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ABSTRACT
A Quark Compound Bag model has been constructed to
describe NN s—wave scattering up to 1 GeV. The model contains a

vertex interaction Hp .o for describing the excitation of a con-

fined six—quark Bag state, and a meson—-exchange interaction
obtained from modifying the phenomenological core of the Paris
potential. Explicit formalisms and numerical results are
pfesented to reveal the role of the Bag excitation mechanism in
determining the relative wave function, P- and S-matrix of NN
scattering. We explore the merit as well as the shortcoming of
the Quark Compound Bag model developed by the ITEP group. It is
shown that the parameters of the vertex interaction Hp.yy can be
more rigorously determined from the data if the notation of the
Chiral/Cloudy Bag model is used to allow the presence of the
background meson~exchange interaction inside Bag excitation

region. The application of the model in the study of quark
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I. INTRODUCTION

The development of Quantum Chromodynamics (QCD) has motivated a lot
of theoretical investigations of quark degrees of freedom in nuclei. 1In
congsidering the simplest two-nucleon system, the focus has been on the
calculation of the short-range part of nuclear force from various QCD-
motivated models of multiquark systems. This has been reasonably successful
in either the nonrelativistic quark potential mode1!™8 or the relativistic Bag
model.g-ll For nuclear studies, we need to combine the resulting short-range
quark picrure and the well-studied meson-exchange mechanisms to construct a
model which can quantitatively describe the NN data. So far the focus has
been on the development of models for describing low energy NN data. In this
work we report the progress we have made in extending this effort to the
intermediate energy region.

Contrary to the situation in the low energy region (below the pion
production threshold), the meson—exchange model of nuclear force has
encountered dit'ficult:ieslz—21 in describing the data of intermediate energy NN
and wd rections; in particular the data of polarization observables. The
results reported in Ref. 22 have suggested that the problem could be due to
the conventional phenomenological parameterization of the short-range part of
the baryon—-baryon (BB) interaction in terms of meson—-baryon-baryon form
factors or a convenient local form in coordinate space. Motivated by the
success of the MIT Bag nodel23 and the subsequent application of the model in

24-27 22,28 suggested

the P-matrix analysis of NN scattering, Lee and Matsuyama
that a possible way to resolve the problem is to describe a part, but not all,
of the short-range barycn—baryon dynamics by a vertex interaction Hp.ggs where

BB can be an NN, NA or AA state and D is identified as a six-quark MIT Bag

state. They have also deve10ped28 a unitary wNN scattering theory which



allows a systematic study of the effect of the Bag excitation mechanism HD*BB
on all NN and nd reactions. To explore the dynamical consequence of the
vertex interaction HD+NN' we will carry out a detalled analysis of NN s-wave
scattering up to 1 GeV. A simplicity of this study is that the inelasticity
in this NN channel is small and hence the excitation of A and the assoclated
pion production can be neglected. In this approximation the formulition
presented in Sect. IV of Ref. 28 (namely its Eqs. (4.12)) is completely
equivalent to the Quark Compound Bag (QCB) model proposed earlier by
Simonov.29 We, therefore, proceed by first following closely his coordinate-
space formulation to explore, in detail, the dynamical content of the QCB
model. This study then leads us to develop a new model which is consistent
with the general »NN formulation of Ref. 28.

The essence of the Quark Compound Bag (QCB) model29 is to postulate
that two colliding color singlet three—quark clusters can have a direct
transition to a color singlet six-quark Bag state when the distance between
two clusters is within a narrow range around a distance which roughly
characterizes the size of the Bag. This notion 18 formulated by axsuming that
the Bag excitation mechanism Hp.yy 18 localized at b (the simplest form is ~
§(r-b)), where D is the considered Bag state with a mass M;. As pointed out
by Simonov29 and will be explicitly shown in this paper, the resulting NN
scattering P-matrix has a pole at E = HD and hence the theory is consistent

24

with the iInterpretation by Jaffe and Low. This Hamiltonian formulation of

the P-matrix interpretation characterizes the essential difference between the
30-32

QCB model and the other approaches which are also motivated by the Bag

model. 1In particular, the usual R-matrix separation of the total wave
function into a six-quark component confined within a given radius L) and a

two-hadron component at r > Ty is not assumed in the QCB model. 1Instead, the



relative importance between these two components Is determined by the strength
of Bag-excitation mechanism HD~NN relative to the background meson-exchange
interaction. It depends strongly on the collision energy, in particular in
the region where the total collisfon energy 1is close to the Bag mass. For NN
s-wave scattering considered in this paper, this interesting region is reached
by about 650 MeV incident nucleon in the laboratory frame.

The QCB model has been actively pursued by the ITEP (Institute of
29,33,34

Theoretical and Experimental Physics) group in the last few years.

However, as will be demonstrated explicitly in Sect. IV, their fit to the NN
data requires a "second" QCB pole which cannot be related unambiguously to the
parameters of the Bag model or the background meson—exchange mechanism. Thisg
uncertainty has also been revealed in a detailed P-matrix analysis of NN data
by Bakker et al.27 For puclear studies, it is necessary to introduce more
dynamical constraint to resolve this problem. In the language of P-matrix
analysis,24_27 we need to develop a theory for defining the background P-
matrix, which has been parameterized in terms of “"compensation™ poles in Refs.
24 and 25, a constant plus a antibound state pole in Ref. 29, a constant plus
a distant pole in Ref. 27, and a second QCB pole in Ref. 33. This is achieved
in this work.

In Sect. II, we give a concise and self-contained presentation of
the QCB model. The basic assumptions of the model will be simply stated
without recalling their justifications discussed in Ref. 29. We then derive,
in Sect. III, formalisms showing analylitically how the NN relative wave
function, P- and S-matrix behave in the intermediate energy region where the
total collision energy can be equal to or larger than the Bag mass. In Sect.
IV, we present numerical results to reveal the dynamical content of the QCB

model, and show explicitly how the uncertalnty arises in the ITEP's approach



to fit the data. We then show that the parameters of the Bag-excitation
mechanism Hp_ gy can be more rigorously determined from the data 1f the concept
of the Chiral/Cloudy Bag model is used to allow the presence of the meson-

exchange mechanism inside the Bag reglon. Section V is devoted to the

discussion of future developments and possible applications of the model in

the study of quark degrees of freedom in nuclei.

II. THE QCB MODEL

We start with the assumption that the total wave function of a six-

quark system consists of two components

|‘”E> = |ep> + cp(E)[D> . (2.1)
The first component is of the following cluster form in coordinate space
> >
8.(r) = <rl¢E>
> > >
= xp(0) |e (R K>, (2.2)
where
> > > >
¢ (R LR, = [6(R)) x $(R,)> (2.3)
with
ﬁ 1 » + > + >
p T3 (f vy Ty
R =i + 1. +1,)
2 =3 (t, trgtr,
> 1 » >
L =5 (R - R,) (2.4)



Here ry denotes the position of each quark, ¢(Ei) is the internal wave
function of a color singlet three—quark system centered at the position
El’ and xE(;) describes the relative motion between two clusters.

The second component 'D) of Eq. (2.1) describes a confined six—quark

Bag state. By projecting the Schr¥dinger equation onto the cluster component

@c> and the six-quark Bag component |D>, we have

<oc](u—5)]¢c> Xg (F) = C/(E) <@c|(E—H)'D> (2.5a)
and

<D| (H-E)|D> C_(E) = <D|(E-R)|¢ > xE(F) (2.5b)

To proceed, it is necessary to define all of the matrix elements in
Eq. (2.5). We assume that the matrix element of the right hand side of Eq.
(2.5a) 1s of the form of the usual Schr¥dinger equation for NN potential

scattering

<o _|(B-E) [0 > xu(F)

- - -,ﬁ ¥ + v(,E) - E) xg(F) - (2.6)
where u is the reduced mass of two nucleons and V(;,E) is an interaction
potential between two clusters. The success of the meson—exchange model of
nuclear force suggests that when the distance between two color singlet
clusters 1is larger than a certain length scale d, the interaction potential
V(;,E) can be effectively described by meson-exchange mechanisms despite the

basic mechanism known to be the QCD quark-gluon processes. For simplicity, we

agsume that



>
V(r,E) = 0 , r<d
>
= vNN(r,E) s r»>d (2.7)

where vy is taken to be the Paris potential35 (retainining its original
energy-dependence). In our numerical calculation, we will also consider the
Reid36 potential in defining VNN® It 1s important to note here that the
length scale d is a parameter determining the extent to which the basic quark
dynamics can be effectively described by the exchange of mesons. In consider-
ing the Paris potential, it is justified to set d to be as short as he/mo =
0.5 fm in order to account for all of the one-pion and two—-pion exchange
mechanisms deduced from the Chiral #N and 7n dynamics. The choice of d turmns
out to be crucial in the fit to the data. This will be discussed in detail
later.

The matrix element between two six-quark Bag states is assumed to be

<p|(B-E)|D> = My - E (2.8)
The mass HD is taken from the six—-quark Bag model calculation by-37—39 Its
value in the consider 180 channel is predicted to be about 2200 MeV. It is
eagy to verify that the uncertainties involved in the Bag parameters allow the
variation of this value by about + 5Z. We will use the value 2159 MeV
extracted from the P-matrix analysis of Ref. 27, which seems to give the best
fic.

The matrix element of (H-E) between a cluster state °c> and a
confined Bag state |D> is certainly much more difficult to define precisely.

In QCB, it is assumed to be an energy-dependent form



<¢c|H—E|D> = £ (E,r)
*
<D|H—E|¢c> - £ (B, 1) , (2.9)

where the parameter b roughly characterizes the size of the Bag. Substituting

Eqs. (2.6)-(2.9) into Eq. (2.5) and performing some straightforward algebra,

we get
£0(F,E)
— b +> > +
- gy ¥+ VED - B g - - ) L [ £GE) x (B @ (2.10)

for describing the relative motion of two nucleons. The Bag component can
then be obtained from the scattering wave function

1 * + + +
CD(E) - —— f fD(E,r) xE(r) dr . (2.11)

EMp
The transition form factor fD(E,r) has to be treated phenomeno-
logically since a clear picture of QCD confinement mechanism is still not
available. In the ITEP approach,29 some effort has been made to relate
fD(E,r) to a resonanting group formulation of a six~quark system. No similar
attempt will be made here. It 1is more useful to simply indicate that their
model is designed to generate the following physical properties:

{a) The nonlocal interaction on the right- hand side of Eq. (2.10) should
contain & term which hizs the same linear energy-dependence of the Paris
potential, which defines, via Eq. (2.7), the background meson-exchange
interaction.

(b) At E = M, the short-range dynamics must be only described by quark -

configuration and hence at this energy the NN relative wave function



XE(;) must be completely excluded from the Bag region r < b for any

choice of the background potential characterized by the length scale d in

Eq. (2.7).
(c) Following the interpretation by Jaffe and Low,24 the resulting scattering

P-matrix must have a pole at E = M.

The proparty (a) can be obtained by keeping only the leading energy-

dependent term in the Taylor expansion of the form factor f(r,E) about the Bag

energy MD
fD(r,E) = fo(r,MD) + (E-MD) fl(r,MD) (2.12a)

As was first pointed out by Simonov29 and will be explicitly demonstrated
later in this paper, the properties (b) and (¢) can then be obtained by
assuming that the energy independent term f0 in Eq. (2.12a) 1is localized at

the distance b. To make contact with the ITEP model, we follow their approach

and take
fo(r,MD) = ~ ¢c¢§(r-b) (2.12b)
The energy-dependent term is assumed to be a volume-coupling form

r
fl(r,MD) = g(b-r) x sin 5 (2.12¢)

The form Eq. (2.12c¢) 1is suggested in a resonant group formulation by

Simonov.29

Equation (2.7) and Egs. (2.10)—(2.12) completely define the QCB

model. We now turn to develop a method of solving the NN scattering problem.



10

ITII. NN SCATTERING IN QCB MODEL
In the partial wave representation, the radial part of the scat-
tering Eq. (2.10) for an uncoupled NN channel takes the following form

(suppress all channel quantum numbers except the relative orbital angular

momentum £)

2

(s - HEL 5 vie,E) + k) u, (k)
ar2 2 £
T r
rfD(r,E) , , et
- ”’ETM'D—f Ep(r'E) uy(kr') r'dr @-1

where E = 5% kz and uz(r) - rxl(r) is the usual radial wave function. The
most important feature of this differential-integral equation is the
appearance of an energy-dependent nonlocalxinteraction, which becomes infinite
at E = M. Clearly, at this energy there will have an infinite potential well
and the incoming NN wave will be completely reflected at the distance b. This
means that the short-range dynamics at E = M is only described by the Bag
configuration. As the collision energy starts to differ from the Bag mass HD’
the incoming wave can penetrate this nonlocal potential well and hence the
cluster component can also exist inside the Bag region. This interesting
energy-dependence plays an important role In describing NN scattering in the
energy region where the total collision energy in c.m. frame can be larger
than the Bag mass Mj. For My = 2200 MeV in 1s0 channel, this interesting
encrgy region 18 around 650 MeV incident nucleon energy in laboratory-frame.
We therefore argue that the QCM parameters can be sensibly determined only
when the NN data up to 1 GeV laboratory-energy is fitted. The approach of

Ref. 11, which also makes use of QCB model, only considers NN data below 300

MeV.
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Following the approach by Simonov,29 we solve Eg. (3.1) by the
Green's function method. The procedure is to first construct a distorted

Green's function from the meson-exchange interaction V(r,E)

2
(4 - HELD - 9y v(e,E) + K2} ¢ (r,r",8) = 6(r—r") (3.2)
dr r

The solution of Eq. (3.2) is

(2)
]

(1

. (3.3)

G, (r,c",E) = = 2uk § (kr ) €, "(kr

3)

¢ :
where Eil) and 5;2) are regspectively the regular and irregular solutions of

the radial Schrédinger equation

2

% - ﬂ“—;l)- - 24 V(r,B) + k%] Egi)(kr) -0 (3.4)
dr r

with the boundary conditions

£ +1
e > T r+0
E(l)(kr) - (3.5a)
: Lo ey 4 a0t 9
— r| N (kr) + e N (kr)] r + e
—_— r~£ r+0
682 (k) (3.5b)
— irh§+)(kr) T+

and

hii)(kr) = J (k) £ 1 nz(kr) .
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Here El is the phase shift due to the interaction V(r,E), Jk and n, are
respectively the regular and irregular modified spherical Bessel functions.

By using the property Eq. (3.2) and carrying out some algebraic derivationmns,
the scattering solution of Eq. (3.1) with only one Bag state can be written as

{the corresponding formulation with several Bag states is straightforward)

f Gz(r,r',E) f£p(r',E) r'dr’

u k) = 60 qkr) + T X, o(E) (3.6)
D D ’
where
X, p(E) = f/ E:I)(kr) £,(r,E) rdr 3.7)
L(E) = f/ f;(r',E) G, (r',r,E) £ (r,E) rdr r'dr’ (3.8)

The quality L, is the self-energy of the Bag state due to its coupling to the

NN channel. The S-matrix is then extracted by taking the limit r —--> =« of Eq.

(3.6)

Fuy mmsr 7 () + 548 v o)
with _ .

218, ~4uki X, (E) X, _(E)
D D

Here we algo define

-~ (1) *

xg,n(E) -f €y (kr) fD(r,E) rdr (3.10)

Equation (3.9) shows explicitly chat the coupling to a Bag state
causes a pole in the S matrix. The position of the pole in the complex energy

plane is determined by the following nonlinear equation
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E -M ~I (E)=0, E =E_+ iE 3.1
v D D(p) R (3.11)

Clearly, 1f the imaginary part E; of the pole position is small, the coupling
to the Bag state then generates a strong energy dependence in the S-matrix and
its corresponding scattering observables. In this way the Bag state will
correspond to the so—-called dibaryon resonance. If this is not the case the
role of the Bag state is merely to provide a microscopic picture of the short-
range mechanism.

Next we want to show that the solution of Eq. (3.1) exhibits the
properties (b) and (c) mentioned in Sect. II. To do this, it is sufficient to
consider Eq. (3.1) in the energy region near HD. Because of the singular
nature of 1/(E-MD), the contribution from the energy—-dependent part of the
transiton form facter fD(r,E), (Eq. (2.12)) to the right side of Eq. ;3.1)

can be neglected at the E + Mp limit. We then have

d2 t(e+l) 2
[T = =3 - 2u V(r,E) + k7] u,(kr)
dr r
| | b2y o (kb)
E M B(r—b) . E +» HD (3-12)

In this special kinematic regions near E = My, Eqs. (3.7) and (3.8) becomes

(1)
X (E) = = cb £ ~"(kb)

I (E) = | | v ¢ 4 (bs,E)

where

(1)

G,(b,b,E) = ~ 2uk £ (2)

(kb) &, "(kb)
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The wave function Eq. (3.6) also takes a simple form

22 1
(1) ¢ b G(r,b,E) Ei )(kb)
uz(kr) =&, (kr) + 77 (3.13)
E—MD - ¢ b G(b,b,E)
Because of the r-dependence of the Green's function Eq.(3.3), the wave
function inside the region defined by the distance b becomes
2 1 2 1
- P62 -2ue £ ery £ P any) £ v
Uy TE* by (kD) ¥ 2.2
E - MD -c’b Gz(b,b)
czbzg(l)(kr) G _(b,b,E)
¢9) (] L
= &y T(kr) ¥ 7.2
E - My - c"b” G,(b,b,E)
E -
- Eil)(kr) :D (3.14)

E - M) - 2 G,(b,b,E)

Hence, at E = HD' u, = 0 in the entire region r < b. It is necessary to
stress here that this 1s true for any choice of meson—exchange interaction
V(r,E) and any form of the volume-coupling term fl(r'MD)' This 1is the desired
property (b) listed in Sect. II. It means that the hadronic and quark phases
are separated completely only at the energy E = My In the other energy
region E # MD’ the cluster component in QCB is also present in the Bag
region. This is a reasonable physical picture since we should not expect that
the short-range quark dynamics at all energies can be described satisfactorily
by the excitation of one or few low-lying Bag states.

To show that our Hamiltonian formulation can yield the P-matrix

interpretation of the Bag solution, we again consider the scattering in the
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energy region near the Bag energy E = MD. Integrating Eq. (3.12) over a small

region 2¢ + 0 around the point r = b and using the continuity of wave function

ul(b+e) = ul(b-e) , e+ 0 (3.15a)
we have
. 2u]e|*b%u, (b) e+ 0
u!(bte) ~ ul(b~g) = ———— ¢3.15b)
2 £ E MD E + M
D
The P-matrix 18 defined as
bui(b+e)
- —— 3.16
PL(E) ul(b+e) e+ 0 ( )
By using Eg. (3.15), we have
bu'(b-€) Zu‘clzbz
(3.17)

P,(E) = - + -
X uz(b €) E MD

By using Eq. (3.14) to evaluate the first term of Eq. (3.17), we obtain

2.2
) = B + ———Zulcl > 3.18

where the background term El is only determined by the wave function

calculated from the background meson—exchange iInteraction through Eqs.

(3.4)-(3.5)

-~ () bE:l)'(b)
P(E) = —Ffri— ™,
t IO

(3.19)

We see that for any form of the background meson-exchange interaction V, the

P-matrix Eq. (3.18) has a pole at E = MD' According to the interpretation by
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Jaffe and Low,24 we therefore can use the Bag model calcuiation to define the
mass Mp of the six-quark state D in our Hamiltonian formulation of the
problem. Equation (3.18) was first asserted by Simonov.2? We want to point
out that for an energy-dependent form factor Eq. (2.12), Eq. (3.18) 1is only
valid in the energy region very close to the Bag mass HD, where the scattering

equation takes the form of Eq. (3.12).

It {s intereeting to express the S-matrix in terms of P-matrix

bﬁi_)zb) - (P, (E)-1) 'ﬂ'!(z-)(b)
SI(E) - - ~(+)l ~(+) (3.20)

bh, (b) - (Pz(E)-—l) b, )

) is the solution of the radial equation (3.4) with the boundary

wher h
e hl

condition

B ) = 0P = 5,0k £ 10 (ko) (3.21)

r+»

At E + M, the background term Ez of Eq. (3.18) can be neglected, we then have

20 (2

o 2pptie

(M) = —E—'EBLL , E M (3.22)
RO (v)

S,(M) = -~y E+ M

~(+)
h, “(b)

and hence

246 (M)
e % (3.23)

In the absence of any background meson-exchange Interaction V = 0 we have for

£ = 0 s-wave scattering
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GO(MD) = - ka (3.24)
with 2
MD = 2m + Eg_ (3.25)

Equation (3.24) shows an interesting feature of QCB. Tf the background meson-
exchange interaction is weak in the energy region near the Bag mass My, the
phase-shift data at E -~ M 1s directly related to the Bag parameters. With M,
= 2200 MeV in the considered 150 channel, it is found that b = 1.4 fm. The
effect due to the background interaction with d » 0.6 fm (Eq. (2.7)) does not
change this value too much. This value of b is not too different from that
used in all P-matrix analysis.za*z7 We, therefore, use b = 1.4 fm in all of

the calculatins presented in this paper.

IV. RESULTS AND DISCUSSIONS
With the choice M = 2159 MeV and b = 1.4 fm, the parameters of the
Quark Compound Bag (QCB) model defined in Sect. II are: 1) the cutoff
parameter d in Eq. (2.7) for defining the extent to which a chosen NN
potential should be used to describe the meson—exchange mechanism, 1i) c and x
for defining the strength of the tramsition form factor Eq. (2.12). Our task

is to examine whether the NN 1

Sp phase shift up to 1 GeV laboratory energy cam
be fitted by varying these three parameters in an xz fic.

It is most desirable to have a model in which the short-range
dynamics is entirely described by the excitation of a six-quark Bag, and the
meson—exchange interaction is excluded completely from the Bag region. In our
formulation, this simplest model can be defined by setting d = b = 1.4 fm in
defining the background meson—exchange interaction (Eq. (2.7)). This model

will be called One-pole QCB, when only the lowest Bag state with HD = 2159 MeV

is kept.
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The best fit by the One-pole QCB is the solid curve shown 1in Fig.
1. The resulting parameters are listed in Table I. We see that while the
data in the high energy region can be fitted, the model cannot provide emough
attraction to fit the low energy data. In Fig. 1 we also show the result
(dashed curve) with the meson-exchange interaction V turned off. Clearly the
one plon-exchange at r > d = 1.4 fm contained in V is an important source of
the attraction in the low energy region, but it 1is not enough to fit the data.

To obtain a satisfactory description of the phase shkift, we need to
include additional attractive mechanisms. The approach taken by the ITEP
group33_34 is to include a coupling with a second Bag state with a much higher
mass. The fit by this Two-pole QCB is the solid curve shown in Fig. 2. In
Fig. 2, we also show that the effects when to the coupling to the second Bag
state or the meson-exchange interaction V is turned off. Clearly, the
attraction provided by the second Bag state is indispensable in the fit to the
data in the low energy region. However, we find that the fit to the data does

not uniquely determine the coupling to the higher mass second Bag. In Table

2

IT we 1list four sets of the parameters which give about the same x“ value.

The parameters c; and x; for the coupling to the lowest Bag state is very well
constrained by the data, but the allowed parameters of the higher mass second
Bag state are rather arbitrary (we set the volume-coupling to the higher Bag
state zero, X, = 0, for simplicity). This makes the interpretation of the
second Bag state rather uncertain since we cannot identify it with the Bag
model prediction.37—39 Its implication in the application of the model in
nuclear calculations, which is one of our objectives as stated in Sect. I,
will be unclear. This uncertainty probably suggests the limitation of the
ITEPp QCB model, since it 1is obvious that we can ilnclude as many as higher

mass Bag states but still retain the same fit to the data up to 1 GeV.



19

We now depart from the ITEP approach and propose a model which is
consistent with the suggestion of Ref. 28 and can be qualitatively justified
by the notion of the Chiral invariance. The model is simply to allow the
meson—~exchange interaction V defined by the Paris potential also exists inside
the Bag region; 1l.e. setting the cutoff parameter of Eq. (2.7) to be less than
the distance b = 1.4 fm. We justify this model by the following arguments.

It is now well recognized that the low energy data can be more realistically
described by extending the MIT Bag model to include the pion cloud, according
to the well-established principle of Chiral invariance. The resulting
Cloudy/Chiral Bag model40 proves to be reasonably successful in describing the
properties of nucleon and A, as well as the low energy nN scattering. It {is
therefore reasonable to assume that when two Cloudy nucleons overlap there
must exist a region in which the interaction between two three-quark clusters
looks like two- or multi-pion exchange. It is our assumption that this effect
in the region r » 0.6 im is already included in the Paris potential.35 To be
more consistent with the Chiral dynamics contained in the Paris potential, we
retain its original linear energy dependence in our model. As discussed in
Sect. II, this is also the reason why the form of transition form factor Eq.
(2.12) 1is chosen. Of course, the included intermediate range meson-exchange
interaction has to compete with the Bag excitation mechanism which can happen
at a much larger distance b = 1.4 fm. This two-mechanism plcture is
consistent with the wNN formulation of Lee and Matsuyama.28 At this point it
is important to note here that this extended QCB, called Cloudy QCB from now
on, still retains all of the properties discussed in Sect. III. 1In
particular, we see from Eq. (3.14) that the clear-cut separation of the Bag
and two-cluster configuration still exist at E = My even the background meson-

exchange interaction 1s now allowed to exist inside the Bag region.
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To investigate the Cloudy QCB, we allow the parameter d of Eq. (2.7)

along with the Bag excitation parameters c¢ and x to vary in our x2 fit to the

1So phase shift data. We first find that the Cloudy QCB cannot fit the data

well if the cutoff parameter d is larger than .8 fm. As shown in Table III,
with d = 0.8 fm the x2 is already very large. With d = .65 fm we can obtain a
fit which 1is as good as the solid curve of Fig. 2. The resulting Bag
excitation parameters ¢ an x are almost identical to the values of ¢ and X3
of Sharp Two—pole QCB model (see Table II). This further establishes the
close relationship between the lowest Bag state predicted by the theory and
the NN phase shift data within QCB.

We now turn to analyze the dynamical content of the Cloudy QCB model
in some detail. First, we show in Fig. 3 that the energy dependent part of
the transition form factor Eq. (2.12a) is essential in the fit. When x of Eq.
(2.12c) is set to zero, the phase shift behaves smoothly only for a very large
¢ > 550. In this strong §—function coupling limit, the background interaction
is completely negligible and the phase shift is only determined by the Bag
mass My, and radius b, as shown in Eq. (3.24). By decreasing the value of ¢
one can certainly reduce the attraction in the low energy region and repulsion
in the high—energy region. But the pole of the S—matrix, second term of Eq.
(3.9), is then shifted to a position very close to the real axis and hence the
phase-shift starts to develop strong energy dependence. Namely, the model
with x = 0 will generate an unobserved “dibaryon resonance” if we want to
reduce the attraction in the low energy region. h

The importance of the energy dependent part of the transition form
factor is further illustrated in Fig. 4. We see that 1f we decrease x from
the fitted value x = 1.3 to x = 0.5 (Fig. 4a) the model gradually generates

visible “dibaryon resonance”, in contraction with the data. When x is
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increased Eo a larger value, the calculated phase shifts become too repulsive
(Fig. 4b). It 1is obvious from Eq. (3.1) that the §-function coupling 1is to
generate attraction at E < MD' and repulsion at E > MD. The energy dependent
volume coupling f; is to generate repulsive at all energies. The fit is due
to a delicate balance between these two different Bag excitation mechanisms.
Finally, we want to examine how the Bag excitation dynamics
determine the NN relative wave function. We see in Fig. 5 that at E = MD
(E¢.m., = 600 MeV) the wave function (solid curve) 1nside the Bag region r < b
is completely suppressed, as expected from Eq. (3.14). In other energy
regions, the short-range dynamics is described by both the two-cluster and Bag
configurations and hence is not excluded from the Bag region. Needless to

say, our approach is radically different from the models by Kim,32 and

Kisslinger et al.31

In Fig. 6, we compare the NN wave function of the Cloudy QCB at E =
M, with the wave funciion calculated from the usual potential scattering
equation with the Paris potential. It is clear that the two models give a
very different description in the region r < b. We, therefore, expect that
they will have very different predictions of any NN reactions which are mainly

determined by short-range mechanismr.

V. DISCUSSION
We have explored the dynamical content of the Quark Compound Bag

(QCB) model in the intermediate energy region. It has been shown both

analytically and numerically that a large part of the short-range NN dynamics

can be related to the MIT Bag state through a vertex iInteraction HyN+D

pargmeterized in the form of Eq. (2.12). However, a fit to the data cannot be

achieved without introducing an additional attractive mechanism. We have
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verified explicitly that this needed attractive force is generated in the QCB
model of ITEP by introducing a second pole, which cannot be identified with
the Bag model prediction. We have shown that this problem can be resolved by
simply allowing the existence of meson—exchange mechanisms in the Bag region.
We argue that this extension of the QCB model 1is consistent with the
Chiral/Cloudy Bag model and the original construction of the Paris potential.

The resulting Cloudy QCB model proves to be very successful in describing the

data.

The Cloudy QCB model is consistent with the wNN formulation of Ref.
28. To explore the extent to which the difficulties encountered in the study
of intermediate energy NN and xd reactions can be resolved we need to follow
the unitary scattering theory developed in Ref. 28 to account for the A
excitation and pion production. In fact, we expect from the cfp expansion38
of the Bag wave function that the dominant transition in J = 2, T = 1 channel
is D Na (°s,) I wNN.

To end this paper, we would like to point out that the Cloudy QCB
model can perhaps be used to predict the probability of finding an “off-shell”
six—-quark subsystem in nuclei. 1In our approach, this prediction is completely
determined in the fit up to the NN data in the intermediate energy region
where this six—-quark system is excited "on-shell”. Clearly our approach is
radically different from the model by Kim et al.32 and the model by Kisslinger
et al.31 The information of intermediate energy NN scattering is never used
to constraint the parameters of their model. The second important implication
of the work is that our Cloudy QCB model can be used to calculate the one-pion
exchange interaction between a six-quark subsystem and a nucleon, since the
plon coupling with a six—quark Bag can be calculated by using the method of

Mulder and Thomas.39 Specifically, we can calculate the three-nucleon force
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through the excitation of an “"off-shell” six—quark Bag state; a calculation
never attemped before. These two works are in progress and will be published
elsewhere. Of course the extension 6f the present work to include A
excitation and pion production is the major challenge in developing an

accurate wNN theory for a fundamental description of intermediate energy

physics.
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TABLE I. Parameters of the transition form

factor Eq. (2.12) in the One-pole QCB model, ¢ 1is in

the unit of Hev-flfz, x 1s unitless, Mp is the mass of

the Bag state.

Mp{(MeV) d = b(fm) c x xz-value

2159 1.4 174.06 1.1043 899

TABLE II. Same as Table I except for the Two-pole QCB model.

d = b(fm) HDI(HeV) €y Xy HDZ(HeV) €y x, X

1.4 2159 167.43 1.1754  3376.512 151.18 O 1.97
2159 167.62 1.1723  3876.512 174.50 0O 2.05
2159 167.74 1.1706 4376.512 195.06 O 2.10

2159 167.82 1.1695 4876.512 213.66 O 2.13
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TABLE III. Same as Table I except for the Cloudy

QCB model.
MD(MeV) d(fm) b(fm) c x x2
2159 0.80 1.4 170.86 1.0459 26.37

2159 0.65 1.4 166.14 1.3064 3.13
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FIGURE CAPTIONS

41

The solid curve is the best fit to the NN 130 phase shift = within the

One-pole model. The dashed curve 1s obtained when the background
meson—exchange interaction V (Eq. (2.17)) 1is turned off.

The solid curve is the best fit to the NN 1S0 phase shift41 within the
Two-pole QCB model. The dashed curves are obtained when either the
background meson—exchange interaction V (Eq. (2.17)) or the coupling
to the higher mass second Bag state is set to zero.

The dependence of the predicted NN 150 phase shift on the strength ¢
of the transition form factor (Eq. (2.12)). 1In this search of the fit
to the data, the energy independent term of Eq. (2.12) is set to zero
(x = 0).

The dependence of the predicted NN 1so phase shift on the strength x
of the transition form factor (Eq. (2.12)).

The relative NN wave functions calculated from the Cloudy QCB model in

the energy region near the Bag mass M, = 2159 MeV (equivalent to

Ec.g. = 300 MeV).

Comparison of the relative NN wave function (solid) calculated at
E = MD (EL = 600 MeV) from the QCB with that from the wave function
(dashed) calculated from usual potential scattering with the Paris

potential.
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