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ABSTRACT

A Quark Compound Bag model has been constructed to

describe NN s-wave scattering up to 1 GeV. The model contains a

vertex interaction HD>>NN for describing the excitation of a con-

fined six-quark Bag state, and a meson-exchange interaction

obtained from modifying the phenomenological core of the Paris

potential. Explicit formalisms and numerical results are

presented to reveal the role of the Bag excitation mechanism In

determining the relative wave function, P- and S-matrix of NN

scattering. We explore the merit as well as the shortcoming of

the Quark Compound Bag model developed by the ITEP group. It Is

shown that the parameters of the vertex interaction H D - N N can be

more rigorously determined from the data if the notation of the

Chiral/Cloudy Bag model is used to allow the presence of the

background meson-exchange interaction inside Bag excitation

region. The application of the model in the study of quark

degrees of freedom in nuclei is discussed. Trt« submitted manuacrip; hat b»tn auihorMf
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I. INTRODUCTION

The development of Quantum Chromodynamics (QCD) has motivated a lot

of theoretical Investigations of quark degrees of freedom in nuclei. In

considering the simplest two-nucleon system, the focus has been on the

calculation of the short-range part of nuclear force from various QCD-

motlvated models of multiquark systems. This has been reasonably successful

In either the nonrelatlvistlc quark potential model1 or the relativistic Bag

9—11model. For nuclear studies, we need to combine the resulting short-range

quark picture and the well-studied meson-exchange mechanisms to construct a

model which can quantitatively describe the NN data. So far the focus has

been on the development of models for describing low energy NN data. In this

work we report the progress we have made in extending this effort to the

intermediate energy region.

Contrary to the situation In the low energy region (below the pion

production threshold), the meson-exchange model of nuclear force has

12—21
encountered difficulties in describing the data of intermediate energy NN

and ird rections; in particular the data of polarization observables. The

results reported in Ref. 22 have suggested that the problem could be due to

the conventional phenomenological parameterization of the short-range part of

the baryon-baryon (BB) interaction In terms of meson-baryon-baryon form

factors or a convenient local form in coordinate space. Motivated by the

23
success of the MIT Bag model and the subsequent application of the model in

24-27 22 28

the P-matrix analysis of NN scattering, Lee and Matsuyama * suggested

that a possible way to resolve the problem is to describe a part, but not all,

of the short-range barycti-baryon dynamics by a vertex interaction Hp_gB, where

BB can be an NN, NA or AA state and D is identified as a six-quark MIT Bag

state. They have also developed a unitary irNN scattering theory which



allows a systematic study of the effect of the Bag excitation mechanism H^

on all NN and ird reactions. To explore the dynamical consequence of the

vertex interaction H D + N N > we will carry out a detailed analysis of NN s-wave

scattering up to 1 GeV. A simplicity of this study is that the inelasticity

in this NN channel is small and hence the excitation of A and the associated

pion production can be neglected. In this approximation the formulation

presented in Sect. IV of Ref. 28 (namely its Eqs. (4.12)) is completely

equivalent to the Quark Compound Bag (QCB) model proposed earlier by

29

Simonov. We, therefore, proceed by first following closely his coordinate-

space formulation to explore, in detail, the dynamical content of the QCB

model. This study then leads us to develop a nev model which is consistent

with the general wNN formulation of Ref. 28.
29

The essence of the Quark Compound Bag (QCB) model is to postulate

that two colliding color singlet three-quark clusters can have a direct

transition to a color singlet six-quark Bag state when the distance between

two clusters Is within a narrow range around a distance which roughly

characterizes the size of the Bag. This notion is formulated by assuming that

the Bag excitation mechanism Hp_pjjj is localized at b (the simplest form is ~

6(r-b)), where D is the considered Bag state with a mass MQ. AS pointed out

29
by Simonov and will be explicitly shown in. this paper, the resulting NN

scattering P-matrix has a pole at E » M. and hence the theory is consistent

with the interpretation by Jaffe and Low. This Hamiltonlan formulation of

the P-matrix interpretation characterizes the essential difference between the

QCB model and the other approaches which are also motivated by the Bag

model. In particular, the usual R-matrix separation of the total wave

function into a six-quark component confined within a given radius TQ and a

two-hadron component at r > TQ is not assumed in the QCB model. Instead, the



relative Importance between these two components is determined by the strength

of Bag-excitation mechanism H_ ,_, relative to the background meson-exchange

interaction. It depends strongly on the collision energy, in particular in

the region where the total collision energy Is close to the Bag mass. For NN

s-wave scattering considered in this paper, this interesting region is reached

by about 650 MeV incident nucleon in the laboratory frame.

The QCB model has been actively pursued by the ITEP (Institute of

29 33 34
Theoretical and Experimental Physics) group ' ' in the last few years.

However, as will be demonstrated explicitly in Sect. IV, their fit to the NN

data requires a "second" QCB pole which cannot be related unambiguously to the

parameters of the Bag model or the background meson-exchange mechanism. This

uncertainty has also been revealed in a detailed P-matrix analysis of NN data

27
by Bakker et al. For nuclear studies, it is necessary to introduce more

dynamical constraint to resolve this problem. In the language of P-matrix

24-27
analysis, we need to develop a theory for defining the background P-

matrix, which has been parameterized in terms of "compensation" poles in Refs.

24 and 25, a constant plus a antibound state pole in Ref. 29, a constant plus

a distant pole in Ref. 27, and a second QCB pole in Ref. 33. This is achieved

in this work.

In Sect. II, we give a concise and self-contained presentation of

the QCB model. The basic assumptions of the model will be simply stated

without recalling their justifications discussed in Ref. 29. We then derive,

in Sect. Ill, formalisms showing analylitlcally how the NN relative wave

function, P- and S-matrix behave in the intermediate energy region where the

total collision energy can be equal to or larger than the Bag mass. In Sect.

IV, we present numerical results to reveal the dynamical content of the QCB

model, and show explicitly how the uncertainty arises in the ITEP's approach



to fit the data. We then show that the parameters of the Bag-excitation

mechanism HTJ_Ĵ J can be more rigorously determined from the data if the concept

of the Chiral/Cloudy Bag model is used to allow the presence of the meson-

exchange mechanism inside the Bag region. Section V is devoted to the

discussion of future developments and possible applications of the model in

the study of quark degrees of freedom in nuclei.

II. THE QCB MODEL

We start with the assumption that the total wave function of a six-

quark system consists of two components

I V * I V + CD(E)ID> *

The first component is of the following cluster fora in coordinate space

XE(?) |«c(it1,f2)> , (2.2)

where

* <KR2)> (2.3)

with

+ 1 -t- + +
Rl * 3 (rl + r2 + r3

+ 1 + + +
R2 ' 3 (r4 + r5 + r 6 )

* " I (R1 " ̂ 2} (2*4)



Here r. denotes the position of each quark, $(R ) is the internal wave

function of a color singlet three-quark system centered at the position

R , and Xc(r) describes the relative motion between two clusters,
i E

The second component D> of Eq. (2.1) describes a confined six-quark

Bag state. By projecting the SchrBdinger equation onto the cluster component

I* > and the six-quark Bag component |D>, we have

<• )(H-E)U > Y (?) " C (E) <• |(E-H)|D> (2.5a)
c • • c Lt D c' '

and

<D|(H-E)|D> C (E) - <D|(E-H)U > Xr,(r) (2.5b)
i * D ' ' C E

To proceed, it is necessary to define all of the matrix elements in

Eq. (2.5). We assume that the matrix element of the right hand side of Eq.

(2.5a) is of the form of the usual SchrBdinger equation for NN potential

scattering

«e|(H-E)|#c>

- [- 2^ V2 + V(r",E) - El xE(?) • (2.6)

where u is the reduced mass of two nucleons and V(r,E) is an interaction

potential between two clusters. The success of the meson-exchange model of

nuclear force suggests that when the distance between two color singlet

clusters is larger than a certain length scale d, the interaction potential

V(r,E) can be effectively described by meson-exchange mechanisms despite the

basic mechanism known to be the QCD quark-gluon processes. For simplicity, we

assume that



V(r,E) « 0 , r < d

* VNN(r'E) '

where v ^ is taken to be the Paris potential-" (retaininlng its original

energy-dependence). In our numerical calculation, we will also consider the

Reid potential in defining v ^ . It Is important to note here that the

length scale d is a parameter determining the extent to which the basic quark

dynamics can be effectively described by the exchange of mesons. In consider-

ing the Paris potential, it is justified to set d to be as short as hc/ma =

0.5 fa in order to account for all of the one-pion and two-pion exchange

mechanisms deduced from the Chiral »N and irir dynamics. The choice of d turns

out to be crucial in the fit to the data. This will be discussed in detail

later.

The matrix element between two six-quark Bag states is assumed to be

<D|(H-E)|D> - Mp - E (2.8)

The mass Mp is taken from the six-quark Bag model calculation by.37-39 I t 8

value in the consider SQ channel Is predicted to be about 2200 MeV. It is

easy to verify that the uncertainties involved In the Bag parameters allow the

variation of this value by about + 5Z. We will use the value 2159 MeV

extracted from the P-matrix analysis of Ref. 27, which seems to give the best

fit.

The matrix element of (H-E) between a cluster state |*c> and a

confined Bag state |D> IS certainly much more difficult to define precisely.

In QCB, It is assumed to be an energy-dependent form



<*JH-E|D> - fD(E,r)

r < b

f*(E,r) , (2.9)

where the parameter b roughly characterizes the size of the Bag. Substituting

Eqs. (2.6)-(2.9) Into Eq. (2.5) and performing some straightforward algebra,

we get

f (r E)
[- jf ? + V(r,E) - E] v (?) - - I D_ ' / f(r"',E) X (?•) d?' (2.10)

2V E D E-Mp E

for describing the relative motion of two nucleons. The Bag component can

then be obtained from the scattering wave function

CD(E) - ̂ - f f*(E,?) xE(r") dr" . (2.11)

The transition form factor fD(E,r) has to be treated phenomeno-

logically since a clear picture of QCD confinement mechanism is still not

29
available. In the ITEP approach, some effort has been made to relate

fD(E,r) to a resonanting group formulation of a six-quark system. No similar

attempt will be made here. It is more useful to simply indicate that their

model is designed to generate the following physical properties:

(a) The nonlocal interaction on the right- hand side of Eq. (2.10) should

contain & term which lias the same linear energy-dependence of the Paris

potential, which defines, via Eq. (2.7), the background meson-exchange

interaction.

(b) At E « Mp the short-range dynamics must be only described by quark "*

configuration and hence at this energy the NN relative wave function



X_(r) must be completely excluded from the Bag region r < b for any
E
choice of the background potential characterized by the length scale d In

Eq. (2.7).

24
(c) Following the Interpretation by Jaffe and Low, the resulting scattering

P-matrix must have a pole at E » M^.

The property (a) can be obtained by keeping only the leading energy-

dependent term In the Taylor expansion of the form factor f(r,E) about the Bag

energy Mp

fD(r,E) - fo(r,MD) + (E-MD> f^r.Mp) (2.12a)

As was first pointed out by Simonov and will be explicitly demonstrated

later in this paper, the properties (b) and (c) can then be obtained by

assuming that the energy independent term fQ in Eq. (2.12a) is localized at

the distance b. To make contact with the ITEP model, we follow their approach

and take

f 0 ( r ' V * " c5(r"b) (2.12b)

The energy-dependent term is assumed to be a volume-coupling form

e(b-r) x sin ^ , (2.12c)

The form Eq. (2.12c) is suggested in a resonant group formulation by

29
Simonov.

Equation (2.7) and Eqs. (2.10)-(2.12) completely define the QCB

model. We now turn to develop a method of solving the NN scattering problem.



10

III. NN SCATTERING IN QCB MODEL

In the partial wave representation, the radial part of the scat-

tering Eq. (2.10) for an uncoupled NN channel takes the following form

(suppress all channel quantum numbers except the relative orbital angular

momentum I)

2

{&_ _ H*.+l) _ 2y V(r,E) + k
2] u (kr)

dr r

rfD(r,E)
^ / fD(r',E) ut(kr') r'dr' (3.1)

1 2
where E - 5— k and u (r) » rx.(r) is the usual radial wave function. The

most Important feature of this differential-integral equation is the

appearance of an energy-dependent nonlocal Interaction, which becomes infinite

at E * MQ« Clearly, at this energy there will have an infinite potential well

and the incoming NN wave will be completely reflected at the distance b. This

means that the short-range dynamics at E - Mp is only described by the Bag

configuration. As the collision energy starts to differ front the Bag mass MQ,

the incoming wave can penetrate this nonlocal potential well and hence the

cluster component can also exist inside the Bag region. This interesting

energy-dependence plays an important role in describing NN scattering in the

energy region where the total collision energy in c m . frame can be larger

than the Bag mass Mp. For Mp = 2200 MeV in 1S Q channel, this interesting

enorgy region is around 650 MeV incident nucleon energy in laboratory-frame.

We therefore argue that the QCM parameters can be sensibly determined only

when the NN data up to 1 GeV laboratory-energy is fitted. The approach of

Ref. 11, which also makes use of QCB model, only considers NN data below 300

MeV.
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Following the approach by Siraonov, we solve Eq. (3.1) by the

Green's function method. The procedure Is to first construct a distorted

Green's function from the meson-exchange Interaction V(r,E)

_ 2v v ( r E ) + k 2 ] G j t ( r > r. > £ ) „ 6(r-r') (3.2)

dr r

The solution of Eq. (3.2) is

Gt(r,r',E) - - 2yk

where £ and £v are respectively the regular and irregular solutions of

the radial SchrSdlnger equation

1 . 2 2
dr r

with the boundary conditions

v ( r ) E ) + k2j g(i) ( k r ) . 0 ( 3 < 4 )

r1 + l r • 0

216 ( 3' 5 a )

irh(+)(kr)

e

r~* r • 0

(3.5b)

and

« ) - j (kr) + 1 n (k
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Here 6. is the phase shift due to the interaction V(r,E), j. and n» are

respectively the regular and irregular modified spherical Bessel functions.

By using the property Eq. (3.2) and carrying out some algebraic derivations,

the scattering solution of Eq. (3.1) with only one Bag state can be written as

(the corresponding formulation with several Bag states is straightforward)

m / G (r,r\E) f (r\E) r'dr'
«,(kr) - V \kr) + _ ,,x X. n(E) (3.6)

where

XJl,D(E) * ' 4 1 > ( k r ) fD ( F' E > rdr (3*7)

/ f*(r',E) Gt(r',r,E) fD(r,E) rdr r'dr' (3.8)

The quality £D is the self-energy of the Bag state due to its coupling to the

NM channel. The S-matrix is then extracted by taking the limit r — > « of Eq.

(3.6)

with
215 -4tfki X (E) X (E)

St(E) - e * + E _ *»"_ z ( E j
U (3.9)

Here we also define

- , fl) *
Xt,D ( E ) * / Cl ( k r ) f D ( r > E )

Equation (3.9) shows explicitly chat the coupling to a Bag state

causes a pole in the S matrix. The position of the pole in the complex energy

plane is determined by the following nonlinear equation
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E - E + 1 E (3-11)
p R I

Clearly, If the imaginary part Ej of the pole position Is small, the coupling

to the Bag state then generates a strong energy dependence in the S-matrix and

its corresponding scattering observables. In this way the Bag state will

correspond to the so-called dibaryon resonance. If this is not the case the

role of the Bag state is merely to provide a microscopic picture of the short-

range mechanism.

Next we want to show that the solution of Eq. (3.1) exhibits the

properties (b) and (c) mentioned In Sect. II. To do this, it is sufficient to

consider Eq. (3.1) in the energy region near M~. Because of the singular

nature of 1/(E-MD), the contribution from the energy-dependent part of the

transiton form factor fD(r,E), (Eq. (2.12)) to the right side of Eq. .(3.1)

can be neglected at the E • MD limit. Me then have : :.

rd!_ _
 t ( W _ 2 p v ( r E ) + k2

|c |2b2u (kb)
• 2|i 6(r-b) , E + IL (3 .

D

In this special kinematic regions near E - MD, Eqs. (3.7) and (3.8) becomes

- cb

| 2b 2- | c | 2 b 2 G^b.b.E)

where
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The wave function Eq. (3.6) also takes a simple form

2 2 (1)
... c b G(r,b,E) K \kb)

u,(kr) - C^1}(kr) + =-= * (3.13)
E - ^ - c \T G(b,b,E)

Because of the r-dependence of the Green's function Eq.(3.3), the wave

function inside the region defined by the distance b becomes

u,
c2b2(-2pk ̂  W ) ^ (kb»

* 5-5*
E - M - c2b2 G (b,b)

G (b.b.E)
5

E - Mp - c^b^ G (b.b.E)

K — M_

j 52 (

E - Mp - c b G£(b,b,E)

Hence, at E * M-, u, * 0 In the entire region r < b. It is necessary to

stress here that this is true for any choice of meson-exchange interaction

V(r,E) and any form of the volume-coupling term f^(r,Mp). This is the desired

property (b) listed in Sect. II. It means that the hadronic and quark phases

are separated completely only at the energy E • Mp. In the other energy

region E * M~, the cluster component in QCB is also present in the Bag

region. This is a reasonable physical picture since we should not expect that

the short-range quark dynamics at all energies can be described satisfactorily

by the excitation of one or few low-lying Bag states.

To show that our Haailtonian formulation can yield the P-matrix

interpretation of the Bag solution, we again consider the scattering in the
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energy region near the Bag energy E = M_. Integrating Eq. (3.12) over a small

region 2s + 0 around the point r • b and using the continuity of wave function

u (b+e) - u (b-e) , £ + 0 (3.15a)

we have - -
2u|crb u (b) e -»• 0

ul(b+e) - uj(b-e) - = r~ (3.15b)
1 * E ~ "D E * MD

The P-matrix is defined as

bu!(b+e)

P,(E) TZTT- e + ° (3-16)
I u (b+e)

By using Eq. (3.15), we have

| 2b 2bu'(b-e) 2g|c|2b2

+
E - M D

By using Eq. (3.14) to evaluate the first term of Eq. (3.17), we obtain

2p|c|2b2

Pt(E) - Pt(E) + E _ M (3.18)

where the background term P. is only determined by the wave function

calculated from the background meson-exchange interaction through Eqs.

(3.4)-(3.5)

VE)1
( b )

We see that for any form of the background meson-exchange interaction V, the

P-matrix Eq. (3.18) has a pole at E - M_. According to the interpretation by
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Jaffe and Low, we therefore can use the Bag model calculation to define the

mass MJJ of the six-quark state D in our Hamiltonian formulation of the

problem. Equation (3.18) was first asserted by Simonov. " We want to point

out that for an energy-dependent form factor Eq. (2.12), Eq. (3.18) is only

valid in the energy region very close to the Bag mass M_, where the scattering

equation takes the form of Eq. (3.12).

It is interesting to express the S-matrix in terms of P-matrix

bh("}(b) - (P.(E)-l) hj'^b)
St(E) ^-+y * ^y— (3-20)

bhj ; (b) - (Pt(E)-l) hj >(b)

~(+)
where h is the solution of the radial equation (3.4) with the boundary

condition

At E + Mp the background tern P of Eq. (3.18) can be neglected, we then have

V V • ̂ =5^ ' E * "D (3-22)

and hence

(3.23)

In the absence of any background meson-exchange interaction V - 0 we have for

I » 0 s-wave scattering
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VV - - V (3-24)
with 2

M . 2m + — (3.25)
L) ID

Equation (3.24) shows an interesting feature of QCB. If the background meson-

exchange Interaction is weak in the energy region near the Bag mass MQ, the

phase-shift data at E - MD is directly related to the Bag parameters. With Mp

= 2200 MeV in the considered *SQ channel, it is found that b = 1.4 fin. The

effect due to the background interaction with d > 0.6 fm (Eq. (2.7)) does not

change this value too much. This value of b is not too different from that

used in all P-matrix analysis.2*"27 We, therefore, use b « 1.4 f« in all of

the calculating presented in this paper.

IV. RESULTS AND DISCUSSIONS

With the choice JL. - 2159 MeV and b « 1.4 fm, the parameters of the

Quark Compound Bag (QCB) model defined in Sect. II are: i) the cutoff

parameter d In Eq. (2.7) for defining the extent to which a chosen NN

potential should be used to describe the meson-exchange mechanism, ii) c and x

for defining the strength of the transition form factor Eq. C2.12). Our task

is to examine whether the NN SQ phase shift up to 1 GeV laboratory energy can

o
be fitted by varying these three parameters in an x fit.

It is most desirable to have a model in which the short-range

dynamics is entirely described by the excitation of a six-quark Bag, and the

meson-exchange interaction is excluded completely from the Bag region. In our

formulation, this simplest model can be defined by setting d « b - l.A fm in

defining the background meson-exchange interaction (Eq. (2.7)). This model

will be called One-pole QCB, when only the lowest Bag state with fL « 2159 MeV

is kept.
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The best fit by the One-pole QCB Is the solid curve shown in Fig.

1. The resulting parameters are listed in Table I. We see that while the

data in the high energy region can be fitted, the model cannot provide enough

attraction to fit the low energy data. In Fig. 1 we also show the result

(dashed curve) with the meson-exchange interaction V turned off. Clearly the

one pion-exchange at r > d = 1.4 fm contained in V is an important source of

the attraction in the low energy region, but it is not enough to fit the data.

To obtain a satisfactory description of the phase shift, we need to

include additional attractive mechanisms. The approach taken by the ITEP

group ~ is to include a coupling with a second Bag state with a much higher

mass. The fit by this Two-pole QCB is the solid curve shown in Fig. 2. In

Fig. 2, we also show that the effects when to the coupling to the second Bag

state or the meson-exchange interaction V is turned off. Clearly, the

attraction provided by the second Bag state is indispensable in the fit to the

data in the low energy region. However, we find that the fit to the data does

not uniquely determine the coupling to the higher mass second Bag. In Table

II we list four sets of the parameters which give about the sane x value.

The parameters c^ and xj for the coupling to the lowest Bag state is very well

constrained by the data, but the allowed parameters of the higher nass second

Bag state are rather arbitrary (we set the volume-coupling to the higher Bag

state zero, x- ~ 0, for simplicity). This makes the Interpretation of the

second Bag state rather uncertain since we cannot identify it with the Bag

37—39
model prediction. Its implication in the application of the model in

nuclear calculations, which is one of our objectives as stated in Sect. I,

will be unclear. This uncertainty probably suggests the limitation of the

ITEPp QCB model, since it is obvious that we can include as many as higher

mass Bag states but still retain the same fit to the data up to 1 GeV.
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We now depart from the ITEP approach and propose a model which is

consistent with the suggestion of Ref. 28 and can be qualitatively justified

by the notion of the Chiral invariance. The model Is simply to allow the

meson-exchange interaction V defined by the Paris potential also exists inside

the Bag region; i.e. setting the cutoff parameter of Eq. (2.7) to be less than

the distance b = 1.4 fm. We justify this model by the following arguments.

It is now well recognized that the low energy data can be more realistically

described by extending the MIT Bag model to include the pion cloud, according

to the well-established principle of Chiral invariance. The resulting

Cloudy/Chiral Bag model proves to be reasonably successful in describing the

properties of nucleon and A, as well as the low energy irN scattering. It is

therefore reasonable to assume that when two Cloudy nucleons overlap there

must exist a region in which the Interaction between two three-quark clusters

looks like two- or multi-plon exchange. It is our assumption that this effect

in the region r £ 0.6 fm is already included in the Paris potential.^5 To be

more consistent with the Chiral dynamics contained in the Paris potential, we

retain its original linear energy dependence in our model. As discussed in

Sect. II, this is also the reason why the form of transition form factor Eq.

(2.12) is chosen. Of course, the included intermediate range meson-exchange

Interaction has to compete with the Bag excitation mechanism which can happen

at a much larger distance b ~ 1.4 fm. This two-mechanism picture is

consistent with the irNN formulation of Lee and Matsuyama. At this point it

is important to note here that this extended QCB, called Cloudy QCB from now

on, still retains all of the properties discussed in Sect. III. In

particular, we see from Eq. (3.14) that the clear-cut separation of the Bag

and two-cluster configuration still exist at E - MQ even the background meson-

exchange interaction is now allowed to exist inside the Bag region.
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To Investigate the Cloudy QCB, we allow the parameter d of Eq. (2.7)

2
along with the Bag excitation parameters c and x to vary In our x fit to the

1 S Q phase shift data. We first find that the Cloudy QCB cannot fit the data

well If the cutoff parameter d Is larger than .8 ftn. As shown In Table III,

with d » 0.8 fra the x *s already very large. With d = .65 fm we can obtain a

fit which is as good as the solid curve of Fig. 2. The resulting Bag

excitation parameters c an x are almost identical to the values of c. and x^

of Sharp Two-pole QCB model (see Table II). This further establishes the

close relationship between the lowest Bag state predicted by the theory and

the NN phase shift data within QCB.

We now turn to analyze the dynamical content of the Cloudy QCB model

In some detail. First, we show in Fig. 3 that the energy dependent part of

the transition form factor Eq. (2.12a) Is essential in the fit. When x of Eq.

(2.12c) is set to zero, the phase shift behaves smoothly only for a very large

c > 550. In this strong 6-functlon coupling limit, the background interaction

is completely negligible and the phase shift Is only determined by the Bag

mass MQ, and radius b, as shown in Eq. (3.24). By decreasing the value of c

one can certainly reduce the attraction in the low energy region and repulsion

in the high-energy region. But the pole of the S-matrix, second term of Eq.

(3.9), is then shifted to a position very close to the real axis and hence the

phase-shift starts to develop strong energy dependence. Namely, the model

with x m 0 will generate an unobserved "dlbaryon resonance" If we want to

reduce the attraction In the low energy region.

The importance of the energy dependent part of the transition form

factor is further illustrated in Fig. 4. We see that If we decrease x from

the fitted value x • 1.3 to x • 0.5 (Fig. 4a) the model gradually generates

visible "dlbaryon resonance", In contraction with the data. When x is
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increased to a larger value, the calculated phase shifts become too repulsive

(Fig. 4b). It is obvious from Eq. (3.1) that the 6-function coupling is to

generate attraction at E < M_, and repulsion at E > hL. The energy dependent

volume coupling fj is to generate repulsive at all energies. The fit is due

to a delicate balance between these two different Bag excitation mechanisms.

Finally, we want to examine how the Bag excitation dynamics

determine the NN relative wave function. We see in Fig. 5 that at E » M_

(Ec.m. * ^ ° M e V ) t n e wave function (solid curve) inside the Bag region r < b

is completely suppressed, as expected from Eq. (3.14). In other energy

regions, the short-range dynamics is described by both the two-cluster and Bag

configurations and hence is not excluded from the Bag region. Needless to

32
say, our approach is radically different from the models by Kim, and

Kisslinger et al.

In Fig. 6, we compare the NN wave function of the Cloudy QCB at E -

M_ with the wave function calculated from the usual potential scattering

equation with the Paris potential. It is clear that the two models give a

very different description in the region r < b. We, therefore, expect that

they will have very different predictions of any NN reactions which are nainly

determined by short-range mechanism?.

V. DISCUSSION

We have explored the dynamical content of the Quark Compound Bag

(QCB) model in the intermediate energy region. It has been shown both

analytically and numerically that a large part of the short-range NN dynamics

can be related to the MIT Bag state through a vertex interaction Hj^+p

parameterized in the form of Eq. (2.12). However, a fit to the data cannot be

achieved without introducing an additional attractive mechanism. We have
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verified explicitly that this needed attractive force is generated in the QCB

model of ITEP by introducing a second pole, which cannot be identified with

the Bag model prediction. We have shown that this problem can be resolved by

simply allowing the existence of meson-exchange mechanisms in the Bag region.

We argue that this extension of the QCB model is consistent with the

Chiral/Cloudy Bag model and the original construction of the Paris potential.

The resulting Cloudy QCB model proves to be very successful in describing the

data.

The Cloudy QCB model is consistent with the irNN formulation of Ref.

28. To explore the extent to which the difficulties encountered in the study

of intermediate energy NN and wd reactions can be resolved we need to follow

the unitary scattering theory developed in Ref. 28 to account for the A

excitation and pion production. In fact, we expect from the cfp expansion

of the Bag wave function that the dominant transition in J • 2, T * 1 channel

is D* NA (5S2) + *NN.

To end this paper, we would like to point out that the Cloudy QCB

model can perhaps be used to predict the probability of finding an "off-shell"

six-quark subsystem in nuclei. In our approach, this prediction is completely

determined in the fit up to the NN data In the intermediate energy region

where this six-quark system is excited "on-shell". Clearly our approach is

radically different from the model by Kim et al.J* and the model by Kisslinger

et al. The information of intermediate energy NN scattering is never used

to constraint the parameters of their model. The second important implication

of the work is that our Cloudy QCB model can be used to calculate the one-pion

exchange interaction between a six-quark subsystem and a nucleon, since the

pion coupling with a six-quark Bag can be calculated by using the method of

Oft

Mulder and Thomas. Specifically, we can calculate the three-nucleon force
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through the excitation of an "off-shell" six-quark Bag state; a calculation

never attemped before. These two works are in progress and will be published

elsewhere. Of course the extension of the present work, to include A

excitation and pion production is the major challenge in developing an

accurate wNN theory for a fundamental description of intermediate energy

physics.
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TABLE I. Parameters of the transition form

factor Eq. (2.12) in the One-pole QCB model, c Is In

the unit of Mev-f1^2, x Is unitless, MD is the mass of

the Bag state.

MD(MeV)

2159

d - b(fa)

1.4

c

174.06 1

X

.1043

2
X -value

899

TABLE II. Sane as Table I except for the Two-pole QCB model.

d * b(fn) Mn (MeV) c, x. C2

151

174

195

213

.18

.50

.06

.66

-2

0

0

0

0

X

1

2

2

2

o

.97

.05

.10

.13

1.4 2159 167.43 1.1754 3376.512

2159 167.62 1.1723 3876.512

2159 167.74 1.1706 4376.512

2159 167.82 1.1695 4876.512



28

TABLE III. Same as Table I except for the Cloudy

QCB model.

MD(MeV) d(fm) b(fm) c x x2

2159 0.80 1.4 170.86 1.0459 26.37

2159 0.65 1.4 166.14 1.3064 3.13
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FIGURE CAPTIONS

1 Ai

Fig. 1 The solid curve is the best fit to the NN So phase shift within the

One-pole model. The dashed curve is obtained when the background

meson-exchange interaction V (Eq. (2.17)) is turned off.

Fig. 2 The solid curve is the best fit to the NN 1S Q phase shift*
1 within the

Two-pole QCB model. The dashed curves are obtained when either the

background meson-exchange interaction V (Eq. (2.17)) or the coupling

to the higher mass second Bag state is set to zero.

Fig. 3 The dependence of the predicted NN SQ phase shift on the strength c

of the transition form factor (Eq. (2.12)). In this search of the fit

to the data, the energy independent term of Eq. (2.12) is set to zero

(x - 0).

Fig. 4 The dependence of the predicted NN SQ phase shift on the strength x

of the transition form factor (Eq. (2.12)).

Fig. 5 The relative NN wave functions calculated from the Cloudy QCB model in

the energy region near the Bag mass Mp • 2159 MeV (equivalent to

Ec.m. * 3 0° M e V>-
Fig. 6 Comparison of the relative NN wave function (solid) calculated at

E - Mj. (E. - 600 MeV) from the QCB with that from the wave function

(dashed) calculated from usual potential scattering with the Paris

potential.
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