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SUMMARY & CONCLUSIONS

Just as estimates of cost and program timing are
critical factors to be known and monitored during a new
product development program, so too is the reliability
perspective. The reliability estimate and the uncertainty of that
estimate are an excellent way to provide this perspective.
Moreover, it is possible to develop realistic reliability
estimates at the beginning of a new product program even
though hardware is not available, because a considerable
amount of knowledge exists in the experience base of
engineers, etc. This knowledge is elicited in the form of
expert judgment. Further, during the course of the
development program much information will become
available at different levels of the system (e.g., component,
subsystem, system), from different sources (e.g., customer,
supplier), and regarding different points in product life (e.g.,
test time). This information will also become available at
different calendar times, and it may range from completely
quantitative (e.g., test data) to totally qualitative (e.g., expert
judgment) information. Fortunately, it is possible to provide
order to all of this diverse information so that it may be
consolidated as it occurs. The results may then be used to not
only provide a reliability perspective of the program at any
point in time, but also to provide steerage to the development
team with regard to how to drive reliability higher and / or
reduce the uncertainty in reliability. The challenge has been to
develop a framework for this perspective which is physically
and mathematically sound, but which is flexible enough to
accommodate all of the diverse information that becomes
available, and responsive enough to provide timely results
which support the development process. The information
updating approach which is rooted in Bayesian statistics is
suggested as a key methodology which is directly applicable
to this problem. This paper describes an  approach to
reliability modeling that encompasses the impact of both
product and manufacturing process design on the distribution
(characterizing the uncertainty) of reliability over time. It
further describes the elicitation of expert judgment which is
used to quantify the initial reliability estimate, including
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uncertainty. Finally, it describes a Bayesian updating
approach which is applicable throughout the development
program, and which accommodates a wide variety of possible
new information. Although the model is rigorous in its
execution, a user friendly approximation is also described
which may be useful to the product development team for
purposes of test and validation planning.

1. INTRODUCTION

Over the years many advancing techniques in the
area of reliability engineering have surfaced in the military
sphere of influence, and one of these techniques is Reliability
Growth Testing (RGT). Private industry has reviewed RGT
as part of the solution to their reliability concerns, but many
practical considerations have slowed its implementation. It’s
objective is to demonstrate the reliability requirement of a
new product with a specified confidence. This paper speaks
directly to that objective but discusses a somewhat different
approach to achieving it. Rather than conducting testing as a
continuum and developing statistical confidence bands around
the results, this Bayesian updating approach starts with a
reliability estimate characterized by large uncertainty and then
proceeds to reduce the uncertainty by folding in fresh
information in a Bayesian framework.

In the traditional military context a product would be
developed (or an existing product modified), and then the
product would be put on test. The typical long-term test was
designed to statistically demonstrate a reliability requirement
at a specified confidence. This product was then delivered to
the military services with demonstrated reliability as part of
the deliverables package. The fact that the test involved
additional time, cost and resources was deemed to be
acceptable. In the industrial setting, however, these drawbacks
can become acute, and in many cases deter the use of this
traditional approach. Also, although not planned, it is possible
for the end of a development program to approach the
scheduled start of volume production. Reliability growth

testing at this point is seen not only as an additional amount of
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time in the development program, but also as a holding item
before production may begin.

Probably the most significant negative factor,
however, regards the organizational environment that design
engineers are asked to work within. Not atypically, the
reliability growth test may be the first large scale organized
development test to be conducted on the new product design.
The results typically identify several weak spots / failures in
the design, which should be expected. The reliability growth
test, however, has been organized to demonstrate the desired
reliability, and do it efficiently, by organizing the test around
an anticipated few or no failures. The result is a triple blow to
the design program. First, it demonstrates that the desired
reliability has not been achieved. Second, it demonstrates it
with statistical confidence, and finally, it may produce this
result near to the scheduled start of volume production, which
dictates the choice of shipping defective product or delaying
the start of production. Perceptive program managers who
recognize the deficiency of their product in the area of
reliability naturally tend to resist demonstrating the fact
without sufficient time to respond. All of these factors tend to
work against the implementation of traditional reliability
growth testing in an industrial setting.

There is a definite need, however, for an
understanding of the reliability perspective of a new product
during its development program. Identifying the uncertainty in
the reliability estimates, early enough in the development
cycle for corrective action to be organized by the development
team, can be a powerful factor in the drive for high reliability.
The Bayesian updating approach is suggested as a
methodology which is directly applicable to this problem.

The following notations are used :

R; reliability characterization of a system , estimated at
time step, i.
f(R;)  probability distribution function of R;, representing

the uncertainty in system reliability.

A failure rate for a component, subsystem or system
(e.g., failures per vehicle per scaled unit of time) and
scale parameter of the Weibull distribution.

B slope or shape parameter of the Weibull distribution.

R(t) reliability from a two-parameter Weibull distribution.

[(n)  gamma function, which is the [x™" ¢ dx from 0 to
1.

6 parameter of interest.

2. OVERVIEW OF RELIABILITY UPDATING
METHODOLOGY

The reliability of the product (including the
manufacturing process) at any given point in time or at any
given step in the overall product / process design assurance
program is hereby referred to by the term reliability
characterization. “Reliability characterization” refers to both
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the functional calculation of the reliability (point estimate
value) and the uncertainty (usually represented by a
distribution function) that accompanies that reliability value.
Reliability values can be calculated from formulas or models,
such as a reliability block diagram.

Either the reliability calculation and/or its uncertainty
distribution can change due to any change occurring during
the product / process design assurance program (Ref. 1). Such
changes could include the availability of new information or
new data from tests, vendors or corrective actions. New terms
could be added to the model such as a new component in the
system or a new failure mode. Changes can occur in the
design phase and / or the manufacturing process which can
affect the reliability value and / or its associated uncertainty.

Once a change occurs anywhere in the process, a new
step (i) occurs and a new reliability, R;, is calculated along
with a new uncertainty distribution, f(R;). The tracking of R;
and f(R;) over time is one method of monitoring how the
changes in reliability are approaching the target value, as part
of the validation effort.

Calculating R; and f(R) requires combining
information from various sources, e.g., test data, product data,
engineering judgment, specifications / requirements, data
from similar components, and data at different levels
(component, system, etc.). This information may also be
generated at a supplier or customer as well as the parent
company. Re-evaluating R; and f(R;) in light of new
information requires methods for incorporating new
information with existing information, e.g., adding new test
data or accommodating design changes.

With each evaluation of R; and f(R;), gaps in the
current state of knowledge become apparent, providing the
basis for a strategy for deciding where to devote future testing
and analysis resources. If a gap from poor information results
in large uncertainty in one important area (e.g., unknown
performance of a component), then time / effort should be
devoted to understanding why and where additional
information can be useful in improving the reliability and / or
reducing the uncertainty. Understanding the effects of
changes in the design, in uncertainties, and test results can
come from re-calculating the reliability characterization. Also,
by providing an approximation of this information in a user
friendly form, that may be easily understood and manipulated
by the product / process design community, a powerful tool in
developing optimized test and validation plans may be
organized. Users can experiment with anticipated or
theoretical design, reliability, and uncertainty changes. For
example, they may ask “what happens to R; and f(R)) if
component A is replaced by component B, or if 10 successful
new tests are performed on subsystem D 7?7  This
methodology was evaluated on a pilot program in the
automotive industry, hereafter referred to as the “pilot”, the
results of which are the subject of this paper. S
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3. FRAMEWORK

One of the first activities of an organized reliability
program is the construction of a reliability logic flow diagram
(e.g. reliability block diagram, success tree) of the product
under development. The framework of the reliability
characterization involves selecting a mathematical model of
that logic flow diagram, making an initial estimate of the
parameters identified in the model, and organizing a
methodology for updating the model as new information
becomes available. Section 4 describes the Weibull functions
selected to model the product reliability, Section 5 describes
the elicitation of expert judgment which is used to develop the
initial (or prior information-based) estimate, and Section 6
describes the Bayesian methodology utilized to update the
model.

4. DESCRIPTION OF WEIBULL MODELS

The concept of the hazard function of a
manufactured product being made up of definable portions
such as infant mortality, useful life, and wearout, has long
been postulated (Ref. 2). It is further suggested here that the
“infant mortality” is mainly due to the latent defect sub-
population generated during the manufacturing process, and
the “useful life” portion is primarily due to latent design
defects which manifest themselves over the life of the product.
“Wearout” is the third sub-population of parts which fail due
to failure modes associated with operating the product beyond
its useful life. Good engineering practice has long held that
wearout failure modes should be identified during the
development process, and that those failure modes that cannot
be designed out should at least be designed to occur beyond
the useful life of the product. For the purposes of this paper
any wearout failure modes are assumed to occur beyond
useful life, and are not, therefore discussed here. The
approach to identifying and addressing the latent defects in the
first two sub-populations is not as well established, although
that is in fact the objective of a comprehensive design
assurance program (Ref. 3). A first helpful step in identifying
those latent defects is the establishment of a reliability model.
Fig. 1 shows a portion of the reliability logic flow diagram
used in the pilot program. The section shown is in the form of
a success tree diagram.

Figure 1. Reliability Logic Flow Diagram
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A reliability model of the logic flow diagram of a
new product design must be physically appropriate and
mathematically correct in order to make its application useful
during the development program. Of equal importance, the
model and its usage must be culturally acceptable to the
organization using it. Neither of these requirements is a small
challenge. With regard to the first requirement, it is suggested
here that the Weibull distribution may be well suited to the
task. Specifically, the two parameter Weibull may be used to
model both the defect sub-population due to the
manufacturing process, as well as the defect sub-population
due to the product design (Ref. 2). The total distribution is the
combination of the two sub-populations (or three sub-
populations in the presence of wearout phenomena). With
regard to the second requirement, this model of the reliability
perspective well suits the implicit understanding of the design
and manufacturing community, given their awareness of the
“bathtub curve”, and therefore may be culturally acceptable.

The two-parameter Weibull expression for reliability
is given in eq (1).

R(t) = exp(- A (1)) )

This version of the Weibull separates the two parameters and
often simplifies the algebra and the subsequent Bayesian
manipulations (Ref. 4). The challenge is to identify the two
parameters; f (the slope) and A (the failure rate per scaled
unit of time). First, it is suggested that an initial estimate of
the slope parameter be determined from the previous
performance of similar products. This may be a much more
reasoned estimate than might be first thought. If a
manufacturing organization is in the business of producing a
particular “family” of products, then the reliability
performance of all of the products produced may be similar.
This situation is typical of some companies. Consequently, a
reasonable estimate of the slope parameter of the new product
may be identified based on the established performance of
previous members of the samg “family” of products. The
slope parameter, B, of the product used in the pilot was
estimated to be 0.75 from prior history of the product
“family”. Second, an initial estimate of the failure rate of the
distribution may be made from whatever information is
available relative to previous designs. Typically, at the outset
of a new product development program actual test data is very
limited due to the absence of hardware. Considerable
information about the potential reliability is available,
however, in the form of expert judgment possessed by
members of the product development team. For instance, it
may be possible to estimate the reliability of the product at a
particular time of the product’s life. Expert judgment (Sec. 5)
was used in this way to estimate these various failure rates, A,
and their uncertainty, for the pilot. Table 1 lists the two
parameters, B and A, of the components in the example: A, B,
and C. No information was elicited for the subsystem D. This
defines the sub-population due to latent design defects.
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A somewhat similar approach may be taken with
respect to the latent defect sub-population generated by the
manufacturing process. Again, a two-parameter Weibull
distribution may be used as a model. The physical situation
here, however, is different enough to argue for a different
approach to estimating the parameters. When mistakes are
made in the manufacturing process, they certainly can be in
matters of degree (e.g., solder bath temperature). More
typical, however, are mistakes that tend to be very significant,
such as putting parts together upside down or leaving parts out
of an assembly. These latent manufacturing defects tend to
manifest themselves relatively quickly, if not immediately. In
this approach, if the fraction of the sub-population that would
fail almost immediately, and the maximum life of the sub-
population could be estimated, then sufficient information
would exist to estimate the two parameters directly. Simply
put, this would reduce the determination of the two Weibull
parameters for the manufacturing process to understanding the
reliability of the sub-population at two different points in
time, specifically, near time zero, and at the time at which all
of the elements of the sub-population have failed. (Indeed,
any two estimated points may be used for this determination).
Finally, an estimate may be made, with uncertainty, regarding
the fraction that this manufacturing defect sub-population is to
the total population (very small in the example). This
fraction, together with a reliability based on the Weibull
parameters just discussed, is used to determine the impact on
field reliability relative to manufacturing caused failures. In
the pilot, expert judgment (Sec. 5) was used in this way to
make these estimates, and Table 1 lists the two parameters, f3
and A, of the components in the example: A, B, and C. Again,
no information was elicited for the subsystem D, whose
reliability is defined by the logic flow diagram (Fig. 1) and
the reliabilities of components A, B, and C. This defines the
sub-population due to latent manufacturing defects.

This approach to estimating the reliability
performance of manufactured products may fit well within the
culture of many manufacturing organizations. Because of the
nature of the business and the manufacturing operations,
knowledgeable individuals may be able to make reasoned
estimates as to both the total amount of defective product that
will surface due to these latent manufacturing defects, and

also the proportion of those that will fail almost immediately
(e.g. prior to the next manufacturing operation). Many
individuals may be comfortable with this representation
because a vertical assembly operation compartmentalizes
several of its manufacturing steps (including different
manufacturing locations), and typically maintains data on this
sort of information.

Once the individual distributions for the latent design
and manufacturing defects have been identified, they may be
combined to produce the distribution representative of the
whole component or subsystem. All of the individual
distributions of the individual elements may then be combined
according to the reliability logic flow diagram to form the
distribution representative of the entire product. This is the
approach taken on the pilot program being discussed here.
(Again, if a wearout distribution were also being considered it
would also be combined at this point to produce the total
distribution representative of the product). Estimates of
reliability (including uncertainty) can then be calculated
using eq (1) at various points in time for predicting the long
term performance.

5. ELICITATION OF EXPERT JUDGMENT

To obtain an initial overall reliability estimate, R, of
the entire logic flow diagram, estimates of component and
subsystem reliability’s (with uncertainties) were elicited
from teams of subject matter experts. The experts had been
previously selected by their managers and peers as being
knowledgeable of their subsystem or component. The
elicitations were first conducted on those working on the
product design and then on those working on the
manufacturing process.

The experts were not asked to estimate reliabilities,
per se, but allowed to provide their estimates about
component, subsystem and system performance in terms
familiar to them. (This approach. and its benefits are described
in further detail in Ref. 5). For example, the experts in the
design process gave their estimates as incidents per thousand
vehicles (IPTV), while those familiar with the manufacturing
process gave their estimates as parts per million (PPM). As

Table 1. Weibull Parameters for Design and Manufacturing Models
and
Initial Reliability Estimates at 12 Months and 100,000 Miles

Parameters Reliability RO
Design Manufacturing 12 Month 100,000 Miles
B A B A 5 50 95 5 50 95
Percentiles
Component A 0.75 {0.00001| 0.14 5.17 0.9996 | 0.9999 1 0.9993 | 0.9999 1
Component B 0.75 0.00002 0.43 9.94 0.9989 1 1 0.9986 | 0.9999 1
Component C 0.75 0.001 0.42 4.18 0.976 | 0.9989 | 0.9999 | 0.8829 | 0.9852 | 0.9897
Subsystem D ~ ~ ~ ~ 0.9723 | 0.9985 | 0.9998 | 0.8794 | 0.9944 | 0.9994
AR&MS #98RM-068 page 4
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part of their estimates, the experts were asked to give a very
brief explanation of their reasoning. In addition, the experts
provided ranges on their estimates, which were used to
represent the uncertainty and ultimately formulate f(R;).

The results from the design elicitations were
presented to all of the participating experts for their review
and reconciliation across the entire system. This information
was then used to calculate the B and A parameters for design
and manufacturing as given in Section 4. The uncertainty
expressed in the expert elicitations was transformed into
distributional information in the mathematical model.
Reliabilities were then calculated using eq (1), with subsystem
and system estimates being calculated using the reliability
logic flow diagram and numerical sampling techniques. The
results included reliabilities in distributional form (reflecting
the uncertainty) for components, subsystems and the system
at various times. The results for the initial reliability R, at 12
months and 100,000 miles are summarized in Table . For
instance, the median reliability of subsystem D at 12 months
was estimated to be 0.9985, with the 5 th and 95 th percentile
reliability estimated at .9723 and .9998 respectively.

Subsequent information, including new test data, is
reflected in subsequent values of R; and f(R;) as described in
Section 6. In this way reliability may be monitored over time
(reliability growth), and plans formulated accordingly.

6. DESCRIPTION OF UPDATING METHODOLOGY

As discussed previously, the system under study
needs to be defined and characterized with a logical structure,
such as a reliability block diagram or success tree. As part of
the diagram, how the blocks interact / connect is specified as
are any levels within the blocks (e.g., component, subsystem
and system). These interrelations of the blocks will determine
how the reliability is to be calculated at various levels. For
instance, if the components within a block (A, B, and C in the
example in Fig. 1) are all in series, the block (subsystem)
reliability is the product of the reliabilities of the components.

It should be noted that information about failure
modes of various blocks, and their apportionment, can also be

elicited during the initial characterization. This may become
important later when tests are planned or performed on a
subset of failure modes.

Pooling data from different sources or of different
types (e.g. tests, process capability studies, engineering
judgment) is usually done with methods that combine the
distribution functions associated with the various information
sources. Bayes Theorem offers one mechanism for such
combination. Bayesian pooling combines information with the
following structure: the existing information (data) forms a
distribution, called the likelihood. That likelihood distribution
is formed from the data / information symbolized by the
random variable, x, and it has characteristics (i.e. parameters),
such as a mean. That parameter(s) is not considered a fixed
quantity but instead, has its own probability distribution,
called the prior. The prior is combined with the likelihood
using Bayes Theorem to form the resulting or posterior
distribution. Bayes Theorem is used to calculate the posterior
distribution, g(8|x), from the likelihood distribution, f(x]| 6) as:

g(01x) = [f(x| ) g®)) /[ (x| 8) g(6)d® ()

where g(0) is the prior distribution on the parameter of
interest, 8. Bayesian combination is often referred to as an
updating process, where new information is combined with
existing information.

Simulation methods are often used to combine or
propagate uncertainties (represented as distribution functions)
through the logic flow diagram, as well as accomplishing the
Bayesian combination itself. This is the approach taken with
this pilot project. The range and nominal estimates provided
through the expert elicitation are used to form empirical
distribution functions for reliability  (initial reliability
characterization) for each item in the logic flow diagram.
Monte Carlo simulation is used to propagate reliability
characterizations through the various levels of the diagram,
with the accuracy being depgndent on the number of
simulations. The posterior distributions resulting from the
simulation are empirical in form, meaning they are not fit to
any particular distribution (e.g., a beta) or distribution
family. It is not necessary to develop prior information for

Density
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Reliability
Component B
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Component A
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Reliability Reliability
Component C Subsystem D

Figure 2. Reliability Prior Distributions @ 12 Months
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subsystems above the component level. These are available
by combining the reliability characterizations from the levels
below. However, if there is information on these subsystems,
the reliability characterization from that information can be
combined with the distribution from levels below using
methods in Refs. 6, 7, and 8. More importantly, test data and
other new information can also be added to the existing
reliability characterization at any level and / or block (e.g.
system, subsystem, component). This data may be applicable
to the entire block, or only to a single failure mode within the
block. This process is presented in detail in Ref. 8 for series
systems and in Ref. 7 for series / parallel systems.

In general, the initial reliability characterization Ry, is
developed from expert judgment and is referred to as the
native prior distribution. During the course of the
development program data may be developed regarding each
element (e.g. system, subsystem, component) and this would
be used to form data distributions (sometimes called
likelihood distributions). All of the distribution information in
the items at the various levels must be combined up through
the logic flow diagram, to produce a final estimate of the
reliability and its uncertainty at the top, or system, level.
Three different combination methods are used:

e For each prior distribution that needs combining with a
data distribution, Bayes Theorem is used and a posterior
distribution results.

e Posterior distributions within a given level are combined
according to the logic of the logic flow diagram to form
the induced prior distribution of the next higher level.

Table 2. Prior and Posterior Reliability Distributions (Te'stin.g of Component C)

Reliability Posterior Distributions @ 12 Months

e Induced prior and native prior distributions at the higher
levels are combined within the same item using a method
in Ref. 8 to form the combined prior (for that item)
which is then merged with the data (for that item) via
method 1. This approach is continued up the diagram
until a posterior distribution is developed at the system
level.

As more data becomes available and incorporated
into the reliability characterization through the Bayesian
updating process, this data will tend to dominate over the
effects of the initial estimate developed through expert
judgment. In other words, R; formulated from many test
results will look less and less like R, from expert estimates.

A single update from our pilot example will be
helpful to illustrate. Fig. 2 shows the probability distributions
of reliability at 12 months for the components and subsystem
in the example at a certain point during the development
program. Note that there is considerable uncertainty around
component C which is reflected in subsystem D (note also the
difference in x-axis scales). In our pilot example, 60 samples
of component C were tested for:]2 months with no observed
failures, and this was treated as an update event. Fig. 3 shows
this data and the resulting posterior distribution of component
C after the Bayesian update. Note how the additional data
works to reduce the uncertainty around the estimate. Fig. 3
also shows how this additional testing is reflected as reduced
uncertainty at the subsystem level D. A numerical summary of
the Bayesian update is shown in Table 2.

Prior RO Posterior R1
12 Month 100,000 Miles 12 Month 100,000 Miles
Percentiles 5 50 95 5 50 95 5 50 95 5 50 95
Component A 0.9996 | 0.9999 1 0.9993 | 0.9999 1 Same
Component B 0.9989 1 1 0.9986 | 0.9999 1 Same
Component C 0.976 | 0.9989 | 0.9999 | 0.8829 | 0.9952 | 0.9997 || 0.9908 | 0.9992 | 0.9999 | 0.9599 | 0.9964 | 0.9997
Subsystem D 0.9723 | 0.9985 | 0.9998 | 0.8794 | 0.9944 | 0.9994 {} 0.9887 | 0.9989 | 0.9998 | 0.957 | 0.89957 | 0.9994 | "~ B
AR&MS #98RM-068 page 6




This methodology was used throughout the pilot
activity to provide estimates of reliability with uncertainty for
all components, subsystems, and the system at various
operating times. The median system reliability and lower 90
% confidence limit were also plotted against calendar time (as
update events occurred) to track progress and demonstrate
reliability growth as shown in Fig. 4. The individual data
points correspond to the initial reliability characterization R,

—&— Reliability
~&— | ower 90% CL

Reliability @ 12 Months

> g 9 9 5 £ o B O

3 3

< O o uw < 5 & O A
Figure 4. Reliability Growth Diagram

and the events associated with the updates R;. This plot
captures the results of the design teams’ early efforts to
improve reliability, but the power of the approach is the
roadmap developed which may be used by the team to
organize their planning to achieve higher reliability.

7. A USEFUL APPROXIMATION

While the methodology described in Section 6 does
not require f(R;) to conform to any particular distributional
form or family, a useful approximation which sometimes may
be helpful for planning purposes can be organized around the
beta and binomial distributions, eq (3) and eq (4) respectively.

Beta (2, b) = {[@)[ T @ T M)} x*' (10" (3)

Binomial (n,p)= _.n! _p*(l-p)"~ @
x!(n-p)!

The beta distribution is the conjugate prior distribution for the

binomial parameter, p, (Ref. 7) and can in some cases be
used to approximate the empirical distribution (resulting from
the simulation) of the R;. The beta is often well-suited for
representing possible values for p because it ranges between 0
and 1, and in addition, it is an extremely flexible distribution
with many possible shapes (e.g., symmetric, asymmetric,
unimodal, uniform, u-shaped, or J-shaped). Its usefulness
derives from the fact that the two parameters of the beta in eq
(3) , a and b, are sometimes referred to as the pseudo
successes and pseudo failures, respectively. This calls to mind
the image of a pseudo test, where a + b equals the number of
pseudo tests.

A useful planning application involves situations
where new test data is, or will be, of the form of x number of
successes out of n number of trials. Such data is binomially
(eq (4)) distributed. In a Bayesian reliability formulation, ifa
beta distribution with parameters a and b is considered to be
the prior distribution for Ry, then the posterior distribution for
R, will also be a beta, with parameters a + x and b + n - x.
Thus, using the beta formulation may be useful in
characterizing the possible value of additional tests. Because
the posterior distribution and the prior distribution are both of
the beta family, this process could be iterated indefinitely.

For example, the beta distribution shown in Fig. 5
was fit to the prior reliability distribution for component C in
Fig. 2 (design portion only). In this case, a beta
approximation yielded, a = 28.2 pseudo successes and b=
0.22 pseudo failures (a pseudo test of about 28 samples).
New information, in the form of a 12 month test of 60 of these
components resulting in zero failures was introduced, and a
new predicted posterior beta reliability distribution was
determined, also shown in Fig. 5, using the methodology
described above. Note that the beta parameters of this
predicted posterior distribution are a = 88.2 and b = 0.22. This
is obviously quite similar to the corresponding fitted posterior
reliability distribution calculated empirically for component C
and also shown in Fig. 5. It is aJso possible to streamline the
calculations of the posterior distribution of subsystem D by
using this beta estimate. The power of this approximation,
however, lies in simply noting the potential impact of this test
(visually or through the beta parameters) and allowing the
engineering community to judge the usefulness of this test

before it is run.

a=98.4
b=0.31

a=28.2 a=88.2
2| b=0.22 b=0.22
a
]
A
0.92 0.96 1.0 0.92
Fitted Prior Reliability

Predicted Posterior Reliability

0.96 1.0 0.92 0.96 1.0
Fitted Posterior Reliability

Figure 5. Component C Beta Distributions (Design Failure)
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It should be noted that often a beta distribution
cannot do an acceptable job of approximating a distribution of
R; and remain consistent with the intentions of the experts
who provided the input. This is especially true when experts
state a very high level of reliability with a small but
significant possibility that the reliability may be quite low.
For example, suppose the most likely reliability is estimated
to be 0.997, the best reliability probably does not exceed
0.9995, but because of some uncertainty (e.g., an untested
scenario), there is a small possibility that it could be as low as
0.70. Also, it often becomes more difficult and inaccurate to
attempt to fit the beta to distributions formed from composite
information at higher levels of the model and / or after several
updates have introduced significant unrelated data. When the
beta does not provide an acceptable approximation, one must
rely on using parameters such as the mean and percentiles to
characterize the reliability uncertainty distribution as
discussed in Section 6.

These examples illustrate cases where new test
information or data are introduced to update a reliability, R;,
to the form R;,,. The continuous monitoring of R; and f(R,) is
possible as new information or changes become available.
Not all changes may be beneficial, as reliability can decrease
and / or the uncertainty increase at any given change step, i.
However, by judiciously planning new tests or changes for the
purposes of reducing uncertainty and / or improving
reliability, the overall trend will indicate such desired results.
This overall methodology may prove useful in characterizing
the reliability of a new product in its concept stage, updating
and reporting on that reliability during the development stage,
and planning appropriate future activities which, when
accomplished, will achieve a high reliability product.
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