depehdence is governed by the velocities of all the

other particles (j(#i) = 1,...,N) and the propagation characteristic of the feedback
system.
It is important to recognize that one cannot write down an interaction Lagrangian

i

int for a particle in an electromagnetic field, if the potentials $# or A of the

field odepend on the velocity !1 .of the particle of interest. A closer look at a
conventional derivation of aqnt
([40], [55]) makes this fact obvious (for velocity dependent A, different gradient

of a charged particle in an electromagnetic field

operators do not comnute). Such intrinsically nonconservative velocity dependent forces,
arising not only from conventional velocity-dependent electromagnetic forces but also
trom velocity-dependent electromagnetic potentials themselves, is a manifestation of the
feedback from the dynamics in a space (radiation field space of the combined particle and
teedback system) which has been projected out and no ‘potential' formulation is available
for them. Consequently they enter into the equations of motion directly as nonconser-
vative driving force terms, with no underlying Lagrangian or Hamiltonian.

The influence of the other part of the potentials bns, an

in terms of an interaction Lagrangian of the ith particle of the beam in this time-

can be described

varying electromagnetic field at the kicker due to all the other particles and is given

by:

dﬁnt =-q bns<£i(t);t) + %-Mi(t) . Ans(ni(t);t) (4.2.1)

where [51(t),!1(t)] characterizes the orbit or tragectory of the 135. particle.

Written in this form, it represents the interaction Lagrangian sampled along the particle

th

trajectory. The interaction Lagrangian L for the i particle as written

i
int
above thus contains only the electromagnetic potentials or fields generated by all the
other particles j(#i) =1,...,N in the beam and not the field generated by the particle
i itself. It describes the inteaction between two different particles 1i,j (i#j) for

i fixed ang j summed over 1,...,N, but not equal to 1i. In other words, it
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describes the interaction of a given particle in the beam with all the other particles
through the feedback loop. Since it is based on a Lagrangian, the corresponding force
can be derived from a suitable derivative of the interaction potential. This is the
fluctuation Schotty noise interaction and should obey, according to the previous argu-
ments, Hamiltonian dynamics based on the pseudo-Lagrangian (or Hamiltonian) given by
(4.2.1). We wish to express the gdnt in terms of the particle cooroinates and
velocities alone of .all the beam particles, without any fielg variables. We thus need
to express 5ns(gi(t),t) and éns(ri(t),t) in terms of [j(t'), !j(t') (3#1)
of the other beam particles. But first let us do away with the scalar potential which
brings in considerable simplification.

The electromagnetic potentials 6 and A are however not unique and detined only
up to the addgition ot the gradient (for A) or the time-derivative (for ¢) of an arbitrary
function -~ the gauge function A{r,t). The nonuniqueness of the potentials gives us the
possibility of chosing them so that they fulfill one auxiliary condition chosen by us.
In particular, since we are not concerned with nanifest Lorentz covariance of the elec-
tromagnetic field, we can always gauge away the scalar potential to zero ¢(r,t) =0 for

all space-time, if we chose a gauge function Alr,t) that satisfies

an(r,t)

1
_——— = ,t
S é(rc,t)

t
Le,t) = cjb(r:,t') ot
0

This gauge in which #(r,t) = 0 is the so called 'radiation gauge'. Thus the
scalar potential is not really a dynamical degree of freedom. For a source-free region,
we can impose the additional constraint Vv « A(r,t) = 0. This gauge in which $ = 0 and
V+-A=0 1s known as the 'radiation Coulomb gauge' or 'transverse gauge'. Thus in a
source-free region the longitudinal part of A and the scalar potential are really not
dynamical degrees ot freedom, For the purpose of this illustration, however, we need
only chose the radiation gauge where ¢ = 0, so that we do not have to talk about scalar

potential at all. The interaction lLagrangian then takes the form
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where the subscripts and superscripts mean various spatial components of the vectors v

and A and summation over the repeated indices (a) is implied.

[f(t);gi(t)]

Kicker

D [0, 7| -]
[re); vite)] : A(r(): 1)

XBL 827-7071
Interaction through the Pick-Up-Transfer Element-Kicker Feedback Loop
Fig. 10

But the vector potential field 5"5([,t) at the kicker is generated by the cur-

rent ot all the beam particles j =1,...,N (j#i) at the pick-up (Fig. 10} and is given

by:
t
A" (r, t) =f dt'J e Q(r:,r:'lt—t') < ettt
_QL
t
3 .
A (L,t) =J dt'J dor! DuB(r,r It-t') Jglr'st!)
where

and summation over the repeated indices (g) is implied again. Ass(r,t) is governed
by the propagator or Green's function D“B([,['|t—t') which describes the propagation
of signals from (r',t') to (r,t) through the feedback loop. The explicit form of
p*® depends on the particular structure of the external feedback loop.

If rI(t) = {91(t),x1(t),z1(t)} are the longitudinal angle and transverse beta-

tron co-ordinates of 1Eﬂ_ particle, then the particle sees the interaction tields



only when ei(t) =6 * 2mn (n = 0,%1,#2,...)

since the kicker is localized at e
&)+ Also particle currents

are generated at the pick-up only when

ep + 2am (m = 0,%1,%2,,..), since the pick-up is localized at e

= ep. We thus have:

w et - A‘;‘,S[e‘(t),x"(t).z"(t)]

' 3 af [ t
n_z—w 6[ t)—e 21m Jdt Id[ D (r (t),r' |t—t) B(r ,tY)

and

Mz

Jole'stt) = 1 t)s[n ) ] }: 5[ )-e an]
J=

Mi==~co
J#i

r

and the interaction Lagrangian

or potential due to all the other particles

= 1,.00,N
(J#i) can be written as:

xi’nt = V(i(t”t)

% "HMz
=
=

ha

where

v(iw),im) =qc—2J | 3

z é[ei(t)-ek—Znn] {v;(t) D“B(ri(t),x:j(t' )| t-t ) v‘g(t' )}

+co

® X s[ea(t‘)—e —an]
M= —-c0 p
We have extended the range of integration to += at the upper limit by assuming the
Green's function to be causal, i.e

g(ti(t),tj(t')h) =0 tor 1= (t-t')<0O

44

ei(tv') =
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Noting that qv:(t) = jJ(t) is  just the ulil component of the current due

to the iih particle at time t, we can write the effect of j on i, V(i,j) as

follows:
-t + +00
vG(t) j ) -1 ‘ = oo ' e
Gt =g | dt 2 sfe'(t)-e -2m| - My s(eltr) . Y sled(t )-6,=2am
N==co M=~
(4.2.2)
where
(1) = fal o) o8 e o) ol (4.2.3)

The delta tunction to the far right in Eg. (4.2.2) corresponds to the signal derived
at a pick-up localized at e = o, from particles j(#i) = 1,...,N at each revolution
(m=0,1,2,...) and the delta function to the left in (4.2.2) corresponds to the

‘sampling’ of the signal at the kicker localizea at e = 8 by particle i at each

, B i . . . , R
rev?lgt1on (n =0,1,2,...). x;nt given above involves progucts like Ja 5 =
qzvlvé where o = 1,2,3 represent the horizontal betatron, vertical betatron and Ton-

gitudinal coasting or synchrotron degrees of treedom respectively and generally repre-
sents the full three-dimensional cooling with coupling between all degrees of freedom.

For cooling in any one dimension with no coupling to other degrees of freedom, we have

00, .J 2 1o

.1 . .
Mij = JaD Jog =0V, with no summation over o, where vu could represent any one

of X, z and corresponding to transverse betatron or longitudinal (coasting or
synchrotron oscillation) velocities of the particles only.
We can visualize the term described by (4.2.2) and (4.2.3) diagrammatically as cor-

responding to the scattering of the two particles 1 and j (i#j) with currents

i j
i, a3,

determined by the Green's function of the feedback loop [39] (see Fig. 11(a) below).

where the interaction 1is mediated by the propagator p*8

As we have mentioned before, the above does not include the nonconservative coherent
self-force, which is the component of the interaction that induces real cooling. There
is no underlying Larangian for this self-action, because the corresponding vector poten-
tial A is a function of the particle’'s own velocity v. This self-action can only be
included in the equation of motion as a dissipative force. The self-action can be visu-
alized diagrammatically as in Fig. 11(b), where the particle interacts with itself
through the transit-time matched propagator E([i(t),[i(t')|t-t') (giving rise to

an instantaneous interaction of the particle with itself at the kicker).
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We have thus outlined two fundamental single-particle processes involved in a sto-
chastic coo]ingvsystem -- the direct self-action effect and the incoherent two-particle
scattering eftect. They are known as the coherent cooling proess and Schottky heating

process respectively. Accordingly the electromagnetic signal at the kicker is usually

i il (1) ; ;
I ft) B Fi= l:x GeB ‘;3

M; = J, Dl

%8 (¢, vi/t - t) -G (1), (t)/t-1)

~

) Progagator of Propagator of self-interaction
interaction potential force only

XBL 827-7068

(a) (b)

The Two Fundamental Processes in Stochastic Cooling - (a) Incoherent Scattering
of Two Different Particles and (b) the Self-Interaction Force

Fig. 11

decomposed into a coherent cooling signal depending only on the phase of the cooling
particle and an incoherent Schottky fluctuation or noise signal depending on the randomly
distributed phases of all the other particles in the beam. We have given pictorial
representation of the two processes in Fig. 11(b) ana (a) for visualization and outlined
the important distinction of non-Hamiltonian vs.Hamiltonian nature of the processes (b)
and {a) respectively.

In the next section we look at the explicit form of the equations of motion arising

from the dynamics described above.

4.3 Harmonic Representation of the Coo]ing Equations of Motion in Action-Angle Variables

We are interested in describing the ordinary classical mechanics of a system of
interacting charged particles in the beam with the aid of a Lagrangian (or Hamiltonian)
and a nonconservative self-force which depend only on the coordinates and velocities of

these particles at one and the same time. Due to finite velocity of propagation of
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electromagnetic interactions (retardation effects), however, one must consider the
Lagrangian density associated with the dynamical degrees of freedom of the particles and
the fields together for a rigorous description of interacting charged particle systenms.
In principle then it is impossible to describe such a system rigorously with the aid of
only the bhysical phase-space variables of the particles at the same time and no quanti-
ties related to the infinite number of the degrees of freedom of the fields, except in
the 1imit of infinite propagation speed of interactions (classical mechanics with instan-
taneous interaction i.e. no retardation) or under low-order relativistic effects only
(classical Darwin Lagrangian up to order (v/c)2 ([551, [631)).

Retardation of the propagation of interaction is essential for stochastic cooling;
however, the necessary retardation is a very special one, namely the one that is matched
to the transit time of the particles between the pick-up and the kicker. This special
retardation (phase-shift in the feedback loop), together with the spatially localized
nature of the interaction (particles interact effectively only when they pass through the
localized kicker) allows us to write down, in the adiabatic approximation of slow cool-
ing, a Lagrangian for the two-particle scattering interaction and an instantaneous non-
conservative self-force, discussed in Section 4.2, in terms of particle coordinates and
momenta at one and the same time. In this picture all the particles interact with each
other conservatively and nonconservatively instantaneously at a localized region in space
(at the kicker) and discretely in time.

Following the single particle orbits introduced in Chapter 3, we can represent the
unperturbed coordinates and velocities of the 1£ﬂ particle in the frame of the beam

in terms of action-angle variables as

(o = 1,2,3) (4.3.1)

where
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i i i j
lP } = (¢ ) ¢ s 11’)
{ *fa=1,2,3 Xtz

ifii); 4 o
a G)t wu

(6N, = () ). o)

|
€
T

) -

and

In this action-angle tormulation, the v; and r; are periodic functions of the

angle variable \p; with period 2m. Hence X,

int and V(i,j), introduced in

Section 4,2 (Eq. 4.2.2) are periodic functions of w; and w‘% separately and we can
write a Fourier-series decomposition of X;nt and V(i,j) in terms of harmonics
f i and j.
° L'JOL lPB

Referred back to the laboratory frame, the action-angle tranformations for the two
transverse betatron oscillations remain the same for both coasting and bunched beams.

Longitudinally, however, the synchrotron oscillations in a bunched beam in the laboratory

frame are described by equations, transformed from Eq. (4.3.1), as follows:

6! T (t) = [98 * g t] . ®i,r(Ji,r,wi,r)
(4.3.2)

ot _ o + ®1 ,r<J1 ,r’w1 ,r)

where the first terms on the right-hand sides represent the free-streaming parts of the
orbits in the laboratory frame. Here ©y is the angular velocity of the reference
synchronous particle in the I”Eﬂ bunch (r = 1,2,3,...,h where h = harmonic number
of rf cavity), characterized by its initial phase or azimuth eg in the storage
ring. In Eq. (4.3.2), 1 can be any particle in any one of the h bunches (r =
1,...,h) that the storage ring can ideally store within its circumference. Wwe are thus
considering h identical stationary bunches, each containing j = 1,...,N particles
within the storage ring. The total number of particles is then (hN).

We can write a general Fourier series representation of the periodic s-functions in

Eq. (4.2.2) as follows:
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. o qolel T (1)-
2z 6[91’r(t)'9k-2n2,]=2—l— > e1 [o7 (t)-0,]

L=-o Q=—00

o 5004 . . . .
=_2L ’i: emerﬁmotqu . en®1 ,r(J1,r’w1,r)
m

(4.3.3)

where we have used the orbits in Eq. (4.3.2). Using (4.3.1), (4.3.2) and (4.3.3), we can

write for’ er’lz defined in Section 4.2 the following:

?,Y‘ = v r t ’_q t
)T (rw.1%)
g=1,...,h
= Z Idt' V<‘L1;r(t)’w1,r(t); lJ’q(t'),!’J’q(t')lt-t)
ST, N
q=l,...,h
+o0 . . 1[n.w1 ’r(t)—ﬂ' '}Q‘j’q(t' )]
= dgt' Vv . l],r t); lJ’q(t' t-t!
J(#)EE,...,N%Q' _L QD.( (t) )| )e
g=1l,...,h (4.3.4)
where

vnﬂ.(x"’“m; 19 fe-t ) -

(+2) (0w ttms t') -i(te tme ) i(2e0med) . /. .
=2’L:Z e Y 0 e k p e r q . Vég|<l1 ’r(t), l\]sq(tl)“:_tu)
m
(=) (4.3.5)

In Eq. (4.3.5), Vﬁ':.(f’r(t); 13 ’q(t')|t—t') is defined as the components of
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ﬂf_(g_)z ei2®i’r<Ji’r(t),¢i’r(t)) v"'”(rl'”(w,w;"‘(t))

Du8<li’r(t), U);'r(t); lg’q(t'), W‘;’q(t')lt-t 0) v\;.,q(Igsq(tl)’ ‘P‘;’q(t'))
. e 1m®J,q<Jqu(tl)’ wJ,Q(t- ))

in a harmonic Fourier series decomposition in the periodic angle variables Q1’r(t) =
i,r j’q 'y o j’q [ } i i
lwa (t);a=1,2,3 and YUt ) = [wB (t*) 6=1,2,3 with period 2n. Here each of

n and n' denote a triplet set, n =z (nx,nz,u) and n' = (n;,n;,u'), of horizontal

betatron harmonics (nx,n;), vertical betatron harmonics (nz,n;) and longitudinal
synchrotron harmonics {u,u') of the particles i and j respectively. The phase

; inewi
n -91(t) in Y for harmonic n is given by

p e () = n BL(E) +n, 1(t) ' (t)

where

is the set of horizontal and vertical betatron and longitudinal synchrotron oscillation
frequencies of the iiﬂ particle. For 1linear transverse betatron oscillations

described by horizontal and vertical betatron tunes Qx and QZ, this phase becomes

. o i i 0
D) - [(nqu * nzQz) wo * ””;<91)] LI bl O+ n, b; O !
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neglecting chromatic corrections to the tunes Qx’ QZ, given by Eqs. (3.7), due to
Tongitudinal energy variations arising from synchrotron oscillations in the bunch.
i . . : i
Jﬂnt as given by Eqs. (4.3.4) and (4.3.5) involves products like Vy v% and
. . . s . N ‘
will contain terms (mo'wo), (wo-(:)J), ((:) 'wo) and ((:) -(:)J) for the longitu-

dinal part involving vg vg only. We are often interested in terms which are only first

order in (f)/wo, in which case we neglect the (i)i-(i)j term. We note that (@) «
wS(J) and in real storage rings o <€ wy (ws ~ ,001 0y typically) and (mS/m0)2
is a very small quantity indeed compared to (ws/mo). Also the term involving the pro-
duct (wo'mo) can only affect the gross macroscopic motion of the bunch as a coherent
whole and is ineffective in influencing the microscopic motion of smaller samples of
particles in phase-space individually. In real cooling systems effort is made to sup-
press this term as much as possible by a careful design of the feedback system {notch
filter for example) so that it exhibits zero gain or minimum transfer of signal corre-
sponding to frequencies Q = U (n an integer) which are harmonics of the revolution
frequency of the central reference particle, but still allows other particles with revo-
lution frequencies distributed around wg to experience tinite gain corrections and

to cool towards the velocity center w, of the beam.

We observe that
pe ) -t ey e 0T -t e W) e [uzj’q(t) -wj’q(t')]

cn e gT) -t - %) e W0t (4.3.6)

where @J’q(t) = Pj,q t+ u}g,q according to {3.33). With the aia of Egs. (4.3.5)

and (4.3.6), we can then write (4.3.4) as
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3 ilne i,r _n'e J.q t)]
f‘ﬁ; - ) Ty eiloed > (t)-p'-u"(
-(ﬁ.)‘=1’-'°9N L !
J qll,...,h e

+w 1‘(R+m)[w0t~ek+92]—1'm(ep-ek)+im(98—er

0y

i(nugj'q-nmo)(t-t')

at' V2™ (éi’r(t); Lj’q(t')|t—t'> e (4.3.7)

We now assume an adiabatic slow cooling process so that in the interaction we can

use the approximation I(t) = I(t') in the time-scale in which the frequency spectrum

of the interaction is established. Usually the frequency spectrum gets established on a

tast time-scale of typically a few hundreds to a thousand turns while actual cooling

becomes noticeable much more slowly in several thousands ot turns. with this slow cool-

ing approximation and a change of variables to

T = (t'-t) the integral in Eq. (4.3.7)

becomes just the Fourier transform of Vﬁﬂ,(l"r, 129 1) in frequency defined by:

400
=om i,r, ;3,9 _
Vip' (L ;1 19) = j

e—1Qr Vlm

p' (Li o’ lj’qh) (4.3.8)

We can then write the interaction Lagrangian in Eq. (4.3.7) as
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i,r 3 T il FARLEFTAVR LY fw; i(2*m)[w t-—ek+er]
M (KT, N T
g=1,...,h ~ _(_w)
-im(e -6, ) imle O—Or) <am (i
e e 4 w11 LJ’qln“m m.,0>

. . . 2.0
1""-1]"1@3 ,Q] 2(:*"’% e'lk[wot-ek er]

k
g=1,...,h N =(-)

_iW-M(edek)ei&—@(e&e?{vg*_z (L“r-
np'

stq +(2-k )wo)

(4.3.9)

We note that in addition to the translation-invariant part of V(ir(t),jq(t')) depending

on 1T = (t'-t), which allowed us to use the Fourier transform in (4.3.7), we also have

ikw t
~a rapidly oscillating part e 0 which depends periodically on the time t at

which the interaction is considered. In order to obtain an interaction describing the
slow tine-evolution in terms of the coordinates [I(t),y(t)] alone with no explicit
time-dependence we now average over the fast periodic time-dependence e]kwot
arising from the periodically discrete interaction with the pickup and kicker of the

feedback loop. This long time averaged interaction Lagrangian is obtained by setting

k =0 in (4.3.9) and we get

i 3 .li’r t, jsq
<11n2> = 2 Ty eltok ey ("r ok q) (4.3.10)
J l,...,N n n'

where

' 0.0 0 |
<L1,r’ lJ’q> E enl(e -0, ) e—m(eq—er) o Q(lI Ll

=—00 2o n'

N )
0

(4.3.11)

Equation (4.3.11) describes the interaction potential between the particle 1 in the

rEE bunch and particle j 1in the qf'—h- bunch in the storage ring. For cooling of

a single bunch, 98 = e?. = ¢° and the extra indices g,r and the sum over ¢ =1,...,h
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can be dropped and Eqs. (4.3.10) and (4.3.11) for a single bunch with j = 1,...,9,...,N

particles become:

; N N T ..
2L > = 5 e ilow-ntur) .(1‘; LJ) (4.3.12
<"'t J(#)=1 zg:g- e : )
where
L it(e -o ) . s .
i, (3} _ Pk R, -2y 1d) 0, d
Vnn'(l 3 1) . e Vn.n' (1 19 0" +2,w0> (4.3.13)

We note that only the particle coordinates [li(t),yi(t); lj(t),wj(t)] at one and
the same time t enter in the interaction potential or Lagrangian given by Egs. (4.3.10)
or (4.3.12). According to classical Lagrangian or Hamiltonian theory in canonical vari-
ables (action I and angle ¥ in this case), we can write the contribution to the force

on a particle i due to another particle j 4 i in the Hamiltonian form

[ii]. - §(i,3) = - AL
J 2y
and (4.3.14)
] - wo0 < - 200
i a1’
where
Co N
v(i,3) = vzt lJ,wJ) - v (1 1d) efloed -t (4.3.15)
( 5ttt 1)

No such potential exists for the self-action force, which induces real cooling. We have
to enter this self-action in the equations of motion directly as a nonconservative force
and not as the derivative of a potential. However, we can put the descriptions of both
the conservative Hamiltonian interaction with other particles and the non-conservative
self-interaction on equal footing by using the generalized action and phase force Q(i,j)
and H(i,j) on particle i due to particle j as the basic physically defined quan-
tity, which formally qoes over to the nonconservative self-action force under the sub-

stitution Jj = 1. We thus write:

2] I avi,g
[1]1—5(1,1)—§(1.J)|j=i—[ 3 ]J_ﬂ_
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-] (1.3.10
J=1

J=i i

[{u"]i = Bli,1) = B(i.d)

The complete system of equations of motion for the set of i =1,...,N particles includ-

ing self-forces and nutual interactions is thus given by

. . . N
i - ,3_\’_(_1_;_3_)_] 3 3"(‘1.3 = 6(i,i) + 2 6(i,3)
ay j=i i ey J(#i)=

The motion under the intluence of all the other particles is thus described by a time-
dependent Lagrangian or Hamiltonian, where the time-dependence is governed by the motion
of all the other particles j(t), Jj = 1,...,N (j#i). The corresponding time-dependent
potential is thus given by

2
J(#i)=

v(ilt)

? X V(ilj(t)) (4.3.18)

we will see later (Chapter 6 and Chapter 9) that the single particle damping rate
for action due to the nonconservative self-force in the absence ot interaction with other

particles is given by

a1’ (1)

—— =)

(6(i,1)

(4.3.19)

il
i
—
Qr
-z
- | —
e |-
s
(=N
—
.
{}
.

for damping on the slow time-scale 1 determined by an average <...> over the fast

oscillation phase w1 of the particle 1 (characterized by frequency 91). Both
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the direct interaction (scattering or Schottky noise diffusion) with other particles and
the cooperative collective effect between particles tend to reduce this damping.
We see from Eq. (4.3.13) that the spectrum of interaction harmonics determining the

cooling process generally consists of frequencies

92,[1 =L, * p - wl(l)

or

Beananu = Mo T Ny o (L) +ny 0 (1) + ueg(J) (4.3.20)

where 4, N N, and u are integers -ow< JL,nx,nZ,u< +o, For linear transverse

betatron oscillations, we have

Qﬂ‘ ,"x,nz,u = (2’.‘- nXQX+ nZQZ> wo + HNS(\]) (4.3. 21)

where Qx and QZ are the two transverse betatron tunes. For longitudinal cooling

it is only the & and for transverse cooling with linear dipole pick-ups and

2,0,0,u

kickers 1t is the @ and that are useful. Eguation (4.3.21)

Q’ilao’u leo,*l,u
describes the frequency of the general revolution-synchro-betatron line (Q,nx,nz,u) in

the single particle Schottky spectrum generated at the pick-up and analyzed by a spectrum
analyzer.

The dependence of Vﬁr’ljl(f,j‘]m) in (4.3.13) on particles j and i i.e. on

the 'kicker' and the ‘'kicked' particle variables separate in most physical cases, since

the pick-up and kicker are macroscopically separated in configuration space. Then the

functional dependence of \7;’;[’]72 on the actions 11 and gJ can be factored with

good accuracy into the separated variable form as follows:

Y L B Loy p%1dy B
v.(L;usz) ;=K1Y P Dia) .
o0 a=(gugtotew’) BT 00 2= (20" +u’)
and
- . +o  jig(e, -5 ) ) N .
i, 4d) . kKop" Eeply pqd vl
by (U5 1) = T e Eah ptad) Beegent o) a3.22)

Q=00



57

We note that written in the form of a harmonic decomposition in action and angle
variables, the interaction is naturally expressed in terms of oscillation action and
angle of particles within a bunch in its own frame of reference. In this frame the bunch
is macroscopically stationary (at rest) and periodic revolutions through the feedback
system manifest as rapid1y oscillating periodic time dependence of the interaction as
experienced by a particle in the bunch. The slow long time averaged interaction between
two particles with actions 1 and I' in the bunch frame in the angle harmonics n and
n' in phase-space, will have an effective infinite sum over all the revolution harmonics
%, describing a continuous smooth interaction in time between the particles at pick-up
and kicker, with no wild fluctuations due to discrete passages through pick-up and
kicker. The "eftective interaction" seen by a particle in a bunched beam, as given by
(4.3.22), thus contains the correlated Schottky signal strengths P;%(l') and the
sampling oscillator strengths Ki(i) and the transter function 5(9)~ at the harmon-
ics Q= lw0+g'°9' summed overﬂa]] the revolution harmonics 2. We will explicitly
derive this correlated structure of the effective interaction for longitudinal and trans-
verse bunched beam cooling in Chapter 6. This enhanced etfective gain experienced by a
particle in a bunch has significant effect on its cooling rate, as we will see later.

The situation is quite different for continuous coasting beams, where the revolution
harmonics become part of the oscillation harmonics described by frequencies @ = lwo +

nw (I )+ anZ(IZ) =n-+w where n= (n ,nz,z). The laboratory frame is a natural

x“x* x X
frame for a description of coasting beams in action-angle variables and the tull poten-

tial separates in I, 1' as

(1) b(@) (4.3.23)

where n - u = fu * nXmX(IX) + nzwz(lz), with no summation over &, which becomes part
of the harmonic n. This is an essential difference between the cooling interactions
experienced by particles in coasting and bunched beams.

In practical feedback systems, the electrodynamic interactions between particles is
most conveniently described in terms of impedences, admittances and transfer functions
of the pick-up-amplifier-kicker loop. These electrodynamic quantities relate the parti-
cle currents or charge densities at the pick-up directly to the voltages or electromag-

netic fields at the kicker which determine the forces on the particles. Hence we need
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not talk about the potential V(i,j) at all. Instead we use the equations of motion
{4.3.17) in terms of the generalized forces G and H which are easily computed in
terms of the Tumped parameters (impedances, gain, etc.) of the electronic feedback loop.
Such a description also has the desirable property of putting both the conservative
forces from other particles and the nonconservative self-force on equal footing based on
generalized forces. From now on, we will then employ the following equations of motion

in general form to describe the cooling dynamics:

.. N Lo
I'=2 @(L‘.w‘; 1%98)
=1
(4.3.24)

. . N . . . .
VAN ):1 b(L‘,w‘; 1%@)
J:

where the summation over Jj now includes the j =i term. Note that G and H are
vector quantities now, with components in all three directions x, z and e 1in gen-
eral and are functions of the full three-dimensional action and angle variables
(li,yi; lj,yj) of the kicker and kicked particles. Equation (4.3.24) then describes a
cooling interaction for action and phase that couples all three degrees of freedom of the
system,and in its general form thus applies to the case where the pick-up sensor derives
signals involving all three degrees of freedom of the particle inducing the signal and
the voltage or electromagnetic fiela at the kicker, which in turn affects all three
degrees of treedom of the cooled particle. The nature of the coupling between various
degrees of freedom will determine the specific functional dependences of the various
components Gx,z,e and Hx,z,e on their argunents (gi,yi; Lj,@j).

we will also use the general Fourier series representation of G and H in har-

monics of the periodic angle variables Q1JQJ as follows:

N RN : . 1[3..Qi+n.-wj]
§<,1‘,w‘; lJ’WJ>=225n,D‘<~11; LJ)e L

S

-
<

(4.3.25)

L .. . . i[n.-¢i+n.-wj]
n<1‘,w‘;13,w3)=2 H (1‘;13)e ! J

n.n.
0, B, 717

-
<
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we note that written in the form of Eqs. (4.3.24) and (4.3.25) with harmonic decom-
position into a general harmonic set |Qi’9j" the above describes not only the
coupling between the degrees of freedom induced by cooling but also general nonlinear
pick-ups and kickers which detect and affect higher harmonics (|nX|,|nZ| > 1) of beta-
tron motion in addition to the first harmonic Nysh, = #] (corresponding to linear pick-
ups and kickers detecting the dipole betaton signal and affecting the dipole moment of
the betatron oscillations only).

We incorporate in this generalized force formulation the conservative Hamiltonian
nature of the interaction of a particle i with all the other particles j(#i)=1,...,N,
derived trom a time-dependent Hamiltonian or Lagrangian involving a time-dependent

potential V(i|t), by demanding that the following Hamiltonian flow condition be satis-

fied for each particle:

or (4.3.26)

In general again, we will also have the separated variable representation, analogous

to (4.3.22) and (4.2.23), of G and H as follows:

/ +o _1'91(9'_9 ) . ) A
o p kK ay i a,-% 13y ¢ J
- = 1) P 1Y) 6w e

Gﬂiﬂj<l" lJ) ,=§: e Ky j (1 < +1 w)

defining the effective interaction or gain for the action of particles in a bunched beam,

with the inherent sum over the correlated revolution harmonics £ and
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-il(ep—ek)

a 'i,j__
Gn.n.( ’l)’e

(1Y) < (19) Bloiwy)
i3 0; Dy 3%

[“a‘

a

(ng, ng, 2)]

(x,z,0)

(4.3.28)

for the action interaction of particles in a coasting beam. Note that the above decom-
position holds for each component « = x,z,e separately. Similar decompositions hold

for the phase-interaction Hﬁ'n_(£1;£3) also.

~i~d

Wwe have Jumped in the function Pg"g(la) the oscillation amplitude or action

~

; J
(13)—dependence of the single particle signal at the pick-up and also the oscillation

amplitude or action-sensitivity of the pick-up itself. Similarly the function Kﬁ’l(11)
~3 ~
contain the amplitude-sensitivity of the kicker as well as the dependence on amplitude

arising from the sampling of signals at the kicker by the oscillator with its own ampli-
tude and phase. We will see in Chapter 5, 6 and 7 that for linear transverse dipole
pick-ups and kickers (nx,nZ = *1}) with no coupling between degrees of freedom, the

pick-up and kicker functions Pﬁﬁ’i)"g(li Z,Jj) and Kﬁ?’i)’l(ll Z,J1) are simply

]1/2

proportional to the amplitudes A = [21 of transverse betatron oscilla-

X, 2 X,Z

tions and are given by:
P(X’Z)"Q(Ij Jj) « [a1] ]1/2 3 ((~mxq, WNoa¥)and ((-2*0 )ad
], p X,2° X,2Z u X,2 T %,z w X,2

. . q1/2 . R
Kﬁ’i:i)'“(l)‘(,z, J‘) « [21‘ ] Ju<(uqx,z)\/2d]>= Ar.z Ju<(2th’Z)a1) (4.3.29)

X,Z

for bunched beams, where Ju is an ordinary Bessel function of order u. The corre-
sponding functions tor pure longitudinal cooling of synchrotron oscillations with action

d=1/2 a2 are

Pg,—Q(JJ) o« Ju<—N2—JT) = Ju(—laj)
(4.3.30)

Ki’”(.]") « JU<NZJT)= Ju(flai)
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For coasting beams, the dependence on the transverse amplitudes or actions Ix 7 for
’

linear dipole cooling remains the same. The factors giving dependence on the longitudi-
nal action J or momentum (energy) deviation are either constants (e.g. in notch filter
cooling where dependence on longitudinal momentum deviation ap = p - Po arises
solely from the filter transfer function G(Q = %(p)), see [25]) or linear functions
of the longitudinal action or momentum (energy) deviation (e.g. energy sensitive pick-ups

and kickers) as follows:

(4.3.31)

. X521 X,2 j
The most general dependence of an,nz(lx,z) and Knx,nz(lx,z) on IX and IZ
for coasting beams for arbitrary harmonics (nx,nz) for spatially finite pick-ups or
kickers is given by complicated integrals over Bessel functions whose arguments depend

]1/2

1inear1y.on [21x z and is discussed in detail in [9].

The Fourier series expansion of the interaction in phase-angle harmonics of the

three-dimensional oscillations is exact and superior to the Taylor-series expansion in

1/2

amplitudes A? = [21?] and A? = [21("]}]1/2 often used in the literature. Thus

for example, we will see later in Chapters 5, 6, and 7 that the interaction harmonics for

longitudinal cooling of synchrotron oscillations are given by

+oo . im{e _-e, )
~ H Y ' p k
GUU' (ai,aj) nl:};m m Ju(—ma]) JU' (maj) G[mwo +yu ws(aj)] e

(4.3.32)

Y oal only in the limit of ma; > 0,

and goes over to the Taylor expanded form ai aj

ma‘j > 0 when one uses the small argument limit of Bessel functions. However since

the amplitudes of the transverse betatron oscillations in storage rings Ax 7 = Al
3

are small in comparison with the effective transverse aperture Rl of the machine, the

two expansions are the same to within terms O(Af/Rf). The harmonics G#n.(l1,13) is

thus proportional to the corresponding power of the amplitudes of the transverse oscil-
. j nl/2 j ni/2

lations (Il) (Il) .
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The function 6(9) in Eq. (4.3.27) unambiguously characterizes the complex gain

(amplitude and phase) as a function of frequency -of the signal transfer line connecting

the pick-up and kicker, including ampliifiers, etc. It includes transfer functions of

filters and cables and the amplifier gain itself, all characterized by a net electronic

gain g(). In addition G(Q), the total electronic gain, also contains a factor asso-

ciated with the delay 1 1in the transfer line given by

so that

6(2) = 9(2) T(Q) =g() e

(4.3.33)

where L represents the total electrical length of the system. We then have for G

appearing in (4.3.27) the following:

-1 (Lot re?) T

o= o d od
G(Q-—Zmo+ﬂ‘] m) g(f(,wo+[]j ;g)e

Z

9(2“’0 toy° “’J> €

Lt 3313y rmdud( 13y radd(od
—‘ILZmo*nxwx(Ix)"‘n wZ(IZ)+u wS(J Y1

(4.3.34)

Typically the delay is set to be the same as the transit time between pick-up and kicker

of a reference particle in the beam with angular revolution frequency w

T — P ﬁ-‘l (4.3.35)
0 0 ’
Thus
_ N —it{e,-0 ) —i[ndud(13)endud(13)+ud I (3d)] 1 .
G(ﬁwo+ﬂj'w‘])=e Ko7 xtix! T 2%2 s 9(Mo+nj°m3>

(4.3.36)



63

The factor exp[-iz(ek—ep)] is cancelled by the factor exp[iz(ek—ep)] appearing in
Eq. (4.3.27). For linear transverse dipole cooling in one dimension, z say, ni =0

and ng = *]1, so that we are left with a phase factor of

- Jerd o3 Jrqd sadPk_s Pk
e:F ’IwZ(IZ)T e-—)u wS(J )T ) e?:'lbz —Tuyg (4.3.37)

corresponding to the phase-advance dipk and wipk of the betatron and synchrotron
oscillations of particle j from pick-up to kicker. There is an optimum choice of these
phase advances for effective cooling.

Single particle cooling for action, ii is obtained from (4.3.24) and (4.3.25)
by setting j =1 and taking the 1long time average yielding Ny = =0y (see
Eq. (4.3.19)). We thus obtain

dr’

giT) - ). <Gz(li’wi; li’wi»w]_

z i i, 1 i
= Euz G (n, ) (-0 4=u) (12, 5 L, J) (4.3.38)
for cooling of betatron oscillation in z-direction only. From the prescription

1

<ii> = <§(i,i)> - <[— leﬁ] 1_ (4.3.39)
J=

we observe that we obtain a multiplying factor of (-1nz) in <G(i,i)> when we take

the derivative of the potential. Thus we can write:
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i . 2,8 i i iy i\ oz,-2 (i 4
<Iz>= %: Zu: (~in,) % KnZ,u(Iz"]) g(mo+nz“’z(lz)*““’s(‘] )> P -—u(lz"])

’
2 z

S

i 65 -y P* ]
- L X 61 %{Kiif‘um - a0 ) -Péij_“u(i)}e 2 s
u

(¥)
- }E Z L 0k (4.3.40)
)

Let us set Xi = arg[K(i)(i)-g(i)(i)-P(i)(i)} in Eq. (4.3.40). Then
Re{Dﬁ(i)} o % Sin[xi ¥ ¢>;pk - uw;pk] (4.3.41)

We now assume that the synchrotron oscillations are much slower than the revolution times
and the betatron oscillations, so that the synchrotron phase-advance w;pk of parti-
cle i between pick-up anog kicker is negligible: u;;pk ~ (0, Moreover we assume that
umi << wg for the highest synchrotron harmonic contributing within the bandpass of
the teedback system so that uwispk ~ (0 also. We will see later in Chapter 14 that
this is indeed the case for realistic cooling systems. The optimum compensation of

phase in (4.3.41) give the solutions

pipk _2ml o 0,2,4,...  for x =0
2 2
¢;pk - 2”2‘1 x,  n=2,4,... for X' = n. (4.3.42)

Thus by adjusting the electrical phase-shift of the feedback system to correspond to a
betatron phase-advance of an odd muitiple of «/2 between the pick-up and kicker, we can
compensate for the betatron phase advance ¢;pk optimally. Note that this optimal com-

pensation can only be achieved ideally for a single frequency Qj = g(l‘;, Jj) satisfying
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w‘j(Ij) co 2l 0,2.4,... (4.3.43)

There is a residual of uncompensated phase for other particles with different frequencies
around QJ. It is not possible to compensate simultaneously the phase-advances between
the pick-up and kicker of all the particles unless they all have the same frequencies.
This sets an upper limit to the frequency spread in the beam tolerable for cooling pur-
poses without introducing large phase mismatches bgtween pick-up and kicker for all the
particles, which degrades cooling.

Finally, in the situation of cooling several bunches, we note that Egq. (4.3.11)
describes the interaction potential between the particle 1 in the rzh- bunch and
particle j in the qlh bunch in the storage ring. We assume that each bunch in the
ring can be cooled separately independent of the other bunches by using suitable gating
techniques. Indeed if the fields at the kicker last only for a length of time comparable
to but no more than a single bunch duration, separate bunches will not feel each other
through the feedback loop, but will only feel themselves. Such would be the case if the
interaction harmonic G§672(9= n' . Qj,q +2wo) (i.e. the gain or transfer function

9(R=n" '_@‘j’q'fﬁmo) of the feedback loop, which is embedded in G>>7%) is fairly flat
or has almost constant value at the sampled frequencies Q= 2w0~; n' . gj,q for a
region |at] in & such that |af| = 2v/ae = h where e = 2¢/h is the minimum
separation in azimuth between two bunches. (This is easily seen by noting that
Eg. (4.3.11) contains the phase-factor exp[-iz(eg-ee) = exp[-it(g-r)ae] and that for

+2

2,-% ~1£(98-98) P 3 -i%(g-r)se
, . : s — —
constant Vnn' within (—gm) and (+2m), }; e Vnnl v .f ds e =
* =)
m
Sin[fm (g-r)ae : . igos . 7
ZV[ G-r) 26 which has significant values only when mm(q-r)Ae <2n i.e. 2, <15

1
(g-r)
therefore consider single bunch cooling only in this report.

< h and decreases rapidly to zero for lm > h with oscillating phase). Wwe

We will derive the action and phase equations of motion explicitly for the trans-
verse (gipole) and longitudinal cooling of bunched beams in the following chapters. To
gain more physical insight into the cooling interaction for bunches we consider now a
simple example of a model cooling system, first studied by Derbenev and Kheifets [33] in

the context of coasting beam cooling.
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An_example

We consider transverse cooling of a longitudinally bunched beam under a model dipole

cooling interaction [33] described by the potential

vii,g) = VI ‘/-1751'"(0" -¢j> 9(9" -ej) ' (4.3.44)

. .2 . . L2 .
between particles 1 and j (j#i) where (I1 = 1/2(A1) . b1) and (J] = 1/2(a]) , w‘)
are the action and angle variables for the transverse betatron and longitudinal synchro-
tron oscillations of the 135. particle. The Jlongitudinal synchrotron orbits are
given by
91(t) =u, t + ai sin[ug t + wi(O)] = w, t + VZJi Sin wi(t)
1 t) = wy +wl cos[w; ¢+ \p"(o)] “u, *ul V2l cos y(1) (4.3.45)

In (4.3.44) g(e) determines the azimuthal distance of effective interaction between the
particles and depends on the feedback loop. Periodicity in e implies a Fourier series

representation

=—00

+oo .
ge) = L g, elte (4.3.46)
&

*
and reality of g{e) implies 9, = 9y With g(e) non-antisymmetric, the interaction
given by (4.3.44) is then explicitly nonhermitian (V(i,j) # V(j,i)). Note that we are
considering only the dipole betatron interaction n = %1, which is sufficient for

1
accuracies of the order of O(AZ/Rf) when the amplitude A of the displacement from the

equilibrium orbit is small compared to the dimension Rl

apertures. Also since we are interested in slow cooling with large damping times, the

(transverse) of characteristic

interaction (4.3.44) is taken to be a function of only the phase-oifference between par-
ticles (b1—¢3), with the fast phases (¢1+¢J) averaged about. This is a good approxi-

mation when the relative frequency spread aw/w in the'beam is small, so that the only
. i j RS . dyqd i . J

slow phase in noey - ny - g o= [91 w (1) =Rgw'(1¥)]t + n, v (0) = By (0) corre-

sponds to Qj =N, =0 and is given by n . [¢1 _qﬂ]. The equations of motion in the

transverse phase-space in the presence of cooling are written as
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.
' = 3 6(i,))
J=1
(4.3.47)

[} N
8 = w (i) + 3, H(i,5)
J=1
where

G(i,4) = —a—"%fil N1 Vi Cos( ¢j) g(ei -ej)

H(i,5) = —Vﬁ]ull_%\/?s]n(b -b‘]) (e -93) (4.3.48)

The self-action terms (j=i) are thus

. +w .
6(i,i) = - g(0) I' = -< h gz> 1 (4.3.49)
H(i,i) = 0 (4.3.50)
400
Thus the quantity g(0 2: 9q determines the single particle damping rate due to the
f=-
self-action alone as tollows:
i'- - q(0) I
+co
i 0 i ( z: gﬁ) ¢
f(t) = 1'(t=0) 90t _ {i(g) ¢ W= (4.3.51)

Interactions G(i,j) and H(i,j) with other particles j (j#i) will reduce this ideal
damping rate.
Us ing the identity [1],

e X Siny _ Z 3,() (4.3.52)

p=—0

where Ju(x) is an oroinary Bessel function of order 1y and Egs. (4.3.45) and

(4.3.46), we find
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. (+e) A
o' -e%) - £ 5, 6,0 (1.9) ST (4.3.53)
W
= ()
where
L i N2 33
6,0 (1,d) = 23;; g, JH(Q,ZJ ) Ju.(- 24 ) (4.3.54)

describes the effective interaction between the 1'-t-n particle in synchrotron mode v

and jEn- particle in synchrotron mode w'. We call this the “"effective gain".

For general particle orbits in arbitrary potential wells, we use the general action-
angle representation of the orbit e(t) = mot + (:)(J,w) in synchrotron phase-space
(J,¥), by defining a suitable canonical transformation ((:),(i)) » (J,¥) as discussed
at the end ot Chapter 3. Since ¢ 1is a periodic angle variable, we can definé an
"orbit integral" Ou(z,J) as the coefficients in a Fourier series expansion of

e1£<:) in the variable y as follows:

. +o .
e1z(:)(a,w) = ¥ 0(,9) eluy (4.3.55)
u:—oo u
where
2n .
Ou(z,J)=-£;.[ REGOICRIE M (4.3.56)
)
In particular,
(
J (QVZJ) tor harmonic sinusoidal
Y orbits as in (4.3.45)
Ou(ls‘]) = { -
Sin [? (u—u)] 2 for a square-well potential
— = £ well or bucket of angular
[a®-4°] T extent e~ in the ring and

\ ]
v
L

(4.3.57)

The second orbit integral is derived in Appendix A. The '"effective interaction”

Guu.(i,J), defined by (4.3.53), takes the following form for general oscillatory

orbits in arbitrary potential well within the bunch:
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6,0 (1,3) = E 9, ou(z,ai) ou.(-z,aj) (4.3.58)

Q==

From (4.3.55) and (4.3.56) follows the following important properties of Ou(L,J):

0 (2,d) =0 (-2,J) and Hw)o(u)o (-2,9) YWV 1 (43,59
H ’ —v"u ’ a % ‘ u ’ u'—’ e = s e

=(-w)

Note that for sinusoidal orbits given by (4.3.45), (4.3.59) reduces to the special case

Ju(:é\ﬁ_d_)= J_u(—iL\/;J>; f(jmz) Ju(x 2J)Ju.(- ‘/5) M (4.3.600)
8 |
and
u:)i Jﬁ(z\/ﬁ) -1. (4.3.60b)

We can write the cooling interaction (4.3.44) ancg (4.3.48) for general oscillatory

orbits (J,¢) in synchrotron phase-space as

+§% A L A DT i .
Coay L ioqi, 1 qd) LJiwy Hiw'ye #ip T
V(i) = & %? L V(u,*l)(u',il)Q sd9; 19,4 ) e e e
{-w)
6(i,3) Z%WZ) G gl i gd tuyleinyd xie’ig)
B~ il OIS VCRN A W A ¢ ¢
(~) (4.3.61)

where

+m . Ky . .
Y(ns1) (o 71) = %lzz;m 92[“])1/2 Ou(”])] [“J)I/Z Ou'(‘“J)]

6

!
o —

vk

W41) (' 1) ql[(li)llz ou(z,di)] [(13')”2 ou,(-z,aj)] (4.3.62)



70

which is of the form advocated in Eqs. {4.3.22), (4.3.27) and (4.3.29). We observe that
in the bunch frame, all the revolution harmonics & of single particle Schottky signals
contribute in a correlated fashionvto determine an enhanced "effective strength or gain"
of interaction experienced by particles with different synchrotron modes within the

bunch,

4.4 Mixing and Correlations in Phase-Space

In the simple model of transverse cooling of a bunched beam discussed in the example
at the end of Section 4.3, we can rewrite the equations of motion for action and angle
given by (4.3.47) and (4.3.48) as equations of motion for the transverse betatron ampli-

tude Ai(li = 1/2(A1)2) and phase ¢i as follows:

i N L. o )
G R o s 3 L cos(pi-g9) g(o) -ed)} Ad (4.4.1a)
t j=1 2
i, . L A T
%ZL= ¢ = wl(l1) + Y {% Sin(' - #9) g(e' -eJ)}ﬂi- (4.4.1b)
J=1 A

In terms of the complex variables

. L
Xy = pl o1
(4.4.2)
sos
X’-(=A‘ e1¢
the equations ot motion, as follows from (4.4.1), are:
. N i N
Xj * e (1) xy = - 3 g(e -eJ) Xy =~ 3 g(i,g) X
j1 i
ok * N * 1 J * N *
X: - dw (i)x.=—29<9 -ed) xi = - Y q(i,d) x, (4.4.3)
i 1 i | J 4 A

where we have used the reality of g(i,j) = g(ei—ej) = g*(i,j). From (4.4.3) we obtain

the time evolution of [x1.|2 = (xix:) and (XiX:) as follows:
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N
2 d * s . 2 - * %
'ag{ |xi = dt (X’ix'i)= - 29(i,i) lxil - JZ g(i,3) (Xixj+xixj> (4.4.4)
4

-

Edf (x].x:) = 'I[(’nl(k) -wl('i)] (x1x:) - g(k,1) |x1|2 - g('l,k) kalz

- [g(i,i)+g(k,k>] (x].x,f)- z [g(k.J')(xixg) + g(i,j)(xjx;)]

J#H,
(4.4.5)
We note that, according to (4.3.53)
(+) N A
g(],J) =ZZ Guul(J1,JJ) e'”-lw e]u w . (4-4.6)
uou
(-w)
Let us define
2 1 2
o“ =F ;Ei %51 (4.4.7)

and a correlation function of particles i and j 1in their (u,v) Fourier harmonic

modes in synchrotron phase angles as:

(x.xf) e‘uwi—ivu9:> Cbenb
Cw(ws“%wsm; t) - & Jf[msm,] f[wjbfj] — (4.4.8)

One can similarly define a three-body correlation function Tuvx(ms(i)’ms(j)’ws(k);t)
and so on.

Initially <xix;> =0 for i4¢ J and we see from (4.4.4) that ]x].|2 danps at the
ideal rate 2g(i,i). However, we see from (4.4.5) that Re(xix:) becomes negative as
cooling progresses and degrades the overall cooling rate. Thus although we start with
totally uncorrelated particles in the beam with transverse and longitudinal oscillation
phases distributed randomly between 0 and 2n, the teedback loop introduces negative

correlations between particles, which grows in magnitude as a function of time, since

teedback 1is a systematic non-random process. However, synchrotron frequency spread
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between particles tend to mix and separate them and destroy these correlations. Two
particles with different synchrotron frequencies ws(i) and ws(j) slip away from
each other in their synchrotron phase {and hence in azimuthal relative coordinate)

according to

' = yd) -yt

[msm-ws(i)]t +yd -yl

ij b oagid
(Aws ) t All)o
and

é%‘(Awij) = (A@ij) = Am;j . (4.4.9)

The competition between these two processes, feedback correlation and kinematic mixing
determine the overall cooling rate of the beam.

Taking appropriate averages on both sides of (4.4.4) and (4.4.5) one obtains the
time-evolution of <x$>, XXy, etc. From (4.4.4), we see that the two-particle cor-

relations become important when

2
(N-1) 90 Cuv 9,0 (4.4.10)

i.e. when Cuv ~ 0(02/N—l). From (4.4.5) the characteristic time (at) associated

with this value of the correlation is given by

C 2
Voo 9 2
at) = Wat) Y °
or (4.4.11)

By the definition (4.4.8), synchrotron frequency variations will destroy correlations on

a time scale given by

[uws('i) - vws(j)] t~1

-é-(uw) Aw;j t+ (u-v) ot ~1 (4.4.12)
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where 55 = [ms(i) + ms(j)] is the average synchfotron frequency of particles i and

" N —

j and Aw;J = ms(i)-ms(j) is the spread in their synchrotron frequencies. For small
spread Aw;J in synchrotron freguencies (Awslws << 1), the fast phase variation in
(4.4.12) is provided by the 55 term which averages to yield suv' The slow phase-

variation then is given by

TR Aws «t~1
t ~0(1/(qus)) (4.4.13)

Therefore two-particle correlations will be significant when

1 1

We can thus associate a small parameter ¢ with the relative strengths of correlations

where

N
e = 0|2t (8.4.15)

for small frequency spreads bw in the beam. With single-particle self-correlation
normalized to unity (totally correlated) i.e. O{e ), two-body correlation is of
order 0(e), three-body correlations O(ez) and so on. For sufficiently small guu
or large (Aws), e << 1 and we can ignore correlations higher than the two-body corre-

~0). This allows us to use a small ¢ expansion in the kinetic

lations (Tpvx

treatment of stochastic cooling in Chapter 9 (Section 9.2).

The parameter corresponding to e for a coasting beam is [6])

g N
§ =0 m (4.4.16)

For a bunch, guu’ the effective gain of the interaction, has an inherent sum over
all the revolution harmonics (Egs. (4.3.54) and (4.3.58)) and hence enhanced over the

gain g of the feedback loop at a single harmonic only. Also the mixing factor
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(quS) ~ l(aAms) < kmax(amaxA“s) << Aoy (aw) unless bwg ~ (Am/amax) ~ wg i.e.
Awslws ~ 1 corresponding to a coasting beam with revolution frequency spread aw =
I wg where 8pax is the maximum amplitude of synchrotron oscillations in the
bunch. (Note that JU(QJEU) = Ju(ka) in Eq. (4.3.54) has significant values only up to
u~ Ra for fixed fa .) Thus the parameter ¢ tends to be large compared to the
parameter ¢ for a coasting beam, leading to strong two-body correlations in synchrotron
phase-space of a bunch.

For large spreads in synchrotron frequencies or for values of 1y such that
uAms/wS > 1, the fast phase variation in Eq., (4.4.12) is given by the first term

involving Aw;J, which averages to yield au v The slow phase variation then is
?

given by
Zu ;S t ~1
i.e.
1
t~0 -
B owg

where wz is the maximum synchrotron frequency in the beam. The small parameter then
is given by
o) N
e=0 —‘ﬂ‘—m— (4.4.17)
Hog
g N
~0 | (4.4.18)
lmAw

where uwz ~ lmAw " for an equivalent coasting beam with revolution frequency spread aw
and lm the highest Harmonic in the bandpass of the feedback system,.

Thus for bunches with sufficiently large synchrotron frequency spread, the kinematic
mixing factor 1is comparable to that of a coasting beam. However ¢ still remains
deterniined by the enhanced effective gain guu in the numerator in (4.4.18), which is
a manifestation of the fact that particles in a bunch are forever correlated in such a

way so as to be confined within the finite length of the bunch only.
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4.5 Schottky Spectrum, Sampling, Differential Equation for Oscillator Response and All

That

In order to obtain the equations of motion for a single particle undergoing stochas-

tic cooling directly from single particle unperturbed orbits and the transfer character-

istics ot the feedback loop, it is convenient to visualize the basic process in the

following stages:

(a)

Particles in the beam set up a Schottky noise signal at the pick-up

N
P
»(t) =a 2 g(t) (4.5.1)
J=1
where §j(t) is the signal due to particle j given by
w,(t) #e .
J 3y G(t —t‘]’P) for longitudinal current signal
2n Qoo L
F,J.(t) = (4.5.2)
w,(t) += P\
J 2: x:{t) 6(% -t ) for transverse dipole moment signal
2n oSl 2

where ti’P are the times the particle j with angular velocity 0 “is in the

pick-up and ¢ the charge ot the particles. A Fourier representation of Dp(t)

N

gives the Schottky noise spectrum ﬁp(ﬂ) =q 2 £ () of the beam signal at the
=175

pick-up, as seen by a spectrum analyzer in the laboratory frame in the freguency

(1) domain.

The signal nP(t) is then processed by the transter line characterized by a

linear transfer function gﬁt—t') and applied as the feedback signal

=

L)

t Wt

&) = J dt* G(t-t') - pP(t) =q 3. I dt' G(t-t') -

d G D q G ) -
=00 ~ J=1 =0 =

N
= 2 di(t) (4.5.3)



(c)

(d)
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at the kicker. A spectrum analyzer at the kicker will generate noise voitage or
electromagnetic field spectrum ak(ﬂ) = .ng) . Ep(Q). We have already seen in
Section (4.3) that the Schottky spectrum Dp(ﬂ) will contain in general the

frequencies

- J o Jfyd Jj o
Q-R,mo*‘nxwx(lx)* nzm

N
—

N G
g
+
=
.
€
wv .
<
N

for all particles j= l,...,N and it is the gain function ng) evaluated at

these frequencies that enters into the kicker signal ak(Q).

An individual particle i in the beam samples the signal at the kicker only when
i,K

s n = 0,*1,*2,-.. .
n

it passes through the kicker periodically at times t =1

The signal sampled by the iEb- particle as a function of time is given by

Thus

-1

t
. +00 ) N +oo . 1
)= % s(t—t:]’K) q . I at' G(t-t') - £ 3 a(t'-th’P) )

Note the similarity between this expression for the signal seen by 1EE

particle from all the particles j=1,...,N in the beam and the interaction poten-
tial V(i,j) between particles i and j as given by (4.2.2). Note especially
the two periodic s-tunctions, one corresponding to particle j setting up a signal
at pick-up periodically and the other corresponding to particie i sampling this
signal due to particle j at the kicker periodically in time. Note also the trans-
fer function sandwiched between them.

The sampled signal g’i(t) seen by the it—h— particle is effective in chanq’ing
its oscillation amplitude. gﬂ(t) has the frequency and phase information of all
the particles in the beam including the information about the particle i that is

sampling the signal and acts as the driving term in the differential equation
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describing the three-dimensional osciliations of the iEﬂ ﬁartic]e. The oscil-
lator response is thus given by the nonautonomous, nonconservative differential

equation:

>
f+]
+
—_—
€
]
o
N
>
1+
|

w0 (apoiys 1) (4.5.5)

where {wa} = (wx,wz,ms) and the explicit time-dependence on the right-hand side
is given by the phase-space coordinates xj(t), ij(t) of all the other beam parti-

cles j(#i) =1,...,N.

The autonomous self-interaction part of 4 (the coherent term), denoted
Ci’“(gi,;i), determines the real damping gg_coo]ing'of the 1'Eﬂ particle.

The nonautonomous or incoherent part of zﬂ’a, denoted by S1,u(§i’ii; t),
describes the Schottky noise from other (j#i, j=1,...,N) particles and causes heating
or diffusion. We thus have the decomposition into a coherent cooling term and a Schottky

noise term as follows:

J(’L-,ii; t) = Qi(zsi,ii) + Si(zsi,i]-; t) (4.5.6)

The differential equation (4.5.5) involving (x,Xx) can be transformed into egua-
tions tor action and angle (I%y%) (or equivalently amplitude and phase (A% y™)) in
the general form of Eq. (4.3.24) by various methods, e.g. method of averaging, method of
multiple time-scales, etc. we will use the multiple time-scales method in Chapter 6 to
derive the action and angle cooling equations for bunched beam stochastic cooling.

Detailed analysis of sampling and amplitude-phase representation in the context of
coasting beam cooling is discussed in [6], [9]. In general, the sampled noise

. N .

zf’“(&i,gi;t) = Z% gf’“(zi,gi;g.,iA) and the corresponding action noise G*(1',¥';t) =
J:

37

S 61, w19, 47) depend nonlineariy on (x:,xg) and G/I;“/Iil) respectively and it
J=1

is not possible to obtain a ditferential equation for the time-evolution of <Ia> =
2

1/2 <A = 1/2 <|xa|2> alone, without involving higher moments of I~ like <I -I >,
<Ia'1a-1a>, etc. Instead, one usually obtains a partial differential equation for

transport in phase-space in the form
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af(L,t)  T[.

— = [D(1,f) f(L,t)| (4.5.7)
at

where f(I,t) is the distribution function in action I of the beam and 6([,f) is a

partial difterential operator involving derivatives with respect to [ (a/al, 32/312,

etc.) and depending on f(I,t) as well. Such is the case in general for longitudinal

stochastic cooling of coasting beams [9]. In general Eq. (4.5.7) has the general form

of a Fokker-Planck equation up to second order in the strength of the cooling
1/2

interaction. For the special case where g depends 1linearly on (I;) and
(13)1/2, however, e.g. for linear transverse dipole betatron cooling (Eqs. (4.3.29),

(4.3.48), (4.4.1) and (4.4.3), an eqguation can be obtained for the time-evolution of the
first moment «<I> = 1/2 <A2> alone, For coasting beams with nonoverlapping Schottky

bands, this is given by [9]:

d<l >
w _ - +11N'f(m) v 2
s —n,%) g[(n*Q)] o] g[(n:to)] <1m> (4.5.8)
or
2
d<l > d(¢A
= 1 w 1 <m> . +‘"Nf(‘1’) 2
Yo <d>7dt =<A2> dt =n§;) -9[(nt0) w] Tn Q] -9[(n*0)-m]
(4.5.9)
0 +00
where f(w) =_[ F(w,1) dI, -[ f(w) dv = 1, F(w,I) being the distribution function of
0 —-CO

particles with revolution frequency « and betatron action 1, Q the betatron tune
and g[(mQ)w] the gain of the feedback loop at the betatron harmonics QQ = (Q)w.

The first term on the right-hand side in Eq. (4.5.9) arises from the coherent cool-
ing term Ci(xi’;i) and the second term on the right-hand side of (4.5.9) arises from
the incoherent noise term Si(xi,;i;t), as given by £q. (4.5.6).

Equations (4.5.8) and (4.5.9) for coasting beams are obtained by assuming the noise
aﬂj’“ in. Eq. (4.5.5) to be ogetermines from uncorrelated particle orbits or beam
parameters, In a real cooling system, correlations among the beam particles introduced

by the kicker, act to deform the noise spectrum or signal 61’°. This in turn leads

to modifications of the cooling rate Eq. (4.5.9), as discussed in the next section.
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4.6 Collective Signal Suppression - Cooperative Particle Effects

A beam of particles undergoing stochastic cooling is characterized by collective
properties, generated by the inter-particle interactions induced by the feedback loop.
The kicker fields introduce correlations between particle's arrival times and their
phase-space coordinates. Such correlations are then propagated within the beam by single
particle orbits.

Quite generally, the collective dynamics is describable in terms of response funct-
ions or propagators D(r,T'; t,t') which describe how a disturbance f(T';t') centered
around T' at time t' in the six-dimensional phase-space of the beam propagate through
the beam to the neighbourhood of the point T©' in phase-space at a later time t. The
response is generally causal for physical systems like beams and its structure depends
both on the single particle orbits in the absence of interparticle interactions and on
the nature of the interaction between particles. The specitic form of this response
function is sensitive to the boundary conditions of the system and causality generally
imposes certain analytic structure on it in the frequency space conjugate to time.

It is easy to see from Fig. 12, describing the self-consistency between the stochas-
tic feedback loop and the 'feedbéck through the beam' loop, that the collective propaga- ‘
tion through the beam leads in general to a shielding or suppression of uncorrelated
single particle signals (i.e. kicker fields in the absence of kicker-induced modulations)
by a factor e(Q), similar to the dielectric function of a medium. In presence of

kicker-induced modulations, the total current at the pick-up is moditied to

T

'p

Q) = 10(9) + () : (4.6.1)

where IO(Q) is the unperturbed Schottky current and a(Q) is the collective modulation
to the current due to the kicker.

If the beam is described by a "system response function" D(Q), then

A (2) = D(Q) - vl(m

and
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Thus
k
G(Q) I (Q V(@
T - CRSCIAG 6.2
[f-s@-0@] <@
where
Q) = 1-G(Q) » D(R) (4.6.3)
and w(@) = 6(e) - 1,(2) , (4.6.4)

The Beam Response Function D(Q) has to be evaluated from the appropriate equation
describing collective propagation of signals or perturbations through the beam, usuaily

the Vlasov equation for single particle distribution in phase-space.

Beam B
D(Q)
Pick-up Kicker
| | -
Vi) = G6(Q) - 1l ()
) = I (2} + AS2) =G(Q) “o (Q2) + AM2)]
G(Q2)

XBL 827-7044

Collective Signal Suppression by Feedback through the Beam Response

Fig. 12

Thus in presence of collective correlations, the Schottky signal spectrum at the
kicker is distorted from the spectrum with uncorrelated dynamics and this leads to a
modification of the cooling rate. For example the coasting beam cooling rate, given by

Eg. (4.5.9) for linear betatron cooling, is modified to [9]

d<lm> _ 2 A g[(nQ)w] + NF(w) Jg[(n*Q)w] 2 (4.6.5)
n{#) ) el(-niQ)ul  [n+Q| [e[(mQ)]|?
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in the case of non-overlapping Schottky bands, where the suppression factor e[(n*Q)w],

as derived from a Vlasov analysis, is given by ([5], [6]):

fimar] - 1o Ballomgel [ a tfeds (4.6.6)

+
n>0

A more general expression for the signal suppression () at freguency € including
the situation of revolution Schottky-band overlap and localized interactions, has been
derived by Bisognano ([8], [9]) and van der Meer [104] for cooling of coasting beams.
Calculation of the collective response or the signal suppression factor for coasting
continuous beams is simplified by the fact that the response of such a beam at an aximuth
¢' and time t' due.to a perturbation at an azimuth e and time t, is invariant with
respect to arbitrary rotations in azimuth and stationary with respect to arbitrary shifts
in the origin of time, i.e. the response is a function of (e-e') and (t-t') alone.

Hence eigen-states or normal modes are plane or circular waves of the form
F i — E 3
2,y ()~ eiRe-0t) (2 4 (4.6.7)
as long as the set (2,0) satisfy a certain Dispersion Relation:

AU (4.6.8)

determined by the particular collective interaction under consideration, e.g. space-
charge, external impedances, feedback loops, etc. For spatially localized interactions
(e.g. at a cavity or the kicker) one obtains a single scalar function e(R), involving
sums over the revolution harmonics £, that determines the normal modes through the
condition

e(@) =0 . (4.6.9)

Collective response to an arbitrary density excitation SO(Q,Q) ~ e1(Q9_Qt)

where
(2,2) do not satisfy (4.6.8) or to Sgk(ﬂ) at a localized region e = o where @

does not satisfy (4.6.9), is a shielding effect described by
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0 32k(9)
~ _ 0 (0,0 - _
p(2,9) = 5, @ or oek(Q) i Y (4.6.10)

The collective response of a bunched beam differ significantly from a coasting beam,
owing to the spatial confinement property of a buncheo beam and the topologically dif-
ferent particle orbits in a bunch., A bunch has a finite length and a nonuniform azi-
muthal density distribution in general. Hence a circular wave ei(le-ﬂt) is not an
eigenstate, except under very special periodic boundary conditions. So we expect all
the angular Fourier components to be coupled to each other, as depicted in Fig. 13 below,
and the self-consistent propagation of perturbations SR(Q)’ to be desdribed in general

by a matrix relation:

400
by = Ty (9) by () (4.6.11)
or
e(@) - pla) =0 (4.6.12)
Self-consistency
loop
S
|1 - =
1- 0@ - @ = g R
_,_..l_ -
-~ ——— e P (0, t)
[p| (Q)][ : ///// : ][Em (.Q)]
Dynamics
of beam

XBL 827-7059

Bunched Beam Response

Fig. 13

where E(Q) is a columm vector involving {EQ(Q)}Q (Q) 1is a matrix

€
x

ey vyt and

{egk(ﬂ)}i,k:—w A+°, given by:

Sk @) = 8y - Mg ()
or ‘ (4.6.13)
@) = - ()

=1
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Eigenstates or normal modes must satisfy the Dispersion Relation
det[i(sz)] = ]I~ ﬁ(9)| =0 (4.6.14)

which is a condition for solution of (4.6.11) or (4.6.12) with non-zero g(Q).
Eigenfrequencies are thus given by the roots of the infinite-order determinantal equation
(4.6.14). For localized interactions at a. fixed azimuth 8y the matrix equation
(4.6.11) translates into a coupling of the localized perturbation Sek(Q) to all the

revolution freguency translates Se (Q+kwo) in the following way:
k

+00
pgk(Q) = kz;w M, () Eek(g + kwo) (4.6.15)

This will be seen more clearly in Chapter 10.

For stochastic cooling, one has an arbitrary initial excitation {(incoherent Schottky
-0 ]
‘02(9)

of (4.6.14). Thus the collective shielding or suppression of the original signal EO(Q)

where & is in general not a root

signal of particles) §0(Q) oo oo

is given by:

(@) - p(a) = 2°(a) or ) = [e(m]'l 2 (0) (4.6.16)

E
~ < —

Calculation of the inverse of the infinite matrix Eﬂﬂ) poses considerable mathematical
difficulty.

A second distinguishing feature of a bunch which complicates the collective dynamics
even further is the following: a bunch is most conveniently described in terms of
action-angle variables (J,¢) in longitudinal phase-space, as outlined in Chapter 3.

The natural "complete set" to describe disturbances in bunch phase-space is thus

+ o0

ek o0 t) = | T o (05 ) et VI g (4.6.17)

4+ o
Zeo ¥

whereas the natural "complete set" to describe perturbations in configuration space of a

storage ring is:
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w .
{Z,Q}: ole; t) = 3 DJL(Q) e1(!Le+Szt) an (4.6.18)
f =~00

since the electrodynamics or the response of the external impedances, feedback transfer
Tine, etc. to current pertdrbations is conveniently described in terms of response to
single frequency periodic circular waves |£,05 ~'ei(£°_9t). This basic incompatibii-
ity is one of the major sources of the difficulty in solving for the collective dynamics
of a bunch.

Externally imposed disturbances, characterized by plane-wave states [2,02>, will
be carried along by the intrinsically circular dynamics of particle orbits in a bunch
ana projected onto the plane-wave states again, as demandea by self-consistency. Hence

each matrix element ﬁkg(Q) has an effective sum over the internal bunch harmonics u:

4<0
k> = 2 <2lw <ulk> (4.6.19)

==

The situation is pictorially represented in Fig. 14 below.

1 = no. of lobes

PUIRRY

Coupling of Internal Bunch Modes (Synchrotron Modes)
to External Electromagnetic Disturbances

Fig. 14

Hence we expect

+00
M) = X M(9) (4.6.20)

H=—00
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Rotation with trequency wg in phase-space implies that Y(t) = wst + y(0) and
exp(iuy) = exp[iumst-¥iuw(0)]. Fourier transformed in frequency, we thus expect

MEQ(Q) to have simple poles at @ = yu_, so that

~ o te Fro(Q)
@ = L i@ - ¥ X
u=—co p=— [Q -uu ]

(4.6.21)

where FEQ(Q) describes some kind of form-factor of the bunch in the coupling of waves
k> and |&> through an internal phase state of harmonic u. For nonlinear oscillation

orbits with action dependent frequency wg = ms(d) we would have

M. (R) = E f dJ M (4.6.22)
k2 = [ - uo ()]

+00

For localized interactions at a focation e = &> an extra summation 2: would appear
M= —c0

within ﬁkk(ﬂ) to reproduce the delta function nature of the interaction.
We will see in Chapter 10 that the exact form of ﬁkz(g) derived from a Vlasov
analysis does indeed have the same structure as Eq. (4.6.22).

It is important to recognize that the quantity e(Q) determines the frequencies and

2

growth rates of collective modes, excited by the feedback loop; through the condition:

det [;(onh)} 0 (4.6.23)

Thedamping or growth rates of these modes are determined by:
o < In(" ) (4.6.24)
Hence associated with any feedback system, there is a characteristic time-scale:

o ~ (ston) (4.6.25)
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over which collective oscillations excited by the feedback loop would grow, if it had the
appropriate phase. The situation is similar to beam instabilities induced by external
elements.

In the context of cooling, TEOh could describe how fast the process of collec-
tive signal suppression is established in a beam with no frequency spread.

Fof a beam with non-zero frequency spread, however, one needs to take into account
3-body correlations in order to have a correct evaluation of the coherent signal suppres-
sion time scale. Such an analysis requires a kinetic theory based on a hierarchy ot

correlations for the particles in the beam. (See Chapter 9, Section 9.2.)

4,7 Various Time Scales

The tastest frequency present in the system is usually the betatron oscillation

Q

in the storage ring. Nothing significant happens to the beam in a single turn except for

where Q is the tune and o the revolution frequency

frequency k2% X,2 o

Y,z T
a few betatron oscillations. At the other end of the frequency scale is the cooling rate
of the beam, vy. We are considering a stochastic cooling feedback system that gives rise

to cooling on a slow time-scale 1/y. Much before any cooling has occurred,

Tcoo1
there has been several betatron oscillations, the beam has made several turns, there has
been several lonyitudinal synchrotron oscillations and the Schottky spectrum of the beam
noise signal at the pick-up has been established.

The synchrotron oscillation frequency W is usually much slower than the revo-
lution frequency w, and yet we need quite a few of them in order to establish the
synchrotron harmonic structure in the Schottky noise spectrum, before any cooling occurs.
Typically synchrotron periods Ts correspond to thousands of revolutions.

As discussed in Section 4.4, there is also a time-scale of mixing in phase-space

corresponding to the uEﬂ_ harmonic:

tor naxinum synchrotron amplitude am in the beam.
There is also the coherent damping time as discussed in Section 4.6, corresponding
to the time-scale in which cooperative collective particle effects screen or suppress

single particle Schottky signals. Typically this time-scale is given by [9]
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1
T
n e Gepe,

Tcon N(‘scoh)-1 =

where n 1is the number of particles that interact at a given time, i.e. the number of
particles within the system pass-band or in each sample handled at a given time by the
feedback loop and Ggff is the total effective gain or interaction strength experi-
enced by a particle.

In our formulation, we afe going to work in the following regime ot hierarchial time

or frequency scales:

(wo’ Q“o) >> uldug) > wg ™ 8.n >> Yoo

W ~
(%0’ TB) << [}mix] < Ts ™ Teoh << Teool

Fast cooling schemes involving a time-scale of cooling taster than the synchrotron
period so that the synchrotron band structure of noise signal does not get time to be

established, is not a subject of this report.
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5. SCHOTTKY SPECTRUM OF A BUNCH IN THE ABSENCE OF COHERENT MODULATIONS

We describe the longitudinal synchrotron and transverse betatron oscillations of
particles in a bunch by the action-angle variables (J = 1/2 az,w) and (I =
1/2 Az,é) respectively. The longitudinal orbit of a particle {1 in the beam under-

going synchrotron oscillations is given by (Chapter 3):
ei(t) =uw, t+a Sin u;i(t)

éi(t) = w; = wy * dwy Cos wi(t) =

o + “’s(ai) . ay Cos wi(t)

Yo
where
1/2
a; = [ZJi]
and
bo(t) = o_(a.) t + ¢
i s i 1

The current at a pick-up located azimuthally at e = ep due to a particle j is:

+00

Go, 2 s[ej(t)—ep-.?nm]

J M= o0

P
I5(t)

0 . +o  ipfw t+a, Si A(t)-e_]
q[fo + (%;l) C()‘s(ws(aj )t + wg)] Z e‘ 0 aJ mn w.] Qp (5.1)

M=~

We now use the identity (4.3.52). The current then is given by:

. _ o
- - © )t - + /
Ig(t) = of | T T ‘]u(maj) el[mwo+ m S(aJ)] ime, + iuy;
(o) ()
00 . N 0 .
. q <A_;l> (g) (%:) 3 (o) [e'l[mno+(u+1)ms(aj)]t FiCur1)y) - e
LU

+ gilmag+ (u-l)ws(aj)]t + i(u-l)wg -imep]
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The first term gives a spectrum of lines at the revolution harmonics me each

o’
one of which is accompanied by synchrotron satellite bands (an infinite number of them
in principle) [mmoz:uws(aj)] whose strengths are given by Ju(maj). The second term
gives a set of second order synchrotron satellite bands at [mmot (uil)ms(aj)] displaced

by <+ “s(aj) from the first order bands and whose relative strengths are given by

since synchrotron oscillations are usually much slower than the revolution time

(amS << w we thus neglect these second order bands from our analysis. The

o)'
first-order longitudinal Schottky signal due to particle j at the pick-up is then

(+2) (+e) ilmw e (a;)]t ~ime +iup!
Ig(t) =qf, ¥ % 3,(ma) e o " M9 p J

m
(=) (=)

The total Schottky current signal at e = o due to all the particles j=l,...,N

p
in the beam is given by
. . .0
N (4) () ifmw +pw_(a,)it ~ime_ +iup;
p _ p _ 0 L p J
IM(t) = Zi Ij(t) = of z& DS Ju(maj) e
J— \]— m u

(o) (=e) (5.2)

Equation (5.2) gives us the time-domain representation of the spectral form of
Ip(t), the longitudinal Schottky noise signal of a bunched beam at a pick-up. The

usual form for unbunched (coasting beam) particles can be derived from (5.2) in the limit

a.»0
j >
N+ n(w.t-e )+imeq
Pit) =qf 3 Y e I P J (5.3)
o ¢
J=1 M=~
wnere vy is the revolution frequency of the jED- particle.

The first order transverse signal of the jﬁh- particle is given by the dipo]é

moment
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p . 1P
dJ.(t) = xj(t) Ij(t)

where

x5(t) = A(t) Cos(Qmot .sg)

for a particle executing betatron oscillations with tune Q and amplitude AJ.(t).

The total transverse dipole signal at the pick-up is given by:

N
) = 3 df(t)

=1
N, (A (#) L(mQ)uy +uug(a )]t +1uyl] +i6] ~ime
= jg‘l q <T> . fo . %‘%: Ju[(rrr*Q)aJ] e

[ (1-Q)u, +ug (a )]t *iup) - i8] -ine,

+Jp&m®%]e
(5.4)

It one wishes to include the effect of the machine chromaticity, the arguments of

the Bessel functions are modified as [67]

m —_J {(m 0 &
Ju[( Q)aj] Ju[( Qa; -Q = a; (5.5)
where & 1is the 'chromaticity' defined by:

L Ebw _Eoaf
T on “n f

Y 4
] (o]

aQ
= =
Q0

o
(=2 =)

and n = Y;r? - y—z is the "off-energy function".

Again, the usual form for unbunched particles can be derived from (5.4) in the limit

a.>»0
J->
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o0 : _ +40 0
) . ,e] [(nﬁg)mjt .mep' bJ. +me.]
0 WS

N /A,
P (t) = _Z.qv(-éi J
=1 -\

. 0 0
. e1 [(m—Q)wjt-mep-dsJ.+mej] (5.6)

where Wy is the revolution frequency of the jyl particle.
As exbected, Eq. (5.6) tells us that the Schottky spectrum of an unbunched beam
contains an infinity of betatron lines each having a central trequency vy = (m=th)mo

and a spread, due to momentum and transverse tuning dispersion, given by:

+ Ap
bu, = (mn_QOE) w, o (5.7)

For a bunched beam, the additional synchrotron oscillation transforms each of these bands
into a central betatron line associated with an infinite set of synchrotron satellites,
spaced at the synchrotron frequency and intensity modulated by Bessel functions of
increasing order. In a linear nachine without ripple, the central betatron lines are
sharp while the synchrotron satellites reproduce the momentum distribution ofvthe beam,
The relative neight of the satellites compared to the central line contains the informa-
tion about the machine chromaticity now.

The single-particle longitudinal Schottky spectrum, as seen by a spectrum analyzer
attached to the pick-up, is shown on the global frequency scale in Fig. 15(a). The
splitting of each revolution band L into two betatron side-bands (m+Q)mo and
(m-Q)m0 for the transverse dipole signal is illustrated in Fig. 15(b). The detailed
satellite band structure of each revolution band due to synchrotron oscillations is shown
on a magnified scale in Fig. 15{(c), for a revolution harmonic m = 20,000 and synchro-
tron oscillation amplitude a = .00112 radians in a bucket of maximum length 3rax =
.0014 radians corresponding to an example of a h = 2226 rf system for the Fermilab main
ring or the Tevatron.

The shape of the current spectrum due to a beam of particles is obtained by adding
up the single particle contributions by taking the proper distribution of synchrotron
amplitudes

<a<
O<a=<a,,
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a = 0.00112 radians

~ {ma)

U
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(c}
Schottky Spectrum of a Particle in a Bunch
Fig. 15
and phases 0SSy <2

into account.

The protile of the Schottky band at a given revolution harmonic mw

should resemble the projection of the phase-space distribution of the bunch along the

velocity-axis and thus duplicates the longitudinal velocity distribution of the bunch.
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The Schott((y spectrum (longitudinal) for a distribution 0} particles in a bunch at

a given revolution harmonic is shown in Fig. 16(a) for a low harmonic Nw and in

Fig. 16(b) for a high harmonic 2"’0 (2 >> n).

P P
P (n <) IP(22)
nwg + ucbs (a)
\ [
1 Overlapped Overlapped

syncrotron syncrotron

2 l [ "9
| 2= lwg I
E 2= log + e fa)
|
! | Q= Iwo + uws(a)
lulws (am)%l'am cwglag) =|w0+u'ws(a')
= I (Aw)max
(a) (b) XBL 827-7081

Schottky Spectrum for a Bunch Distribution

Fig. 16

Since Ju(la) has significant magnitudes only up to u ~ 2a and falls off to

u
zero rapidly for u 2 fa J (x).— 1 (2—’;) , the side-band spectrum for a single

H ude \enp

particle of amplitude a extends up to u=~=%a = ¢ -:—“’%%% . For a distribution of par-
s

ticles as in Fig. 16(a) and (b), the side-band structure extends up to =~ fa_ =

m m
aw(a )
L - w—s—(-é;)— where am is the maximum synchrotron amplitude present in the bunch. With

line spacing “’s(am)’ the width umws(am) = SLAu)(am) approaches that of the coasting

beam case with aw equal to the frequency modulation.

For low revolution harnonics Nw,, We have around each n a line spectrum

essentially (where the ut—*l side-band has a width waw ., Fig. 16(a)) rather than
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a continuous band. Thus as compared to a coasting beam, the noise density at the side-

bands tends to be increased by

until the side-bands overlap, i.e. Fu < 1.

This noise concentration at the side-bands is however limited to small revolution
harmonic numbers n and a few synchrotron side-bands y around each n. We observe
that [Ju(za)] falls off to zero rapidly only for u > fa = u. Thus for large arqu-
ment (Ra), i.e. large harmonic numbers &, many high order side-bands contribute for
whom the overlapping condition Fu <1 is satisfied. This situation is illustrated
in Fig. 16(b), where we observe that except for a few synchrotron bands near the center,
most ot them overlap partially or completely thfoughout the rest-of the revolution har-
monic band.

In the band-overlapped region of the spectrum, it is impossible to assign a definite
amplitude a and synchrotron harmonic u to a given frequency Q. Or in other words
given a certain frequency @ that talls within the revolution band, several different

particles with different synchrotron amplitudes and different synchrotron harmonic num-

bers will generate the same freguency Q:

It is interesting to ask: given a certain maximum spread (Aws)b in the syn-
chrotron frequencies of the particles with maximum synchrotron oscillation amplitude
a, in the bunch what is the range in u over which there is significant band overlap
in a given resolution harmonic nwo? And secondly, given a certain u for a particle
of amplitude a 1lying within this overlapped region, how many other synchrotron bands
p' overlap with it?

It is easy to see that if mS(O) is the synchrotron oscillation frequency at the
center of the bucket for small amplitude synchrotron oscillations, then the range in

over which bands overlap in revolution harmonic U is given by




95

and the range of ' overlapping with the frequency @ = nw, + uws(a) for a parti-

cle of amplitude a such that 0 <a< a, and in a synchrotron oscillation mode

H
lying within the range given by (5.8), is given by
@)L L s (5.9)
——"_—"_—B/ u = 5.9
ug (0) - (aw, ) 55 10)

We illustrate these ranges of band overlap in Fig. 17 below.

fulew, (a) ) Il g (a)

~p R -
A |n (2) W, (0) - (Aws)b W (0}

Q

Pmax = N8

Q=nwy + yws(a): O<a<a,

XBL 827-7061

Synchrotron Band Overlap Structure of Bunched Beam Schottky Signal

Fig. 17

The general picture of overlapped and non-overlapped bunched beam Schottky signal
is as follows: Schottky bands corresponding to low revolution harmonic numbers n <
ms(O)/[am(Aws)b] are Sseparate and non-overlapping. Moreover within each such revolu-
tion harmonic band, we have separate and distinct non-overlapping synchrotorn bands where
a given frequency @ = nw, + uws(a) corresponds to one amplitude a and one syn-
chrotron mode u only (Fig. 16(a)).

For higher revolution harmonic numbers satisfying

w_(0) w
hs b <ngc«< z—aq“
am(Ams)
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different revolution harmonic Schottky bands nw, are still separate and non-
overlapping. However within each such band, n, synchrotron bands y overlap through-
out the band except for a narrow strip containing a few low u's (u=0,%1,%#2,...) near
the center, where the synchrotron bands are distinct and separate (Fig. 16(b)). This is
the case most 1ikely to be eﬁcountered in practical cooling sy;tems. A given frequency
€ within the band in this case; corresponds to a definite revolution harmonic Nw,

but no definite synchrofron harmonic p or amplitude a: Q = N * uws(a) =

+ 4! ') =
nwo uws(a ) = ses

At still higher revolution harmonics n > é%l even the revolution bands begin to
touch and overlap. In this case a given freguency ?2 corresponds to no fixed revolution
harmonc n  or synchrotron mode and amplitude (u,a): 9 = Nu g + uws(a) = n'mo +
u'ms(a') =... . This will be the situation for cooling systems with bandwidths in
the extremely high-frequency region.

The Schottky noise spectrum of a coasting beam, given by Eq..(5.6) for the trans-
verse signal for example, is distinguished by the particular feature that the total power
per bana is proportional to N, the number of circulating particles, due to incoheren-
cies of particle motion {(random initia) betatron and longitudinal phases). More expli-
citly we tina:

p N 2.2 ,2
<én+0 =379 T <A (5.10)
coasting

per betatron band of an unbunched beam, where f is the average frequency of revolution
of the particles in the beam. Similarly for 1longitudinal signal the average current

squared in the nEﬂ- revolution band is given by:

2

<Ip> .

n -
coasting

¢ 72 (an)

q f'\ﬁﬁq

—
—
ST
N
=
=
n
ft

If this current were analyzed by a spectrum analyzer with resolution a®R, about a fre-
quency § = Nu, then only particles such that |n(w0-wj)l < (80/2) would enter

into the sum over particles and we have [9]:
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(] - arvaw Jr (2) ()

where f(w) s the distribution of particles in their angular velocities. Thus for
random initial phases of particies i.e. incoherent (uncorrelated) motions of particles,
the power (proportional to l[ln(g)]lims) in the nEh Schottky band mirrors the
angular velocity distribution with its width and height proportional to n and 1/n
respectively.

Similarly, for the transverse Schottky signal of a bunched beam, we easily verify

from Eqs. (5.4) and (5.5) that

<d™>

‘ bunched ~ (Z_ ZZ< ,u>

bunched

where

(%)
2 > N 2.2 (%) N 2.2 .2 ()
d =m g FESY a5 gt fO<ASF (5.11)
<n’“ bunched 2z o nu "2 0 My u

*

per petatron (u=0) or synchro-betatron (u#0}) band of a bunched beam. The form fac-

tor Séiz is the integral along the bunch of the Bessel function squared JikmiQ)a

- Q-% a] times the betatron anplitude squared A2 weighted by the normalized

momentum or amplitude distribution fo(a,A)/N i.e.

”da Cdh - f (a,h) - A Jﬁ[(nto)a-a £ a]
[ +]

with

dA - da - fo(a,A) =N

of%——8
O\ m—— 8

If the distribution is a separate function of a and A, we have

fo(a:A) =g (a) - h (A)

and
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<> =I dA - A% h (A)
[¢}

then
(%) 2, ()
Sn,u = <A™> Fn,u
and
Fi*) =%I da + g (a) Ji[(nhQ)a-Q £ a]
(o}
Since

> 02x) =1

Y=—00

we have the following ‘'sum rule' for the form factors:

and the total power per betatron band (n+Q)m0 of a bunched beam, sunmed over all the

synchrotron bands, is given by:

+00
2> N 2.2 2 (+)
d =%q f_ <A™ 2: F
<rﬁQ bunched ¢ 0 Msu

H=-0

Njl=
o
-

<A2> (5.12)

in full agreement with the result for coasting beams (Eq. (5.10)).

The agreement between the total power per betatron band for the transverse Schottky
signal of a coasting beam and a bunched beam is a manifestation of the fact that all the
bands (n*Q)m0 + “wi incluging the center bands (u=0) are randonized due to the

betatron phase *¢9

i appearing in the total phase factor for the (ntQ,u)EE line:

. (%)
i Eme i¢? —nep] = w;’g . An essential difference appears for the longitudinal signal,
’
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where the sidebands (u#0) are still randomized by the synchrotron phases w?, however
there is no synchrotron or betatron phases left to randomize the uw = 0 central bands
since the (n,u)m line in the longitudinal signal has phase given by i[ulp?-nep].

It is easily seen from Eq. (5.2) that

<|1ﬁ.|2>= o 2 %:Nﬁ: >§°° J,(ma;) 3 i (may)

1 H

(=1) (=)
ei[mwo + uwg (aj )t - imep + iuwg

. . . . ,.0
. e-—1[mmo+u ms(a1.)]t+1mep IR

1]
0

fo Z%;Jo(maj) Jo(ma;) + 2 3(maj)

J:l y==—00

It
fal
~N
—
o
——
M=

og 2
= q2 f2 |:j' da go(a) Jo(ma) + N
0
~q f20 {O(NZ) * N} (5.13)

Thus for the 1longitudinal signal, the central bands (u=0) add up linearly

N
~ . : . . p N 2
(Jo(ma) 1) with intensity. Instead of Schottky noise <In>RMS = j}=:1 In o \/N, we

have the bunch current <IE>RMS « N at the revolution harmonic. This systematic
coherent signal at the u = 0 central bands corresponds to the gross macroscopic total
current at the revolution band m due to the bunch as a whole and tenas to blind the
cooling system. Fortunately, this is also the signal that is suppressed the most by
collective feedback in the case of transverse cooling, as we will see later. One can

also design in the case of longitudinal cooling, a cooling system with a proper notch
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filter that removes the coherent central u = 0 bands by virtue of a zero in the gain
function at frequencies § = Nw, corresponding to u = 0.

Another essential difference between the Schottky signals (in this case both the
transverse and the longitudinal) of bunched beams and coasting beams, is the coherency
of adjacent revolution bands for the same synchrotron harmonic. From (5.2) or (5.4) we
see that the sidebands at a given harmonic hmo add up rms wise due to the synchrotron
phase factor exp[iuwg]. However sidebands with the same u but belonging to neigh-
bouring revolution harmonics m have the same phase-tactor and a similar weighting fac-

tor, Ju(ma). Summing the noise power from ny coherent harmonics we have:
1 ¢ o2 G (5.14)
T M 2 \N'mu :
whereas in the case of a coasting beam (Eq. (5.3)):
2
2
[% Im] = nl <Im>

In other words, the noise of a particle and hence its disturbing influence on other par-
ticles adds, according to (5.14), in a coherent manner [48].

This coherency of adjacent revolution bands in the same synchrotron made u 1S seen
more explicitly in the notion of effective gain developed in Section 4.3 and in
Appendix B. The summation over the revolution harmonics £ in Eq. (4.3.54) for the same
synchrotron mode 1w = p' suggests a coherent enhancement of the effective gain of the
interaction as felt by a particle of amplitude a in the Fourier harmonic u of its
synchrotron oscillations.

The analysis of transverse Schottky noise is a powerful technique for continuous
and nondestructive beam diagnosis. Two particular features of the pp colliders (both
tne Fermilab Tevatron ana the CERN SPS) are relevant to the considerations of Schottky
noise -- the low D.C. current and the tight bunching. The low D.C. current, due to the
low production rate of antiprotons and to the big dimensions of colliders, implies a low
total power per spectrum line as given by Egs. (5.10) and (5.12). The tight bunching
required to increase the luminosity, produces a cohérent enhancement of the parasitic

Tongitudinal component as described by Eq. (5.13) in the transverse pick-up as well as a
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decrease in the width of the betatron lines. The latter eftect increases the spectral
power density of the Schottky signal compared to an unbunched beam and reduces the total
power of the superimposed thermal noise. Therefore the most critical parameters in a
Schottky detector system are the sensitivity of the pick-up, the noise factor of the
electronics and the rejection level of the parasitic comnmon mode signal. In particular
the order of nmagnitude of this last parameter, required to avoid the risk of amplifier
saturation, is fixed by the ratio of the power in the coherent longitudinal line to that
in the incoherent transverse Schottky line and corresponds roughly to N, the number of
circulating particles.

We mentioned earlier that the u =0 coherent longitudinal signal can be removed
by a .notch filter designed to have zeros at frequencies = Nw . However, for N ~
108 - 10]2, the depth of the notches, as given by the ratio of powers in u = 0 coher-
ent line and w # O incoherent Schottky 1ine, is required to be 80-120 db (decibels).

With parabolic density profile for the bunches, the macroscopic bunch current falls
oft as 1/n with the revolution harmonic number n. For large bandwidth feedback system
(4-8 GHz), n ~ 105 and the macroscopic bunch current is down by 105 requiring only
a 60 db notch depth. Best available filters are characterized by 15-20 db notches, in
the 1-2 GHz bandwidth region. When cascaded, notches of 50db-60db can be achieved again
in the 1-2 Ghz range but at the cost of adding the phases of the filters and thus losing
desirable phase-characteristics over the entire 1-2 Ghz range. With the new technology
of superconducting cables (losses in cables minimized), notches can be made deeper and
narrower with 500b-60db in a single filter again at 1-2 Ghz. These db figures for fil-
ters deteriorate as we go to larger bandwidth systems, e.q., 4-8 Ghz. Sensing of the
central u =0 1line can also be suppressed by using a difference pick-up in a dispersive
region of the storage ring. However, one then suffers from the very low sensitivity of
the pick-up, since the electronic noise is not filtered out as in filter cooling and so
the signal-to-noise ratio is very low. This scheme is thus typically noise dominated.

To evaluate explicitly the change in the signal to noise ratio in going from a
tightly bunched to an unbunched beam of the same intensity, note that in both cases the
total power per betatron line of the Schottky signal is practically the sane as illus-
trated by Egs. (5.10) and (5.12). This is because for short bunches and for a large
range of the harmonic numbers n, including normally the revolution frequency harmonic
tuned by the Schottky receiver, the torm factor Fn’u=0 in (5.11) becomes approxi-
mately equal to 1. Therefore the change in signal to noise ratio depends only on the

superimposed noise power, determined by the transverse line width ratio. As already
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mentioned the transverse frequency spread of a bunched beam is strongly reduced compared
to that given by Eq. (5.7) and reflects only the non-linear tune spread coming from the
multipole components of the machine (second order sextupoles, octupoles, etc.) and the
space-charge effect. For the CERN SPS collider, the line width ratio has a value
between 10 and 100 depending on the operating conditions, in good agreement with the
measurements [67].

We mention now two other important points relevant to Schottky noise. We have
studied the transverse signal for the dipole moment only, which splits each revolution
harmonic L into two betatron side-bands (m+Q)m0 and (m—Q)mo. In feality,
we have nonlinear sensing or pick-up devices which detect not only the transverse dipole
moment but higher moments as well, Each harmonic LT then gets split into a series
of betatron harmoncs (mth)m0 with p=1,2,... . Harmonics higher than the dipole

“p=1 however fall off rapidly in strength for real pick-ups. The cooling theory devel-
oped in this report includes such nonlinear sensing and kicking devices in terms of a
general cooling interaction that involves all possible and relevant harmonics.

The other important point is the fact that all the above analysis of Schottky noise
is based on uncorrelated beam parameters, i.e. random phase of the betatron and synchro-
tron oscillations of all the particles in the beam. Correlations develop among the
phases of the oscillating particles as cooling progresses since the kicker electromag-
netic fields tend to correlate the arrival times and betatron phases of the particles at
the pick-up. The correlations created by the stochastic cooling feedback system act to
deform the Schottky spectrum and in fact rapid "Schottky signal suppression" is commonly
observed when cooling systems are turned on.

To illustrate this point, we introduce a collective variable

N -ife.(t
z,(t) = Z: xj(t) e 1 93( )

where xJ(t) is the transverse betatron position as a tunction of time of the jzﬂ

particie and ej(t) is the aximuthal position and £ denotes a revolution harmonic.

A quantity equivalent to the Schottky band intensity for harmonic & is given by:
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[}

<|zl(t)|2 o.x <{z (t) « z (t)}>9’x |

N -ite, N, . ife,
= (<> x; e 1} {Z X e J}
{1:1 J=1 J 6, X

Using the particle orbits in a bunch defined in Chapter 3 and the identity (4.3.52)

we write

(a1 =0 (21 + EEEE: o000 3tt0 (el

) ¢ o

It we cefine a 2-body correlation function, analogous to Eq. (4.4.8), in the um

u't—h-

ana Fourier coefficients in the synchrotron phase-angles of particles 1 and

J at time t by:

. < o dupi(t) -1'u'l+'Jj(t)>
Coo(3,350) = (x5 (L) x4(t) e e
e . J (Xi,xj;\bi,w)

J

then

OQur previous analysis assumed Cﬁ u.(i,\j;t) = 0 for all time. Even with inco-
s v
2

herent random initial phases at t = 0 when C u.(i,J;t:O) =0, finite and nonzero
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Cﬁ,u.(i,j;t) develops for t > 0 as cooling progresses ({Section 4.4) and distorts
the shape of the Schottky spectrum <|22(t)12>'

This phenomenon has been called "collective distortion of fluctuation spectra" in
Chapter 4 and is common to other types of collective particle interactions as well, e.g.
interaction through beam space-charge and wall impedances, which can also induce corre-
lations and modify the Schottky signals. This topic is the subject of much quantitative
study in Chapter 10. We will only mention here that this effect is analogous to the
polarization and Debye shielding effect of plasma physics, where a "dielectric function
or permittivity" is used to describe the details. We will derive a similar "collective
signal suppression factor" later.

A similar Scottky signal analysis can be performed for particles confined by any

general potential well and circulating in the ring with revolution frequency o as

o°
long as the particle orbits in the general potential well created by the bunching rf
cavity {cavities) are known explicitly. In Appendix A, we derive the single particle
longitudinal Schottky signal for a particle confined by a rectangular potential well or
a square bucket, where the particles stream freely within the bucket except at the walls
of the potential well where they reflect specularly like hard spheres. Such a bucket
can be constructed by adding a cavity with a voltage of proper amount operating at a
third harmonic (or any small amount of an odd harmonic as necessary to make the bucket
square to the desired degree) relative to the main rf cavity operating at a fundamental
harmonic, Such a bucket has maximal nonlinearity in some sense and provides spreads in
the synchrotron oscillation frequencies comparable to coasting beams.

As is indicated in Section 4.3 the whole formulation of this report can be gener-
alized to very general oscillatory synchrotron orbits (not necessarily sinusoidal) by
defining certain orbit integrals Ou(z,a) which for the simple case of harnmonic sinu-

soidal orbits reduce to the Bessel functions Ju(la) used in this section.
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6. SANMPLED SIGNAL AND AMPLITUDE AND PHASE EQUATIONS OF MOTION

6.1 Sampled Signal Seen by an Individual Particle

The Schottky signal generated at the pick-up is transferred by a linear transfer
element characterized by a transfer function G(1) to the kicker where a corresponding
voltage or electric field signal is produced. The voltage Vk(t) across the kicker
gap due to the longitudinal signal or the electric field Ek(t) at the kicker due to

the transverse signal, is then given by

+00

() Pt
- I dt' 6(t-t')

E¥(t) Pt

where we have assumed a ‘causal' transfer function G6(t1) such that

G(t) =0 for 1<O0

The transfer function G includes the pick-up and kicker impedances (or admittances)
describing their sensitivities and efficiencies as well as the linear ‘gain' functions
of amplifiers and filters in the feedback 1loop. With the convention for Fourier

transforms

+00

6() = I dat G(t) e” 0t

o0

+00

G(t) =?’-J dg G(o) &'

-00

we get for the longitudinal voltage Vk(t) at the kicker e = e, by using the

Schottky current formula (5.2) given in Chapter 5, the following:

. . 0 .
N [+ ilme tue (a.)jt +iug,; ~ime
Vk(t)=qf0 Zii an + pw (a]J (ma.) e 0" s J P
J=l'm u J
(

~e0) (6.1.1)
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Thus each frequency component gets multiplied by the gain of the feedback loop at
that frequency, as expected. A similar formula can be derived for the electric field
signal Ek(t) at the kicker derived trom the transverse signal.

An individual particle i in the beam does not see the total voltage Vk(t) at
the kicker for all time, but samples it whenever it passes through the kicker, i.e.

whenever

ei(t) =0, +2in (N = —o,...,-1,0,+1,...,%%)

We define

o + @i(t)
‘%B'T#tﬂ

e;(t)

where (:)1(t) is the azimuthal coordinate of particle i at time t in a frame

moving with the bunch at angular velocity w, and

is the time-lag of the 1Eﬂ particle with respect to the synchronous particle moving

at constant Wy The sampling times are then given by

or

we do not solve this transcendental equation for the sampling times tn but instead
convert the s-function sampling in time into a periodic s-function sampling in angle in

the following. The sampled voltage signal seen by particle i is then
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|

i — K i
At)= Y V(t)st-Ti(t)—w——nTo

N==c0 0

400 -
k
w2 V() G[Qi(t) - - 2zn

0
=00

Using Egq. (6.1.1) for Vk(t) and expanding the periodic s-functions in Fourier
series, we get the total longitudinal voltage signal d‘[ai,wi,tJ sampled by the
ilh— particle on its orbit ai(t), wi(t) at the kicker as a function of time, in

the absence of coherent modulations by the kicker, as

o pugs €] = ate)? > S Bfm, + IE J
2 a]-,ll’.i, = q{ 0) & Zn Z: % % mmo U“’S(aj) u(maj) v(na]‘)
(=)

. . . 0 . R
i(mtn)e t e (@)t dwy: dvy (t) -i(we _*ne )
e 0 g S 0 ¢ Je e Pk (6.1.2)

In the slow cooling approximation, a_i(t) = a; = constant and wi(t) = “’s(ai)t + w?

and we get the zero-order sampled signal (negliecting the adiabatic time-dependence due

to slow cooling) as follows:

7 2 & e =
30 = @ a (192 L T E LT G usgla)] 9,m) 3, 0a)
n m \Y

i
e e S[Q—mwo-nmo—uws(aj)-vws(ai)] (6.1.4)
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In the situation of non-overlapping revolution bands (i.e. Mo+ ums(aj) = Nuy +

vws(ai) possible only with m=n within the band-pass of the system), the term
exp[i(m+n)m0t] in the above expression (6.1.3) describes the rapid fluctuations in
the sampled signal due to periodic traversals through the kicker. We can average over
these rapidly oscil]atihg terms when only the n = -m contributes, giving a smoothed-out

signal as follows:

. N -
31[31"1’1; t] Q(f ) Z 2';‘ % G[mw0+ums(qj)] Ju(maj) J“(—mai)

i[uwjt)ww]-(t)] -im(e_-o, )

e e P (6.1.5)

A similar analysis gives the transverse smoothed-out sampled betatron signal as

follows:
. "N /A, (+=) iuts(t)roy ()] -im(e -o,)
J}[ai,wi; Apbys t] P2 (%) PTETe T e TP

a[(m*Q)wo+ums(aj)] Ju[(mq)aj] . 50

+ G[m—Q Jw +um ] [(m—Q ] J (-ma. ) e_mj(t)
(6.1.6)

6.2 Sampled Signal for Amplitude and Phase by the Method of Multiple Time-Scales
Perturbation

The sampled longitudinal signal given by Egs. (6.1.2) or (6.1.3) in the previous
section is a ‘voltage/second" signal sanbled by the iib- particle which causes a
change in its ‘'longitudinal energy'. A change in 'energy' translates into a change in
its synchrotron oscillation ‘amplitude' and 'phase', due to rotation in phase-space.
Similarly the transverse sampled signal is an "impulse/second" signal and changes the
betatron velocity and momentum of the particle and translates into a change in the

betatron oscillation amplitude and phase. We thus need to know the sampled amplitude



109

ang phase noise as experienced by a particle and as suitable for use in the amplitude

and phase eqdations of motion

da. T . dA. R .
i i3 i . 1 T W ey: Al 8] .
“d‘"'t-'= n [a » (t)’ t] dt "T[a sV (t)’ A ’¢ (t), t]

W . . . . [ o -
Fe et 5][*‘1"”1 (t); t] =t E}[a1,w‘(t); AL (t); t] (6.2.1)

for the synchrotron and betatron oscillations respectively.

In Eq. (6.2.1) the explicit time-dependence of the amplitude and phase noise signals
is through the time-dependence of the orbits of all the other beam particles that set up
the signal at the kicker while the implicit time-dependence 1is through the orbit of the
particle i (ai(t), wi(t)) that is sampling the signal at the kicker. In the adi-
abatic‘s]ow cooling approximation, orbits of all the particies, including the sampling
particle, can be replaced by zero-order unperturbed orbits, which are explicitly known
as functions of time. The zero-order sampled amplitude and phase noise signals nl(t)
and E;(t) then become explicitly known functions of time only.

We derive the longitudinal amplitude and phase noise signals now. The longitudinal

energy satisfies

.y i s :
) « 0 - q g a0, 0 y

But
8(t) = w(f) = kE
where
‘- dmgﬁ
L
is the machine parameter. So
) - dezj(tt) i dwlgg) i) =g [ai’wi; t]

Thus in presence of synchrotron oscillations and sampled voltage noise signal, we

have

®1 + wi(ai)®]~ =q Ké’ilai,wi; t] (6.2.2)
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where ®i(t) = ei(t) - mot, ai(t) and ¥, (t) are the synchrotron amplitude and
phase of ith particle at time t, and ”s(ai) the synchrotron oscillation frequency
ot particle 1.

Note that we have used the rapid time-averaged (over periodic traversals through
the kicker) form Qi(ai,wi;t) of the sampled voltage as given vby Eq. (6.1.5) in
Eq. (6.2.2). This is because synchrotron oscillations are usually much slower than the
revolution time (ws << wo) and hence the use of a differential equation to describe
synchrotron oscillations implies that such averages over rapidly fluctuating revolution-
periodic dependences be taken in all the forces entering the synchrotron equation of
motion (6.2.2). Such need not be the case for the betatron motion which is usually com-
parable or slightly faster than the revolution time (m_L = Qwo > mo). For betatron
motion then, we use

w“ 2 i . .
X; *oup x; =4 dT[ai,lpi, Ai’bi’ t] (6.2.3)

where d} is the full transverse sampled signal with no time-averaging and thus contain-
ing all the rapidly fluctuating terms in it.

Since the sampled signals on the right—hénd sides of Egs. (6.2.2) and (6.2.3) are
small compared to the strong synchrotron or betatron oscillation restoring forces, a
number of perturbation methods are available for the determination of approximate solu-
tions of these equations. We use the method of "multiple time-scales perturbation” to
determine first order expansions, which are valid for large t ([72],(73]). The essence
of the multiple time-scales perturbation method is to consider the expansion representing
the solution ®i(t) or x].(t) to be a function of multiple independent and
dispar- ate time variables or scales, instead of a single variable.

we.introduce a small dinensionless parameter e that represents the strength of
the cooling signal (the sampled signal on the right-hand side of Egs. (6.2.2) and
(6.2.3)) relative to the restoring spring constants w, = Qu)o o wg for betatron
and synchrotron oscillations. Thus, for example we write Eq. (6.2.3) as

. 2 i . .
X3 + wii X = €q z’T[a_i,lPi, Ai,bi, t] (6.2.4)

and Eq. (6.2.2) as



m
®i + "’g(ai)®i = eq Kailai,wi; t] (6.2.5)

After having done the perturbation analysis and obtaining the solution to the desired
order in ¢, we eventua]]_y let e =1 since the gain of the feedback loop per particle
per frequency 1ine embedded in Ji already provides us with such a small parameter,

It is also convenient to visualize the right hand sides (6.2.5) and (6.2.4) as

functions f(®1’ ’®i ,t) so that for example
@1. + mz(ai) @i = ¢ f[@i,®i; t] (6.2.6)

X . . . 2
since there is always a transformation relating [Ji =1/2 ai, 411] to [@1,@)]-].
Some comments are in order regarding the sampled voltage or electric field noise
function f[®i ,®1;t] appearing on the right-hand sides of these equations. The
explicit time-dependence of these functions comes from the signals of all the particles

j=1 to N derived at the pick-up and applied at the kicker. The dependence on @1

and ®'i comes from the tact the im particle samples this signal on its orbit
. N

[@1(t),®1(t)} only, Moreover, the sum 2] contains the term 3 =1, thNe coherent
J:

part describing the 1'm particle sampling its own signal and the E , the

Jlri)=1
incoherent Schottky noise part describing the signals of all the other particles. We

thus have the decomposition (for longitudinal cooling, say):

(@.0:1) - £ +(0.0:: 0,0))

=1

L]

(@.®,) (@@ 1

where C agepends on (®i’®i) alone corresponding to the i = j coherent part.
This is the nonconservative but ‘'autonomous' part of the dynamics for particle i. The
second term describes the force due to all the other particles in the beam and gives the
manifest time-dependence. This is the ‘nonautonomous' part of the dynamics of the
1’—t—h- particle.

It we represent zero order particle orbits by
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®); = a; sin (e (a;)t + wQ)
iT Y s % i

iQ
then both € and S have oscillating time dependences of the form Z:ZZe nm where

nm
Q= nms(ai)anm for C and = "”s(ai) + mws(aj) for S.
The 1inear slow cooling or damping rate y is given by
Y~ ewy for transverse cooling
~Ewg for longitudinal cooling
Thus we make use of the fact that the characteristic tine-scale for cooling y"l is

much Tlonger than the time-scale for synchrotron or betatron oscillations (w;l or

wIl) i.e,

>» 1 (6.2.7)

Retation (6.2.7) can be used as a definition of the small parameter ¢ if one wishes.
To incorporate this disparity between oscillation and damping time scales in the
expansion procedure, we arbitrarily extend the number of time variables from one variable

t to many variables by introducing new independent tine variables Ty according to

T, =€ t for n=0,1,2,... (6.2.8)
Thus
(To,Tl,Tz,...) = (t,et,ezt,...>
and
dt dt dt ’
0 1 -2 2
it = 1, ralal gt S € e (6.2.9)

The derivatives with respect to t thus become expansions in terms of the partial deri-

vatives with respect to the operationally independent Tn's according to
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0 1
Y. 2(. 2
- DS +2e D Dy * e (Dl + ZDODZ) +o.. (6-?-10)
where
D, EaaTn

We visualize (:) or x tobe a function of the various new time-scales and assume

that they can be represented by an expansion having the form

@ - (:)(0)<T0,T1,._.’Tn,__.) + ¢ (:)(1) <10,11,...,Tn,...) + 52(:)(2)<10,Tl,...,rn,...)

.. ‘ (6.2.11)

The number of indepencent time-scales needed depends on the order to which the
expansion is carried out. If the expansion is carried out to O0(¢), then only T
and T, are needed.

For longitudinal synchrotron oscillations that are linear, ws(ai) , is a con-
stant independent of a; and we need only the expansion (6.2.11). For nonlinear syn-
chrotron oscillations however, ”s(ai) is a function of amplitude of the particle
and hence a slow function of time since the expansion (6.2.11) implies a similar expan-

sion for the amplitude:

a = a(o)(%yTl,...,Tn,...> + g a(l)(ro,Tl,...,Tn,...) v 2 a(2)<r0,11,...,Tn,...) L

(6.2.12)

Hence we also need an expansion for wg 3 follows:

wy = wSO)<T0,T1,...,Tn,...) + e a wgl)(To,Tl,...,Tn,...) t e @ wg )<TO,T1,...,Tn,...>
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e (a)
where o = 5;%37' [ Za ] is the nonlinearity parameter for sychrotron oscillations,

assumed small (e« < 1).
wWe note that mgo)(To,T],...) is not the small amplitude synchrotron oscillation

frequency but the frequency as a function of the synchrotron amplitude evaluated to zero

order in ¢ 1i.e.

wéo)(To,Tl,...) = ug {a(o)(To,Tl,...)} (6.2.14)

Substituting (6.2.8), (6.2.9), (6.2.10), (6.2.11) and (6.2.13) intoc (6.2.5) and

(6.2.6) and equating coefficients of successive 1ike powers of e, we obtain

order %: [Di + (w;'(o))Z] ®$0) (TO,TI,TZ,...) =0 (6.2.15)

Order eoalz No term

Order ela¥: [Dg + (m;(0)>2] (:)gl)(To’Tl’TZ"") = -ZDODI(:)go) + f[(:)go),Do(:)(o); To]

. (6.2.16)

Some comments are in order. Extending the nunber of time varijables provides us with

considerable treedom to renove order by order, any time secularities which may occur in

the solutions for (:)go)(To,T],---), (:)(1)(T

1 o’

T],...), etc. This assures that
the perturbation solution represented by (6.2.11) is uniformly valid, order by order.
The reason for removing time secularities is simply that for the physical situation under
consideration |(:)(t)| < ® i.e, |(:)(t)[ cannot grow without bound, except in cases
where the cooling loop induces collective instabilities, in which case we cannot cool
the beam anyway. The advantage of a multiple time-scale perturbation analysis is that
the condition that the first-order solution (:)21)(T0,1|,...) be nonsecular as

Tg > determines the slow evolution (and saturation, if nonlinear) of the zero-order
oscillation amplitude and phase on the 7 time-scale. Once the multiple time scale
perturbation solution is obtained in this way to the desired order df accuracy and secu-—

larities removed, we return to the physical time-variable t in the final expressions

for (:)§O), (:>§1),..° etc.
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We concern ourselves here with a two time-scale approach -- a fast time-scale 1
of the synchrotron or betatron oscillations and a slow time-scale T4 of overall
cooling over a long period of time,. We thus have Eqs. (6.2.15) and (6.2.16) only to
consider.

We write the general solution of (6.2.15) in the complex form

W10 i)

(o]

®$0) = R.i('[l,‘tz,...) e 4+ R:(Tl,Té,...) e (6.2.17)

The function Ri(Tl’TZ"") is still arbitrary at this level of approximation. It
is determined by eliminating the secular terms (invoking the so called "solvability
conditions") at the higher levels of approximation.

Substituting for @150) into (6.2.16), we have

9 i(0))\2 (1) : i(0) 'imi(o)'[ i(0) . —1wi(0)T
1 | S 0 | S 0

[00 + (ws ) ] @Y = -2 D R e +2i0'V D R e

. i(0) i(0) i(0)

1w T -1 T Tw T

+f Rie O*‘R*e s O,m(O)Rie °
. i(0
30 gr T ( )TO- T (6.2.18)
T g i > o <Ce

Depending on the function R., all particular solutions of (6.2.18) contain terms

i
1(O)TO) —— these are the so calleo "secular terms". Thus

proportional to T exp(* ims
e@](l) can dominate ®§0) tor large t, vresulting in a nonuniform expansion.
We choose the tunction R, so that secular terms are eliminateo from ®(i0) and

thereby obtain a uniformly valid expansion. To this end we now use the decomposition
(0) (0). _ (0) (0) (0) (0},
@@L 5] - [@.0,00) + 5| @0, @ 1,

and expand C and S in a Fourier series as follows:
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inmi(o)T

b * s 0
= n§m Cn(R].,Ri) e (6.2.19)
N 4o " . i[nmi(0)+mmj(0)]1
S = S (R.,R.; R‘,R.)e s s 0 (6.2.20)
e nm\ i g
where =1 ()
i(0)
g e " -inug (O (0) (0)
S S 0
Cn(Ri,Ri) == j d1, e CI:@" 0 ®; ] (6.2.21)
0
and so on.

Then Eq. (6.2.18) becomes:

. . o, (00 : . i (00
[02 + (m‘(o))z] @ - 200 p g e s Cw2il@p Rl s O

. i(0)
it *\ 1N T N +o0 " *
+ ¥y oc (R.,R.)e S 0y S (R.,R.; R.,R.)
pe, AV i(£MH=1 ;;2; nm\i T i)
o)
1[nm1(0)+mwg(0)]To
e (6.2.22)

Equation (6.2.22) has the form of a forced harmonic oscillator equation for
(:)gl)(To,T],...). The terms on the right-hand side which are proportional to
exp[* 1w;(0)T0] drive the oscillator at its natural frequency w;(O) and give
rise to secular contributions to (:)gl)(TO,T],...). The other terms on the right-
hand side of (6.2.22) produce oscillatory modulations of (:)gl) at harmonics of
m1(0) e.g. 2w 1(0), 3w 1(0) and so on.

S s S ;
iw (0)1

One such secular term is cl(Ri,Rg)e S O In the last term on the right hand

side, there are driving terms of the form exp[*iw;(o)ro] whenever the resonance con-
dition nm;(o) + mwi(o) = % m;(o) is satisfied. In particular the terms n = %1,
m= 0 drive the oscillator with its natural frequency with right phase = w;(o).

However, such terms correspond to the 1‘-'Eﬂ particle sampling with its first harmonic
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(n = #¢1} the signal produced by the j-tiﬂ particle in its zeroth harmonic . (m = 0).

For transverse pick-up, no signal is produced when there is no dipole moment (m = 0)
i.e. no betatron oscillations, if the pick-up is properly aligned and hence this term is
zero. For longitudinal pick-up, the signal is nonzero but falls exactly at one of the
revolutions harmonics Puyg, of the center of the bunch (ﬁ(pwo + mwi(o)) = ﬁ(pwo)
for m = 0). Since we do not wish to affect the center of the bunch but cool other parti-
cles towards it this gain G(pmo) is usually set to zero by using a notch filter.
Thus contribution from this term again is negligible. There are other values of n,m

and 1i,j which however satisfy the resonance condition above and drive the oscillator at

i[nwl(o) + mwg(o)]

its natural frequency mgo); however they do so with random phases e

j=1,...,N(#i) and their average effect on (:)gl) vanishes. However their average
effect on the amplitude Ri does not vanish and cause a slow diffusion in the mean
square <|R|2>. we wish to retain this average effect on the mean square.

Let us write

O o) = [OF (oo e [O i T se

where [(:)}]sec diverages as T >« and [(:)1]non—sec remains bounded as
T, > @ This could be obtained by integrating (6.2.22) on the T,-Scale since
To and T, ‘are independent.

In order that the solution for (:)gl)(ro,r],...) be uniformly valid for all

T,» We remove the secular behavior by setting:

09 forr o -

It is evident from (6.2.22) and the above discussion of resonances, that we can
eliminate the secular terms for all values of To and still preserve the average

effect on the mean square, if we set:
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: - —imi(O)T
210} (%) p, g, - Cl(Ri,Ri) . s[@ﬁo),oo@)go); ro] e 5 O

i(0
i(0) Zn/m;( )

w —iwi(O)T (0) (0)
= SZ’!T f d‘[o e S Y C[®] ’Do®i ]

o}

1'(0)T

+ S[®$0)’Do®go); To] e s o (6.2.23)

Since we are considering only two-time scales T, and Ty We conider Ri to
be a tunction of T only and end the solution here. To solve (6.2.23) it is conven-

ient to express Ri(Tl) in the polar form as

Ri(ry) =3 a;(1)) e (6.2.24)
so that we rewrite (6.2.17) as:
O = a) cos vz v =0l @1+ 8 (r)) (6.2.25)
Substituting (6.2.24) into (6.2.23), we get:
L -1y ( L1 ( -y
3 [ [ . .
1(ai ]aiBi) = E——TT57 dwi e C ai’wi) 50 S ai,wi, To) e
TH.I]S 3 (l)s
(6.2.26)

where the primes denote differentiation with respect to T, e.qg. a'= da(T])/dr] etc.
Separating the real and imaginary parts in {6.2.26) and going back to the original

t variables now, we see that we may write the solution of (6.2.5) as

®;

ai(t) Cos wi(t)

v (t)

ws(ai) t+oe,(t) (6.2.27)
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where

nN

"

s . 1 e . )
3 = -?—(—TNS 3 I dy, Sin vy C(ai’wi) - —(—”S a Sin y, S(ai,wi, t
0 :

2n
. 1
¥y = eglag) * ey = wg(ay) - Tro(a;)a; j dy; Cos C(ai"”i)
0

1 .
- W Cos ll),i S(ai,\])i, t) : (6.2.28)

By removing the time-secularities on a fast time-scale, we have thus obtained the
differential equation which determines the time-development of the amplitude and phase
on a slower time-scale. Equation (6.2.28) thus gives us the amplitude and phase equa-
tions of motion corresponding to (6.2.2) in terms of the cohefent part C and the

Schottky noise part S of the sampled signal g;i where
51 . - .
qxg (ai’wi’ t) = C(ai,wi> + S(ai’wi’ t) (6.2.29)

We note that if the synchrotron oscillations were purely linear so that “s(ai)
is a constant independent of aj then Eq. (6.2.27) and (6.2.28) would be obtained with-
out assuming the small nonlinearity parameter «. As outlined in Section 4.4 of Chapter
4 (and as we will see later) the presence of nonlinearity i.e. amplitude-dependent syn-
chrotron oscillation frequency is crucial to effective stochastic cooling of bunches.

We can then use Egs. (6.2.27) and (6.2.28) for nonlinear synchrotron oscillations, pro-

dw
vided we restrict ourselves to modestly small nonlinearities a= ZT%ET'Hﬁé <1, Inusing
S

Egs. (6.2.27) and (6.2.28) to bunches captured in buckets with a higher amount of non-
linearity of the oscillation orbits, one has to exercise considerable amount of care.
The same remark also applies to fast cooling schemes where cooling time y'l is smal-
ler than the synchrotron oscillation time TS since then (Euwst) is not necessar-
ily small compared to (wst). Our formulation for stochastic cooling of longitudinal

synchrotron oscillations is thus restricted to cooling times slow compared to synchrotron

oscillation times.
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The situation is considerably less involved for transverse betatron cooling which
does not interfere with the Tlongitudinal nonlinearity of synchrotron oscillations.
Transverse cooling rate is not crucially sensitive to whether betatron oscillations are
linear or not as long as synchrotron oscillations provide enough nonlinearity and hence
mixing in the longitudinal orbits. Steps leading to (6.2.27) and (6.2.28) for purely
linear betatron osciilations do not involve any assumption of a small nonlinearity param-
gter « and Egs. (6.2.27) and (6.2.28) for betatron amplitude Ai and phase ﬁi =
w} t+ ai(t) are then exact for arbitrary nonlinearity.

Noting that Ii = 1/2 Af and Ji = 1/2 a? are the ‘action' variables and
b, (t) = w t+ o6, (t) and wi(t) = ”s(ai)t + Bi(t) the corresponding phase or angle
variables for the betatron and synchrotron oscillations respectively, we thus have the
following cooling dynamics equations for the action and angle variables for transverse

and ]ongitﬁdinal cooling:

LONGITUDINAL

0 1 _
J = Gi(bi’dﬁ) * Gi(Ji’wi’ t)

N
6(i,i) + . G(i,d)

J(#1)=1
= - eIy dwi Sin wi C Ji,wi) -——7——7—-S1n ¢ S 1,¢1,

Sl )

(6.2.30)

. 0 1 ,
i = ugldy) Hi(di’wi) ¥ Hi(di’wi’ t)

N
wg(d5) * HUI, i)+ D0 H(i,4)
J(#i)=1

=
n

2
T2 dw Cos w C(Ji,wi)
0

=

mS(Ji)

i}

2n0(J; [2J 3!

e ot sbews 6.2.51
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1/2 2=
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[21111/2 '
- --TZT———-S1n éi S(Ji,wi, Ii,bi, t)
1
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1
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(6.2.32)

(6.2.33)

(6.2.34)



7. HARMONIC REPRESENTATION AND THE HAMILTONIAN FLOW CONDITION FOR ACTION AND PHASE
SIGNAL

Using the explicit form of the longitudinal sampled signal gf(di,wi;t) given by
Eq. (6.5) into Eq. (7.2.39) and using the identity [1i1]:

s s +o :
e]x S]n y COS y = E %Ju(x) eTNY (7.1)

u=—00

where §: means u = 0 1is not included in the sum and Ju(x) is an ordinary Bessel
function of order yu, we obtain a Fourier series representation of J'  in harmonics

of w1 and wj as \

ey G<J".¢‘; aj,wj) P (97,99) A (B! (1)) (7.2)
J=1 =YW
()
where
2
(qt )"k +® 5 .
i) - o fuy o, o] e, ] B () g o)
S
. Ju<r\/§. J1>JV<—m 2J1>e1m(ep—9k) (7.3)
Writing
. N
Noe,+ Y 6(i,j) =6 +a! (7.4)
i(#1)=1 Vol
we igentify
+ . .
6 - a(i,1) = z 5, ,(0.97) (7.5)
1 N . N2 i 3) ilutte']
G; = G(i,j) = 6 (2,0 Ry (7.6)
‘ J(#1Z)=1 a‘(ﬁ\:)ﬂ%% W)

vhere
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_— (qf )2k *= ~ ,
GW(J’,JJ) - h_._f ) ('.\’:ﬁ) G[mw P (JJ)] Ju (’"\,ZJi)Jv(—m ZJJ) elm(ep—elk)

ws(J1) M=—co

(7.7)
Similarly using the identity [111]:
Si -
e XS Y siny = (-i) O J(x)e (7.8)
Va2 00
we get from (6.2.40) for the phase equation:
‘5 R
|=w(a)-)_j ZH (o7,09) eilw¥ (7.9)
J=1
(-oo)
where
i (qfo)ZK = = j J
h (oF,0d =2 1+ a (6, D] T Blmay +uu (39)] 9 iN2J
Wy fo (3') 2 U Moo u
=\ ~im(e_-o )
c 3 (aN2ai)e Pk (7.10)
\) .
and equations similar to (7.5), (7.6) and (7.7) for H? and H% where
i i : i 0 1
Vo= w (') - H(i,i) - Y H(i,3) (3") - H - H: (7.11)
s 59 s i i

'
Note that Jv(x) above means a derivative of Jv(x) with respect to its argument.
Using all the equations above, we verify the following approximate relation for

Hamiltonian Flow:

I -6, 1)] S ‘\Lj-H(i,i)]
aJ

i.e. (7.12)

= G¥<‘]i’wi; t) S H%(Ji’w‘i; t)
ad 3
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i
J1. a..,s(..l)
ms(a‘) -~ dd!

This relationship is only approximate because there is a term —-J;
J

ji to the left hand side of Eq. (7.12). Since ji ~ 0(e), this term is of order

O(ea) where o = —"-—=— —>—7— is the nonlinearity parameter. Consistent with our

assumption of small nonlinearity a« < 1 wused in deriving the action and phase equations
of motion, we neglect this term in order to obtain the approximate condition (7.12).
Thus except for the self-interaction part, the longitudinal cooling dynamics in our model
is approximately Hamiltonian.

For the linear transverse dipole cooling, we use the expression for the sampled

transverse signal :J} given in Eq. (6.16) into Eq. (6.2.41) to obtain

> G(ﬂb‘; NEVATES CIF S JJ,Ut’)

',. N
' = ), 6(i,3)
i=1

j=1
400 c s L. . J iy .. Junnad
191, 13 13) oiCuy +vy ) +i[sg+e'e ]
A % G(uB),(v,s')(I 5 19,08) 1wy
(=) = (#1) = (21) . (7.13)

where

i 3 (af )2 o im(e_-e )
21' V21 0 p ok
7 i L e [

ol mee 1+6i.]'(68,—8'_1)]

R T
G(uB),(V,B')(I d75 15, ) -
E[(m"Q)wo;* uwS(Jj)] \]u[(m"'Q)@] Jv(—m 2\]1 ) [681 +68’_1] 55' ’1

+ E‘.[(m—Q)mo—%ums(J‘j)] Ju[(m—Q)‘/Z]T]Jv(—m 23] ) [6al+ 58’_1] Sge. 1 (7.14)

It is straightforward to find the corresponding expression for the harmonic coefficient
H . (11,J1; IJ,JJ) in the betatron phase equation of motion derived from
(u:8),(v,8")

(6.2.42) and to verify the Hamiltonian flow condition:
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o [ii -G(i,i)] I [i)i -H(i,i)] (7.15)
a1’ 2

In contrast to the longitudinal case (7.12), Eg. (7.15) is exact, since we are consider—
ing linear betatron 'oscillations (i.e. betatron frequencies independent of betatron
amplitudes) in our model and remains valid for nonlinear transverse pick-ups and kickers
(i.e. |8],[8'| > 1) as well.

Note that the approximate nature of the explicit demonstration of the Hamiltonian
flow condition for nonlinear oscillations (e.g. Eg. 7.12)Vis only a reflection of the
approximate orbits ((3.20a) and (3.20b)), derived from an asymptotic perturbation series
and used in our model. In principle, the flow condition is exact, provided one uses the
exact canonical action-angle variables for the full nonlinear problem as in (3.30) and

(3.32) and can be explicitly demonstrated [110].
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8. STATISTICAL (SPECTRAL) PROPERTIES OF BUNCHED BEAM SAMPLED NOISE

8.1 Nonstationarity of Bunched Beam Sampled Noise

Longitudinal and transverse incoherent Schottky signals S1(t) sampled by a par-
ticle i in a bunched beam are not ‘stationary', i.e. their statistical properties are
dependent on time. In particular, the autocorrelation function of the sampled incoherent

noise signal at two different times is not a function of the time-difference alone:
<s‘(t) s‘(t-)> SR (t,t) 4R (t-t')

where < > denotes an ensemble average over the phases of all the particles in the beam.
There are three sources of nonstationarity in the problem: (a) adiabatic nonstationarity
due to slow cooling imposed by the feedback system; the situation is similar to the adi-
abatic nonstationarity of the electromagnetic fluctuation spectrum of an infinite homo-
genous plasma due to the slow damping induced by electromagnetic radiation (b) periodic
discrete kicks from the kicker which render even continuous and homogenous coasting beam
sampled noise nonstationary (c) finite extent of the bunch which is a manifestation of
the oscillatory synchrotron orbits.

Since the fluctuation spectrum gets established in a time much shorter than any
significant cooling time, the nonstationarity due to slow cooling only makes the fluctua-
tion spectrum a slowly varying function of time determined by the instantaneous local
distribution of the particles. The time-evolution of the beam is thus determined by a
locally time-stationary fluctuation spectrum. The beam distribution stays almost a con-
stant during the establishment of this spectrum. The discretenesg of the kicks intro-
duces an essential nonstationarity viz. the noise signal is stationary only with respect
to certain fixed translations in time(translations by multiples of To’ the revolution
period) and not with respect to arbitrary translations. For correlation times much
longer than a revolution period, one bypasses this nonstationarity by averaging over the
fast revolutions. For coasting beams, this rapid time-averaging is enough to render the

sampled incoherent noise stationary

<S1(t) Si(t‘)> coasting = R(t-t*)
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However, even with this rapid revolution time average, the bunched beam sampled signal
is not rendered stationary owing to synchrotron oscillations within the bunch. One needs
to average over the synchrotron oscillations to obtain a smoothed out stationary'samp1ed
noise for bunched beams. The stationarity properties of the signal at the kicker and the
incoherent signal as sampled by a particle in the beam, for the continuous coasting beams
and bunched beams and various averaging procedures that render them stationary are listed

in Table I1II below.

TABLE II1I
NOISE COASTING BEAM BUNCHED BEAM
CONSIDERED PROPERTY SOURCE PROPERTY SOURCE
Continuous and Finite length
Noise signal : uniform beam : of bunch +
at the kicker stationary filling the non-stationary synchrotron
ring oscillations.
Finite bunch
Noise sigpa] sampled _ Periodic dis lﬁ:gtroz 222;]_
by a particle at the [non-stationary| crete sampling| non-stationary lations + peri-
kicker of kicks X .
odic discrete
sampling
Rapid revolution Smoothing out Modulations due
time averaged cor- . of discrete . to synchrotron
relation of sampled stationary sampling non-stationary oscillations
signal still present
Correlation of Modulations due
sampled signal by to fast oscil-
Fapid revotion Not applicable stationary | (L o
times and synchrotron oscillations
oscillation times smoothed out.

Stationary noise signals can be described by single-frequency spectral functions,

e.g. power spectral function R(Q) detined as the Fourier transform of the auto-

correlation function R(1) = <S(t) S(t-1)>, which is independent of t. No such single-
frequency spectral functions exist for nonstationary noise, which has to be described by
R, 0') etc.

spectral functions of the form We avoid mathematical complications

arising from nonstationary noise by considering the smoothed out stationary correlations
only. To this end we illustrate the various smoothing procedures in the next section.
A rigorous analysis including the nonstationarity due to synchrotron oscillations and

discrete kicks would require solving a difference equation implicitly.
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8.2 Auto-Correlation and Spectral Function Obtained by Smoothing

Let us consider the auto-correlation function of the zero-order longitudinal sampled

incoherent noise seen by the ith particle as given by (6.1.3) (without the j =i

term):

. - 2 N (#) () () (+)
1 Tie -2 E: Z 2 Z Z ' '
<§°(t) St i> ) (qfo) JREL mont am wa v J"(maj) J"'(m %) y(nag) 9, (nay)

(#1) (=) (=) (=) (-=)

—i(m+m')ep —i(n+n')ek

. E[mwo'+uws(aj)] alm'mo +u'ms(ak)] e e

. . . s .
) e1(m+n)w0t e1(m'+n')mot' e1[uws(aj)t+u'ms(ak)t ] el(vt+v't )”s(ai)

o I éi [uw§+u'w2]> (8.2.1)

This is explicitly nonstationary since the averaging over w? and wﬁ cannot convert
the exponential exp[i(m+n)mot + i(m'+n‘)m0t'] into a function of (t-t') alone.
We thus need to average over the fast revolution periods. Changing variables to % =

m+n and &' =m' + n' and averaging over the fast phase given by the first factor in

. [P -1 ] |'1 ] )
elwo(lt+l t') i} e1 Vi mo(2+2 Yttt ') e1 > mo(z_z Y(t-t')

one reduces the sum over 2,2' by a sum over £ only by virtue of 8y g and we get

+

(+2) ()
<, l:va(ajiai) M x;:tvl(ak7a-i):|

- - N
Go sy = (o) 5 (g) .
) (2o

Jsk U,
(=) (-

8 T

-1
(#i)

12wo(t—t') ei[ums(aj)t+u'ws(ak)t'] ei(vt*v't')ws(ai)

i (vto' )y° i [y +uty (8.2.2
GBI €[qu u¢§’]> )

e

where
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+ im{e, -o_)
3 ~ kp
Xuv(aj’ai) = hiEL Ju(maj) Jv((l-m)ai) G[nmo +"”s(aj)] e . (8.2.3)
In the averaging over wg and wﬁ for Jj ¢ k, we obtain Gu o 6u' o and the
] ]

time-dependence is given by {exp[ilmo(t—t')] . exp[i(vt+v't')ms(ai)]}. For j =k, the
average yields 5u. . and a time dependence {exp[ilwo(t—t')] . exp[iums(aj)(t—t')]-
exp[i(vt+v't')ws(ai)]}. Neither of these are functions of (t-t') alone. We then

average over the phases given by the first factor in the synchrotron phase term

vttt ac(a) 13 ()t a (a;) 13 (v-v')(t-t")u (ay)
e =€ e

which yields 8, _y! and a smoothed-out stationary auto-correlation function:
2

<S(§(t)=s—m= (qf2> %1)%*. iuws(aj)(t‘t')
=1 (-

-2
v(aj,ai) X_u,_v(aj,ai) e

\s,c[v)\s,

. iy (t-t ) Hiva () (t-t ) (8.2.4)

which is a function of (t-t') alone. Fourier transformed in the time-difference 1 =

t -t', the spectral function ﬁ(Q) is thus:

. N (4
RY(a) = (qu) (2n) (% ﬁ:ﬁ; z;x Jaga;) 4 * MENCIRY G[Q-Mo-ums(aj) - (a.)]

ST
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Moreover, for non-overlapping revolution Schottky bands, |ums(aj)+vms(aj)l < w, and
only the £ =0 term contributes in (8.2.5). One can easily verify that the expression
thus obtained for non-overlapping revolution bands is the same as one would get by con-
sidering the synchrotron fast phase average of the sampling particle alone i.e., if one
started out by considering the auto-correlation of the revolution time-averaged forms
81 and J}. of the signals, as given in (6.1.5) and (6.1.6), from the very beginning.
One also notes that the tefm involving Xﬁv and X;%_v corresponds to the macroscopic
gross signal derived from the coherent motion of the bunch as a whole (u=0) and affects
the coherent motion of the bunch only, since it contais no single particle information.
Accordingly we ignore this term from our analysis . Alternatively we can imagine this

coherent signal to be filtered out by a notch filter (with zeros at 2 = nu n=

0’
0,%*1,22,...) before being applied at fhe kicker, as discussed in Chapter 5 before. With
this in mind, we can then write the power spectral function of the sampled longitudinal
Schottky voltage for a particle in a bunch, in the region of no revolution band overlap,

as

» 2 N (+
Rl(e) = (qff,) (2n) 3 éﬁ[xgvuj,ai) x?u’_v(aj,a,.)] s[n-ums(aj) -Ws(ai)]
vV
(-= (8.2.6)

The auto-correlation function of the longitudinal action noise (equivalently, ampli-

tude noise), in the region of no revolution band overlap, can be calculated by using

. . . . N
FLE [J‘,w‘ (t);t] = 2(‘ G[i(t),j(t)] (8.2.7)
j=1(#1)

where G[i,j] 1is obtained from the revolution time-averaged sampled voltage Schottky

signal 51 as in Chapter 6 and 7. Thus
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Ri(t,t') = < [J (L) t] 1[J UTOY ]>

<{a(¢1 B ali(v), J(t)]}{ Gl1(t') k(t" )]}> »

]

N (+) A .
_ Z:L:,, %[G“(a’,‘ﬂ) Gu.v.(J‘,Jk):l
?# (=)

éi[uwi(t)"vllfj(t)*u'wi(t')+v‘wk(t')]> . (8.2.8)
3k

Using the orbits u/(t) = ug (J it o+ , averaging over the phase w; of the test

particle i that is sampling the noise, in addition to the ensemble average over the

phases wg, wg and again neglecting the v = v' =0 terms corresponding to the coherent

macroscopic signal as before, one obtains
RU(t,t!) = 2 6,307 6 _ (35,97)

1[uws(ai)+vws(3j)](t—t') . (8.2.9)

Using the reality condition for G(i,j)

* oo, 40y L i3
Guv(J ;) = G(—u)(—v)(J »dv) (8.2.10)

and Fourier transforming in 1 = (t-t') in (8.2.9), the power spectral function of sam-

pled action noise is obtained as

)f%[ (J} J‘])G (J J‘])] [Q u (J)-w JJ)] (8.2.11)

R'(9) = (2n)
J

It E;tvmz
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Employing a distribution function f(J) describing the angle-independent distribution

N
of particles in action space, we can replace the sum 2: by [N J.dJ'f(J‘)] (f(3J)

J-—
normalized to unity) and the spectral function (8.2.11) can be written as

N (+) *
R (2;3) = (2n) - N DI K £(3') [Guv(J,J') . Guv(J,J')] . 5[9-—uws(J) —va(J')]

YRRV,
(=) (8.2.12)
Substituting the explicit expression for Guv(J,J') from (7.7), one gets
X G N R . '
R(Q;3) = (2n) * N - TS(-JT- %% dJ' £(J3') G[Q-uwS(J) -vws(J )]
()
+  im(e -ek) - 2
T " (g%) Blmag +wog (31)] 9,(N23) 9 (-N29)| L (8.2.13)

Note that the above procedure of averaging over the phase W; of the sampling par-

ticle in the auto-correlation function, is not equivalent to replacing the interaction

G[i(t),j(t)] = ﬁ:}% Guv(Ji’Jj) ei[uﬂﬂ(t)+vup(t)]
N

)

by the simplified form of G[i(t),j(t)] which is a function of the phase-difference

alone

——— <o R R . j 3
sli(t),it)]= X 6 _ (3.9 einlv! (£)=y7(8)] (8.2.14)
u:—w ’

obtained after eliminating the rapidiy oscillating terms by averaging over times of the
order of the synchrotron oscillation period. This would be a good approximation for
cases where the relative frequency spread in the motion of the particles, Aws(J)/ws(O),

w (0)
is small so that the harmonics of the longitudinal synchrotron motion, u > m: Iy » are
S
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unimportant. As already discussed in Chapter 5, for large bandwidth, high frequency
systems there is considerable amount of synchrotron band overlap within each revolution
harmonic and so large synchrotron harmonics u are indeed important.

The auto-correlation in time domain and the corresponding spectral function in the
conjugate frequency space for the general three dimensional cooling interaction that
couples all three degrees of freedom and includes nonlinear pick-ups and kickers can be
derived by using similar averaging procedures to smooth out the nonstationarity due to
rapid oscillations thus leading to a stationary sampled noise.

With coupled degrees of freedom, however, the full auto-correlation or spectral
function for both the action noise and phase noise is a tensor of rank 'three' with typi-
cal elements like Qﬁkt) n;(t')> for action noise and <§;(t) gé(t'j> for phase noise
where o = {x,z,e}, B = {x,z,e} and n and § are the noise or fluctuation functions

entering in the equations of motion

f=ﬂﬂ?mﬂ

(8.2.15)
@=E+Ekﬂumy
Thus for example the spectral function of the'action noise will have the form
i i i N i
Qx“x> Qx"z/ Qx'b>
R P | ~i i - i i i i i
Riwanh) = {Rl, @31 A = G GEn) G| (8.2.8)
a,B8=X,2,6 )
i i i i i i
<"e nx> <“e N2/ <“9 "e>

and similarly for the spectral function of phase-noise. Using dyadic notation for the

tensor R(t,t') obtained from the product n n and using the general expression for

I given in Chapter 4, we obtain, following the by now familiar procedure, the following

(with properly aligned pick-ups and a filter in the feedback loop to eliminate gn o

term):
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R(t-t')

it

N a1 f(1® ALY * AL . i[n'(ﬁ(l)"-n.’ﬂ(l‘)](t_tl)
IHZ%I 1 f(1") [ﬁnn (L1 (L1 )] e
: (8.2.17)

and

R1) = (20) » N+ 23 |l #0011 |6 (LI G .(1,1-)] -s[n-n- (1)-n'- u-)]
~ — [ 0D 0 wii-ni e
(8.2.18)

where

~Id1' f(1') =1 with dl' =dI} dI} dJ’

A similar expression can be obtained for the auto-correlation and spectral tensor
of the phase-noise. Equation (8.2.17) describes the correlation in the sampled noise
developing in a time-scale of 1 ~ (1/2) from all possible scattering events within the
beam (through the feedback loop) between the primed and unprimed particles satisfying the
resonance condition Q= n - g(l) ta. 9({'). We will see in Section 9.1 that long

time slow diffusion due to these scatterings is determined by the Q> 0 limit of

§jQ;I) corresponding to two particies talling exactly on top of each other in frequency

space: p -+ w(I) = -n' - o(1').
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9.  THE TIME-EVOLUTION OF THE ANGLE-INDEPENDENT (PHASE-AVERAGED) DISTRIBUTION FUNCTION
~- THE FOKKER-PLANCK EQUATION AND THE TRANSPORT COEFFICIENTS

In thi§ chapter, we employ two formalisms for arriving at the equation for the
time-evolution of the uniform angle-independent distribution function (zeroth Fourier-
component in angle, conjugate to action, of the distribution function) of the beam under-
going stochastic cooling. The first method is based on the classical fluctuation theory
used in the Langevin equation to describe Brownian motion and also various nonequilibrium
(stationary and nonstationary) processes in statistical mechanics of many-body systems.
This method has a very broad scope and is applicable to any system evolving under noise
or fluctuations with finite correlation times. The theory of fluctuations is an active
and growing field of research in itself, and we will only demonstrate a simple and clear
procedure for the application of well-established fluctuation-theoretic techniques to the
process of stochastic cooling employing a suitable model. The second method is based on
the canonical kinetic theory in phase-space for many-body systems, employing the BBGKY
{Bogoliubov-Born-Green-Kirkwood-Yvon) hierarchy of reduced distributions and correlations
in phase-space. This kinetic method is of wide-spread use in plasma physics and also in
nonequilibrium statistical mechanics.

Up to second order in a small parameter A measuring the strength of the fluctua-
tions or the cooling interaction and first order in particle correlations, both methods
yield identical transport equations in phase-space when the collective screening effects
are negligible and in particular demonstrate the Fokker-Planck nature of the transport.
The f]qctuation theory becomes cumbersome, however, if one wishes to include the collec-
tive many-body aspects of the beam as a whole. The collective signal suppression or
dynamic screening effect is thus ignored and not integrated in this fluctuation-theoretic
formulation. This latter effect has to be evaluated independently by using the appro-
priate collective dynamics (Vlasov equation) and later put in by hand in our fluctuation-
theoretic results. However this method lends itself to a quick and easy evaluation of
the transport coefficients (Friction and Diffusion coefficients), even when the spectrum
of the fluctuations is not obtainable from theory as long as one has adequate knowledge
of the spectrum (e.g. power spectral function) experimentally.

The kinetic theory method provides the most satisfactory description of transport,
that integrates within itself the collective effects of dynamic screening (or dielectric
signal suppression) in a holistic way. However, this method becomes complicated and

poses considerable mathematical difficulty in solution for the most general situation of
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coupled degrees of freedom and general particle orbits (i.e. other than free-streaming
or simple osci]]ato;y orbits), unless one ignores collectivé correlations, in which case
one recovers fluctuation-theoretic results. A solution inc]udin§ collective signal sup-
pression can be obtained however for the simple cases of no coupling between degrees of
freedom and either free-streaming (coasting) or anharmonic oscillator (bunched) orbits,
as demonstrated in Section 9.2.

We discuss the effect of extraneous electronics noise (due to amplifiers) on the
diffusion term in Section 9.3. In Section 9.4 we reduce the Fokker-Planck transport
equation for transverse cooling to an equation describing the evolution of the second
moment of the distribution function, in the special case of linear transverse dipole
interaction. For this special case we also demonstrate an explicit solution and the
Green's function of the Fokker-Planck equation. In Section 9.5 we write down explicitly
the components of the friction vector and diffusion tensor in terms of generalized inter-
action harmonics for the general case with coupling between degrees of freedom.

The fluctuation theory discussed in Section 9.1, when supplemented with the expres-
sion for the collective response or signal suppression factors derived from general
Vlasov theory in phase-space in Chapters 10 and 12 and with a prescription as to how to
modify incoherent spectral functions by these factors (Chapter 11), becomes equivalent

to the kinetic theory discussed in Section 9.2

9.1 Fluctuation Theoretic Model of Stochastic Cooling

The classical fluctuation theoretic formulation used in this section is an already
well-established and growing field and has been discussed, exposed and used in various
contexts involving fluctuations or stochastic processes ([28], [30], [51], [53], [54],
{777, 1951, [98]1, [107]). In our formulation, we follow the treatment by Van Kampen
[107] closely since it is particularly well suited for the two-storage ring

mode! of stochatic cooling adopted in this section.

If X = ({i,yi), i= 1,...,N denote the canonical action-angle phase-space
cqordinate of the iEﬂ particle in the beam, then the cooling dynamics is generally
of the form

X5 = Gi(zl,zsz,...,zsN) = Ei[{aj }j=1,...,N] (9.1.1)

where G is a general nonlinear vector function of {xi}i-l N determined by the
Sifi=l,...,

cooling interaction imposed by the feedback loop (Egs. (7.2) through'(7.14)).
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As we have discussed before, a single particle experiences a coherent corrective
force that depenas on the ‘'state' or 'phase' of its own position in phase-space alone and
also experiences an incoherent fluctuating force or Schottky noise due to all the other
particles in the beam, which depends on the phase-space coordinates of all these other
particles.

G thus has a general decomposition
. 0 1 .
ﬁ’l[{&‘]}] = ‘G]lxi’t'ol = .G.‘ (51) + 'G'I lli’t’ol (9-1-2)

where g? is a "sure function," determined by the coherent cooling term and depends on
the phase of the cooled particle alone and g} is a “stochastic function" or random
function depending on a stochastic or random parameter o describing the initial phases

of all the particles in the beam. The time dependence of §%

enters through the
orbits of all the other particles j(#i) = 1,...,N. As the phases range between 0 and
27, o is a particular realization of an ensemble of random phases each belonging to a
set ¢ whose range is thus mod (0,2n). A probability distribution defined on L may

be specified by its density P(o) obeying

P(¢) 20 and IP(O) do =1 (9.1.3)
%

It is quite generally true for our case that

<§%[zi,t]> s 0 (9.1.4)

where the average <...> 1is taken over an ensemble of the random set I of o's. Thus
the noise from the other particles adds only in the mean square (and higher moments)

which is non-zero e.g.

(Rit,t1) = <(‘a1[zs;t] QI[&';t']> ver # O (9.1.5)
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In the derivations to follow, it is not necessary to use the decomposition (9.1.2)
or use the assumption (9.1.4) until later. At this stage, it only provides a useful
insight into the process of cooling,

With the introduction of the stochastic variable o € I, the differential equation
(9.1.1) becomes a stochastic differential equation for X. In our simple model then,

cooling is described by the general stochastic nonlinear differential equation given by
% = B(x,t;0) (9.1.6)

When we prescribe given initial values x(t=0) = a, this equation determines a stochas-
tic process x{tjo), provided that for each individual o € I, Eq. (9.1.6) has a unique
solution, However, practically one is more interested in the statistical properties of
X such as «<x>, <x x>, etc. that arises from the stochastic nature of the force

G(x,t;0) in Eq. (9.1.6).

For linear equations, where the right hand side of (9.1.6) depends linearly on the
%, techniques exist for solving (9.1.6) for the statistical properties of x directly.
However, a solution is extremely difficult to obtain for the general nonlinear x-

dependence of G. If we define «<x(t)> to be the ensemble average of 5(t;o) over the

distribution P(s) of o defined in (9.1.3), i.e. if
<5(t)> = Jdo P(o) 5(1’.;0) (9.1.7)
): B

then it is obvious that we do not expect to find a differential equation for «x(t)> by
itself, because in general the nonlinearity of §({,t;o) necessarily brings in the
higher moments. We can however consider a second probability distribution or density
function of x, f(x,t) by defining a fluid in phase-space x and a phase-function f(f)
which measures the density of the fluid at x (or the probability of being within x
and x +dx being f(x) dx). This reduces the nonlinear ordinary differential equation
(9.1.6) for x into a linear partial differential equation for f(x,t) as follows.

We look at x as a point in the 6-dimensional phase-space of the particle.
Equation (9.1.6) determines a velocity at each point of this phase-space. Each initial

value point x(t=0) = a has a trajectory passing through it describing the corresponding
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solution of (9.1.6). We hold o fixed for the moment. Let us consider a cloud of ini-
tial points and a phase function f(5;0) describing the density of these points in
phase-space. Al1l the points in phase-space move according to (9.1.6) and the conserva-
tion of probability {.ff(g;t) dx = 1] or the conservation of the number of system

points in the ensemble means that the flow must satisfy the continuity equation

af (x;t)

o ~% . [G(&,t;o) f(&;t)] {(9.1.8)

As explained under Section 4.1, the flow is not incompressible for the stochastic
cooling interaction and a/a§ remains outside of G in general. Consequently, a solu-
tion of (9.1.8) is not obtained by taking f{x;t) constant along each trajectory, but a
Jacobian determinant will appear later. Note that Eq. (9.1.8) is an equation for the
flow in 6-dimensional x-space for the one-particle distribution f(x;t) of a set of
test-particles and is different from Eq. (4.1.2) defined in 6N-dimensional space for the
N—particle distribution p[{l,...,§N;t].

Now we consider all values of o € £ with their probability distribution (9.1.3).
Then (9.1.8) is a stochastic partial differential equation for f(f;t) which is linear
in f(f;t)'

Again, given the initial condifion for the distribution f(g; t=0) = g(x),
Eq. (9.1.8) determines a stochastic process f(5;t;a), provided that for each s € 3,

(9.1.8) has a unique solution. We can then define

<f(2(.;t)> = Jf(&;t;o) P(o) do (9.1.9)
%

We wish to connect <f(x;t)> with the probability density p(x;t) of x(t) aris-
ing from the random variable ¢ as determined by Eq. (9.1.6). It is known, in fact, in

the theory of fluctuations that

() = plest)
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so that the solution <f(§,t)> of (9.1.8) leads to a solution p(x,t) for Eq. (9.1.6)
automatically. We reproduce a formal proof of this lemma in Appendix C after Van Kampen
[107].

The proof is based on assuming 'sure' initial values in the form of delta functions

as follows:

f(x; t=0) = g(x) = 6™ (x-2)

We can however consider other initial values corresponding to solutions of (9.1.6)
in which the initial value a 1is also random with probability distribution f(a;0) =
P(a) with a € X, the set of all possible initial conditions. In this case <f(x,t)>
is identical with the probability density p(x,t) of x arising from the randomness of
the Eq. (9.1.6) and of the initial value. It is required however that the distribution
of initial values P(a) be statistically independent of that of o, i.e. P(s). In
other words, it is required that the random variables a and ¢ be independent and
uncorrelated. This formulation so far then describes exactly the situation in the model

of a hypothetidcal two-storage-ring cooling as depicted in Fig. 18 below.

Test particle of interest
Circulating /_

beam -\

[6%x)+G' (x,t; 0]

XBL 827-7060

Two Storage-Ring Model of Stochastic Cooling

Fig. 18

A beam of particles circulates in one ring, generates a Schottky noise signal at an
azimuthal pick-up, which is then transferred to a kicker located azimuthally at a separ-
ate hypothetical storage ring where a test-particle, circulating in the second ring, sees
this amplified noise signal together with the coherent signal generated by itself at the
same pick-up. We thus imagine the cooling particle, whose dynamics is of interest, as a

test particle cooling under the influence of the ‘'sure' function G0 and diffusing
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under the influence of the noise or fluctuation function gl(t;o), determined by all
the other particles in the other storage ring.

The time-evolution of the probability density p(x,t) of such a test particle would
be of purely academic interest unless we identify p({,t) with the actual coarse-grained
.6—dimensiona1 phase-space density of the actual beam circulating in a single storage ring
and interacting with the PU-Amplifier-kicker feedback loop simultaneouly, i.e., we iden-
tify the test particle as one of the actual particles in the beam.. Complications of an
essential nature arise, however, in this process of identification which we are forced
to do in order for our idealized two-storage-ring model to correspond to a real stochas-
tic cooling situation. The probability spaces I and X or the densities P(s) and
P(X) no longer remain independent. The parameter ¢ which measures the randomness of
Schottky noise gl(i,t,o) is the same parameter as X which defines the single par-
ticle distribution of the whole beam. Both parameters arise from the same random initial
phases of the beam particlies and are totally correlated.

Thus formally Eq. (9.1.8) is linear in f(ﬁ,t) but deceptively so. o is deter-
mined by a particular realization ot the ensemble of initial phases of the beam
particles. As the cooling process continues, f({,t) changes and o becomes a function
of time through the changing distribution function, i.e. o = off(x,t)} . Thus
<£G(5,t;o) f(g;t)]>o ~ [6(x,p(x;t)) p{x;t)]. Hence for a vreal cooling system,
Eq. (9.1.8) is an inherently nonlinear partial differential equation for f(f,t). Such
nonlinearity is always inherent whenever there is a correlation between the two proba-
bility spaces % ana X, one of which measures the randomness of the coefficients in
the differential equation while the other the randomness of the initial values. The
application of our model then to a real cooling system becomes moot.

However, a careful multiple time-scale analysis based on an inspection of the vari-
ous disparate time-scales involved provides us with a physical argument to bypass this
difticulty.

Equation (9.1.8) determines three distinct time-scales. The first one is the scale
on which f(x;t) varies. This is measured by x’l (taking G to be of order unity)
where A 1is a measure of the strength of G in some sense. This is the relaxation time
of slow cooling. The second one is the scale on which G(t) varies and is measured by

T the revolution time-period or the periodicity with which the kicks are applied —-

0’
this time-scale is irrelevant for the following arguments. The third one is given by the
correlation time Te of g(t) -- this is the time-scale on which the random nature of

the function G(t) becomes appreciable.
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Now if (ATC) is small it is possible to subdivide the time-axis in intervals
(at) such that at >> Te and yet (x at) << 1. That is f(x,t) does not vary much
during a time at in which G(t) has forgotten its past. Then we can use Eq. (9.1.8)
during the time-interval at between 't' and ‘'t+at' and solve it to express
<f(x; t+at)> in terms of <f(x;t)> assuming (9.1.8) to be linear in f(x;t), but the
coefficients in the solution. determined by the instantaneous averages of G(t) and its
moments over f(x;t). For the next interval one may use the same method of solution to
express <f(x; t+2at)> in terms of «<f(x; t+at)>. The crucial point is that the values
of G(t') during the second interval are practically uncorrelated with those during the
previous at. This makes it possible to use in the second interval the same unbiased
averages of G(t') rather than the averages conditioned by the knowledge of how f(x;t)
behaved in the previous interval. The coefficients in the solution become averages over
the instantaneous distribution function of the particles and thus we have finally resur-
rected the basic nonlinear nature of the transport, without having to solve the nonlinear
equation.

A1l the above arguments amount to saying that on the coarse-grained level deter-
mined by at the process is (approximately) Markovian. This means in general that the
probability distribution p(x,t) = <f(x;t)> obeys a differential equation, rather than
an integral equation with long-time memory. At this point it is prudent to state then
what our goal is. We wish to derive a deterministic differential equation for p({,t)

of the form:

aplx,t)
—r— = D& px;t)

where 6x = ﬁx {p(x,t)} s an operator acting on the x-dependence of p(x,t), -but

not on its t-dependence and may in addition be a function of p({;t) itself. Later on
we will identity p(x,t) with the actual phase-space distribution f(x;t) of the beam
of particles.

Another complication arises from the fac£ that the kicker electromagnetic fields in
a stochastic feedback loop introduces correlations in the trajectories (and hence arrival
times) of the particlies which propagate collectively through the beam and distorts the
fluctuation spectrum. This collective correlation between the probability spaces I and
X is not included in our model, which thus precludes us from obtaining the collective
signal suppression factors. Solving a nonlinear stochastic differential equation where

the probability spaces of the initial value distribution and the original stochastic
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variable in the differential equation are correlated dynamically as a function of time
is extremely complicated and is the leading edge of research today in such diverse fields
as non-stationary nonlinear stochastic processes, irreversible statistical mechanics of
many-body systems and quantum field theory. The only satisfactory method known to the
author is a full-blown kinetic theory of microscopic dynamics in phase-space, which we
will discuss in the next section. In this section we will solve the problem by assuming
that this correlation is small and can bé neglected. Indeed, if the modulations induced
by the kicker are small enough, the dynamic correlation between the two ensembles: the
noise ensembles and the test particle ensemble is weak and time-evolution of an ensembie
of such test particles or a distribution of them will coincide with the time evolution
of the actual beam.

Later on we will cure this desease of not including the cdl]ective distortion of the
flucutation spectrum {owing to the additional feedback loop through the beam) by slightly
modifying our model. In this modified model, we let the test particle sample not the
incoherent fluctuation spectrum generated by the single particle motions, but the total
collectively distorted or screened signal generated at the kicker. This latter spectrum
js obtained simply by suppressing the incoherent fluctuation signal gO(Q) at the kicker
by a shielding factor (&), i.e. setting £(Q) = %g%%l. However, e(Q) then has to
be evaluated separately and independently from the Vlasov equation in phase-space.

This approach is analogous to the "Test particle" approach used in Plasma Theory to
get the Fokker-Planck coefficients for transport in a plasma, where the fluctuations
arise from the Coulomb interaction of particles with each other, which gets dynamically
screened by the Debye shielding effect ([30], [51], [531, [54], [98]).

Let us write Eq. (9.1.8) formally as:

——— = A (t) T(x;t) (9.1.10)

where the operator ﬁx 0(t) is defined as

fAS |

A () == v - Blxtio) = - & - Bx.ts0) (9.1.11)
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It is easily seen that Eq. (9.1.10) is solved by:

Y

t t
flat) = |1 +Jdt1 Ay (1) +Idtlfo at, B (e) B (1)) *on| £0050)
0 0

w th1
P> j dt, Aty) Alt,) A(tg)...A(t )| £(x;0)
Y

Y
dt Idt
P 10 2

(= N

where we have suppressed the subscripts X,0 for convenience. If the operators A
commte, all integrations can be extended from ti = 0 to ti =t (i=1,2,...,n)
provided that a factor (1/n!) is supplied to compensate for the larger integration
domain. But in our case A's are operators involving gradients or derivatives in phase-
space variables of the functions G(x;t) for different times and do not necessarily

commute., However, even though ﬁ(ti) do not commute we may still write

O;—\ﬁ

t t
dtl[ dt, f at T [IA\(tl) K(tz)..-ﬁ(tn)] f(x,0)
0 0

flxit) = ¥ o
n=0 "°

where the "time-ordering” symbol T[...] indicate that the operators have to be shuffied
so as to appear in the order of decreasing values of their time arguments.

We can write the result in a more compact form as

t
f(x;t) =T |exp JRX Lt1) dtt o) £(x,0) (9.1.12)
0

where the time-ordering symbol mean that one should first expand the exponential and in
each term order the operators chronologically. Equation (9.1.12) gives us the formal
solution of (9.1.10) for each individual value of ¢ as a time-ordered product. This

gives for the average
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A (t') dt' £(x,0) (9.1.13)

px;t) = <f(5;t)> =T éxp )

Oy o+

since averaging over the ensemble of o € I and time-ordering operations commte.
Furthermorg, inside the time-ordering symbol one may freely commute operators because
they have to be put ultimately in chronological order anyway.

The integral over ﬁx’a(t') is itself a stochastic quantity Z . On expanding
the exponential one obtai;s a series in successive moments <Z"»> which may be written

as md]tiple integrals over moments of A

t tt
(risstly = mfas [ ey oy 3 [ [ oty ety Gey) Aty +oo| £0,0)
0 00 (9.1.14)

This expression, however, does not provide good successive approximations, because
any finite nunber of terms constitute a bad representation of the function defined by the
whole series -- much the same way as the behavior of e_t for large t is badly
represented by any finite number of terms of its expansion. In other words, if the mag-
nitude of the fluctuations characteristic of ﬁ(t) is measured by some parameter 1,
then Eq. (9.1.14) is not a suitable expansion because the successive terms afe not only
of increasing order in A, but also in t, That is, it is actually an expansion in
powers of (At} and is therefore only valid for limited time. [Equation (9.1.14) has
worked successtully in the past in the theory of scattering, where it is known as the
Schwinger-Dyéon formula. The reason it worked is because in a scattering process, the
interaction Hamiltonian acts during a short collisional time Tg and practically
vanishes at all other times. t. Equation (9.1.14) then becomes an expansion in powers
of (ATS) and our objections are empty in that case.]

We bypass this difficulty by defining "irreducible connected parts" or "cumulants",
which are certain conbinations of the moments <ﬁ(t1)...ﬁ(tn)> and we will denote

them by a bar on top connecting the elements, e.qg. <ﬁ(t1)...ﬁ(tn)>. For the single

random variable Z, we define the cumulants by means of the generating function
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<etz>=exp{“§l-(:]_—£ <Z o 7 oo Z>}
m-t i mes

With
t

z =I A(t*) dt'
0

we get

t . t t
exp tj?\(t') dt') )= exp{ 2 (rtn: J...f<ﬁ(t1)...f\(tm)> dt...dt.
0 0 0

(9.1.15)

The connection with the moments is given by the following hierarchy of equations

(we write 1,2,... etc. for the operators ﬁ(tl),ﬁ(tz),...etc.):

<> =<1>

<12> = <I;<E; + <IE;
<123 = <-f><3><§-> + <'1-><-é-§'> +'<-2m><i§“> + <§-><ﬁ'> + <.1?3->
... and so on. (9.1.16)

The cumulant expansion (9.1.15) 1is far better behaved than the moment expansion
(9.1.14) for processes A(t) having a short correlation time Teo To illustrate
this, let us suppose that K(tl) and ﬁ(tz) are statistically independent quantities
when ]t]~t2| >> t.. Then the moment <ﬁ(t1) ﬂ(t2)> factorizes into <ﬂ(t])> <ﬁ(t2)>

and it is easily seen that the cumulant <ﬁ(t]) ﬂ(t2)> vanishes. Thus the moments have
the "product" property while the cumulants have the "cluster" property. Accordingly
(9.1.16) is known as the cluster decomposition. In the language of scattering theory,
the cumulants express the totally “connected" or correlated part of the moment
<ﬁ(t1)...ﬁ(tm)>, which expresses m successive scatterings from points t],...,tm.
Thus the cumulant expansion is an expansion in a hierarchy of "disconnected" and

"connected" parts of the moments.
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More generally the mm cumuiant <lA\(t])...K(tm)> vanishes as soon as the

sequence of times t],...,tm contains a gap large compared to T _. This is what we

c
mean intuitively by a "rapidly f]uctuatfng random process".

As a result, each integrand in (9.1.15) vanishes unless t],tz,...,tm are close
together. The only contribution to the integral comes from a m-dimensional tube of
diameter of order Te along the diagonal ty~ t, ~...~t,  in the m-dimensional
integration space; m integrations with one relation between the (t],...,tm) above
leave one time-integration free. Hence for large t, the contribution of each term is

proportional to t so that

where ¢ can be found from the cumulants of the operator A(t,o).

Let us illustrate this for the term involving the second-order cumulant

i

t t
R =!)' dt, ! dt, <R(t1) A(t2)>

Let us change one of the integration variables to T via 1= t1 - t2. Then

£ Y
=fdt1 J dt R(tl, tl—)
0 -t

The domain of the double integration in the above equation is illustrated in the Fig. 19

below, as the parallelogram ABCO. By the definition of the correlation time < the

c!
integrand R(t] ,t]—r) takes on significant values only in the shaded domain in Fig. 19
(tube in 2-dimensions), where |T| <Tc or -1 < T <71.. Hence, errors coming
from the contributions of the small triangular domains outside the parallelogram in the

vicinity of 0 and B, we may extend the upper and lower limits of t-integration to



148

-, — e —_——

T

(+o0)

XBL 827-7057

Domain of Integration for the Second Order Cumulant

Fig. 19

+o and -x, respectively; the errors involved are of the order of (Tc/t) and for

large t are negligible. Thus we can write

t 400
R =J dtl J dt R(tl, tl—T)
0 Lo

For a "stationary process", i.e. a process which 1is invariant under time-
translations R(tl,tl—T) is a function of the time-difference tl-(tl-r) = T

only i.e.

(Atey) Atty-0) = R(7)

In general we do not have a stationary process. Nonstationarity enters into the process
either due to slow relaxation processes (slow cooling in our case) or due to rapid
(compared to Tc) oscillations (synchro-betatron oscillations and discrete periodic
kicks in our case). In the former case, stationarity holds adiabatically in time and in
the latter case we can define a smoothed-out time-stationary cumulant by averaging over
the rapidly oscillating terms, as discussed in Ch. 8. For the purposes of i]lustration,
let us assume a time-stationary cumulant R(ty,ty-1) = R(t) then, although the general

statements remain valid independent of this assumption. We then have
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%

dt dt R(t)

1

—

4

>
i
Oy o+

If we define the Fourier transform R(Q) of R({t) by the definition

) éiQT

l’-;(Q) = dt R(T

Pt

then

R=t - [E(Q)]QA) =t - [@—D (9)]Q=0

The term in Eq. (9.1.15) for the expansion into cumulants which involves the second-
order cumulant is thus proportional to t with the coefficient determined by the power
spectrum of the second-order cumulant. Similar arugments show that all the terms in the
exponent in (9.1.15) involving higher-order cumulants are proportional to t, with
coefficients determined by the various spectral properties of the cumulants.

Using the cumulant expansion {9.1.15), (9.1.13) gives us:

t tt
<f(zg;t)> = Tlexp J <ﬁ(t1)> dt, +’1ij dtydt, <A ) A(t )> £(x,0)
0 00

(9.1.17)

If A is measured by some parameter A, then apart from the first term, the suc-
cessive terms in the exponent are of order (AZTC),(A3 TE),... etc. Moreover, they all
grow linearly with t when t >> Too We have assumed that A(t) has a finite corre-
lation time Te in the sense that all cumulants of A(t) wvanish, i.e.

<f\(t1) Alt,).. .ﬁ(tm)> ~ 0

as soon as the time arguments in them have a gap |ti'tj| large compared to 1_.. The

c
'(Am Tm-l t) for t > Te We note that although

successive terms are then of order c

successive term in (9.1.17) do not have any meaning yet since the time-ordering



150

operator T mixes them up eventually, the above comments on orders of magnitude remain
correct.

We now solve (9.1.17) step by step. First, we omit all terms of O(xZTc). Then
t
<f()s;t)> = Tlexp J<A(t1)> dty 0 1f(x;0)
0
By the definition of T, this is the solution of

& (st)) = R Flst); (Fx,0)) = £(6,0) (9.1.18)

We now use the decomposition (9.1.2) and the definition (9.1.11) to write

Alt) = ﬁo + i\l(t)

where

>
L}

o= -V 80 and A(e) = -V, - gl(xstso)

Then

Ree) = Go)+ Gye)) =B,

since §0(x) is a sure function (hence <ﬁ0> =ﬁo) and <§](§;t)> =0 by Eq. (9.1.4).
We now use this result to define an 'interaétion representation'. Let ﬁ(t|t') be

the evolution operator belonging to (9.1.18). We set

f(x;t) = U(t]0) g(x;t)

and accordingly transform Kl(t) into §(t):

ﬁl(t) = U(t|0) B(t) O(ojt)
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The evolution operator satisfies the equation
a—at-ﬁ(tylt') = A(t) ﬁ(tlt»') with  0(t']t') = 1.
In this representation, we have

ag(x;t)

v B(t) glx;t)

and the solution is written analogous to (9.1.17)
tt JE—
1 '~ ~
<g(gg;t)> = T|exp 7Jf dtldt2 <B(t1) B(t2)> +...219(x;0)
00

The second step consists in omitting the terms of order (A3r§) and higher
in the exponent. We should now expand the exponential and in each term of the expansion

rearrange the operators B chronologically. We partially fulfill this requirement by

writing
t 4
<g(5;t)> = Tlexp Jdt1 J dt, <B(t1) B(t2)> 9(x;0) (9.1.19)
0 J '
Let us denote
tl -
Ritg) = | at, (Bity) B(r,))
0
and consider the differential equation
;Bg <9(&;t)> = K(t) <9(>s;t)> (9.1.20)

Its solution is
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t
<9()s;t)> = Tlex Jﬁ(tl) dty <9(L;0)> (9.1.21)
0

with <g(x;0)> = g{x;0). This is almost identical with (9.1.19) but not exactly. We
will show Tater that the difference is of order (x-rc).

Equation (9.1.20) in the original representation is given by
& Glst)- [Ko * E(t)] (Flest)) (9.1.22)
where E(t) is the operator g(t) transformed back to the original representation:
L(t) = U(t]o) K(t) U(olt)

t
=I dt' U(t|0) <§(t) ﬁ(t')> u(olt)
0

£
=I dt </§1(t) U(tt") Kl(t')> U(t*t)
0

With
At) = A+ Kl(t) and <Rl(t)> =0,

we have

U(t]t') = exp {i\o(t-t-)}

Then we can write (9.1.22) as

t A~

% <f(5;t)> - | A +I dt @1(t) &0 f\l(t—1> e_A°T <f(x;t)>
0

Recalling our definitions
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plxst) = (F(x;t))
we write

"
<]
.

t 0
(-1, °6") \ (v, -8")
%p(x.t) e -6"(x) +Jdr @l(m) e & V! ﬁl(&.t—T)> e % p(xst)

b

3 .0 3 0
~T G (%) = «G(x)
T X 'aii . Ql(),(‘,t—'[)> eT X

t

-2 | ¢ o @t e
0

plxst) (9.1.23)

When t >> t_, we an take the upper limit of integration to be (+°). We have

c
2) in the strength a of Gl,

thus obtained Eq. (9.1.23) to second-order  O{a
without assuming absence of correlations or cutting off secular terms.

Now we justify the use of (9.1.21) instead of (9.1.19). When we expand the exponen-
tial in (9.1.19) and apply the time-ordering, it may happen that the two operators
g(tl) and g(tz) in the cumulant becone separated by one or more operators from
the other factors. In contrast in (9.1.21) the operators B in a cumulant stay together
to make K and only the operators K are time-ordered among themselves. This is the
difference between (9.1.21) and (9.1.19). For an estimate of this difference, let us

look at a typical term of the expansion of (9.1.19)

t ty n
2n (9.1.24)
A 5 o ol
Aom Jdtl Jdtz @t B(t2)>
0 0

where A measures the strength of B (i.e. B s of the order of unity in this
expression.) There are n pairs of time-arguments (tl’tz) and one has to inte-
grate over a 2n-dimensional domain. There is a subdomain where no two pairs overlap and

which therefore is correctly represented in (9.1.21). The volume of that subdomain is
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of order tnTz, because each pair ranges over an interval of order t, while the pair
t],t2 must be within T from one another. The contribution of this subdomain is
therefore of order Azntnrg.

The order of the operators B in the remaining subdomain is quite different in
(9.1.21) and (9.1.19). However, if two pairs have to overlap, all four times involved
must be within a distance of order Te from one another, so that the range of inte-
gration for those two pairs is only of order (tTg). Hence the difference between
(9.1.21) and (9.1.19) as far as the term (9.1.24) is concerned, is at most of order
AZntn—lTn+l_

tn—1

Since this is proportional to , wWe have to compare this with the

principal contribution of the previous term in the expansion of (9.1.19), which is

Az 2.

X2n-2tn-]Tn-1_ :

c Hence the difference between (9.1.21) and (9.1.19) is or order

T
A general expression involving these higher-order terms in the expansion of T can be
found but our present report does not concern itself with orders beyond (AZTC).

Equation (9.1.23) has the structure of a Fokker-Planck transport equation. We have
thus demonstrated that such an equation arises most naturally from the differential equa-
tion for stochastic cooling up to order (AZTC), when the process is characterized by a
finite correlation time Tes which is smaller than the time-scales of interest for

the relaxation process of cooling.

The operator EXP(—TVX -§0) in (9.1.23) provides a solution to the equation

af (x,t)
BT

Thus

f(x,t) = [eXD(-tVL' ﬁo)] f(x,0) (9.1.25)

However, the single particle equation

determines a mapping

with inverse
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for fixed t. Then we also have

ax
d[x]

f(x,t) = £(x°t,0)

The effect of the operator exp(—tVX -gO) is thus given by

._t]

exp(—tV& 'QO) F(x) = F(x %) (9.1.26)

d[x]

where the last factor is the Jacobian determinant of the mapping. Using this, we can

write £q. (9.1.23) in the following two alternative forms:

8 TR L
2p0at) =5+ |- ) + | o G _
0

X d[x] T dx 1
(9.1.27)
or
sep(t) = g -6 ) +Idr <§1(&,t) T 'ﬁl(x.'T,t—T)>
+J’<GI(L,t) ﬁl([T,t—T)> CY (9] plx,t) (9.1.28)

0

where V__ means differentiation with respect to x__ and Y 1is a vector function

(9.1.29)
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So far we have assumed the fluctuation term gl

0 1

to be of order . For a cool-

ing system both G° and G are of the same order A and hence the Jacobian of

the transformation of orbits under §0 given by (9.1.26) is

dlx"]
d[x]

= 1+0() (9.1.30)

'

Since the second and third terms on the right-ahdn side of (9.1.28) are already
O(AZ), being of the form (g] -g]), the added 0{x) contribution from (9.1.30) adds
0(A3) terms and higher and we neglect them. Then Y in (9.1.29) vanishes (logarithm
of unity being zero). Moreover, the tluctuation terﬁ gl in the eguation of motion
(9.1.2) satisfies the Hamiltonian flow condition for stochastic cooling as explained

before and so

1

Thus vV~ and G commute and we can write:

¥ ﬁl(X'T,t-T) p{x,t) = ﬁl(

-1 £ X.—T,t -1) - Y_.[ D(L,t)

1

= 6 (¢ t-1) - Zplx,t)

where in the last step we have used (9.1.30) again.
Thus for fluctuations satisfying the condition tor Hamilitonian flow and strength of
cooling and fluctuations given by a small dimensionless parameter A << 1 (we incorpor-

0 1

ate x  within G and G so they do not appear explicitly), the Fokker-Planck

equation for transport has the form:

o

ap(x,t)
——-géf~— ==V e [GO(L) p(&,t)] * v °.[ dt <é1(a,t) ﬁl(&‘T.t-Ti> % p(x,t)
0 (9.1.31)

We write (9.1.31) as follows:



157

ap(x,t)
3t

3 ap(x;t)

= ‘_aaz . [E(x) p(zs,t)] +% a0 (L) - % (9.1.32)

where

Ekx) = 62(x)
(9.1.33)

20 -2 a6 ()s(t 9,t-1) ) o

are the Friction and Diffusion coefficients respectively.

We note that in action-angle variables (x = I,y) the distribution tunction p(x) =
p(l,y) is a function of Ly. If we are interested in the time evolution of a homo-
genous distribution f(l) independent in angle y, the terms in (9.1.32) involving
gradients in angle {e.g. 32/3? ay, 32/31 y etc.) drop out and we only have to con-

sider transport in action {—space alone. We then have

ap(L;t)
3t

ap(l,t)

.1.34
o1 (9.1.34)

- _a_al . [F(l) p(l;t)] *%‘a% "W

where

(1) = 6%(1)

D) = zj m@[uw(t);t] gl[ut-w),w(t—n;ml>
0

(9.1.35)

To the order ot the approximation, the co-ordinates [I(t), y(t), appearing in

(9.1.35) are to be evaluated Jjust as zero-order orbits Lo(t) = ] = const. and
. = 1 .
wo(t) = w +t+y(0) and then the expectation value over the ensemble <G §]> in

(9.1.35) becomes just the auto-correlation function R(t,t-1) of the sampled noise

x

without the self-interaction as defined in (8.2.17):

R(t,t) = G ' (t-)



158

Averaging over rapid oscillations as in Section (8.2), we get a smoothed out auto-

correlation which is a function of T alone:

R = @) 6hee-n)

For time-stationary auto-correlation, we have then the property ﬁ(T) = E(—T) and the

Diffusion coefficient becomes:

where R(Q) is the Fourier transformof R(t) in 1t

dt e R(1)

2 =
s
I
p—t

Using the explicit expressions for §0(g) and Eﬁﬁ) given by (7.1.16) and
(8.2.17) we obtain for the Friction and Diffusion coefficients in the Fokker-Planck

equation (9.1.34) the following:

EW) =82 = £ g, (kD) (5.1.36)
n
and
R(L) = (2m) - N T de- £(1') [ﬁnn.(l,l') e;n.u,r)] x 6<ﬂ'm(l) ol >>
nn'
nn (9.1.37)
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Substituting for an.(l,l') for the vrelevant cooling interactions, e.g.
Eq. (7.4) through (7.11) fa;'longitudinal cooling or Eq. (7.14) for transverse cooling,
one gets the explicit Fokker-Planck equation for stochastic cooling.

Had one anticipated the Markovian nature of the process beforehand, one could have
arrived at the same conclusion with considerable economy of time, Recognizing the sto-
chastic nature of the phenomenon, we seek a description in terms of the transition pro-
bability in phase-space starting from a given initial distribution, It‘is important to
recognize, as of the essence of the cooling process, that there exist time intervals
(at) during which the phase-space coordinates of the cooling particle change by infini-
tesimal amounts while there occur a very large number of kicks or fluctuations charac-
teristic of the motion and arising from the interaction with the other particles in the
beam. Thus we assume

T4 > At >> Tc

where Te is the correlation time of interaction and 4 is the relaxation time of
slow cooling and diffusion.
The time-evolution of the distribution function p(x,t) for the cooled particle may

then be described by the integral equation

plx; ttat) =JP(L—A&; t) W, (x-ax; ax) d(ax) (9.1.38)

Here wAt(é;A§) represents the transition probability that X changes by ax during

at, with normalization
JwAt(&;A&) d(ax) = 1. (9.1.39)

In expecting the integral equaton to be true, we are actually supposing that the
course which a cooling particle will take depends only on the instantaneous values of its
physical parameters and is entirely independent of its whole previous history, i.e. we

are assuming it to be a Markov process. It is far from obvious that we can idealize the
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cooling process by a Markov one. However from the arguments given before and experi-
mental observations of the actual evolution dynamics in the stochastic cooling experi-
ments at CERN, we expect the assumption to be physically plausible.

Expanding Eq. (9.1.38) in a Taylor series with respect to at and ax we get [53]

2 2
plxst) + 2B at +0 Sf;%—- = _[d(A&) plast) - ax + 2w 2 (axax): 2B - ...
d

2
3 wAt
agax

Myt
ey

® W, (x:8%) - 8% - * %»(A&Ax):

With the normalization (9.1.29), we may define and calculate the average values of the

increments according to

x> = .[d(A&)(A&) W,y (xsax)

<y BX> = _[d(AL)(A& ox) Wy (x30%)

Neglecting the third order terms on the left hand side, which is smaller by a factor

O(At/Td) than the second-order term, we obtain

W _ 3. <ax> o + 1 32 ) <AX AX> ‘o <AX AX AX>
at = ax at 2 o5 0% ° P —

We thus recover the basic Fokker-Planck transport equation for the time-evolution
of the one-particle distribution p(x;t) for a particle experiencing fluctuating fields

at the kicker valid up to two-body correlation effects, in the form:

ap(x;t)

2 13 9 .
e o] 322 [2‘” 4 (9.1.40)

where
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EQx) = % <bx> (9.1.41)

<AX AX> (9.1.42)

are the usual Friction and Diffusion coefficients and <(...)> denotes an average over
ensemble of particles (which in practical computation would mean an average over initial
conditions or phases of the particles) and +t is a time which is much shorter than the
time-scale over which the distribution function changes significantly but still long
enough so that a large number of fluctuation kicks characteristic of the motion (arising
from the kicker fields) occur.

To evaluate F and g we write the fluctuation equations of motion in presence of

kicker fields as:

%=1 Q[?&(t); t] (r << 1)

where A is a "strength of fluctuations" parameter and §[§(t);t] is the signal sampled
by the particle on its orbit x(t) at time t. In terms of action and angle variable

x = (I,y), the fluctuation equation becomes:

I=1 QI[l(t),w(t); t] 1 (io[l(t)]
(9.1.43)
b= w(l® +2a lilll(t),sk(t); t] + 2 uO[L(t)]

where the superscripts 0 and 1 denote the coherent self-interaction signal and the

Schottky noise part respectively. Then:

t . t
1(t) = 1(0) + A_[ dt’ Go[l(t')] + A-[ dt! ﬁlll(t').W(t'); t'] (9.1.44)
0 0

and
t t
Ue) = 20+ ul”) &+ [ o HO[L(t‘)] + AJ ot nl[ut'),w(t'); t']
0 0 (9.1.45)
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Since we are interested in the time-evolution of the angle-averaged one particle
distribution p(I;t), we need to calculate F(I) and D(I) only since terms of the

2

) P
apay

2 2 9
form and 20 ol and

o vanish on averaging over ¥ over 0 to 2w, MWe are

Eonsidering particle distributions which are homogeneous in the phase-angle.

One can now evaluate the coefficients %-(Al(T)) = F(I) and -% «wl(t)al{t)> =
2(1) to the order xz, neglecting 0(x3) terms. For 2(1) one needs only to
keep the first order term in 1 in the expansion for al(t) = I(7)-I(0) as given by
(9.1.44) since the product ] al already introduces xz. One then obtains a result
jdentical to (9.1.35) for 2}1) as is easily verified. There is no 0(x) term in the
D(I). The O(x) term appears in F(l) and is given by the expression for F(l) as
given in Eq. (9.1.35). The O(AZ) term in E(l) transforms into a term of the form
- % é% . 2(1) when one expands by iterating the orbit (9.1.44) up to second order
in ';' (0()2)) by using the first order orbit expansion for ay(1) from (9.1.45)

into (9.2.44) and one uses the Hamiltonian property of 91, namely

s 6N (Lwst) 8 6L ust)
3% 91

0
This terms thus simply modifies the diffusion term to % 3% . [D(L) . ng

We note that the general form of the Fokker-Planck equation as given by (9.1.40) and
(9.1.28) has two partial dgerivatives 32/35 ax to the left acting on [2}5) p] to the
right. For fluctuation equations governed by Hamiltonian dynamics, aside from the self-
interaction part, however, the diftusion term in the Fokker—P1anck

equation takes the form of 3%-- [Q(g) . %E] with one derivative acting only on p(x,t).

This is indeed the case for stochastic cooling as also for Coulomb interactions in a

plasma.

9.2 Kinetic Theory in Phase Space

We now illustrate how a transport equation in phase-space of the form of a Fokker-
Planck equation arises naturally from a consistent kinetic theory of the N-particle
system. 1In general this description includes both the time-coherence of Schottky signals

(Schottky noise diffusion) and the shielding induced by the feedback system. Both of
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these effects are manifestations of correlations developing between particles in
phase-space. In the usual derivation of the Vlasov equation which describes instabili-
ties 1in particle beams in accelerators two-body and higher correlation effects are
assumed neg]jgible. In addition, there is no-dissipative self-interaction; the equations
of motion are Hamiltonian. In stochastic cooling systems, it is such a self-interaction
term which increases the phase-space density. In the following, equations are derived
for the one;particle distribution function and the totally correlated part of the two-
particle distribution function. The one-particle distribution is just the usual distri-
bution function used in the Viasov equation for collective modes. In the context of
stochastic cooling, however, the equation for the one-particle distribution will describe
the transport or time-evolution ot such a function in the presence of cooling. The two-
particle distribution will describe the effects of correlations. The equation for the
two-particle distribution thus describes the propagation of correlations and gives us the
noise diffusion and collective shielding effects. Accordingly, this second equation has
the nature of a Vlasov equation for the two-particle correlations. To describe the time-
dependence of the two-particle correlations, one has to consider the equation for the
three-particle correlation distribution function and so on. The hierarchy thus obtained
for higher and higher order correlations is known as the BBGKY (Bogolubov-Born-Green-
Kirkwood-Yvon) hierarchy and closes on itself only at the NEﬁ level which describes
the totally correlated part of the full N-body distribution. We will truncate our hier-
archy beyond the two-particle correlations thus preserving information about the slow
damping due to cooling, diffusion due to Schottky noise with long-time coherence and
collective shielding due to two-body correlations generated by the feedback loop but
throwing away information about the fast time-development of such two-body correlations
leading to collective shielding. In order to learn about how fast the process of shield
ing establiishes itself we have to go one step further by taking into account the three-
body effects as well. We will not do this last step.

One further remark is in order. The system of particles in a beam is characterized
by a set of frequencies having a discrete spectrum in principle (N finite). The average
frequency spacing between particles is of the order of aw/N where aw is the full
frequency spread in the beam. One would be able to resolve such smail frequency spacing
if one waits long enough until the characteristic return time .~ N/aw. Hence a

kinetic theory description is valid only for characteristic relaxation times y_l

(cooling and diffusion times) short compared to T y'l << 1. In actual machines

there are always enough nonlinearities and intrinsic noise to cause an intrinisic
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frequency jitter of the order of or more than aw/N. We then have a smooth smeared out
frequency spectrum with arbitrarily small frequency spacing between particles as a func-
tion of time and a kinetic description becomes valid for arbitrarily large times.
Moreover, overlapping resonances arising from nonlinear dependence of frequencies on
amplitudes guarantees an almost stochastic single particie motion, according to the
Chirikov criterion, in higher order islands corresponding to high resonances involved in
a large. bandwidth system. Thus under the assumption that the feedback loop does not
induce any collective instabilities in the beam or that the conditions are such that
coherent oscillations are damped or suppressed by a rather large frequency spread, a
kinetic description is expected to be valid for times long enough so that t >>

-1 -1 : .
(Gcoh) and t >> T where (6coh) is the damping time-scale of coherent

mix
oscillations and T x is the characteristic mixing time as introduced in Section 4.7.

We set the stage by considering a 6N-dimensional ensemble space whose elements are

i, o _ i, N N . ) )
vectors ({1 J1'=1,2,...,N’{3 }1'=],...,N) = (1 2P 3eeel ,y) as cefined in Section 4.1.
Each vector represents one whole system of N particles each with 6-dimensional coordi-

nates (11,'4)1) in action and angle variables for the two transverse betatron degrees of

freedom and the longitudinal coasting or synchrotron oscillation degree of freedom. We
i
TS DU |

describing a collection of these N-particle systems each with different initial condi-

consider the ensemble distribution D(L],y];...LN,g)N) z D[{£1}1‘=1,...,N;{\£’

tions, normalized so that

i . i
Jdrw D[{l Via, .., w W }1'=1,...,N] =1

where dFN is the 6N-dimensional phase-space volume element
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ar, = (d,I_l dwl) (dl_N dw")

N ..

= I (cu‘ dw‘)
i=1
N i) (i) (o 1‘)

= .H (dIx dtx) (dIZ dbz) (dJ dy
i=1
N i i Y (ad agd aad (o i 1’)

= ifl (Ax dAx déx) (Az dAZ dﬁz) (a da  dy

where we have used Ix 7= 1/2 A ; 2 and J = 1/2 ag as the betatron and synchrotron

oscillation actions.
As introduced in Section 4.1, we have the following continuity equation expressing

the conservation of probability or the number of ensemble systems:

Wagh. [yNo] -0 (9.2.1)
where

uM - (il,il.---;lN,ifN)
and

Wely v ,...,7..9
- <"11 I I 9")

with notation:

v =2
DU
y =8
ol a0
Explicitly we can write (9.2.1) as:
0.5 [fo]+ 2 [ifo]b-0 (9.2.2)
i=l 3] ay
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We have already discussed the distinction between the continuity Eq. (9.2.1)
describing compressible flow in 6N-space for the dissipative, non-Hamiltonian stochastic
cooling systems and the continuity equation in the form of Liouville's theorem describing
incompressible flow in 6N-space for conservative Hamiltonian systems in Chapter 4.

We obtain reduced one-particle, two-particle,...,etc. distributions by integrating
over the variables we do not wish to care about. Thus we define a one-particle distri-

bution by

f(l5t) = ¢ ( I t) J [ﬂ Mt @ ,---,N;t]

- J'(J (dlz d}yz)...(d);N dﬂf‘) D(jl,wl;...u“,}k";t)

2( N-1)

and similarly a two-particle distribution by

f2(1,2;t) = fz( l,gﬁl,lzywz t) J {{l } l’...’N’ {’L}:’i}’i=1,..-,N;t]

! dl dy’ ...(dLN dygN) D(I_l,‘g?l;...I_N,‘ifN;t)
(N-2)

and so on.

We can now start integrating Eq. (9.2.2) over 2(N-1) or 2(N-2) particle varia-
bles to yield equations for one and two particle distribution functions.

Thus integrating (9.2.2) over particles (2,...,N) we get

% - -J (dwz dj_?_)...(dwN dLN) {?ZZ : [@1 u] . 3’1} : [i1 D]}
b ol
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The second term on the right-hand side may be represented as .[yN'l . [EN"I D]
dl"N_1 and converts to a surface integral of (gN_l D) on the [6(N—1)-1] dimen-
sional surface of the 6(N-1) dimensional space of rN'l, by Stoke's theorem.
Consequently this term vanishes because of boundary conditions on (gN'l D} which

must vanish at infinity. So we have

%= 'J ("“32 dlz)"-'(dwn le) Ay (il D) vl (i D)

[~ =

i f(dwz t1p)-- (o o1 [i'l D]

-2, J(dwz d_lz)...(dsQN dIN) [il. D]1 (9.2.3)
i ,

With cooling dynamics of the form given most generally by (4.3.17) as

s N N
- Zl 6(,3) = B(i,1) * é: 8(i,3) . (9.2.4)
J= J#i

and

. . N . N
go=w ) H(ELE) =W B, Y H(ELG)
J=1 j#;

and the Hamiltonian flow condition

2 [i" —5(1',1')] =- 2. [u -u(i,i)] (9.2.5)
3l ay

given by (4.3.26) and under the usual symmetry assumption for D under the interchange

of particle indices we obtain:
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af . af1 ) af2(1,2;t)
—2 . —= + - 1 « —c
ot Nl awl (N 1) (d.‘yz d.lz ﬁ(l,Z) 31]

af,(1,2;:t)
+ (N-1) J.(dwz dlz) H(1,2) - ——gsﬁ*————
g |

+{T}I . [g(l,l) fll +W31 . [H(l,l) f1]}= 0 (9.2.6)

The last term within the curly brackets on the left-hand side is the addition to the
usual kinetic equation without self-interaction and expresses the dissipative non-
conservative flow aside from the Liouvillian part of the flow. It is already of the form
of the frictional part of a Fokker-Planck equation for transport and induces compression
of phase-space. The integrals on the left-hand side describes interaction with other
beam particles and includes the "usual" Vlasov average field and correlation effects that
describe shielding or signal suppression through beam feedback and diffusion due to noise
from other particles. Both -these effects tend to decrease the phase-space density and
suppress overall cooling. Both terms together may be interpreted as the divergence of a
‘particle flux'. Note that the partial derivatives under the integrals act on f2
alone -~ the partial derivatives on G and H combine, canceling each other by the
Hamiltonian flow condition (9.2.5).

Similarly, integrating Eq. (9.2.2) over particles (3,...,N) and using the same
cooling dynamics as (9.2.4) and (9.2.5) and the symmetry assumption for D, we obtain:

af2 af2 afz

af
. 3
3t + Jb’l ¢ 3951 + 102 ¢ 3}22 + (N'Z) J(dw3 0,13) [5(1s3) * all + 5(2:3) * alz

af af5
+ . + .3
H(1,3) 0 H(2,3) T,
af af af af
+ 6(1,2) - 31% *+ 6(2,1) - 33? + H(1,2) - Eﬁf + H(2,1) » 3E§

- + 2. 2. + .
+ {311' [Q(l,l) f2] EIE- [5(2,2) f2] + o [U(l,l) fZ] E%E [H(z,z) le}
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where f3 = f3(1,2,3;t) is the three particle distribution. Again the terms within
the curly brackets represent contributions from the dissipative, nonconservative self-
interaction part.

As expected, an infinite hierarchy of relations between the reduced distributions
fn(1,2,...,n;t) is developing. At this pbint some approximation is needed to term-
inate the sequence.

First we disentangle the totally and irreducibly correlated or connected parts of

the distributions by writing the following "cluster decomposition"
f1(15t) = £(15¢)
£,(1,25t) = £(15t) £(2;¢) + ¢(1,2;t)

f3(1,2,3;t) = f(1;t) F(258) £(358) + F(15t) 9(2,3;t)

+ £(2;t) g(3,1;t) + £(3;t) g(1,2;¢)
+n(1,2,3;t) (9.2.8)

etc.

We note the similarity of this decomposition to the decomposition of moments into cumu-
lants given by (9.1.16) in Section 9.1.

To truncate the hierarchy of equations beyond f2, we now assume that correla-
tion effects are small and in particular h(1,2,3;t) = 0 but non-negligible g(1,2;t) #
0, i.e. three-body correlations are small compared to two-body correlations. We also
~assume N ~(N-1) ~ (N-2) for large N. With these assumptions Eqs. (9.2.6) and (9.2.7)
yield

LICHI PN 1 H P Worz §(1,2) -+ 2L £(230)+ JdT 11,2) ——)-f 2;t)
1 1

+ N J dT 6(1,2) - _Sil_g_ﬁl.+ N J-dr H(1,2) - _Sil_f_ﬁl

{ [5(1 1) £(1; t)] [5(1 1) f(1; t)]} (9.2.9)
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where dl“2 = (d;yz dlz) and

29(L,25t) , . 20(L,258) o, 39(1,23t) '

2l Jar3 8(1,3) f(3;1) + v 20(L2E) 'J"”3 &(2,3) £(3:t)
1 2

+

N 912t Jar 5(13)f(3t)+N_9_(1_L2_tl JdI‘ H(2,3) £(3;t)

e -Jor3 6(1,3) g(2.3;t) + 207 -Jdr3 §(2,3) o(3:13t)

b Jdr3 (1,3) g(2.3;t) + ¥ EGEE) -Idr3 B(2,3) 9(3,15t)

+ ﬂ@(l,Z) e GURCR IR S SRED RTINS Rt

. af(2;t) W
iz, - 255 f(l,t)J®

l' -
i COE i (Y - 2all2;t) ot g - MG e - 800 (ii»-z;t) ®

+ .a_ . . + .—a-— . Y. . + __3— . :
OH [ﬁ(l,l) 9(1,2,t)] i, [G(Z,Z) 9(1,2,t)] T [H(l,l) 9(1,2,'6)]

aw IH(Z 2) 9(1,2; t)]ﬂ@

=0 (9.2.10)
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where dF3 = (dgg3 dL3)

Again the cooling or damping of phase—space due to dissipative interaction appears
in the last term within curly brackets on the left-hand side of Eq. (9.2.9). The terms
Jabelled (:) in Eq. (9.2.10) are an addition from the dissipative, nonconservative non-
Liouvillian flow and are of the same order as terms labelled (:).

A1l the terms labelled under (:) and 3 are of the form %%-- (6g) or 2. (Hg).

oY
In general we assume the following hierarchy of strengths of correlations

. %Lfﬂ)”f Tfé ~%T.m1¢)~e<<1.

Then

g~ef - f
and

h ~eg ~elf « f

At this level of approximation then, we drop terms labelled (:) since they are
second order relative to terms labelled (:) which are of the form é%»(gff) ~ eff ~ g.
Terms labelled (:) are of order (eg) and so of same order as h.~ We likewise drop
terms labelled (:) from our analysis. The integrals in Eq. (9.2.10) are of order
(Neg) = N+ h., Since N 1is large, we cannot in general consider them as negligible.
With these approximations Eq. (9.2.10) is formally identical, except for the explicit
form of interaction G(i,j), to the usual kinetic equatons for two-body correlations
obtained in the Lenard-Balescu analysis of plasma physics ([53], [57]). Non-Liouvillian
damping appears only in the last term in Eq. (9.2.9).

In Eq. {9.2.10) the terms labelled (:) are the direct effect of other beam parti-
cles, i.e. the Schottky noise. The last four integrals on the left-hand side of (9.2.10)

describe the suppression of both the coherent cooling rate and Schottky noise ditfusion

99
wy and
~1 a@]

terms describe the effect of mixing or relative phase slippage between par-

through collective correlations introduced by the feedback system. The

. .99

ws 5@5
ticles through the frequency spread in the beam.

In Eq. (9.2.9) the last two integrals on the left-hand side describe Schottky noise

and correlative shielding through feedback effects. The first two integrals on the left-

hand side of (9.2.9) are Vlasov-like expressions which vanish for stochastic cooling
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systems. Amplifier noise may be added with the appearance of the usual noise term in
(9.2.9) and an additional term in (9.2.10) describing shielding of the noise signal
through the beam feedback.

One final comment is in order before proceeding further. For plasmas with long
range forces, the assumption is usually made that the n-particle correlation effects
vanish as the (n—l)Eﬁ power of the ratio of interaction energy to thermal energy.
In the context of stochastic cooling, the corresponding ratio is the strength of the
correction relative to the frequency spread in the beam. Frequency spread is a measure
of the temperature or thermal energy of the beam in a frame where the beam is macrosco-
pically stationary.

We now use the following Fourier series representation of f, g and G in the

periodic angle variables Y (period 2x) as follows:

inpu
f(l;t) = f(ll’wl;t) =E fﬂl(ll;t) e 141 (9.116)
by
i(py°¥q*0,0,)
g(1,2;t) = g(ll,wi;lz,wz;t) =33 %y 1 (ll,lz;t) e 1717272 (9.11b)
Dy B, 1+2
and
i(nqe9+0,08,) i
6(1,2) = G.(Ll.syl;lz,;@z) 3D ﬁnlﬂz(ll,lz) e 1717272 (9.2.11c)
Dy 0,

We are looking for the time-evolution of the angle-independent distribution
fo(g;t). Using the Fourier series representations given by (9.2.11) in Eq. (9.2.9)
and solving for the time evolution of fo(l;t) (setting ny = 0) by harmonic balance, we
find

afo(l;t) + 3 . 3 *
~— %: 6y, _p(4+d) fo(L,t)] =-q %&mu.m (9.2.12)

where Bnlgz(ll,lz) is defined by

*
Ry p,J1rdo) = ¥ E J(d13) By p,1:d3) 90, 20 l3it) (9.2.13)
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Similarly using the Fourier series representation (9.2.11) in Eq. (9.2.10) for the
2-body correlation g(1,2;t) and Laplace transforming in time and assuming that the one-
particle distribution remains a constant during the rapid time-development of g¢(1,2;t)

it is shown in Appendix D that the quantity R

R,.n. appearing in (9.2.12) and defined by

(9.2.13) satisfies the following integral equation:

*
Rﬂzﬂl(lz,ll) = - aN Z d.1.3 5.‘.[[!3’103"131'9)1] §ﬂ2D3(12’l3)

D3
of ,(1,t) % of  (35t)
® ﬁﬂlﬂ3ul‘l3) . -——5-{—]-_ f0(3;t) - 'G.U3ﬂl(l3"11) . T fo(l;t)
af (L3t) of  (35t)
fon Ry dy) - By Uy (9.2.14)

where one has again used phase-averaging to get relations involving fo(I;t)r only.

Here we have used the notation

m 6, (x) = 7 a(x)+ P(;(l-) = Tim

where P denotes the principal value part.

The first two terms on the right hand side of Eq. (9.2.14) contains the contribu-
tions from two-body scattering events due to the pair-interactions induced by the feed-
back system. Of these two terms, the first one represents the direct diffusion of
particle 1, due to noise from or interaction with all the other particles. The second
one represents an ‘induced polarization' effect, i.e. the polarization of all the other
particles 3 in the beam due to particle 1. This ‘'induced polarization' acts back on
particie 1 and causes an 'induced friction' or drag force on particle 1. In the context
ot plasma physics, this term usually determines the ‘stopping power' of a test particle
traversing a plasma, which gets polarized by the test particle and drags it back.
Accordingly this term redistributes itself and modifies the coherent cooling term in

(9.2.12) (the second term on the left-hand side) by polarization factors. We note
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that this term, when substituted in (9.2.12) does indeed have the form of a friction term

as follows:

af
- 'si_l . N DZ dl3 [ﬂ3'w3‘ﬂl Nl] (11913) ".l'} D (13»11) * ‘51_(; ®f0(ll;t)
3

- - gf—l [&(11) foul;t)]

The last two terms in Eq. (9.2.14) include the effect of signal suppression or
shielding due to collective correlations propaéating in the beam. In the plasma physics
context this is known as the dynamic screening effect. These terms distort the tluctua-
tion spectrum of the beam from their uncorrelated Schottky noise spectrum values.

In principle then if one can solve the integral equation (9.2.14) for ann]’

then substitution into Eq. (9.2.12) leads to the general transport equation for the cool-
ing beam, including the collective signal suppression effect, the noise aiffusion effect
and induced polarization feedback from all the other particles.

To get a quick look at the resulting transport equation when the collective signal
suppression and induced polarization effects are small, we ignore the last three terms

in Eq. (9.2.14) and substitute in (9.2.12). The resulting equation is as follows:

af (L;t)
”o—at““="aaf [ZG fut)]

i,
I J o1 sln'w'-nred 6 p0(LID 6 W(L1Y) f(1")
nn

—°ﬁ-— (9.2.15)

This equation thus has the form of a Fokker-Planck equation

of (L;t) 3 13 oo (d.t)
o, -a—L—-[E(l) fo(L;t)] o3 [D“-) S
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where

) =36 (L)) (9.2.16)
% [l,-D

and

~

D(1) = (20) « N - Jdl' [n'ew'-pewl [ﬁ. (L1 ¥ dLI )] f (I
%; > sln'w'-newl 6 o ( Q—D’n.$ old")

~ n 1

(9.2.17)

in agreement with the results (9.1.36) and (9.1.37) derived from Fluctuation theory Note
that (9.2.16) and (9.2.17) are general and valid for overlapping synchrotron bands but
does not include signal suppression.

We now include the effects of correlations and signal suppression by keeping all the
terms on the right-hand side of (9.2.14) and solving it.

The situation is complicated for general vector interactions Qn n which gives
~1~2
rise to tensorial correlation properties. The disentanglement of collective propagation

of R governed by a tensor and given by (9.2.14) and its ultimate inversion in
~1~2

order to be a useful input on the right-hand side of (9.2.12), is extremely difficult in

general. We therefore consider a one dimensional model now where G, . s ascalar
1~2

function describing cooling in any one of the three phase-planes. The important physics
of suppression of both cooling and noise diffusion terms by collective screening effect
is retained. _ .

The quantity Rnn(L’z)’ on the right-hand side of (9.2.12) is given by (9.2.14)

as:

fglod) = - N qu' o, [0 w'-new] € L (1,11)

oo (L) . af (1')
© [o,  (11") —p— F (') - 6 (10 0) —gr— fo(Lit)

of (1) af (1)

+TRDD'(1"1‘I) -—'—al—.—Rn-n(l',l) {9.2.18)
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where I is the general action in three degrees of freedom of the particles while I
is the action in the degree of freedom in which cooling is taking place.

To simplify the problem further, we consider the region of non-overlapping bands,
i.e. we ignore overlapping resonances where g'-g(l‘) = Q'f(!) is satisfied with n F
n'. In this region then two particles can resonate with each other only if their fre-
quencies o'(I') and w(l) are the same i.e. I' ~ I. For such non-overlapping reso-
nances, only the "diagonal" harmonics of thé interaction Gn,-n(l’l.) with n' = n

contribute in (9.2.18). The sum ). thus drops off from the right-hand side. Equation
nl
(9.2.18) then becomes: -

%MLD=—ﬂde'h&%wqu$muJW

afo ) * Bfo(l' )
© G_Q!n(l,li) aI fo(l.) - G-ﬂ’ﬂ(l.’l) _—STT_— fO(L)

of (1) o eI
—o— Rpph ') = =3 R (1°,1) (9.2.19)

We now introduce the following quantities:

Hy(1,1') = Rpp{lo1t) *+ 6 ((1.1%) fo(1") (9.2.20)

and

] [ * ] ' af(ll)
e (1) = 1+ aN J-dl 6+[é'&@ —m)] G—D,n(l »1') 7 (9.2.21)

We will see later that the quantity en(L) so defined determines the signal sup-
pression and plays a role analogous to that of the dielectric permittivity in a plasma.
For cooling of coasting beams, we can assume the separated variable form for the

interaction, as introduced before:
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Gy (1,1") = Kn(l) Pn.(l') (9.2.22a)

With this form for the interaction, we note the following important property:

Gnnl(l’l,l ) Rnun(l| 11,) =

= [Kn(l) Pn.(l')] * N %; J-dl" Gn.ﬂu(l',;") gnnn(l,l")

o * * *
= [Kﬂ(l) Ppi(1 )] . N%“ﬂ Jdl [Kn.(l ) Ppull )] 95 (11"

- [KD.(l') Pn.(y)] ~ {N » Idl“ [Knu) Pn..(y')] gnn..(l,l")f

The gquantity within the curly brackets is just Rnn(l,l). We thus have the
important identity:

*

6y (11 ) R (I00D) = 60 (1010) R (L) (9.2.220)

Using (9.2.20), (9.2.21) and (9.2.22b), we find that (9.2.19) is equivalent to the

following:

* af (1) *
ep(D) Ho(L1) = 6., (1) Fo(D) ~ N —3r— [d1' eyfn-fe'-w)| Hy(L1') 61, (L,1")
(9.2.23)
It is readily seen that an iterative solution for H with the second term on the right

hand side assumed small is consistent with

| y
* 6 p,n{dsd) af (1) ' IG—n,n(l’l )I
Hpth1) = —py— fol) - N —7— Jdl' 5+[ﬂ'(m'-w)] T ol
D €
n
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Substituting (9.2.24) in (9.2.12) and using (9.2.20), we get:

of o (Lst) of (L5t)
X [Fu) fo(l;t)] e, [0(1) ~°—31—}

where:
Gn,_n(LL)
F(L) = T (9.2.25)
‘fn: eptd
and
6.y 11| ?
D(1) = (25) - N} jdl' 6[!1'(&'—«2)]—————-17‘7— (1) (9.2.26)
n °

where cn(l) is given by (9.2.21).
The above results have been derived from an iterative solution and we have assumed
approximate cancellation between different #n of the principal value integral coming

from

" a,,[n-< = )] . é[n'( = )] T YA —
o . [n'(w'—m)]

when the sumnation ), is performed in Eq. (9.2.12). The final solution obtained is how-
ever exact, as is k:%wn in plasma physics. We do not reiterate the rigorous proof here.
Such a proof requires the application of Wiener-Hopf techniques for analytic functions
in different half-planes in the complex plane to match along a common boundary by analy-
tic continuation ([6],[57]).

Note that for cooling a system describable by one degree of freedom only, n, w
and [ become scalar quantities n, « and I and one can then perform the s-function

integration in (9.2.26) explicitly giving:

2
6 (1,I)
D(1) = (21) « N -2 1 !'"’" £ _(I) (9.2.27)
n lnl .d_“’d%lll En(l)z 0

Such is the case for longitudinal cooling, for example, when one does not need to

care about the transverse betatron oscillations of the beam.
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In obtaining (9.2.25), (9.2.26), we have used the definitions (9.2.20) and (9.2.21)
and the property (9.2.22b) based on the separated variable representation of Gnn'
(1,1') given by (9.2.22a). For bunched beams, such a representation as (9.2.22a) is ;;t
possible,linstead we have (4.3.27) (e.g. (4.3.62)) where all the revolution harmonics
couple together. Equation (9.2.22b) is then no longer valid. However, a solution can
be obtained for bunched beams also if we throw away the principal value integral and
retain contributions only from the pole term I' =] (o(I') = w(1)) in (9.2.19). The

6, - function then simply becomes an ordinary é-function. Replacing the definition

(9.2.21) by

) [ ] * 1 t af(ll)
CB(I) =1+ N | dl' s|n ’(Q(l )—w(l))] G,ﬂ,n(l w1') T (9.2.28)

where 6+—function in (9.2.21) is replaced by a s-function, one can verify that

Egs. (9.2.25) and (9.2.26) still remain valid but with this new definition (9.2.28) of

. 1
e (I'). We note that sfn « (u(I')-w(I))] is just §{J'-J) for bunched beam
n [ ] deiJF

l =g

cooling.

For transverse cooling n = {(y,#1) and for longitudinal cooling n = (u,0) and so

we have the following signal suppression factors

(+)
e, 210 = <@, e @

to consider for transverse and longitudinal cooling. The kinetic theory without band-
overlap thus automatically includes the signal suppression effect as manifested in the
suppressed Friction and Diffusion coefficients in (9.2.25) and (9.2.26) and provides the
explicit expression (9.2.28) for the suppression factor in the case of no band-overlap.
This is a new result, not obtained from the Fluctuation theory in Section 9.1 and is an
indication of the power of self-consistency inherent in a kinetic theoretic formulation.
It is mathematically difficult to obtain kinetic theoretic expressions for F(l)
and D(l) for bunched beams in the situation of band-overlap including the suppression
effect. We develop a general theory of signal suppression independently from Vlasov

theory in Ch. 10. In Ch. 11 then we study how the coefficients F(L), D(l) get modified
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due to these suppression effects when there 1is synchrotron band overlap, by using a
slightly modified fluctuation theory,.as discussed in Section 9.1. We will also see that
the general expression for signal suppression for overlapping bands derived in Ch. 10
reduces to the expression (9.2.28) for the special case of no band-overlap. An indepen-
dent derivation of cii)(J) in Appendix E also provides an expression consistent with

(9.2.28).

9.3 Beam Heating (Diffusion) Due to Amplifier Noise

Electronic components in the feedback loop generate intrinsic noise. For stochas-
tic cooling systems, the preamplifier noise gets further amplified by the power amplifier
and the kicker fields always carry these amplified noise components. Usually the noise
can be regarded as a Gaussian thermal random noise, characterized by a temperature (kT).
Such random noise causes diffusion of particles in phase-space and heats up the beam.

Let e(t) be the amplified transverse electric field noise at the kicker. Betatron

motion subject to this noise satisfies

= 4(t) (9.3.1)

According to Section (5.2) the action-noise for the action I = 1/2 A2 of beta-

tron oscillations x = v2I Cos[é#{t-1(t))] is given by:

. V21 ..
e - g sin p(t-1()) d6) = nit) (9.3.2)

Using betatron phase ¢(t) = Qmot + ¢(0) and expanding the periodic s-function

in (9.3.1) and using the identity (4.3.52), we get as in Chapter 5

e(t)

?
(%) (9.3.3)

i(n#Q)w t iww_(a)t  —ine +iuy(0)ip(0
n(t) . 921 H X Ju[niQ)a] e1(n Qo e1u (@) . ine, +iuy(0)+i$(0)
n oy
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Auto-correlation of this action noise is given by

R(x) = (n(t) n(t-)

where <...> denotes average over the noise ensemble. In addition we also have to
average over the phase y(t), #(t) of the particle sampling the noise, in order to ren-

der the autocorrelation stationary. Performing these averages, one gets

2 -i[(nQ)w _*uw ()]t
I 2
R(t) =3—220 7;: %I (};) & [(niQ)a] e °"s <e(t) e(t—r)> (9.3.4)

If PT(Q) is the power spectrum of noise e(t) at the kicker defined by

<00

Pl () = J dr (e(t) e(t—T)> il (9.3.5)

then

-9l }n: % E) Jf[(n*—Q)a] PT[Q+(ntQ)mo+umS(a)] (9.3.6)

According to Section (9.1) on fluctuation theory, the diffusion due to amplifier

noise is thus given by a Diffusion Coefficient Dgoise(l) appearing in the Fokker-

Planck equation (9.1.34) and given by:

2
T =R -9l
noise(l) = R(@) Q=0 a 202 zn: % (;)

D Jf[(nto)a] 4 [(nto)mowws(a)] (9.3.7)

for particles with fixed synchrotron action J = 1/2 a2 diffusing in betatron action

I-space,
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Thus diffusion due to amplifier noise for a particie of amplitude a 1is determined
by the strength of the noise power spectrum at all the synchro-betatron bands Q =
(n*Q)w0 + ums(a) of the diffusing particle multiplied by the square of the corre-
sponding strength of the orbit integrals Ju[(n*Q)a] at those bands.

Similarly if v(t) is the longitudinal voltage noise at the kicker and if PL(Q)

is the power spectrum of v(t) defined by

40

Phia) = I ot (v(t) v(t-1)) e (9.3.8)

-00

then the diffusion in synchrotron phase-space for a particle with action J of synchro-

tron motion, is described by a Diffusion coefficient Dtoise(d) given by

2
(q ] J (na)7?
Dk icel9) = [ f?})]zzu:}n:[u - ] PL[nmo+uws(a)] (9.3.9)
Ys
where
J =-12- 32 .

If collective signal suppression is important, it follows from the kinetic theory

developed in Section (9.2) that the signal suppression factors eu(a) appear in the

denominators of blé%se (I or J) similar to the Schottky noise diffusion terms and

the coefficients are then given by:

o2 T
(1,9) ‘1 > {(n) 3, [imae] ¢ [("tQ)‘z“o"L““’s(a)]} (9.3.10)
Crotse T YV RIS TN
u

and

2
m0> 2 Z[Ju(na)] PL o +uw
OF L () = <q 7 T { nl n Lo S(a)]} (9.3.11)

. J) =
noise [w (J)] Lia) 2

—
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where el(i)(a) and et(a) are given by expressions similar to (9.2.28) and written
explicitly for the transverse and longitudinal cooling in Chs. 10, 13 and Appendix E.
The amplifier noise acts as additional beam particles and gets shielded by the collective
dynamics as experienced by a sampling particle, but does not enter into the ¢(Q) fac-
tors, because noise does not introduce interparticle interactions that are responsible
for collective screening.

Typically the noise e(t) or v(t) is the amplified version of the noise r(t)
from an equivalent resistor before the amplifier stage. If K(t-t') 1is the transfer

function of the amplifier then

+00

e(t) = J. dt* K(t-t*) r{t')

- 0O

so that

e(@) = K(%) r(®) .
and

+o 400
<e(t) e(t—T)> - Jdt' J dt" K(t-t') K(t-t-t") {r(t*) r(t")>

and

m .

PT(Q) = J dt <e(t) e(t-T)> e_1QT
- lK(Q)\Z (@)

where

S@) = I P {rt) r(t-r)) e

Typically for a resistor R one uses

S(Q) = 2kTR

i.e. a flat power spectrum depending on temperature and the resistance corresponding to

white thermal noise. For such noise, we also have the property
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(ri) r (o )> = S(R) s(a) .

We will see later that for transverse cooling with dipole interaction, the noise
diffusion determines the ultimate asymptotic level of squared amplitude or action for

betatron motion.

9.4 The Time-Evolution of Mean Squared Betatron Amplitude for Linear Transverse Dipole
Cooling

For transverse dipole cooling in any one transverse phase-plane of a bunch, we can

write the friction and diffusion coefficients neglecting signal suppressions, as

+00 .

F(1,0) = &) 2 6, 51y, (51 (195 1) (9.4.1)
U
(=)

i [ [l [} ' ] . 1 2
D(1,d) = (2x) = N - (\‘;%:é ) Jdl ' F(1'9') |60 aqy a1y (L1 3,07
(==)
-
G[uwS(J) + u'ws(J' ) (9.4.2)

with u,p' being the synchrotron harmonics and (%1) the only betatron harmonics for
dipole transverse cooling. I and J are the betatron and synchrotron action variables

respectively. From (7.14), we have:

ol L)t oy 4
G(u,&l),(u-’*l)(l,l 5 3, d )’ =W 9 (3,8 )l (9.4.3)
0
vhere
g(*).(J,J') = E E[(m*Q)m +uw_(J' )] d [(th)\/Z—J—'] J .(—m/ﬁ) (9.4.4)
UH o 0 S u "
im(e -ek) .
and we have absorbed the phase factor e P into the gain function G. We

define a mean betatron action <I>{(J) for particles with synchrotron action J as

follows:
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Jdl S (L) = <I>(d) - £y (0) (9.4.5)
Then
N(g
] L] ~(*) ] 2 1
D(1,9) = —%— 4 <I>(J 13,912 £ (3
(1) =281 B T T e vt [0 g
G[ums(-]) + u'mS(J' )] (9.4.6)
and
F(1,9) = a(d) » I
where
a(d) = SATY Zw g(*) L(3,9) (9.4.7)

2(2ﬂ) Q y=-o (%)

Considerable simplification occurs when there is no synchrotron band overlap. We then

get
2 2
qu f (J) N
D(I,d) = (2n) « N+ [—%—] 1 +<I>(J) ) 3 (g, J)‘
[2(2,,)2 o] ORI o
=D(J) + 1 (9.4.8)
where
D(J) = 8(J) - <I>(J) (9.4.9)
and
2 2
quw o f (‘]) ~(
3) = (21) N|—2— 0 (*) (4,9 |2 9.4.10
8(3) = ( L(Zﬂ)z Q] D lgu,-u‘ ) (9.4.10)

The Fokker-Planck transport equation for l1inear dipole transverse cooling without

signal suppression, then reads:

9 9 1 L. ,
o F(L3st) = - =1 [u(J) © 1 f(1,05t) -5 D(J) - I —51—f(1,a,t):| (9.4.11)
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Taking first moment by operating with JFdI 1 on both sides we get:

3 <) = - a()<h>) + 2 (9.4.12)

Noting that D(J) = B(J}<I>(J), we get the equation for the evolution of means
betatron action or mean squared betatron amplitude for particles with synchrotron action

J as follows:

2T;%37‘é%‘<1>(d) - 7;%5--5% <52>u == y(d) = - [}(J) - E%QL] (9.4.13)
M7

and
<D (dst) = <I>(3;0) e (9.4.14)
where
_ _8(J
y(J) =+ [a(J) 5 ]
2 2 2
(q%w,) ~(#) Qw, fo(‘]) ~( %) 2
-+ > T8 (0,0 - () |—2— o [t (J,a>|
2zm? Q (3 % [2(2n)2 RR ] e

A
(9.4.15)

When signal suppression is important we can include this in the cooling rate without

much complication as follows:

- L RN AL W WA O I SO
e 2n) (E: S 2(211)20 lul d )

3

dJ

(9.4.16)

where

(%) L M) s o
() = ( ) 3,0) ¢ {—29 (9.4.17)
T ) T—UI '9 ). <2(2“)2 q
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as derived in Appendix E.

From (9.4.16) and (9.4.17), we can rewrite +y(J) as:

) - 5 Lo :
J 9.4.18)
T - et & T B ’(a)'ﬁ
2 =(#)
_.__?__q %o ¥ 9o ) (9.4.19)
2(2n)° Q (*) w 4% "N (3) iy 2
1 + . I I g_ (J)\])
2(211) u Hs M
where §£i)u(J,J) is given by (9.4.4).
When there is amplifier noise present, we have
no1se(I 9 =1-20)
where
2 {ZJZ (nQ)vZJ] PT[(mQ)e_ + wu (J)}
A3 = 2 AT il ](i)[n o ) (9.4.20)
20° u (%) c‘.; (J)t

as discussed in Section 9.3.

The Fokker-Planck equation becomes:

(hd}) __% ald) o 1 - £(1,,t) - Bg)<bw) 12 f(1,05t)

(9.4.21)
The equation for the first moment becomes:
£ <) = [(a) (J)]<1>(J) « 200)
= () <I>(9) + 2L (9.4.22)
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as must be the case.

Solution of (9.4.22) is given by:

<I>(dt) = [<1>(a,0) - <I.>(J,°°)] eVt 4 15(0,9) (9.4.23)
where
> (%) = 2(3)/2y(J) (9.4.24)
A<I>(J,t)

<>, 0"

A A
EALL LA > o0
2y (J) <I> (), )

>t
XBL 827-7047

Time-Evolution of Mean Squared Betatron Amplitude for Dipole Cooling

Fig. 20

Thus the asymptotic level of the distribution is determined by a combination of
amplifier noise contribution a(J) and cooling rate y(J) 1in the absence of such noise
(Fig. 20).

We can also find an equilibrium distribution feq(I,J) such that afeq/at =0
in the case when the amplifier noise is dominant over the Schottky noise. The Fokker-

Planck then reads:

af(Isi;t) -- & [«(J) - 1 f(1,d5t) - A%QI . %f(u;t{] (9.4.25)

and equilibrium distribution is given by:

feq(139) = exp [_ TO‘%EY] (9.4.26)

where
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1,(9) = ggﬁfy ) (9.4.27)

In this special case it is also possible to find eigen—functions of (9.4.25). We

assume
-8t
f(I,J;t) = f(1,d) e (9.4.28)
Then (11.5.25) becomes:
d A df
&f - aT [}If - ?-I ET] =0. (9.4.29)
We change variables to I = - QE'X and f = he*. Equation (9.4.29) then reduces to

the equation for Laguerre polynomials:

xh" + (1-x)h' + kh = 0 (9.4.30)

8
where k ='T:;7 =n=0,1,2, defines the eigensolutions, given by:
-X-nat
fn = Ln(x) e (9.4.31)
or
2a(J)
I-na(d)t
) _2a(J) x{(J)
fn(I,J,t) = Ln < 0 I) e . (9.4.32)

The general solution is given by
f(1,0;t) = .[dl' G(I,I',J|t) f(1',3;0) (9.4.33)

where G(I,I';J|t) is the Green's function given by
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G(I,I1*; Jlt) = H{x,x'[t)
e X L)L (k) et (9.4.34)
n=0 n
v .—at
exp[—- rxe__ ?-ut ]
l-e xx '

= 7= ! . - (9.4.35)
[1 - t] © lsinh (—2- t)

where I0 is the Bessel function of the second kind with imaginary argument. We

verify the following:

H(x,x'|0) = &(x—x") (9.4.36)
Hix,x'|®) =e™ (9.4.37)

and
IH(x,x'lt) dx' =1 . {9.4.38)

9.5 Fokker-Planck with Coupled Degrees of Freedom

The coupling between the degrees of freedom induced by the feedback loop will pro-
duce particle fluxes in all three directions in the three-dimensional action I-space (or
velocity y—space) and the resulting transport equation for the time-evolution of the
distribution function will involve at third rank "Diffusion Tensor" and a "cooling flux
vector" of dimension three. In particular, the coupling of degrees of freedom will pro-
duce cross-correlations and generate cross-moments 1ike <IX IZ>, <Ix J> ... etc. on top
of the mean squared moments 1ike <Ii'>, <I§> and <J2>, even when such cross-moments
were intially set to zero before cooling started (IX, IZ and J are the action varia-
bles in the horizontal betatron, vertical betatron and longitudinal degrees of freedom
respectively).

Complications arise also in the presence of strong collective signal suppression
effects. In presence of coupling between various degrees of freedom, the collective
response of the beam to the modulations induced by the kicker is again described by a
dielectric tensor of rank three in general and various components of the diffusion tensor

will be modified by various combinations of the components of the inverse dielectric
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tensor. We will discuss signal suppression for coupled degrees of freedom for coasting
beams in Chapter 12. In this section we write the relevant damping and diffusion coef -
ficients ignoring signal suppression..

In general, for a particle experiencing fluctuating fields (kicker voltage or elec-
tric field) in all three dimensions, we have the basic Fokker-Planck equation for the
time-evolution of the one-particle distribution function f(Ist) valid up to two-body

correlations given by Eq. (9.1.34) with transport coefficients given in terms of general

interaction harmonics as

FU(D) = X6 (1,1) (9.5.1)
n k4

t ' o ) 8* '
OgqlLsf) = (20) - N § 2 Jql f(1') [Gnn.(l,l ) 8 (L1 )]
s[n cw(l)+n' - w(l' )] (9.5.2)

as follows from (9.1.36) and (9.1.37).
With the separated variable representation given by Eq. (4.3.28) for the gain func-

tion Gai j(li’lj) for coasting beams, one can write the general elements of the
nn
Di ffusion tensor and the Friction vector given by (9.5.1) and (9.5.2) as follows:

aB ol B* ' ' a ' B* ]
L) = (20)n 2T [KHQ) Kn.(g)] Jdl £(1) [Pn.(L) P.(1 )]

©® 6[{1' w(l) +n' - w(l' )] (9.5.3)
and

FAD) = 2 K3+ P (1) (9.5.4)

with «,8 = x,z,8, for coupled degrees of freedom in coasting beam cooling. For bunched

beams, there will be additional sums over the revolution harmonics according to (4.3.27).
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10. VLASOV THEORY OF SIGNAL SUPPRESSION

10.1 General Coupled-Mode Matrix for Signal Suppression of Bunched Beams

We have already obtained an expression for collective signal suppression of bunched
beams in the special case when there are no overlapping resonances {no band overlap),
while deriving the Fokker-Planck equation for the time-evolution of single particle dis-
- tribution from kinetic theory in Section 9.2. While kinetic theory up to two-body cor-
relations provides the most satisfactory se]f—consistent derivation of single particle
transport in phase-space including collective distortion (suppression) of fluctuations,
such a derivation is Unavoidab]y complicated for general situations where there is band
overlap or coupling between degrees of freedom or unusual unperturbed particle orbits.
A tour de force solution can be obtained only in very special.cases (e.g. homogenous
plasma etc.) and requires considerable amount of mathematical gymnastics and physical
insight into the structure of collective dynamics.

Fortunately there exists a considerably simpler approach 1leading to identical
results up to the order of two-body correlations, when there are two disparate time-
scales, as discussed in Section 9.1 under fluctuation theory. More specitfically this
approach is applicable when the collective distortion of the fluctuation spectrum seen
by a single particle occurs in a time much shorter than the slow relaxation time of the
distribution of particles leading to transport in phase-space. Such is the case for
stochastic cooling as observed experimentally in practical schemes to date. Novel cool-
ing schemes involving cooling times comparable to the time-scale of collective distortion
of signals, if feasible, will require special considerations, not studied in this report.

OQur approach in this simpler model is that we calculate the transport coefficients
(friction and diffusion coefficients) from the simple prescriptions of Egs. (9.1.33)-
(9.1.37). However, we incorporate the collective effects by asserting that the spectral
function and the coherent cooling force, in presence of collective dynamics, are screened
or shieldea from their incoherent values determined by an appropriate operator E(Q) in
frequency space, to be derived independently using collective dynamics only. The modi-
fications in the transport coefficients stem from the total collectively distorted signal
y(2) at the kicker sampled by a test particle and related to the incoherent signal

\.0(

y () at the kicker by the relation

o) y@) =9 (10.1.1)
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and

v = [f@]™ Y@ (10.1.2)

where () describes the dielectric response operator of the beam when excited with
frequency  and is to be evaluated from Vliasov theory of dielectric response in a
charged particle system. The resulting modifications in the transport coefficients are
disEussed in Ch. 11, The picture is similar to the familiar test-particle approach in
plasma physics where transport coefficients are calculated by assuming that the diffusing
or damping particle samples a fluctuation signal which is already dynamically screened
by €(Q) in the time-scale in which the particle has not changed its phase-space coor-
dinate signficantly and then performing appropriate ensemble avérages over such screened
signals.

The proper framework for evaluating e(R) 1is the well-known Vlasov equation for
the single particle distribution function in phase-space. One assumes the existence of
a zero-order stationary (time-independent) distribution function for the beam. One then
studies how a small perturbation in phase-space on top of this stationary distribution
propagates in time. More specifically one studies how a perturbation f(I',p';t') cen-
tered around T' = (I',y') in phase-space at time t' propagate collectively to the
neighbourhood of the phase point T = (I,y) at time t, where (I,y) are the canonical
action-angle variables for single degree of freedom longitudinal synchrotron oscillations

for example (Fig. 21 below).

Propagator
DUyl ¢y /t-t)

XBL 827-7065

Propagation of Perturbations in Bunch Phase-Space

Fig. 21
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For small perturbations we expect the dynamics to be linear and describable by a

propagator D(I,y;I',u'|t-t') so that

f(Ly;t) = J-dw'dl'dt' DL ws T, 0t [t-t*) « £(I,u'5t*) + fO(Lpst)  (10.1.3)

where fO is an arbitrary excitation at (I,y) at time t. Fourier series expanding

in the angle variable ¢ and Fourier transforming in time, we get

ML) =) Idl' B (1,10 o) T (1430) + FO(1;9) (10.1.4)
u|

This is the form of the basic integral equation for propagation of perturbations in
phase-space. One needs to find 5"“'(I,I'|Q) from Vlasov theory and then solve the
integral equation with 5““f thus obtained.

An essential complication arises however for bunched beams due to the fact that the
response Green's function or propagator D(I,y;I',y'|t,t') -is not invariant under
translations in time and hence is not a function of (t-t') alone, but in addition
depends on one of the time-arguments t or t'., This is a manifestation of the non-
stationarity of bunched beam collective response. We note however that the response
function O(I,y;I',0'|t,t') as appearing in an integral equation written in bunch frame,
can only be periodically nonstationary, i.e. it will depend on the second time argument
t' periodically, corresponding to experiencing interactions at every revolution period

through the feedback loop. We may thus write

o ke t!
D(Lw; I'yu't,t') = D(LusI',w'[t-t',t') = 30 D (LysI'ypt]t) e °
k

2= —00

(10.1.5)

where T = (t-t').
The basic integral equation (10.1.4) for bunched beam collective response then

transforms into:
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10 = O Ejdl' BE (1,1 o) £ (1 ska ) + FON(I50) (10.1.6)
"

N

We thus see that the periodic nonstationarity of the bunched beam response relates
any angular harmonic fY(I;R) of perturbation at frequency § to all its discrete
frequency translates ?"I(I';Q+kmo) through the response kernel 5?”'(I,I'|Q) as
in Eq. (10.1.6).

We have already obtained some insight into the structure of 5i”' in
Section 4.6. We derive the specific form of BE“' from Vlasov theory now.

In absence of cooling, the local beam density at the pick-up at azimuth ep is

given by
Nt
po(e it) =q 2 6[6 -e?(t) -Znn]
P i=l n=<w LP
0 .
+©° 5¥(t) ine
- n p .
= nz;» o e (10.1.7)
where
0
N -ine;(t)
pd(t) =a Loe : (10.1.8)
i=1
and

e?(t) = unperturbed orbit of it particie.

Adding the cooling loop introduces correlations between particles and modifies the
particle orbits. The density tluctuation at the pick-up will thus have modified Fourier

amplitudes

where An(t) is the coherent first order modulation of density fluctuation at the
pick-up due to the introduction of the cooling loop. Fourier transforming to the fre-

quency domain, we get

5,(0) = ;2(9) + 3 (@) . (10.1.9)
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Note that the above relation 1is in the laboratory frame, fixed at the pick-up.
xn(Q) defined in the laboratory frame is related to KE(Q)v derived from Vlasov
equation in the beam frame (frame moving with a central reference particle in the bunch

with revolution frequency wo) by the following transformation to Doppler-shifted

frequency

xo(2) = B(e-nu ) (10.1.10)

Viasov equation for a distribution f(a,p;t) in terms of the amplitude and phase

variables (a,¥) introduced in Chapter 3 reads ([65], [86], [87], [89])

af (a,yst) , 7 af(a,pst) | - af{a,y;t)
i + = +a - =0 (10.1.11)

Decomposing the distribution into a stationary part and a small perturbation as

f = fo(a) + fl(a,w;t) and Tlinearizing Eq. (10.1.11) in fy»  assuming dfoldt =

0, one gets

af (a,u5t) af (a,u3t) | 40
3T + ws(a) ———aw—— ta o = 0. (10.1.12)
From Section 6.2, the amplitude equation is given by

5 =499 gt cos u(t) (10.1.13)

- o (a e

where
- K
Jt) = wy Z V(t) 6[e(t)—ek-2nn] (10.1.14)
N=—oco

where &(t) is the voltage sampled by the particle as a function of time as it passes
through the kicker (with voltage VK(t)) periodically. Fourier expanding the periodic

s-function and using the identity (7.1), one obtains

-1 ing t .
a ==} < J(na)e mek[VK(t) em O] efvult) (10.1.15)
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Substituting (10.1.15) into (10.1.12) and Fourier expanding in the angle v, one

obtains
aft(a,t) (q f_ ) —ine, inw t 0
et Ha,t) + 0 s (n) k [K o ] o _
= fuug (a) f¥(a,t) o) '%(na 3, (na) e ® |vK(t) e 0
(10.1.16)

Fourier transforming in time in Eq. (10.1.16) yields:

u

T (a)] (a;0) = - (q ts K) [dfo] *o -ing, K
[ wog 1 _—rws(a Ty nz—:w (ﬁ%) J (na) e OV +nu,)

(10.1.17)

Voltage at the kicker is given by
+00 .
t) = J’ dt' G(t-t') I(ep;t’) (10.1.18)

where I(ep;t') is the total current at the pick-up at time t' and G(t-t') 1is the
linear and causal transfer function of the feedback loop. Fourier transformed in fre-

quency (10.1.18) reads

() = &) T(e,;0) (10.1.19)

Substitution in (10.1.17) then yields

G(Q+nw0) I(ep;Q+nm0)

] (@1, ] ,0] 2. (@) S0 €
¥ (a50) = (i) ~—2’5— L 1

W
S

(10.1.20)

We now write the distribution as



fi(a,u5t) = o(@,Dst) = g(e-wot; 0-ug; t) = ¥(o,6;t)

Then the beam current at (e,t) is given by
I(est) = qu, Jdé ¥(e,65t) + I (o,1)
Fourijer decohposition in e yields
va(t) = E:T" deedé ¥(e,65t) 7'M + Ln(t)

Using the invariance of the volume element
s 1.2
dedé = dd() = g ol a°) v
. y 1.2 :
for the transformation ((:),(:)Ims) > (J = 7 a ,¥), we obtain

Qu, -imw t

om

+co
Im(t) = ——u, J.d(az) 2: ff(a;t) Ju(ma) e 0 4+ (t)

p=—c0

so that for x(ep;t) I(ep;t) - Io(ep;t) we find:

ime o

Mw
Megit) =Tag(th e P =2 Id(a2)>m:§f‘l'(a;t) 3 (ma)ye °

and

- qu ~
x(ep;Q) = —72 ug J.d(az)E:z:Ju(ma) e P ff(a,Q—mmo)

198

(10.1.21)
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We now split the total current f(ep; Q+nm0) appearing in Eq. (10.1.20),
according to (10.1.9), as

T(Qp; 9+nm0) = To(ép; Q+nmo) + ;(ép; Q+nm0) (10.1.22)

where f;(ep;ﬂ) is the sum of single particle unperturbed Schottky currents and \
corresponds to the coherent modulation of the current due to feedback, as given by
(10.1.21).

Substituting (10.1.21) into (10.1.20) and using (10.1.22) and absorbing the factor

(qmo)2 k/2n into the gain function by a redefinition

~ (qmo)2 ~

we find
Fi‘(a;a) =§ 2;:‘ Jd.]' ﬁﬁ“'(a,a' I2) f”i"(J'; Q+kw0) + F94(0,9)
where
in(e_-6,)
R p k
" [0 §(%) 3,(0WZ3) 3, L(n-K)/237] B(snay) e ik,
Dy (4,9' Q) = ~i [TKT e
[Q_"“’s(‘])]
(10.1.23)

We have thus obtained the specific form of the kernal ﬁE“IOLJ'IQ) given by
(10.1.23) above that appears in the integral Eq. (10.1.6) for bunched beam collective
response.

The above describes the collective response in the frame of the bunch. We can
obtain a corresponding equation relating various freguency components (and their
translates) of the current at the pick-up or the voltage at kicker by substituting

(10.1.20) in (10.2.21) and using {10.1.22) again. One obtains

V() = vﬁ(sz) + kzz@ D, (2) V(24 ku,) (10.1.24)

where
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VK(Q) = 6(®) I(e_,9) = Total voltage at
P kicker at frequency 9.

Vg(ﬂ) = G(ﬂ)'lo(e ,9) = Voltage at kicker
P due to unperturbed
Schottky signals only
at freguency §.

0 +00 o0
D, () =J da [%fa—] x| A (25a) B(a) (10.1.25)

u=—00 N=e00

9, (na) o ok  (10.1.26)

B:(a) *"n

ime
(<) ud (m)e P _
AL(a) = . G(2) (10.1.27)
[9'"""0'"“’5(6)]
If we define a "translation operator fk" by
=k
T VK(Q) = VK(Q-+km0) (10.1.28)
and a kernel operator by

. ) - )

D(a) = k=2;m D (2) T (10.1.29)

then we can rewrite Eq. (10.1.24) as

[1 -}E, D, () ?k] v (@) = VE(Q)

[1 - 6(9)] v (2) = V() (10.1.30)

Sa) - V() = vg(n) (10.1.31)
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Equation (10.1.30) has unique solution if the operator
~ A i /\k
e() = [1 - D(R)] = [1 -an(ﬂ) T] (10.1.32)
k

has an inverse, i.e. if 'l1' does not belong to the spectrum of ﬁ(ﬂ) [1¢ o(ﬁ)]. Then
formally, the collective distortion of current or voltage spectrum from the unperturbed

Schottky value is given by

N

-1
(@ = [c@] v (10.1.33)

Collective signal suppression efftects are obtained by an effective inversion of the
operator e(9) = 1 - 5(9). We will see below that in a matrix representation of &(®),
this amounts to inverting an infinite matrix, a nontrivial task in general.

We have outlined some of the interesting properties of the various quantities enter-
ing into the coupled mode response Eq. (10.1.24) in Appendix F.

tet us now turn to a matrix representation of e(%). We define vectors in an

infinite-dimensional space by

Y = {vlf(sz)}: Vi@ = TP v = v(Rvne) (2= 0,51,02,.0)

From (10.1.24), we then obtain

2 0,2 )
V(@) = v (e) +>_ET D, (2) VK(Q+kwo)

(]
-

2'2(9) +§k: D, (sz+xzwo) VK(Q+(J?+k)wO)

Regefining indices as m = ¢ + k gives
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@) = W Me) + 0, (2 +te,) VI@)
K K m m=-2 o/ K
= vg'i(n) +§%M2m(9) v(2) (10.1.34)

We then find that we have an equivalent matrix representation of the operator

Eq. (10.1.31) in the following form:

€(2) - Y () = ¥(0) (10.1.35)

where

m>=g-1m) (10.1.36)

is an infinite matrix with elements

ean(®) = 84 - My (R) (10.1.37)
and
Mlm(g) = Dm—l(Q+-Q”o)
o0 . ‘i(n—m*‘k)ep .
=f i I:_df_O]E(‘j‘i) (=) u Ju[(n-mHL)a] e §(Q+5Lwo) Ju(na) o e—mek
da n [Q- (n-m)w, -uws(a)] n
—) _ (10.1.38)

The infinite matrix e(Q) represents a generalized dielectric function or signal

]

suppression and 2(9) represents a generalized susceptibility of the bunch in presence
of collective interactions determined by the feedback loop. When we are interested in
the instability or stability of collective modes induced by the feedback system we set
the right-hand side of (10.1.35) to zero (VE(Q)=U) and the real frequencies w =~ and
the corresponding growth or decay rates n of the collective modes are determined by
the complex (in general) frequencies § = w, + iyn satisfying the dispersion

relation
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det[é}ﬁ)] =0 (10.1.39)

One thus solves for the roots of the infinite order determinantal equation (10.1.39).
For collective modes having frequencies close to the harmonics of the natural oscillation
frequencies of the pértic]es in the beam (i.e. when the system is close to a resonance),
one can usually truncate the matrix safely beyond a certain low but finite order (3x3,
5x5, etc.) and roots of such a low order determinant then gives the collective mode fre-
quencies fairly accurately. The corresponding eignefunctions give the mode pattern in
phase-space ([87], [88], [89], [90]).

When excited by a finite Vg(Q) at a frequency O away from the resonances or
collective mode frequencies of the system, the general effect is a distortion of the
perturbation spectrum VK(Q) away from Vg(Q) as determined by (10.1.35) through
(10.1.38) and given by:

%@ = [c@] K@ = [c@] det[<c(a]]

where [259)]C is the co-factor matrix of ¢(2). Note that since we are off-
resonance, i.e. away from collective instabilities, the determinant is not zero but has
a finite non-zero value, measuring the suppression of signals, aside from the complica-
tion of mode-coupling expressed by the matrix [%ﬁﬂ)]c. This 1is the case for stochas-
tic cooling, since we certainly do not want to excite collective modes in the beam by
the teedback loop. We thus have to effectively invert the infinite dielectric matrix
259) rather than finding approximate eigenvalues and eigenfunctions of §$Q). It is
this tormer task that makes a solution of bunched beam collective response uniquely
dgifficult and interesting.

Equations (10.1.35) through (10.1.38) defines the basic cohp]ed mode matrix for the
collective response of a bunched beam. Note the structural similarity between these
equations and Eq. (4.6.22) obtained in Chapter 4 from a general discussion of bunched
beam collective dynamics.

A similar analysis can be perfomed for transverse collective effects leading to
structurally similar results with slightly different matrix elements Mwn' Rather
than reiterate the procedure from Vlasov theory, we provide an alternative derivation of

the coupled mode matrix for transverse perturbations based on an integral equation

satisfied by certain "collective coordinates" in Appendix E.
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One may look at Eq. (10.1.35) as a matrix relation for e—l(Q) itself or as an

-

integral equation for 5_1 in the time-domain as follows.

By definition, we have

2 g (@) e”,}l.m(sz) =&, (10.1.40)
ml

From (10.1.37), it follows

> [%m"M!Lm'(Q)] eal®) = 8y,

m

or

Tan®) = 8y * T Mg (@) gl (9) (10.1.41)

This integral relation for eE%(Q) in the discrete (%,m) space can be trans-

formed to an equivalent integral equation for a suitably defined e—l(t,t';Q) in

(t,t*) space by defining the transforms (Bloch Representation):

a1 (+°) i t -imw t’ -1
e (t,t';0) =3 Y e e ‘:sz(Q)
£ m
(=)
(10.1.42)
M(t,t'; Q) = 3 eimot e_immot' M ()
o & am
()
where (t,t') are confined to within a periodic primitive cell in time: -T0/2<

(t,t') < *T,/2 with origin at the center as in Fig. 22 below. (T0 = 2ﬂ/w0). Using
(10.1.42), we can rewrite (10.1.41) as:

itw (t-t') itw t-i t!
s a=Fe O ANET e 00w @) el (q)
2 mm

, m'm

(10.1.43)



205

e

lit, t')
il

| |

cesvosese -3 T0 -2 T0 -T

L

o 3Tgeeerecensnas

!
|

0 27

0 \ i
(-Tgl2)  (+Ty/2)
[
Primitive
cell in
‘time’

XBL 827-7050

Time Cells for a Bloch Representation of Inverse Response Kernel

Fig. 22

Using the identity
T /2

) .
i (m'-m")w_t"
&y = .] dt" e 0
m'm To
-T0/2

we can write (10.1.43) as:

TO/Z

o (t-t')  fw
et 0 -Fe of + (53) dt' M(t, 'y 9) e l(t,t'; Q)

2
-Tol2 (10.1.44)

with —T0/2 < (t,t') < T012. Equation (10.1.44) is the integral equation in the time-
domain satisfied by the inverse collective response kernel e'l(t,t';s».

From this viewpoint, the coupling to frequencies translated by Mo where m =
x],+2,%3,,.. in (10.1.24) corresponds to rapid fluctuations within a cell in time and
gives the actual field Tlocally in time whereas the m =0 process gives the non-

interfering coarse field over many turns of the bunch, The two types of processes

(m=0andm+ 0) can be pictorially represented as in Fig. 23(a) and (b) below.
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m=20 m#£0
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(a) : (b)
Non-Interfering and Interfering Schottky Signal Screening

Fig. 23

We do not have a complete solution to the inversion problem (i.e. finding gfl(Q)
in closed form). However solutions under special cases of no synchrotron band overlap
and for particular distributions (e.g. water-bag distribution) can be obtained and are
discussed in Section 10.2 and 10.3 below. Solution to the infinite determinant problem
for collective instabilities has been obtained under various approximations in the past

([41, (601, [65], (801, [871, [88], [89], [90], [108], [109], [113]).

10.2 Solution in the Dominant Pole Approximation Neglecting Revolution and Synchrotron
Band Overlap

We are interested in evaluating the signal suppression at a certain frequency, say
Q@ In general several revolution and synchrotron harmonics for particles with different
amplitudes will correspond to the same @, i.e. the resonant denominator in
Eq. (10.1.38) will contain resonances 1ike

Qmo"' uws(a) =Q=pwo+ vo_(a') (10.2.1)

S

with p#£%, «v+u and a' 4 a i.e. different revolution and synchrotron bands for

the distribution of particles will overlap. However, as discussed in Chapter 5, for
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bunched beams the & ¢ p resonances do not occur until very high revolution harmonics.
Let us assume then that the different revolution bands do not overlap within the band-
pass of the feedback system., This amounts to saying that given a freqguency £, we can

always associate with it a certain revolution harmonic, k, say i.e.

Q=kwo*§2'

As we sum over n in the matrix element Mlm(k“o+9') given by (10.1.38), we

only pick out the resonant denominator that corresponds to

(n—m) wy = kmo

n=k+m

Wwe are thus only considering resonances (10.2.1) with & =p. The matrix element
(10.1.38) does not involve a sum over n in this case and becomes:

(k*2)e

©

i
# (i) u J [{ktr)a] e
Mm(kwom') =J da [Eg] r u

0 p=—o [Q' - uws(a)]

p

E(sz' + (k+2)wo)

Ju[(k+m)a] —1'(k+m)ek
LR (10.2.2)

The resonant denominator in (10.2.2) still contain resonances 1like

uw_{a) = Q' = vo_(a') (10.2.3)

with u+#v and a+ a'. Contributions from these resonances are nonnegligible since
in a large band-width feedback system, there is considerable amount of synch}otron—band
overlap as discussed in Chapter 5. Thus one really has to sum over the synchrotron har-
monics w in (10.2.2) for a large number of resonant yu's in order to get an e(Q)
that includes synchrotron band overlap. Since synchrotron band overlap is an intrinsi-

cally nonlocal phenomenon in amplitude space (different a and a' will contribute to
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the same frequency with different synchrotron harmonics y and v, see Eq. (10.2.3)),

we expect an integral equation in amplitude or action space (a or J) for some properly

defined collective signal X(alﬂ) for certain amplitude a at a given frequency Q,

of the following form:

X(a|®) =J’ ds' K(a,a'|9) X{a'|Q) + Xo(a|§z) (10.2.4)
0

where K(a,a'|Q) is an appropriate kernel,
The above complication arises when the frequency Q' falls in the synchrotron band-
overlap region of a given revolution harmonic band (kmo) e.g. at line marked (2) in

Fig. 24 below. We do not yet have a solution to the integral equation (10.2.4) for the

region of synchrotron band overlap.

T, ) : -
(k -1} |k(9')

|
*
Q7= pwla) = pula) =..

(k - ey kwp

XBL 827-7076

Collective Response Frequencies Inside and Qutside the Region of Synchrotron Band Overlap

Fig. 24

For frequencies ' falling in the non-overlap region of a given revolution band

'kwo' e.g. line marked (1) in Fig. 24 above, we need only consider resonances
(10.2.3) with uw =v only. In this section, then, we derive an approximate expression

for the signal suppression by keeping only a dominant pole in expression (10.2.2) corre-

sponding to the non-overlapping resonance
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ums(a) = Q' = vws(a')

with w =v only. In expression (10.1.38) this corresponds to keeping only the non-

overlapping revolution and synchrotron resonances

kwo + vms(a) =0 = (n-m) wy + uws(a')

with k = (n-m) and v = y. The sum over y then drops out of the expression for

Mo m 0 (10.2.2) and we write the resonant integral as

JLim* jdxf%%: PVJ'Q—(XLl dx ¥ ianx g(x) s(x)
>0

where 'PV' stands for the principal value integral. To simplify further, we neglect
the principal value term and keep only the dominant &-function pole term., With these
approximations of non-overlapping revolution and synchrotron bands and dominant pole
contribution only (no principal value integral contribution), the matrix element
Mlm(Q = kmo + vws(a)) corresponding to signal suppression at Q = Qk’v(a) = kmo +

vms(a) for particles with synchrotron amplitude in the neighbourhood of a in the

(k,v)Eﬁ revolution-synchrotron band, reduces to

0
Mlm[ﬁk’“(a)] = - ana' é(v[ws(a)'ws(a')]>[%27] TV

i(k+2)e  _ K J [(k+m)a"']} —i(k+m)9k
o fiemar] & Bl e | o S o

(10.2.4)

Jv[(k+m)a] —i(k+m)9p
T k*m) € }
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which is thus decoupled into factors depending on & and m separately and we write:

N

Mm[ﬂk’“(a)] =- Pkov(a) - erl(]’“(a) (10.2.5)

where

K i i(k+%e_ _
Pl’v(a) = Jv[(kﬂb)a] e p G[(k+9')wo +vms(a)]

and (10.2.6)

Koo J [(km)a] -i(k*m)e
O (@) = —Far—© P

From (10.1.34), we then get

0
df
UK 0,21 k,v 1 [ a k, Kyv Kyv
v [Q V(a)] =V [Q (a] + -2-_0‘”—5(5)_ PR, v(a)[zn:om (a) Vm(Q (a))

da (10.2.7)
Multiplying (10.2.7) by Q;’“(a) and summing over %, we get
k,v
X2 V(2)]
x[szk’“ ] -0 10.2.8
(a) -gigfjgz;ST- ( )
where
J [(k*2)a] -i(k+R)e
X[Qk’“(a)] =§Q§’v(a) Vg[ﬂk"’(a)] -Z k V[(k+2)m0+vws(a)]

J_[(k+2)a]l -i(k+2)e
XOI:Qk;\)(a)] =§%Q§’\)(a) VO,Q[Qk,\’(a)] =§_v—(ﬁ—§,—)_ e k VO[(k+£)“’0+"“’s(a)]
(10.2.9)

and
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1+ g -

E[Qk,\)(a)] _ du - %Q:”U(a) P:;"\’(a)
S .

(10.2.10)

0
—d;] 2Lik+na) i(kes)(o,8,) -

B L
da

]

We thus see that the total signal X[Qk’“(a)] (incoherent signal plus collective
modulation), the incoherent signal XO[Qk’“(a)] and the signal suppression factor
e[nk’“(a)] at Q= keg * vws(a) are all independent of k and depend only on v
and a. Hence the signals and their suppression at the vEﬁ synchrotron band for
particles with amplitude a are all the same at all revolution harmonics. Defining a

normalized distribution
0 1.0
fN(a) =5 - (a)

so that

-[ fﬂ(a) da =-%.[ fO(a) da=1
0 0

where N is the total number of particles in the beam, we can thus express local signal

suppression effect by the equation

X" (a)
xM(a) = (10.2.11)
e”(a)
where
" J (na) ~ine, ]
X (a) —% n e V[nmo+ uws(a)
(10.2.12)
J (na) -ine
XS(a) %: ”n e K Vo[nw + uw (a)]
and
0
df ]
N 2 .
J>(na} ( )
Ma) = 1+ aN =B g 50 :a G[nmo +ums(a)] oe P K (10.2.13)
S n
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Note that this expression is in complete agreement with Eq. (9.2.28) obtained from
kinetic theory when we use J = 1/2 a2 and ms(a) for g(L) and u for n.

We also note that the proper definition of a signal, as given by (10.2.12), which
allows the total signal (coherent + 1ncoherent) to be expressed simply as a suppressed
or dynamically screened incoherent signal (Eq. 10.2.11), is compatible with the 'sampled
amplitude signal' defined in Eqs. (10.1.13) through (10.1.15).

For hard-edge dfstributions, the' 'steepness parameter’ [dfg(a)/da]. is large
at the edge leading to a correspondfng]y large signal suppression ¢"(a), if we have
finite mixing in phase-space, i.e. Idws(a)/dal +# 0. Hence signals from particles at
the edge of the distribution in amplitude, get screened by a lafge factor. For an infi-
nitely steep slope at the edge, no signals can be obtained from the edge particles, which
will thus be harder to cool.

The same is true if the synchotron oscillations do not have any frequency spread,
i.e. dws(a)/da = 0. Particles do not slip away from each other in phase-space but
stay together for arbitrarily large number of synchrotron oscillation. There is no
mixing in phase-space, and signals get totally suppressed by collective feedback
(e¥(a) » @). Thus no effective signal could be derived from the bunch beyond the
coherent damping time (Gcoh)_l and hence no cooling could be achieved. Such strong
suppression of Schottky signals for bunches with very small synchrotron frequency spread
have been observed experimentally at CERN [41].

However, for moderate slope or steepness [dfg/da] and moderate wmixing
Idws(a)/da] in the bulk of phase-space, ¢"(a) may remain a modest number and
cooling, no matter how slow, is possible even for relatively small synchrotron frequency
spread. The interplay between the effects of kinematic mixing and phase-space distribu-
tion is thus contained in the factor [dfg/da]/ldms(a)/dal in e¥(a).

The effect of the transit time between the pick-up and the kicker is contained in

in(e_-8,) -in(6 -6, ) -
the factor e and get cancelled by the factor e Pk implicit in G.

The sum g [Qﬁ(na)/rﬂé[nwo+uws(a)] converges and we get a finite limiting value for
the sum even for constant gain system (5 = constant), due to the factor n in the
denominator.

We also see that the summation in (10.2.13) involves both positive and negative n

in(e _-6,) .
and hence ¢"(a) contains real and imaginary parts of {e p ok G[nmo+uws(a)] .
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Finally the expressions derived in this section are valid locally at amplitude in
the neighbourhood of a and synchrotron harmonic u and so are ideally applicable in a
Fokker-Planck description for no band-overlap situations, where the relevant transport
equation is a partial differential equation describing cooling and diffusion locally at

amplitude a.

10.3 Solution for the Water-Bag Distribution Including Principal Value Integral but
Neglecting Band QOverlap

We now consider a special case where an expression for signal suppression in the
approximation of no revolution and synchrotron band overlap can be obtained without
neglecting the principal value integral, as was done in Section 10.2.

We consider a very special distribution for the particles in the bunch, namely the
water-bag distribution where phase-space density is uniform and a constant up to a cer-
tain ammplitude a = a, beyond which the density is strictly zero (no particles beyond
a certain amplitude a). Such a distribution, normalized to the total number N of par-

ticles, may be written as

0 N o101 ‘
toa) = -Te (E - K) (10.3.1)
and
0
df (a) __N (1 _1
Ia -Aazs 32 (10.3.2)

where eo(x) 1is the heavy-side step function. (See Fig. 25 below.)

The slope of fo(a) is zero everywhere except at a =4 where it is a

s§-function. The a-integration in (10.2.2) can then be performed exactly with contribu-

tion coming from a =a only. We get:

(1) 9 [k+2)a] ilk+Ye .

Mm[kmo‘*vws(a)] =%W e P G[(k"l)mo"'vws(a)]

(10.3.2)

Jv[(k+m)A] —‘i(k+m)9k
TTkEmg ©
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water-Bag Distribution in Amplitude for a Bunch

Fig. 25

Analogous to Section 10.2, one then obtains signal suppression in the form

XV
xV(a) =__°_(_1
)]
where
v ‘]v("A) —inek
X7(a) = % —e V[nw0+vws(a)]
(10.3.3)
J (na) -ine
X;(a) =y "n e K Vo[nmo+vws(a)]
n .
and
2 .
. J3%(na) _ *in(e_-o, )
v __ N (i) v [ ] p Tk
€ =1+= Glnw_ +ve_(a)} ® (10.3.4)
t2) * [u(a) - (a)] ‘\n: n Mo TYes 1] B E

Again one notes that the signal suppression is singular at the edge a =a.
Particles at the edge in a water bag distribution will have their incoherent Schottky
signal totally suppressed by the feedback system and no signal can be obtained from them
beyond the coherent damping time (ecoh)'l. The same 1is true if there is no spread

in synchrotron frequencies so that ms(a) = wS(A) = “’s(o)'
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11. COLLECTIVELY SCREENED SPECTRAL FUNCTION AND TRANSPORT COEFFICIENTS IN PRESENCE OF
SIGNAL SUPPRESSION

The spectral function E(Q) of the sampled signal, calculated in Chapter 8 from
uncorrelated particie motion, gets collectively distorted or screened by the feedback
loop induced modulations. This in turn modifies the transport coeficients in the time-
evolution equation, since such coefficients are determined by the spectral functions as
seen in 9.1, We have obtained the transport equation in absence of such screening in 9.1
and the suppression of the total collective signals separately in Chapter 10. In this
chapter we study the modifications of the Friction and Diftusion coefficients arising
from collectively screened Schottky signals. Note that in Section 9.2 we have already
obtained a time-evolution equation including such signal suppression effects from kinetic
theory. However, the derivation was limited to non-overlapping synchrotron bands only.
We derive formulas for the modified spectral function and transport coefficients in terms
of the matrix elements of the inverse signal suppression matrix, [e;l(Q)}Qm.
Usefulness of these formulas however depends on one's ability to invert the matrix ;(Q)‘.

From Chapter 6, the sampled action noise signal is given by

3= nlt) = SL 1) cos uit)

S

where

4+
Alt) = w, p> VK(t) 6[9(t)-9K'2nn]

e 00

is the sampled voltage signal. Using the identity (7.1), we can write:

(qf &) (+=) -ine inw tT ivd(t)
) == vy () 9, (veT) e [VK(t) e © ] ¢ (11.1)

S

& sM

(-

where Y(t) = ms(a)t +¢(0) and a = /2] is the synchrotron oscillation amplitude.

The auto-correlation can be written as:
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REEst') = Galt) n(t")

(qfoK)2 ‘ - ~i(n*m) o
= H“ J_(WZ3) J (
..,52(.1) %%:%:% rem oy M €
2 +00 4+ ' .
() I de J’ gar of (AE¥'EY)

-0 —-00

<%1(V+“)W(0) VK(b-+nwo +va(J)) VK(Q'+"“0 +"“’s(‘]))> (11.2)

Here VK(Q) is the total voltage at the kicker in presence of collective signal sup-

pression and is related to VoK(Q), the voltage due to incoherent particle motion

only, by the signal suppression factor e(Q) as in Chapter 10:

where

Thus:

i.e.

where

~

g(a) + ¥0) = )

@) = {v'; (Q)}n=0’*1’*2’”. = {VK(Q+nw0)}n=0,*l,*2,.--

o) = [e@] ™ - 1)
W - T o], v (11.3)
m

W) = ¥ (or )

Using (11.3), we obtain the auto-correlation function for sampled longitudinal action

noise given by (11.2), in the presence of the signal suppression effect described by

matrix

(R) as follows:



217

fox) -i(n*m)e, .
att) -0 e e Ty ) g e K G ()
v () VR m

+o0 +00
J- a0 ‘[ ao! e'i (Qt+Q|t') Z Z [S_I(Q‘*‘WS(J))]M- [E_I(Q. +u"°s(‘]))]mm'

(%K (@ vy () v;'.‘(sz'+uws(J))> (11.9)

The incoherent Schottky noise voitage at the kicker is given by (Chapter 6, Eq. (6.1.4)):

ok N (*+) [ ] iwj(o)-ilep ]
V) = (20) (of ) £ ZIL:§G Juuoﬂms(.]j) J, (2 23;) e G[Q-Q,wo -me(JJ.)
(== (11.5)

The time-stationary auto-correlation function can now be obtained by performing the
ensemble average < > and averaging over the phase Y(0) of the sampling test particle,

as in Chapter 8. Defining the quantities

ne o\ = o —ineK—ilep
O (ﬁ) 6o, + 2ug(01)] 9 (n/23) 3, (/277 e (11.6)
and
k . n,(k-n* ' -1 \
ANNCRUIED 35 HE VI CD [e (ko +20(9 ))] ' (11.7)
nn nn
and the reality condition
" R *
2y (0.9 - I:ZX’V(J,J')] (11.8)

one obtains, after performing the averaging similar to Chapter 8, for the spectral

function



218

~ 2f2K 2 K -2

R(Q) = 0 2n ~deJ‘fJ‘ 0 (3,9

@) - =5 @) MZEL [, 0.0)
G[Q'kwo-vws(J) -AwS(J' )] (11.9)

and for the Diffusion coefficient:

D(d) = ﬁ(g)l
Q= 0

2.2 \2
(q foK
- (2n) + N j ENR{GD DI IS
k v A

2 [km +vo (Jd) +rw J']
75 sko, +vu, (3) +ru ()

k
ASNORD)

(11.10)

2
6[kw0+va(J) +)‘wS(J')] (11.11)

] k“ ! ' -1 1
}EZ x'\‘”( n')(3,0') [e (km0+vws(J ))]

n k]

nn'

Equation (11.11) is a general result which we did not obtain from the kinetic theory
in Section 9.2, It describes how the spectral function and the Diffusion coefficient get
modified in presence of beam feedback described by a generalized signal suppression
matrix E(Q). Evaluation of ﬁ(Q) and D(J) explicitly however requires an effective
inversion of the infinite matrix E‘Q)’ since it is the matrix elements of [i(Q)]—l
that appears in Eqs. (11.9) and (11.11). Llet us now recover from (11.11) the result for
D(J) obtained from kinetic theory in Section 9.2 in the limit of no revolution and syn-
chrotron band overlap.

In the 1imit of no revolution band overlap only the k = 0 term contributes in
(11.11). 1In addition, if there is no synchrotron band overlap, we only have to consider
the resonance va(J) + wa(J') = 0 with v =-x only. The Diffusion coefficient

then is given by:
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2.2 \2 2
(q foK) f(dJd n,-n' [ -1 ]
D(J) = 2x) * N X' J,d) ¢ e {vw (J
() = S (20 0 B gy | E 0T 0 - [ ga)]
s Iv] —a
(11.12)
where
,-n' -1 W=, -ineK+ineP
% % Xr\",_: (J,9) - [e ‘va(J))]-nn. = % ; (—r-]-) G[—n wo-va(J)] e
Jv(nfﬁ) J__v(—n'/Z_J) . [e_l(va(J))]
nn'
(11.13)

where we have used Eqs. (11.6) and (11.7). According to the definitions in (10.2.6), we

can then write

[ ! . "1 = . Pp7 v . _1
TL 009 [ (WS(J)]_W RELHCENE [ (ws(a))]

=5 P () {E Q(9) [e_l(v”S(J))]nn-}
(11.14)
where
-V 5 ' /53 in.ep
P_n.(J) = G[}n Wy " va(J)] J_v(—n 23) e
(11.15)

. Jv(nJEﬁ) ~ine

K
Qy(9) e

From (11.3),

V(@) = z [e'l(m] i Vo (@)

Multiplying by QE(J), and summing over g,



220

I G Yo =%‘§o;(a> & La),p ¥ @)
(=)

-z {Zl: (NE) [e‘l(a)]m}v;"(sz) . (11.16)
m

From Chapter 10 however, we know that for non-overlapping synchrotron bands, the response

at 2 = va(J), is given by:

2G Ve (9)

Z Q(9) V(2= va <(9) (11.17)
g ¥ E )
where
-
0 J°(nv2d) _ .
eV(J) =1+ aN g‘f’s{g‘;) zn: A/ nn G[nmo+\)ws(\])] e1n(9P~OK)
dJ

Comparing (11.16) and (11.17) we obtain

}:QQ(J)[ o= v J)] (J) - () (11.18)
Q) - £ o7 @) - [ (J)] Q) (11.19)

Thus [1/e¢%(J)] is the left eigenvalue of the matrix Efl(Q=va(J)) with QV(J)

the corresponding eigenfunctions. Using (11.19) in (11.14) and (11.12) we obtain

2
2.2 \2 v
v (J
D(J) = ( ) (z0) - W E *‘(J) \ i (J)) () (11.20)

Recalling the definition
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( 2.2
g fO K) - v
By, = 3T v P QL)

from Chapter 7, we write

6 (3,9
D(J) = (2x) N < fgj)(J) | "": (11.21)
, U R

which is what we obtained in Section 9.2. Similarly one can show, starting from
Egs. (11.1), (11.3), (11.5) and using (11.15), (11.17), (11.19), that the modified fric-

tion or coherent cooling term, reduces in the limit of no revolution and synchrotron band

overlap to

+w [6 (3,0)
F(9) = ij————[ v[’:(d)]] (11.22)
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12. SIGNAL SUPPRESSION MATRIX FOR TRANSVERSELY COUPLED BETATRON COOLING OF COASTING
BEAMS

The collective response arising from a betatron cooling interaction that couples
both the transverse degrees of freedom is in general described by a dielectric tensor
%“)) that couples the components of the collectively screened vector electromagnetic
signal g(ﬂ;ek) - at. the kicker fo those of the unscreened signél lo(ﬂ;ek) at any

given frequency £, and may be written és

()« K(s0,) = X°(%0,) (12.1)
s@s0) = [e@] ™« K(ns0,) (12.2)

We derive here 2}9) for coasting beams from first-order linearized Vlasov theory: The
inversion of this matrix, [EﬁQ)]"l naturally implies a tensorial character of the
response and a single scalar signal suppression factor or dielectric response function
does not exist in general, except under special circumstances.

For transverse cooling of a coasting beam, the phase-space coordinates of a particle

are written as

(LY = (105 6.0) (12.3)

where 11 = (IX,IZ), 91 = (¢X,bz), w the Tlongitudinal angular velocity and e the
angle around the storage ring. The first-order linearized Vlasov equation for perturbed

distribution function f = f(ll,ﬁl;w,e;t) is

: 0
aof of of | 3 df
3T+’”1°EI+“’_33+11 d—l::O (12.4)

'

where f0 = fo(ll,m) is the stationary zero-order distribution and w =0 for ho lon-

gitudinal cooling.

Our model for cooling interaction is:
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+00

2

!

E]

t
il(il'él; 8,u; t) = Ple-o ) J- GRLi.0)5 11.8); wou's t—t')

O\, 8

-—C0

®f(ll'. 3 Opau's t') dl} dg) du' dt' . (12.5)
400
where 5p(e—ek) = ) a(e-ek—Znn) is the periodic s-function.
N=—c0

Note that G is a vector interaction, determining the cooling dynamics in the two
directions x and z respectively. Using the fact that gl, gi are periodic angle

variables with period 2w, we can rewrite Eq. (12.5) as follows:

- 00 40 o j -ﬁ
il(il,ﬁl; 0,03 t) = sp e ek)-! J; J; dl} du' dQ %; > e " el
6 (1105 wots @) (105 05 9). (12.6)

In Eq. (12.4), we now perform a Fourier series decomposition in harmonics of the
angles variables Ql and e and a Fourier transform in time. Using Eqs. (12.6) and
(12.4) then gives:

1[ﬂ+ﬂ' leLw] ?E(Il,w; Q)
* (%) 129k<df0) ”dl' w LT e 6 (10213 wts @) L (13,005 0)
= #2510 (12.7)

where ggQ(ll,m) is an arbitrary excitation (can be identified with the incoherent zero-
order Sc£ottky signal excitation in the absence of kicker induced modulations).

We now assume the separated variable representation given by Eq. (4.3.28), i.e. we
assume that the dependence of the gain gnn'(Ll’Li;”’”';Q) on the ‘'kicker' and the

'kicked' particle variables separate in the following way:
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G;D.(ll,ll'; w,w';Q) = Kp(I; »0) P;.(l'l,m';ﬂ) (12.8)

where o = {x,z}. In a more general notation, we can then write:

65 (115 00w’ 9) = KU - B (1003 0) (12.9)

where én(il’“) is the matrix:

(e 0
x(1y00) = Z (12.10)
0 Kn(ll’w)

and P li,m';Q) is the vector:

p{

Pyr(Ls's )
b (es9) = | (12.11)
P, (L0’ 0)

Using (12.9) in (12.7), we obtain:

i[Q+n . mlﬂu,,] ?ﬁ(jl,w; Q)
(@) o g R T gl ) o (s )

- ng(ll,w) (12.12)

wWe now define a collectively screened vector signal by
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* ime
5(9) =.[ do’ 2: e P gﬂ.(m';ﬁ) (12.13)
Zeo n'm ~
where
an(w';ﬂ) =I dli Enl(Ll,N';Q) 'Fr_nn.(l.i,w';ﬂ) (12.14)
0

Then (12.12) gives

i 'Q)-d-f—o-K(l )
-iz(ek—ep) En 1Y a, "= e

400 oo
3(Q) * ;—ﬂ%%ffdw-dlle
=0

- ()
'i[Q+[| -ml+ Rm]
= (9 : (12.15)
where:
o0 gol(w) e]ﬂ,ep )
%) = J dod Yy —— (12.16)
L ] [ F R
is the incoherent Schottky or any arbitrary signal.
We can rewrite £q. (12.15) as:

(@) -+ x(a) = x°(a) (12.17)

where:

© 4

P (1m0 9 CK(1 o)
fd q —il(ek—ep) n 1% d‘l'l ~ ’
w e e
0 : 1'[Q“n . “’1”“’]

(12.18)

,
<) = 1) E%

00

and 1 is the unit matrix or diagonal unit tensor.
We have thus derived an expression for the dielectric tensor e(Q) given by
Eq. (12.18) in presence of coupling between two transverse degrees of freedom. We write

the matrix elements of ¢(Q) given by Eq. (12.18) in explicit form as:
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+20 + —'i,Q,(O. -Bp) 0
e (R) =86+ ( )}: 3 -[ -[ do - dl; e P%(Lws D) B(l HY)
aB af L nJ 1[9+D Nl""l“] p'4l n L
(12.19)
where a,B = (x,z). Determinant of this matrix is given by:
s =det e(Q)
+o 00 —iz(e ) ) [0
=1+ (.2]-—)2 Z I J d“’dll _‘e————zl (’ll"ll, Wyw; Q)
vrrdd ifo+n e +w) %t
) +00 400 400 4w —-ife+e )(ek—e )
1 e
+(_ )IDIDNDI dedm'dl d]!
2'") ] ' .L l []
e ! [o+n-w + 2] [o+n’ '”l”" o]
0 O 0
df ' daf” .
"_I_ ﬂﬂ(ll’m’ ) dl (.I_st H Q) - aj_z Gﬂn'(ll’ll’w’w" Q) ®
dfo GZ ( ' ' 'Q) (12 20)
HT; nnn ll’ll’w W, .
The inverse matrix Efl(Q) is then given by:
€ -€
11 21
che) -1 (12.21)
~f12 €22

where A 1is given by Eq. (12.20) and the elements €11° 12° €2 and €5y are given

by the matrix elements of e(n) given in Eq. (12.19).

€
-1

Analogous to Ch. 11, one can then show that the auto-correlation of collectively

screened sampled signal is given by:
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2
R(t,t') =(—-7 }:2 deﬂdﬂ' i(ata'e!)

<[;'1(Q+nm) 'XO(Q‘“nw)] [; (@' +mw)-¥ (9"'m)]>

'1(" m)e 1(n+m)9(0)

2 2
fo

R (t,t0) - —% T T ”dm. e Mo (nimyo(o)
nm

21r

§§ ii(mnm) (@t m) (O (2+nu) X0 +m»)>

{12.22)

and the diffusion coefficient is obtained by the prescription

af _ paB
0°% = RT(Q) g

where RQB(Q) is the Fourier transform of an averaged time-stationary auto-correlation,

given by

<0
R°8(q) = J dr R%B(1) 1T

where 1 = (t-t').

The components of the suppressed signal are given by

X*(g) =+ [ell(ﬂ) X3(R) = ey (2) xg(sz)]

X4 (Q) = % [-521(9) xg(g) + ey0l9) xf)(sz)] (12.23)
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Under some special cases, we might get an isotropic scalar dielectric response.
This happens when the betatron bands do not overlap and the coherent signal in harmonic
n is proportional to n.

If bands do not overlap, then we get:

' 0
() + 1(0) < 2@

Betatron bands decouple and no sum over n is present. If then:

)Sﬂ(s?) =n X(Q)

we have
{a@ - o} x) = 0w
or
[n A 'n] x(@) = x%a) |p)?
or
x(g) = ﬁ(ﬁl
T e(R)
where
e(2) —l—[n m)-n]
)2 L~
2 2
[t teagtepIme, * egmy ] (12.24)
ni + ni

where  ejj,e1,,...0tc. are given by elements of Eq. (12.19) with sum over n

omitted. In this case, the friction coefficients are simply divided by e(R) while the
2

diftusion tensor elements are divided by {e(Q)
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13. STUDIES OF A NUMERICAL SIMULATION

We present results of a numerical simulation study with 90 pseudo-particles for
transverse and longitudinal stochastic cooling of bunched particle beams. Radio-
frequency buckets of various shapes (e.g. rectangular, parabolic well, single sinusoidal
waveform) are used to investigate the enhancement of phase-space cooling by nonlineari-
ties of synchrotron motion. The connection between the notions of Landau damping for
instabilities and kinematic mixing for stochastic cooling are discussed. In particular,
the need for synchrotron frequency spread for both Landau damping and good mixing is seen
to be comparable for bunched beams. Replacement of a real bucket orbit by a simple
sinusoidal orbit with amplitude-dependent synchrotron frequency is substantiated ana a

comparison with analytic results is given.

13.1 Particle Orbits Studied

We have investigated four types of particle orb{ts in a bunch -~ orbits in a rec-
tangular potential well, in a parabolic well with linear synchrotron oscillations of
amplitude-independent frequency, in a sinusoidal RF bucket, and sinusoidal orbits as in
the parabolic case but with an imposed amplitude dependence of the synchrotron frequency.
The motivation to investigate the orbits belonging to the last cateogry has been to study
directly the effect of a spfead in synchrotron frequencies on the cooling rate.

The potential wells and the corresponding orbits for the first three cases are shown
in Fig. 26(a), (b).and (c}. The orbit in a real rf bucket (Fig.l26(c)) is represented

by the first four odd-harmonics only of the exact solution, as follows:

4 .
Sin[(2n-1)w t]
(t)=4 i
° AE% (2n-1) cosh [k (%:'1 ”]
(o

where

wzwle) = r((”kﬁy; k = Sin(e /2); k' = (1—k2)1/2

where n is the maximum amplitude of oscillation and K(k) the elliptic integral of
the first kind. This approximation is good to about 5% for amplitudes as large as nine-

tenths of the separatrix width,
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In accordance with discussions at the end of Chapter 3, the orbits for the last case

are taken to be

@) = a Sin[wsv(a) t+ w(o)]

where either

ws(a) = wS(O) [1 - 632]

(a) Rectangular bucket

Ve .
g Vviel <)
[ b
Lk twy
<+ VA 44
| L AL L +Q
e VA A
-©g=-7/B ©=0 ©y=+n/B e R
-n/B "W +7/B
{b) Harmonic well
Vv (6)
- )
|
} |
| |
' Ll .o ®
-7/B  ©=0  +u/B :
+1/B
{c) RF bucket
VvV (©)
©
: ; Separatrix
| |
| |
| |
1 1 + O I | ©
/B =0 +7/8 | }
-n/B +7/B
XBL 827-7070

Buckets and Longitudinal Particle Orbits in the Simulation Study

Fig. 26
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or

2 2 2
ug(a) = v (0) [1 -sa]

with wS(O) the small-amplitude synchrotron oscillation frequency and § or 8 a

variable parameter, designed to model various degrees of nonlinearities.

13.2 Algorithm for Model Cooling System

In the simulation, the correction per step to the cooled variable was taken to be

of the form

N
8% = - k}=:1 9("1 '°k) Ky

where Xy = (xk,xi) js the cooled phase-space vector, transverse or longitudinal of the

th particle and ek(t) describes the longitudinal orbit of kEn

particle
(angle around the ring) as a function of time. We report results for cases where the
transverse correction was applied to transverse betatron position (xk) only, and the
longitudinal correction was applied to the longitudinal velocity deviation from the syn-

chronous particle, x'= Vg - v only. In real cooling systems, corrections are

s
applied impulsively in momentum; however, it is a matter of interpretation in a simula-
tion experiment, since a correction in either position or velocity of the transverse
motion will lead to a change in betatron oéci]]ation energy in general. All times are
measured in units of the revolution period in the simulation.

The function g(e) simulates the response function of the feedback system and
determines the azimuthal distance of the effective interaction between particles. The

rotational symmetry in the angle e implies g(e} to be periodic in e. Thus we use a

finite number of azimuthal harmonics to simulate a realistic g(e):

m +m

iLe
g(e)=‘2 a, Cos Lo = > 9,e
=0 L=—m

We use up to m = 4 harmonics, implying a feedback system of effective angular extent
8, ~ 90°. Since the bunch length has to be larger than the electrical length of the
feedback system in order to have effective cooling, we expect good cooling only for

bunches longer than 90° in angular extent in these simulations.
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Initial distributions of particlies in phase space were constructed out of a random
number generator to tailor to a desired amplitude profile. The transverse and
longitudinal oscillation amplitudes were chosen according to ar = [1-/T:§]1/2 and
a = (1/2) F-/R where R 1is a random number between 0O and 1, and F 1is the fraction
of the total length of the ring occupied by the bunch - (F = eBIZn, o = angular
extent of the bunch). In the particular case of the rectangular potential well, the
revolution frequencies were chosen from a rectangular distribution.

We correct the cooled phase-space variable of a particle at a fixed kicker position
at every nominal revolution period of the bunch. Once a central reference particle has
arrived at the kicker, all particles are kicked irrespective of their angular position
in the ring. The basic code is a modification of a transverse coasting beam cooling
simulation developed by Laslett and described in references [5], [6]. In the coasting
beam context, the results were well-described by stochastic cooling theory including
signal suppression [6]. For this agreement, however, it was found necessary to introduce
a small, random frequency variation to destroy very small frequency differences between
particle pairs. Physically, this corresponds to energy variations induced by stray
fields, noise, etc., which do not change the gross frequency distribution. This feature
was retained in the bunch beam code, although it is unnecessary for the longitudinal

simulation where Schottky noise effects provide sufficient "wiggle" of frequency.

13.3 Results for Bunchéd and Coasting Beams and Their Comparison with Theory

For transverse cooling of coasting beams, the cooling rate Y, for the mean
squared betatron amplitude for particles of revolution frequency w, 1is given by Egs.
(4.6.5) and (4.6.6), in a continuous correction limit without including amplifier noise.
Using symmetries in the expression for e[(ntQ)w] given by (4.6.6) we can rewrite
(4.6.5) as

= - L e (13.3.1)
%) n |e[{mQ)e]

—

where

cfrn] - 1+ Hallreed | s (13.3.2)

n>»0
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In the simulation, it was found that the &—function part of the singular integral in
(13.3.2) describes well the signal suppression effects for a rectangular frequency dis-

tribution of half-width a, as shown in Fig. 27 below. The suppression factors then are

XBL 827-7054

Rectangular Distribution in Angular Velocity for Coasting Beams

Fig. 27

are given by:

e[(ma)s] ~ 1 + Sn*Qul N (13.3.3)

8 & |n=Q]

The factor e[(mQ)w] =1 and from (13.3.1) it is seen that the cooling rate monotoni-
cally decreases with decreasing 4; at no time does the Schottky noise (second term in
Eq. (4.6.5)) dominate over the coherent cooling rate (first term in (4.6.5)). Coasting
beam simulations were performed and described in [5], [6] with 90 and 180 particles
cooled for 1000 correction steps. Averages over 25 cases agreed within 5% to theory,
with case to case variations of #10%. The e[(n*Q)w] factor ranged between 1 to 5.
Some growth of oscillation amplitudes was seen for large 9, = g[(n*Q)w] which is
attributable to the discrete nature of corrections and was found to be insensitive to a.

For g~ of the "wrong" sign, the condition e(*) = e[(n*¥Q)w] = 0 gives the

condition for coherent instability as discussed in Section 4.6. Thus the condition

g, N
8 s (nxQ)

nxQJw] N

B teg| 21 (13.3.4)

~




234

gives both a condition on the sufficiency for Landau damping of instabilities and a cri-
teria for feedback and/or Schottky noise effects to be important in stochastic cooling.
Note that, as discussed in Section 4.7, |Ngn| is a measure of the magnitude of the
coherent growth rate for instabilities or the coherent damping time of Schottky signals
in the zero frequency spread limit.

Analogous to_the coasting beam situation, approximate criteria for collective sta-
bility by Landau damping for bunched beams have been studied by various authors ([3],

(4], [15], [52], [60], (651, [80], [87], [88], [90])} and are given by [60]:

Sw <-4_.

s ST AQ"uu (13.3.5)

or

< .
0, lmml (13.3.6)

for JTongitudinal and transverse instabilities respectively where (AQ“,l)uu are the
coherent growth rates of synchrotron mode u for longitudinal and trasnverse modes and
Sug, bw are the full spreads in nonlinear synchrotron oscillation frequencies and
within-bunch betatron angular frequencies. If this condition is applied to a stochastic
cooling system for bunched beams, we arrive at the condition that the reciprocal of the
synchrotron frequency spread must exceed the coherent damping time of the Schottky sig-
nals with no mixing.

The two main distingushing features of bunched beam versus coasting beam stochastic

cooling are:

1) The frequency variation which provides mixing is now determined (as dis-
cussed in the previous paragraph) by the spread of synchrotron frequency
rather than revolution frequency or momentum spread. The amplitude depen-
dence of synchrotron frequency, which depends critically on the bucket

shape, becomes crucial to cooling.

2) Because of the finite length of the bunch, the Schottky signals at differ-
ent harmonics become correlated. This effect manifests itself in enhancing
beam heating and coupling the signal suppression in different Schottky

bands as seen in Section 9.2, 10.2 and Appendix E.
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One set of runs was performed with a parabolic potential energy bucket; i.e., the
synchrotron oscillation 1is linear with frequency amplitude-independent. The cooling
system used harmonics 1 to 4 with equal weighting, 90 particles, and the gain would pro-
vide a perfect cooling rate of .009/turn., The synchrotron frequency .fs = .01 and
the bunch length is .7 of the ring circumference. No significant cooling occurs after 1
synchrotron oscillation, as is seen from Fig, 28 below. Similar runs for longitudinal
corrections also yields no cooling, and varying synchrotron frequency and gain had no

appreciable effect.

Harmonic bunch
{transverse cooling)

N = 90 (no. of particles)
Bunching fraction = 0.7
f, = 0.01 (synchrotron frequency)

0 T 1 !
o
=l
ST YW -
(==
=3
L
-2 ] | |
1] 250 500 750 1,000

Cooling steps
XBL 827-7038

Simulation of Transverse Cooling of Linear Harmonic Bunch

Fig. 28

To investigate the effect of synchrotron frequency spread in detail runs were made
with a "square" bucket and a sinusoidal "rf" bucket. For the square bucket particles
were assigned a range of revolution frrquencies from a rectangular distribution. The
particles were advanced in azimuthal angle as in a coasting beam until they reached the

end of the bunch. At the ends, particles are elastically reflected with only their
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angular velocities changing sign. The motivation of this bucket shape was the hope that

it would most closely resemble a coasting beam for analysis and offer in some sense a

maximal degree of nonlinearity. The sinusoidal bucket corresponded to a harmonic 2

system. The phase orbits were determined by the first 4 terms of an expansion of the

orbits in terms of elliptic integrals, as discussed in Section 13.1.

results for a number of 90 particle runs are tabulated for transverse and longitudinal

TABLE IV(a)

Square Bucket - Transverse - BF = 0.5

A
g4 = .0022 .1
93 = . 0022 .01
gq = -0022 .01
93 =0, = .0022 .01
9 =9, =93 =95 = .0022 .1
9 =9y =93 =9, = . 0022 .01
Sinusoidal Bucket - Transverse

AfS

g9q = -0022 . .015
9q = -0022 .025
g4 = -0022 .0015

9 =9y =93 =9, = .0022 .015

.0022 . 025

9 =92 =93 =9

.0022 .0015

9 =9, =93 =9,

Sinusoidal-Like Bucket - Longitudinal - BF =,

Afs

.0022 15

Y=
—

U=
[aN]

[V}
w
i

w0
E—Y
n

[f=]
[y

(=}
[aV]
il

[fa]
w
H

=g,

.0022 .015

BF

Y200
.0096

.0054

.0036

.0012

.0015

.0020

.0090

.0021

.0022

.0029

.00051

.003

.0045

. 00065

Y1000
.0065

.0043

In Table IV(a)
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TABLE IV(b)

Coasting Beam Theory -~ Transverse

a Y
93 = .0022 .1 .0038
.05 .0033
.01 .0013
.005 .00062
9, = .0022 . .l 004
.05 .0035
.025 .0028
.015 .0022
.01 .0017
. 005 .00088
gl = 92 = 93 = 94 -1 .014
.05 .011
= .0022 .025 .0084
.015 .0059
.01 .0042
.005 .002
93 =94 = .002
etfective .01 .0022
91 =92=93°9
effective .01 .0028

cooling. Table IV(b) gives coasting beam rates from theory. The bunching factor gives
the fraction of the ring circumference occupied by the bunch. The results in Table IV(a)
are for single cases with 90 particles. Within each category the same seed was used to
initialize the random loading to lessen statistical variation as parameters were changed.

For the square bucket, single harmonic (& = 3,4) ratesvcompare remarkably well
with coasting beam theory. However, when both harmonics are present, the cooling rate
is significantly different from that of coasting beam theory, where rates for each har-

monic are simply added. For a square bucket, Schottky signals & and m are coupled

sin(f -m) % 2
2-m) e

0

with a weighting
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where e, js the half length of the bunch (see Appendix A and B). The last entries

in Table IV(b) give rates calculated with coasting beam theory, using an effective gain

{13.3.7)
e 0

sin(&-m) % 2
9 £ = g% L B ey

to evaluate the €0 Agreement is good., These results clearly demonstrate the inter-
ference of néighboring harmonics; but for a long bunch, this interference does not
totally cancel the effects of using neighboring harmonics in a cooling system. See
Fig. 29 below, which compares single harmonic runs with 9 only to runs with all
four 91:92:93:99 for coasting and square bﬁckets. Cbasting beam rate as in Fig. 29(a)
modified by (13.3.7), gives a rate Yoff ~ .00265 which agrees well with y ~ .0027
for the 91’2’3’4 in Fig. 29(b).

For transverse cooling in a sinusoidal rf bucket, cooling rates for a synchrotron
oscillation spread Afs are comparable to coasting beam rates with a = Afs.
Again, with several harmonics simultaneously acting, there is a degradation of coasing
beam rates by a factor of 2. It should be noted that thevlongitudinal random load pro-
vides a uniform distribution in phase space.

Finally, the 1last entries in Table IV(a) are for longitudinal runs. Effective
cooling rates/step are given after 200 and 1000 correction steps are given. The phase
space orbits are elliptical with amplitude variation of synchrotron frequency. Cooling
rates degraded as mixing lessens with higher phase space density.

To compare the adequacy of the model orbits in which the orbits are still sinusoidal
but with an imposed amplitude dependence of frequencies, we compared cooling rates for a
real rf bucket with an equivalent anharmonic well that generates similar nonlinearities.
Results are shown in Fig. 30(a) and (b) below and to the degree of accuracy of the simu-
lations, no significant differences are observed.

We observe that synchrotron frequency spread provides the necessary mixing mechanism
tor bunched beam cooling. In addition, it appears that the natural nonlinearities of a
single, long full rf bucket can provide mixing comparable to a coasting beam for harmon-
ics of higher frequency than those associated with the gross bunch structure. However,
as the bunch length decreases degradation of cooling occurs as the mixing mechanism

couples neighboring Schottky bands.
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Coasting beam
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A = 0.2 (frequency spread)
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(b)

Manifestation of Etfective Gain for Square Bucket -

Fig. 29



240

Anharmonic bunch
(transverse cooling)

N = 90 particles
Bunching fraction = 0.7
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Cooling of Real Orbits vs. First Order Asymptotic Perturbation Orbits of a rf Bucket

Fig. 30
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For these model simulations using only low harmonics (& = 1,2,3,4) of the gain,
there is no synchrotron band overlap and our analysis of band non-overlap cooling rate,
studied in Chapters 9 and 10 is ideally suited for a comparison with simulation.
Figure 31 compares simulation results with cooling rates obtained from our theory with
no band overlap (Eq. (9.4.15), (9.4.16)). The dashed curves are the slopes obtained from
theory and results agree fairly well for cooling rates at large amplitudes. An equiva-
lent comparison for longitudinal cooling is made difficult by the fact that there is in
general no exponential cooling and one really has to compare particle fluxes locally
atany synchrotron amplitude, both from theory and simulation. For simulation with small
number of particles such as ours (90 or 180), instantaneous local fluxes are very small

and a comparison is almost moot.

Anharmonic bunch
(transverse cooling)

N = 90 particles
Bunching fraction = 0.7
f, = 0.05

oly) V2
o{0}

Iog10

— v o Theory
Bunch simulation

A | I I
0 250 500 750 1,000

Cooling steps
XBL 827-7067

Simulation vs. Theory

Fig. 31
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14, A NUMERICAL EXAMPLE OF BUNCHED BEAM COOLING IN A HIGH ENERGY STORAGE RING

In order to obtain estimates of probable cooling rates for bunches in‘a real high
energy storage ring we have applied our analytical results to bunches in a typical high
energy storage ring with parameters as listed in Table IV below as an example. The
parameters correspond to a h = 2226 harmonic rf system tor the Fermilab main ring. The
example illustrates the qualitative nature of bunched beam cooling and provides order of
magnitude estimates of the cooling rate with a 2-4 Ghz bandwidth cooling sysfem. While
the exact cooling rates might differ for actual high-energy storage ring like the pro-
posed Tevatron I at Fermilab with probably a different set of parameters in its final
gesign and for different bandwidth feedback systems, the qualitative picture of synchro-
tron amplitude dependence of iocal cooling rate and signal suppression and the nature of
band-overlap resnances in a large-bandwidth feedback loop for a high harmonic rf system,

remain valid and demonstrate the essential peculiarities of bunched beam cooling.

TABLE 1V
Parameter Value
fo’ Revolution frequency 50 kHz
Q, Betatron tune | 19.4
NT’ Total number of antiprotons (p's) 6 x 1011
N, No. of p/bunch 1011
No. of bunches 6
h, Harmonic of rf cavity 2226
TS, Synchrotron time-period 5 m-sec.
wS(O), Sma!] amp]itude synchrotron 12 x 102 radians/sec.
oscillation frequency

14.1 Cooling Rate
we consider a flat gain 2-4 Ghz bandwidth feedback system. MWith fo ~ 50 kHz,

the revolution harmonic within the bandwidth ranges from 40,000 to 80,000 (Fig. 32). The
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Re g

n, = 40,000
n, = 80,000

i i T H

: | | ! 40,000 < |n| < 80,000

]
[ N
-n, -n, n, n,

XBL 827-7043

2-4 GHz Flat Gain System
Fig. 32
number of real positive harmonics is thus an = n, -0y = 40,000 within the

pass-band. With harmonic h = 2226 for the rf cavity, the maximum angular extent of

the bunch is

(Ae)max =2 amax = 2n/h
and
a___ =n/h=1.011 x 107 radians
max :
where a is the maximum angular excursion relative to the synchronous particle

max
within the bunch, if the bucket was full.

We take a distribution of particles within the bunch with a sharp edge at a =

amax and given by

~n

1/2
f(a2)=___3_2_ 1_3_2 @< -2 (]4]])
Zam an

and

where © 1is a heavy-side step function. Such a distribution produces a parabolic par-
ticle density as a function of azimuth along the bunch, as is observed experimentally.
We take as a model of the synchrotron nonlinearity the following amplitude-dependent

trequency
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2
)
2 -m
"’s("m) = ug(0) [1 - 1_6] (14.1.2)
where
6m = Maximum phase excursion = ha .
Then

(a%) = ug(0) (1 _ bt (14.1.3)
s =Y T6 "
The corresponding particle distribution in synchrotron frequency is given by

2
glws(az)] S . > (14.1.4)
dws(a )

da?

since

f(a?) da® = g w (a®) d[ms(az)].

Since we have a constant flat gain, the transverse cooling rate as given by Eq.
(9.4.15) can be written as

2

v(a) = - e(a) g *+ 8(a) g (18.1.5)

for cooling of particles with synchrotron amplitudes in the neighbourhood of a, where
a(a) and g(a) are various combinations of Bessel functions, mixing factors and machine
parameters. The cooling rate is then maximized by chosing a g that maximizes vy(a)
in(14.1.5). The maximum cooling times in hours for particles with different synchrotron
amplitudes are plotted as a function of the amplitude within the bunch and the results
are shown in Fig. 33. Note that these results are obtained from Eq. (9.4.15) for the
non-overlapping synchrotron-band case.

Cooling rate decreases (cooling time increases) from the bunch edge to the bunch
center trom the few tens ot hours to a few hundred hours at the core. The reduced cool-
ing at the bunch core is a manifestation of both increased particle density and decreased
mixihg (less variation of synchrotron frequency with amplitude). This cooling rate is
certainly not enough to compensate bunch diffusion due to intra-beam scattering, rf noise

or beam-beam interaction with typical diffusion times of 10~12 hours. On the other hand
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we have used a relatively low band-width system (2-4 Ghz) compared to the bunch duration
and a realistic bucket which usually has very little nonlinearity. With a higher band-
width system (8-16 Ghz) and a flattened bucket {by adding a small voltage at a third

harmonic say), the cooling rate is expected to improve.

Transverse cooling

2-4 GHz bandwidth system
h = 2226 (RF harmonic)

700

T 1 ] T

t, =1y
600 — v =cooling rate
500
400
300

200

100

t, = optimum cooling time constant in hours

| | | |
% 0.00028 0.00056 0.00084 0.00112

a {radians)
(Synchrotron amplitude)

XBL 827-7053

Theoretical Transverse Cooling Rate Neglecting Synchrotron Band Overlap

Fig. 33

14,2 Signal Suppression

The collective signal suppression factors are evaluated tor transverse and longitu-
dinal cooling at different amplitudes within the bunch. The gain used in these calcula-
tions is the optimum gain for the highest amplitude particles in the bunch, which is
taken to be .00112 radians in this case.

The local suppression factor e#(a) tor fixed u as a function of amplitude in
the bunch are plotted for different u's in Fig. 34(a). We see that suppression is
enhanced for low synchrotron harmonics in general and increases towards the core for the
low synchrotron harmonics. Higher harmonics contribute to larger amplitudes only, but

with strength less than the low harmonics. At any given amplitude, only a finite number
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At smaller amplitudes less number of synchrotron modes contribute

contribute.
The suppression factor at fixed amplitude but with differ-

of wu's

but with enhanced strengths.
ent synchrotron mode numbers are plotted for various amplitudes in Fig. 34(b).

Transverse signal suppression
2-4 GHz bandwidth system
- h = 2226 (RF harmonic)

1

8 T I I
1l u=5 -
12} -

eM(a)

0.00112

0.00084

0 0.00028 0.00056

a (radians)
XBL 827-7042

Transverse Signal Suppression

Fig. 34(a)
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Transverse signal suppression
2-4 GHz bandwidth system

h= 2226 (RF harmonic)

22

20 |-

18 |-

16 |-

14 -

a=.00028

e#(a)

Synchrotron mode no. i
XBL 828-11075

Transverse Signal Suppression

Fig. 34(b)
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Longitudinal signal suppression

2-4 GHz bandwidth system
h = 2226 (RF harmonic)

0 0.00028 0.00056 0.00084 0.00112

a (radians)
XBL 827-7062

Longitudinal Signal Suppression

Fig. 35(a)
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Longitudinal signal suppression
2-4 GHz bandwidth system
h =2226 (RF harmonic)

a=.00028

e*(a)

a=.00056

Synchrotron mode no. u
XBL 828-11076

Longitudinal Signal Suppression

Fig. 35(b)

Similar curves for the longitudinal signal suppression are plotted in Fig. 35(a)
and 35(b). The general trend is similar to the transverse case with two noticeable
difterences. The suppression at any given amplitude a does not blow up as 1/|u| as
in the transverse case but rather levels to a flat value for almost all amplitudes.
Secondly the local maxima for certain synchrotron harmonics at a given amplitude are

more pronounced in the longitudinal case.
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14.3 (Comparison with Coasting Beams

In order to gain more insight into the bunched beam cooling rates, we make various
comparisons with well known coasting beam cooling rates. A fair comparison evolves in
the course of this investigation.

Particle density in frequency space determines the concentration or density of
Schottky noise due to all the particles, as seen by a single particle and limits the
cooling rate. Hence for comparable particle distribution in frequency f(Q), bunched
beam cooling rate should compare with the coasting beam rate reasonably well except for
a form-factor describing the gross bunch structure. ‘

For a gain function with harmonics g, nonzero for n; < e} < Ny (bandwidth =
("2'"])”0) and a rectangular frequency distribution with half-width a (Fig. 27) and

for total number of particles N, the transverse coasting beam cooling rate is given by

YT L <lsn | el n << 2
n1\|u\m2 %N "1\M4\"2 +gJNHwH
28 |

4a8

We keep f(w) the same for coasting and bunched beam. Coasting beam cooling rate cor-
responding to an f(w) for a bunch at a = .00056 radians gives an optimized cooling
time of 140 hours as opposed to 186 hours for a bunched beam cooling with corresponding
local density. Similar comparison corresponding to bunch density at a = .00112 radians,
leads to an optimized cooling time of 35 hours as opposed to 60 hours for bunched beam
local cooling.

A different comparison preserves the total number of particles N ~ 1011 in the
beam and the frequency spreéd dw = anPs(O)‘ However we consider the beam debunched in
the whole ring thus decreasing its conffguration—space density. For the same optimum
gain g, the signal suppression factor is almost 1. Hence there is hardly any collec-
tive suppression: 1 + ;f; ~1., We get y~ 10 sec"1 or a cooling time of .6
hours or 36 minutes as opposed to 60 hours for a bunch. This is an unfair comparison
since we are not keeping the density the same in any space whatsoever (configufation
space, frequency space or phase-space}.

To preserve density in configuration space, we now consider a coasting beam with
total number of particles enhanced by the harmonic number of the rf cavity, i.e. N =

h x N/Bunch = 2226 x lO11 but with same frequency aw = amms(o). Noise density gets

enhanced for the coasting beam and g = (1+ gQN/4A2) is not close to 1 any more but of
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the order of 2-3.5. Cooling rate is decreased by a factor of 10 approximately. Thus
we get a cooling time of 4.8 hours as opposed to 60 hours for a bunch.

And yet a final comparison is in order.. This time we preserve the density in
phase-space. Thus we keep the total number of particles N and total 'phase-space’ area
the same. Comparing the area of the rectangular phase-space distribution of a coasting
beam in (e,e') plane of height & and length 21 radians to the elliptical phase-
space area of a bunch of semi-axes an and a, wS(O) we get

2n A =% a, - amwS(O)

2 _m
8 =ay ms(O)/Z =1 wS(O) .

We obtain a cooling time of 50 hours which is comparable now to 60 hours for a bunch.

14.4 Enhancement of Diffusion Due to Band-Overlapped Noise

So far our estimates of transverse cooling rate did not include contributions from

overlapping resonances such as:

+ = Q' = + '
lwo uws(a) Q mwo vws(a )

‘with £ 4m and u 4 v.

Typically for a large bandwidth feedback loop, there are high revolution harmonics
within which considerable amount of synchrotron band-overlap occur. These extra reso-
nances cause extra diffusion and heating of the beam. We estimate the enhancement of
diffusion due to these band-overlapped noise contribution in this section.

Let Aws(a) be the detuning of synchrotron frequency at amplitude a from the

zero-amplitude frequency ws(O). Then

Ams(a) wS(O)-mS(a) ms(a)

) R ) R ()]
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Let the maximum synchrotron amplitude 3 ax present in the bunch be 2/3 the full

length of the bucket. For a sinusoidal rf bucket corresponding to simple pendulum

orbits, we have [12]

wla )
S.., max A .7646
S a = ucket
max ~glength
so that
Aw (a )
s max’ . _
-—7;;(57-—-_ 1 - .7646 = .2354

Synchrotron bands will overlap whenever

u Aw >ms(0)

o wg (0)

=
Aws am

For a 2-4 Ghz system, the range of revolution harmonics is given by:

ny = 40,000
n, = 80,000
Maximum u contributing ~ 30

at lower end n, = 40,000° Ymax "M %max

Maximum u contributing

at higher end n, = 80,000° ‘“max ~ "2 Zmax ~ 90

Therefore except for a few (~10) synchrotron bands at the center, most of the
revolution harmonic band, even at the lowest revolution harmonic, contain overlapped
synchrotron bands. However, maximum half-width of the revolution bands is given at the

highest revolution harmonic n, = 80,000 by:
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u w
max 'S
. B ———— =
Vmax ° Ys o, W, 0.24 vy < w

0

Hence revolution bands do not overlap within the band-pass of the 2-4 GHz system. They
will begin to overlap for a 8-16 GHz system. The revolution bands at the lowest n =

40,000 and the highest n, = 80,000 harmonics thus 1look 1like the ones shown in

Fig. 36.
Q=(n+ Q)w0 + pog (a)
n=-5 _\_ u=15 Overlapping
- synchrotron _ N
7/ bands’ u=-5 H=+b
-+
Q
n n
- ~-30 1 ~ - ~ - 2 . ~
“max (40’000) “max 30 “max 60 (80,000) “max 60

XBL 827-7056

Synchrotron Band Overlap for 2-4 GHz System

Fig. 36

Since we cannot obtain a simple cooling rate corresponding to exponential cooling
in time for the situation of band-overlap we compute instead the Diffusion Coefficient
including synchrotron band-overlap and compare it to the Diffusion coefficient without
band-overlap contribution.

The method of computing the Diffusion coefficient with synchrotron band-overlap is
a straightforward computation using the formula (9.4.2) for D(I,J), keeping all the
resonances that contribute within the band.

With expressions (9.4.3), (9.4.4) and defining

FI',3') = £(I') h(J")

and
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J-dl' I' £(I') = <I>

we obtain for D(I1,J):

D(1,J) i1- I ¥ 55 6' h(a') |"(*)(JJ-)2 [ (3) + (J')]
’ _4(2) 2 <>(i T Sunt 1 I oL "o

2

where we have absorbed the q° (charged squared) factor within the gain auu'

Changing from action to frequency distribution by

h(ms) dws = h(J) dJ

we get:

2 S on [

N gy 4 (wga0?)
1.0 -8t BT L [augnep Lottt L ]
4(2'“)3 Q2 <i> (i) " UI S S Iu'l S u S

5(*2 (w,-u.m)z
AT <l Yy YOyl AS s h(-Jﬂrms) (14.4.1)
(£) w [u'] u

where the sum over pu and u' extend within the ranges defined by Eqs. (5.8) and (5.9)
in Chapter 5 and A = No /4(211)3 2

This has to be compared with the contribution

D(I,d) =A 1 +<I> 3
(*) u lul

to the diffusion coefficient from non-overlapping bands only. The g( )(J d')  in

above expressions is given by (9.4.4) i.e

gi ) (3,0") =< [m*Q)mo+umS(J')] Ju[(th)/zT] Ju.[-m‘/Z—J]

m
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As an illustration of the band-overlap structure, let us consider the amplitude
a = .00028 radians.

Then Eq. {5.8) defines the following range for u:

lisy<2l

The bands ' that overlap with some of these values of u for amplitudes a'

within the beam distribution 0 <a' <§amax are shown in Table V below.
TABLE V

u OVERLAP

11 14 =2 ' =11

13 17 2 ' 213

15 19=24' 215 a = .00028

17 2=z 217

19 28 =24 219

21 27 =z =221

The results for the Diftusion coefficient thus calculated is compared to the band-
nonoverlap contribution in Fig. 37. The results of calculation of band-overlapped noise
diffusion show a Diffusion coefficient significantly higher than the nonoverlap Diffusion
coefficient for small synchrotron amplitudes. Cooling rates for small amplitudes wiil
thus significantly suffer from band-overlapped noise. The enhancement is reasonably
modest (factors of 2) at 1argevamph‘tudes where noise diffusion is relatively small any-
way due to improved mixing.

A quick estimate for the best possible cooling rate of a bunched beam follows along
these lines: except for the line-structure in the middle, we treat the bunched beam
signal as an equivalent coasting beam signal with frequency half-width A and an
enhanced effective number of particles. The situation then would correspond to a bunch

confined by a square bucket. From (13.1.1) and (13.3.3), the cooling rate then is
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29

¥ =Y iy (14.4.2)
L 1+ 9o e s

4ng

T I I

12—

@ Exactsum T for overlapped bands
o

QO Band non-overlap contribution only

10

D(1) X 1073

0 { | |
0 0.00028 0.00056 0.00084

a (amplitude in radians}

XBL 827-7055

Enhancement of Schottky Noise Diffusion Due to Synchrotron Band Overlap

Fig. 37
The optimum gain is then given by
optimum _4 -5 -2
9, e (14.4.3)
ef f

and optimum cooling rate
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2:8+2%
v, = 2cbct (14.4.3)
ot = 2y Nef £

For slightly different parameters corresponding to the Fermilab Tevatron 1 collider [97],

with fo = 48 kHz, rf harmonic h = 1113, transition energy 18.75 GeV, n =

Y =

vy ©- 7;2 = -0.0028, Synchrotron period T . = 27 m-sec, each bunch is 1.6 meters long
(contains 95% of all the particles with o ~ 40 cm.). Approximately 3925 bunches would
have the same length as the ring circumference. Bunches occupy.an area of 3 eV-sec
within a bucket of area 12.7 eV-sec. Then op/p = 1.2 x 10"4 and 95% of the parti-

cles are contained within #2 ap/p = 2.4 x 10'4 for Gaussian bunches. The fre-

quency spread is

of = f n 2B 032 Hz .
° " p

1

For an example of 8-16 Ghz system with N ~ 10 per bunch, we have 160,000 < 2 <

320,000 harmonics within the band-pass, with Qaverage = 240,000, & - 2

average
7680 Hz and N, ce = 3925 x N = 3925 x 1011, Equation (14.4) gives

. -5
Yopt = 1.25 x 10 7/sec

and

Topt = 22 hours.

This is the maximum cooling rate possible for bunched beams with above parameters
with full band overlap within each revolution band. Table VI gives cooling rates for

difterent bandwidth systems.

Table VI
T
Band-width [ Eavera e cool
9 (transverse)
2-4 GHz 40,000-80,000 60,000 352 hours
4-8 GHz 80, 000-160,000 120,000 88 hours
8-16 GHz 160,000-320,000 240,000 22 hours
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For the 8-16 GHz feedback system, each revolution band has a half-width of 10 kHz

with separation between nearest revolution bands 48 kHz. Thus there is a gap of about

(48 -~ 2x10) kHz = 28 kHz between revolution bands where there is no signal power. In

the language of the equivalent coasting beam Schottky spectrum, the cooling rate is thus

limited by the situation of bad mixing.
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15. CONCLUSION

Thé theoretical formulation of stochastic cooling of bunched beams presented in this
report provides us with the necessary ingredients for a realistic calculation of the
time-evolution and rate of cooiing of bunched beams for the purposes of prediction,
design or comparison with experimental observations. The analysis and preliminary esti-
mates untold a pattern of behaviour of bunched beams undergoing stochastic cooling. The
increased particle density in a bunched beam compared to a coasting beam and relatively
small synchrotron frequency spread in a conventional rf bucket makes bunched beam cooling
a much slower process than coasting beam cooling in general, for identical feedback
systems. The importance of potential well (bucket) nonlinearity in providing sufficient
synchrotron frequency spread and hence good mixing in phase space is crucial to bunched
beam cooling. The notions of Landau damping for beam instabilities and mixing for sto-
chastic cooling are intimately related. The need for synchrotron frequency spread for
both Landau damping to stabiiize beam instabilities and good mixing to enhance cooling
are seen to be comparable for bunched beams. In particular the reciprocal of the syn-
chrotron frequency spread must exceed the coherent damping time of Schottky signals with
no mixing for effective cooling.

Bunched beam cooling is also a strongly local function of amplitudes of particles
in the bunch. In general nonlinearities are stronger for larger amplitudes and so the
edge particles cool faster than the core particles that do not mix as well in phase space
and whose signals get collectively suppressed stronger and faster than those from the
edge particles. However, steepness of the bunch distribution at the edge competes
against this process and trapped particles at the steep slope region of a hard-edge dis-
tribution are harder to cool.

A useful concept in bunched beam cooling is the notion of 'effective gain'. Because
of the finite length of the bunch a single particle in the beam sees an enhanced effec-
tfve gain (relative to a coasting beam) including a sum over correlated Schottky signals
at different revolution harmonics. This effect manifests itself in enhanced beam heating
and coupling the signal suppression at different Schottky bands.

Typical estimates of transverse cooling rates for bunches containing 1011 parti-
cles confined in a conventional rf bucket of harmonic number h = 2226 for a prototype
high-energy storage ring, using a 2-4 Ghz feedback system, indicate a cooling time of
hundreds of hours, much too slow to compensate beam blow up on a fast time scale of 10-20

hours due to rf noise, intra-beam scattering and beam-beam interactions. However, with
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a higher bandwidth system (8-16 Ghz) and rectangular potential well rf bucket containing
a relatively long bunch (1/1000 of ring circumference), the cooling rate at the bunch
edge is expected to improve significantly (20-50 hours) enough at least to maintain its
emittance against countering blow-up effects. Bucket shapes can be altered to the
desired degree of nonlinearity by adding extra higher harmonic (odd) rf cavities with
proper voltage strengths. Use of a high band-width feedback system is almost implicit
in any bunched beam cooling scheme as one desires to resolve sufficiently small sized
phase-space samples within a bunch (with number of samples per beam handled by the feed-
back system approximately comparable to a coasting beam situation) for effective cooling.
With growing interest in the use of high energy bunched beam cooling at Fermilab Tevatron
and SPS pp collider at CERN, a sophisticated numerical calculation and study of novel
schemes of bunched beam cooling seems imminent.

The theory developed is consistent and mostly complete except for a closed form
expression of the collective signal suppression factor of bunched beams in the region of
strong synchrotron band overlap. Note that one can still calculate diffusion coeffi-
cients in such a region by properly adding up the contributions from overlapping reso-
nances; however, one has to use the non-overlapping band expression for the signal sup-
pression factor in these calculations. While for small collective effects, this is
fairly accurate, for strong suppression effects, the outcome of such a numerical estimate
is somewhat suspect. Under a different quise, the problem has plagued the study of
bunched beam coherent instabilities with strong synchrotron mode coupling for over a
decade and as of today no general solution exists. In the context of instabilities one
can however afford to be contented with épproximate criteria for thresholds and growth
rates of coherent modes and more importantly bounds on stability. These have been
obtained in the past ({9], [60], [651, [80], [87]1, [88], [90], [109]) in various limits.
For stochastic cooling the problem is made worse in the sense that one has to solve an
“inversion problem" of the infinite coupled mode case in order to obtain finite values
of the signal suppression factor or dielectric permittivity. Our musings and efforts in
this domain strongly suggest the use of an appropriate space for properly chosen collec-
tive signals with a qualitatively different ordering parameter which "concentrates" or
"accumulates" all the essential mode-coupling contributions into a single or a few domi-
nant terms of leading order. Future work in this direction will then require an

approach of significantly different nature and quality in essence.
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APPENDIX A

Longitudinal Schottky Spectrum for a Particle in a Square Bucket

The orbit of a particle in a square bucket (Fig. 38(a) and {b) is given by:

o(t) = 2n f_ t + (@D(t)

where
2n(af)t for |t| < 7+
s
®w - (f) 1 3
ml a4
fs - Zﬂ(Af)t for (4_fs)< t < <EF;-)
Vv (Q)
f=f
4 40,00 oAt
T, = 14, = (20, /7 (Af)]
-« (-1/4 fs)—\ +0g 9t — = (314,
-0 0y 7 © ! j\\\\fzﬂ'
0 0
3, \‘/“ "\—(1/4”

|<———T—1/f—>|
(a) (b)

Square-Well Bucket and Particle Orbits

Fig. 38

The current due to the particle at azimuth ‘e = ep of the pick-up is:

I(t,ep) = 21q f0 s(e(t)-ep) = 21q f0 [1 +2 hz=:1 Cos{h(e(t) -ep)}] = 2 Ih

h=0

where



=2
ft

ih[2nf t+ (D (t)-e ] }

2nq fo Re{ch e

ih[2nf t-o ]
2nq fo Re 8, vh(t) e

and

vy(t) = eih@(t)

1 for h=0
6h=
2 for h >0

Fourier expanding vh(t) in harmonics of the bounce frequency fs’

jp2af t
1h® Z V e S

U=cc

where
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J i@ (t)-in2ef t
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In general there will be an initial phase so that (:)(t) = (:)(to)
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we write

#0 and

where wo = 2nfst0 is the initial oscillation phase at t = 0. We can write:
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s 0
_ alny )
v'l =e (11+I2

where
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let a=nh Af =h (—7§1> and set e
S

p = 0 without any loss of generality. Focusing

attention on one revolution harmonic h, we get
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See Fig. 39 below.
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Single Particle Schottky Spectrum in a Square Bucket
Fig. 39

In the coasting beam Timit:

af = constant

j.e. both top and bottom streams wrap around the ring many many times before ever
reflecting and exchanging their roles.

The Fourier coefficients have significant magnitude only for

i.e. the spectrum is concentrated around f = h(foi af). See Fig. 40. For small

bunch length or bucket:

n (af
> << 1
2 fS
In this limit, we have:
Vo = 1

v =0 for wu=even4£0
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Square-Well Schottky Spectrum in the Limit of a Coasting Beam

Fig. 40

(u-1)/2
vu =% h—g-AfZ—)(;l-)—;—-—— for u = odd.

The spectrum is then given by:

)12 i2ahf o)t 0
I(t,6) = (2n)(af,) Re{ T & “2_: Z 1—122—)— 1 BRI
had
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APPENDIX B

Notion of Effective Gain

For a harmonic bunch we introduce the ‘effective gain' given by

(#)
%eff. = % 9, J,(%a) Ju[(l*O)a] (A.8.1)

The signal suppression factor eii)(a) as given by (A.E.21) then can be written as

N

(#)
ef,*)(a) S1+ ——{—r"'ﬁw: 8l ghe (A.B.2)

l“l da

In analogy to above, one can construct, using the orbit integrals in Appendix A, an

‘effective gain' for a bunch in a square bucket as

(%) Sin(mQ-m) o |°
.. =Yg o (A.B.3)
eff. = om (nxG-m) %

and a signal suppression factor

(%)
o) = 1+ TELD g (A.8.4)

where 8, is the angular extent of the bunch and we have made use of the coupling
strengths near the harmonics u = % (H*Q)Af/fs as given in Appendix A.
This concept of effective gain has been supported reasonably well by the numerical

s imulation studies of transverse bunched beam cooling as reported in Ch. 13.



273

APPENDIX C

Proof of <f(x;t)> = p(x;t) in Section 9.1

Formally, we write the solution of (9.1.6) as a mapping:

Mt: 3—X% for fixed o

% = Mait;o) (A.C.1)

I+ the differential equation (9.1.6) is ‘soluble', then the mapping (A.C.1)} has an

inverse:

4= M'l(&;t;a)

Solution of (9.1.8) may then be written as

a1 M (x)]
f(x;t;o0) = F[M " (x,t;0),0;0f ¢ |-
d[ %]
afwl(x)] .
where ————— =J is the Jacobian determinant of the mapping (A.C.1). For incompres-
d[x]

sible Liouvillian flow, the Jacobian determinant would simply be unity. We can thus

write

Gm¢»=JMfanw>Nn
X

J 4 o (x)]]
= | do P(o) f[M (}3;1’.;0),0;0] B
) o] |

Let us take the initial distribution
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9(x) = f(x; t=0) = 6™ (x-a)

Then

" )]
<f(&’t)> = do P(O) 6[M (lvt;a)'ﬁ]
: d[x]

= Jdo P{o) G[L-M(Q,t;o)] (A.C.2)
X

The integral in (A.C.2) is just the probability p(g;t) that the solution Ma,t;o]
of (9.1.6) takes the value x. Thus

Flxst)) = plx,t) (A.C.3)

This lemma was first demonstrated by Van Kampen [107]. It demonstrates that the
solution  «f(x,t)> of (9.1.8) 1leads to a solution p(x,t} for Eq. (9.1.6)

automatically.
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APPENDIX D

We derive the integral equaton for Bn 2,11) given by Eq. (9.2.14).

(1
2™
Equation (9.2.10) for g(1,2;t) after Fourier analyzing in angles Ys¥p and

phase-averaging over f(ll’?];t) to retain fO(Ll,t) only, gives:

3gn1n2(11912;t) .. .
‘_——‘a't‘:—“‘ 1 ﬂl‘wl nz'h)z gﬂlnz(ll’lz’t) =

a Ll . -
=-N 'a'II jdl3 %; GD1H3(1‘1’13) gn29_n3(2’3’t) fo(llt)

N2 Jdl 6 (1,,12) 9 (3,15t) t_(2;t)
al, 3 Eg oy *2>237 “-ngny 0

afo(l;t) af (2;t)

- JL) o —S—— f (25t) - (L,1;) —>——f (15t A.D.1)
Sy larde) * 5 fol2st) - By Upedy) =S Tt

We now perform a Laplace transformation of (A.D.1) assuming g(1,2;t) changes much
faster than fo(l;t) or f0(2;t); i.e., assuming fo(l;t) and f0(2;t) are almost

constants in the time-scale of change of g¢(1,2;t). Then:
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~ 1
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The asymptotic behavior for t » » 1is governed by the s -)0+ limit. So we

pick up the pole s = 0" and use Jlim+ [s+ix] = ns,(x) to get:

s-+0

gnlnz(l’Z) = “6+[ﬂ1 '!&1+ﬂ2 '!&2]

d * ? .
o {Bn1ﬂ2<11,L2> fo(l)} o {BQZDI(LZ,ll) fo(z)}] (A.D.3)

-~ *
13
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Bﬂzﬂl(lz,ll) = — =N g; dl3 5+[ﬂ3'lﬂ3'ﬂ1'!01] . 6[12[]3(12’13)

. af(1) o . 2f(3)

af (1) | p* af (3) .
Ly Gdy) -2 Ry Uy (A.D.4)

as advertized in Eq. (9.2.14) before.

We mention here that a careful multiple-time scale perturbation analysis can be
performed on Eqs. {9.2.9) and (9.2.10) using two time-scales Tor T where Ty is the
fast time-scale of variation of g(1,2;t) and 7 is the slow relaxation time of
fo(l;t). An analysis similar to Section 6.2 of Chapter 6, then shows that the non-

secularity condition (i.e. g(O)(l,Z;TO) does not diverge as (To »>») on g(1,2,t))
on the faster time-scale determines the slow evolution of fo(l;T ) on the 8 scale
which is in agreement with Eqs. (9.2.12) and (9.2.13). Thus our assumption of fo(l;t)
being a constant in Eg. (A.D.1) gives results consistent with a more careful analysis of
time scales.

We note that the terms (93-93—g]-g]) appearing in the formulas in this Appendix
effect mixing through frequency spread and enhance the interaction of particles neigh-

boring in frequency.
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APPENDIX E

Transverse Signal Suppression Factor for Bunched Beams in a Model Cooling Interaction

We consider transverse cooling of a longitudinally bunched beam in the model dipole
cooling interacion described at the end of Section 4.3 and in Section 4.4. We will use
Eqs. (4.3.44) through (4.3.50) and (4.4.1) through (4.4.3) in this appendix.

From (4.4.3) and (4.3.46), we write the cooling equation of motion as

. N o o0 o
Xy +dw (1) x5 = - jz=:1 g(e] -9‘]) x5 = - RE«) z2,(t) g, eite (t) (A.E.1)
where
N co J
z,(t) = Z xj(t) e—me‘](t) (AE.2)

J=1
describes a collective variable. Equation (A.E.1) has the formal solution

0 -'iwl(i)t 10
i€ - X9y

f=—00

ige! (t) o) () (E4") (¢ g

xi(t) =X dt' zp(t') e

Oy +

Using (A.E.2) and (A.E.3), we find the integral equation satisfied by zR(t) as follows:

gy | dt' 2z, (t') e (A.E.4)

Tt

0 N
7,(t) = z)(t) - 3,
i=1

t ilme’(t*)-10" (t)]-u, (i) (t-t*)
=

Using the identity given by (4.3.52) and defining

iJLmot
Qg(t) = zﬁ(t) (A.E.5)

we get, by use of the orbits (4.3.45), the following:
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O —

0,(t) = (t) - _Z b5 Oy | 9t Qu(t!) Z X 9 (ma;) 3 4(2a;)
izl M=o pou'

h’sﬁ ) (ut—u't')—iwl(i)(t—t') ei,(“"‘. )wi (0)

e (A.E.6)

Note that 62(5) = Zl(s—ikwo), as follows from a Laplace transform of (A.E.5), corre-
sponds to the properly Doppler-shifted response in the beam frame.

In the continuous N-body 1imit, we replace the sum over i by an integration over
the distribution function f(J,¢) = f(% az,w) of the particle in the synchrotron

phase-space, normalized as

‘H

C”‘-ﬁs

d(l 2) f dy f(% az,w) =1 (A.E.7)

CD“--ws

2n

dd .f dy f(J,y)
0

Then

d(l 2) I dy f( )F(a,w) (A.E.8)

N
ié:l Flagph)—n - (2_]{)

o'——3

where N is the total number of particles in the beam.. If the particles are distributed

randomiy and uniformly in phase-angle v, f(% az,w) is independent of Y and we

get
N o 2n
2o Flag,b)—N (?%)Jd(% az) f(—% az) J F(a,v) dv (A.E.9)
i=1 0 5
Using
p A ey (0)
ZT! € ay;(0) =6 (A.E.10)

we obtain from (A.E.6)

400 t +o R
) = ) -0 % g [arr g £ [ o} a?) o} o?) 9 m) 9 000)
0

M=~
(L) ©

-i{uw +y, ) (-t
e1(u (a)tu ) (t-t') (AE.11)
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or
40 t
Qt) = (t) -n T gmjdt' Q,(t') f,(t-t") (A.E.12)
Mz=—~00 0
where
4o P -i[ne_(a)*e J(t-t*)
fogft-t') = uf\: Jd(% az) f(% az) 3 (ma) J (1a) e Tegtarte (A.E.13)
= —00 0

Laplace transforming in time t yields [1]

4,(s) = Ls) - DXMMORAD (A.E.14)
or
z [%m + N, Fm(s>] 9,(s) = Cs) (A.E.15)
where
.

FmQ(S) = Z

p=—00

O 8

d(% a2) [ Ju(ma).Ju(za)l)] f(% a2) (A.E.16)

s+t i(uws(a) +w

iQ  where

If now we evaluate (A.E.14) at s

Q= uws(a) + w = uws(a) + Qmo

we get the response Q(g+q) u(a) corresponding to the uEh- synchrotron satellite
band in the zEﬁ revolution harmonic tor particles with synchrotron amplitude a and

at betatron harmonic n, = +] as follows:

0 NO 3 & ) )
Q“jm’da)=Quﬁm’Ja)-v§: - Wmﬁ m@h )fksh)

X fll=—00

3, (ma') 9 [(2+Q)a"]
[(hag (@) +a)) = (utagla') +o))]

6(WQ),u'(a.) (A.E.17)
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where we have used f(% az) d(% a2) = f(ws(a)) d[ws(a)] with f(ms(a)) being the
distribution in synchrotron frequency of the particles in the bunch.

For non-overlapping synchrotron bands, we now approximate the integral by keeping
only the term corresponding to the non-overlap resonances [ums(a)+0mo] = [u'ms(a')+0wo]

with u =u' and a = a' in the integrand and neglecting the principal value integral.

Then
~ ~0 f(“’s(a)') [ + ] ~
Qo) u(®) = Qg (@)~ Mr =20 9, (me) 3, |(#*Wa] Qg (2)
(A.E.18)
Multiplying both sides by 9 Ju(ka) and summing over ¢ yields:
(#)
(@), N @
Xu (a) =—:(-;)a (A.E.lg)
u
where
x*)(a) =3g, 9 (2a) § (a) (A.E.20)
" R " (2£Q) ,u e
(#)
() =T ey 9,00) Tusg),, )
and

aNf (w_(a))
e‘(f)(a) =1+ ——l—i——%gzdu(za) Ju[(liq)a]

1+ “Nngga) Zg;gl JuULa) Ju[(“Q)a] (AE.2)

I“I da

The cooling rate for linear transverse dipole cooling is thus:
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(*) (#)
6’ (a,a) |6 (a,a) W
e () % u:ru) (a) H:’( ‘)‘(a) IZ‘ | dtfs:za) (A.E.22)
W u u ___a_a__
Z Gfl )u(a,a) ez
- { .E.
(#) t:u[*)(a)l2

where we have used the symmetries of ﬂ(,*)(a) as given by Eq. (A.E.21).
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APPENDIX F

A Few Properties of the Gain Function, The Collectively Modulated Voltage

and the Kernel Appearing in the Coupled-Mode Response Egquation for a Bunch

We demonstrate various properties of the quantities appearing in the collective

response equation
K K - K
W) = @+ T o (@) (o) (10.1.24)
[0} anr¥ k 0

where

W («)

6(9) T(e,,)

(A.F.1)
¢ _
Vo(®)

6() To(ep,n)

and Dk(Q) is defined in Eqs. (10.1.25) through (10.1.27) and Q 1is a real frequency.

~ ~%
(1) I(ep,ﬂ) =1 (ep,-ﬂ)
(A.F.2)
-I- ~%
olepsit) = 15(e,,-0)
Proof. These follow from the reality ot I(ep,t) and Io(ep,t).
. ~ ~k
(2) 6() =6 (-9) (A.F.3)
Proof. This again follows from the reality of G(t-t') = G(T).
i) = (-
(3) (A.F.4)
K K*
V(@) = v (-9)

Proof. These follow from the definition (A.F.1) and properties (1) and (2) above

and also from the reality of VK(t) and Vﬁ(t).
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(4) D, (%) = D_,(-9) (A.F.5)

Proof: From (10.1.24) and (A.F.4)

+00 +
Wea v & D, (-%) VK(-Q+ pwo) = W) + k=):_jw D () VK*(Q+kmo)

p=-
or
K pas K K kK
V-9 + X D (-9) v (Q-pw)= V(-9 + 2 D () V (Q+kw )
0 pe—m p 0 0 Koo k 0
Equation (A.F.5) follows by comparison of both sides.
~ puand k
(5) The operator D(@) = 3. D, (@) T° is not 'self-adjoint’. (A.F.6)

Proof. In order to be self-adjoint we must have

D(R) = [f)(sz)]+

A1t
o (@) T =):[0 @) Tp]
K p

p
. . aop ¥
Right hand side =) T Dp(Q)
p
* o
=ZD (Q—pw ) TP
p P 0

=}E Djk(Q +kw0) i

*
Therefore, to be self-adjoint, we must have Dp(Q) = D_p(Q+pwo) which is not true

from property (4) above.
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(6) %Dk(ﬂ) 2k =I da [%fa—]z [%A";](Sz;a) z‘"‘] [}ﬁ‘, BY(a) .z""] (A.F.7)

0 u

for any complex number 2z and in particular for z =1:

n 0
20,(@) - f da [%”—]L [ZA,‘,’,(rz;a)] [):B:m] (A.F.8)
u m n

0

where Al(Q;a) and B)(a) are defined in (10.1.26) and (10.1.27).

Proof: Dk(Q) is a discrete convolution of A and B in the form ZAn_p Bp.

Equations (A.F.7) and (A.F.8) follow from the convolution theorem of z-transforms: if

P
then
C(z) = A(z) * B(z)
where
400
Cz) = X c, 2", z a complex number
N=—c

(7) et v[e] = vK(zmo). From (10.1.34)
vﬁ&%)=vﬂu%)+ZDMub)WmemJ
p

Change indices to (&*p) = k. Then

vEEed = Ve +§D[k—sl; SL] vKKk)
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This is not a discrete convolution, since D[k-2;2] depends not only on (k-%),

but also on £. This is the unique feature of bunched beam response.

(10.1.24) in frequency domain corresponds to an integral equation in time-domain:

(8)

W) = Jdt' K(t,t') V(t') + v'é(t) (A.F.9)

where K(t,t') = K(t-t';t') is periodic in t' with period T0 = Zﬂ/wo. Then

. 40 ipw
Kt-t';t') = X Ky (t-t*) e1p ° (A.F.10)

== —0O0

and using (A.F.10) in (A.F.9) and Fourier transforming in time yields (10.1.24) immedi-

ately with the identification

Ep(Q) =D,(a) .

So we can interpret Vk(Q+pm0)' as the components of a Bloch function V(t)

written in the Bloch form
T ipw_ t
VK(t;Q) = e“‘t Z VK(Q+pwo) e ©

p:—oo

= emt F(Q:t)

juad K ipw t
where F(Q;t) = Z VH(Q+ pmo) e is periodic in t with period T = 211/w0.

= 00
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