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Error Estimation and Adaptive Order Nodal Method
for Solving Multidimensional Transport Problems

0. M. Zamonsky, C. J. Gho, Y. Y. Azmy

Abstract

~ We propose a modification of the Arbitrarily High Order Transport Nodal method whereby we solve each node
and each direction using different expansion order. With this feature and a previously proposed a posteriori error
estimator we develop an adaptive order scheme to automatically improve the accuracy of the solution of the transport
equation. We implemented the modified nodal method, the error estimator and the adaptive order scheme into a
discrete-ordinates code for solving monoenergetic, fixed source, isotropic scattering problems in two-dimensional
Cartesian geometry.

We solve two test problems with large homogeneous regions to test the adaptive order scheme. The results show

that using the adaptive process the storage requirements are reduced while preserving the accuracy of the results.

1. INTRODUCTION

Shielding problems are sometimes related to transport calculations in systems composed of few large
homogeneous regions. The Discrete-Ordinates (Sx) method has been widely used principally for one and
multidimensional systems. During the last several years a great effort has been pursued to improve the computational
efficiency of different numerical methods under the Sy approach. In this sense, research has been focused mainly on
the spatial treatment of the flux. The evolution from Finite Difference to High Order Nodal methods is motivated by
the desire to obtain highly accurate solutions using less memory and shorter CPU time.

Usually the accuracy of the results is measured by the relative difference between average quantities obtained
with the tested method versus reference converged solutions.? This is not surprising because in reactor physics
most of the quantities of interest are related to locally-averaged fluxes. On the other hand, high order nodal methods
allow reconstruction of the flux at every point in a system even when the solution procedure is performed over large
homogeneous regions.

The user of transport codes often does not have a complete knowledge of the uncertainties resulting from the
numerical method used to solve the transport problem, even when referring only to the spatial treatment. In particular
the different approximations used in nodal methods make this situation more difficult. To extract the basic
information needed for a particular problem in high order nodal methods, the user has to provide not only a certain
mesh but also the expansion order to be used.! More complicated are the differences between low order methods
where it is necessary to understand most of the approximations of the scheme in order to select the “best” method for
a particular problem.2 The characterization and understanding of numerical difficulties in multidimensional Sy
algorithms is very important not only to avoid poor interpretation of the results but also to provide fundamental
means to improve the calculations.’

In this paper we propose a way to simplify the error estimation for the results of transport calculations. To do this,
we estimate the errors produced by the Arbitrarily High Order Transport - Nodal Method' (AHOT-N) using an a
posteriori error indicator based on the residual of the transport equation. Then we apply the error estimation on a per
node per direction basis to develop an adaptive order scheme. Some modifications are proposed to the AHOT-N
method in order to allow it to solve a system using a different approximation order in each node and direction.

Our aim is to perform the adaptive process automatically and to propose a simple scheme that could be easily
included in codes that use nodal methods. The estimated errors could also be used to make mesh refinement in
numerical methods where this is the only degree of freedom to improve the accuracy of the results.

We solve two test problems using the original AHOT-N method and one adaptive scheme to compare various
average quantities. We conclude that this process decreases the user time rather than the CPU time and contributes to
automatically improving the data quality rather than quantity. We conjecture that dynamic memory management
must be implemented in the adaptive scheme to minimize the memory requirement.



2. THEORY

The adaptive order scheme proposed in this paper is directly applicable to arbitrarily high order transport
methods. We selected the AHOT-N method due to its simple final equations.

In order to allow adapting the approximation order, we propose some modifications to the nodal method in which
each node and each direction are solved using a different order. A review of the AHOT-N method and the
modifications proposed are detailed in Section 2.1. ‘

In Section 2.2 we introduce the estimator used to make a posteriori error estimation, and discuss the way we
performed error calculations in problems with respect to analytical solutions. The way we conduct the adaptive order
calculations is explained in Section 2.3. :

Two test problems are solved in Section 3 where we compare the solutions obtained using the same
approximation order in all the system with the solutions obtained adaptively, followed by a discussion in Section 4.

2.1. THE AHOT-N METHOD

Assuming one energy group and isotropic scattering the Discrete Ordinates, Sy , approximation of the transport

equation in two-dimensional Cartesian homogeneous region can be written as
Q- VY¥,.(x, ) +0¥,(x,y)=S5,(x,) ¢))
where the index m indicates the discrete direction.

The domain D is divided into N disjoint rectangular sub-domains (nodes) D,=[-a,,an]x[-bpb,], D=UD,. In each
sub-domain the angular fluxes are expanded into a basis of dimensionless Legendre polynomials. Truncating these
expansions at order A, the angular fluxes are expressed as

A
¥, (x,y)= .Zé2i+1)(2j+1)‘1’,.,;jf’i(X)l’,-(y) vy
. i
where the index n indicates the node D, of the local expansion of ‘¥(x,y), and the index m corresponding to the
direction Q,, has been suppressed.

This method was originally derived! using the same truncation order A for every node and for all directions, and
we will refer to this approximation as “homogeneous order”.

In this work we use different truncation orders for each node and each direction, i.e. Am for the direction m in
the node n, and we will refer to this approximation as “variable order.” The set of Legendre polynomials from order
zero to Ama will be called the local basis. Since the method is applied to the solution of the transport equation in
homogeneous nodes for each discrete direction the general form of the local equations is preserved with every
occurrence of A replaced with Ap .

The local nodal moments of the angular flux, ‘¥; , are the unknowns of the problem. Projecting Eq. (1) over a
local basis, simultaneous algebraic equations for ‘P;; are obtained in terms of the local transverse moments of the
angular flux, ‘P,q-(ia) and W;,(£b), which emerge as new unknowns in the problem. The local transverse moment
W,i(x) [Wig(y)] is the “transversal” projection of the angular flux over the j/i]-component in the y[x] spatial
coordinate. In order to clarify this definition the expression for W,i(x) is expressed as follows:

1 b, Apn .
l}‘n,m,xj(x) = Eb—- I "Pn,m(xy }’)PJ()’)d}’ = \Pu,m(xv y) = 2(2] + l)\Pn,m,xj(x)Pj(y) . (3)
n b, Jj=0

Transversally projecting Eq. (1) over the y and x spatial coordinates and exactly solving the resulting
one-dimensional differential equations for the transverse moments, relations between the nodal and transverse
moments of the flux are obtained.

After large algebraic manipulations the discrete-variable equations representing the transport problem for each
angular direction reduces to:

— aset of equations for the nodal moments ‘¥; in terms of the incoming flux transverse moments, ‘¥y;(-a) and

W, (-b) if Qp is in the positive octant, which are known from external boundary conditions, or are set equal to the

outgoing flux transverse moments from corresponding neighboring cells, and '

— simple relations to obtain the outgoing transverse moments using the incoming transverse moments and the nodal
moments calculated by solving the above set of equations.




It is not relevant for the subject of this paper to reproduce here the detailed equations of the AHOT-N method but
it is worth noting some properties that are affected when using variable order: :

— In the homogeneous order case the equations are fully specified by only one spatial weight per node per
dimension per distinct discrete ordinate. These weights are functions of the form ol ;24,00 A) in the x-
dimension, and they are odd functions of the direction cosines of the discrete ordinates.

When variable order is used, the spatial weights have the form tm = O( 130, OnyAm q) and are not necessarily

odd functions of the angle cosine even though o is still an odd function in its argument Q. This follows from the

fact that for [l = - R generally Ay # Anq SO that Oy # O g Thus the method requires the storage of more
_ weights than in the homogeneous order case.

- Coupling between neighboring nodes is achieved by setting the incoming flux transverse moments to a cell, 'y,
, equal to the outgoing moments from its upstream neighbor along the direction of neutron travel, ‘¥, . In the
original AHOT-N method this coupling is made for all spatial moments from O to A. Using variable order per
node per direction the coupling is made according to the prescription:

k S =¥, > j=0,.,A, fA,_2A,
Yo =Y.y » J=0 A 4
nx—,xj JXf J lfA,u_<A,, ()
‘Pm_’xj =0 , J> A
— The scalar flux is evaluated in the usual way,
A
b= S Wu¥, ©)
m=1

where Apax = max.{ Ay, m=1,NDIR} in the node n, where NDIR in the number of discrete directions
corresponding to the order N of Sy.

—  The set of discrete variables per node (n) per direction (m) is comprised of (A,,_m+1)2 nodal moments and
2(Apm+1) transverse moments. If the problem to be solved does not require a uniform spatial approximation
order for each direction and each node, the variable order distribution could reduce significantly the number of
equations and unknowns evaluated.

2.2. ERROR ESTIMATION

In recent years several numerical methods have been proposed to solve the transport equation under the discrete
ordinates approach. In most cases the computational efficiency of the new method is compared with classical finite
differences schemes. This is usually done by observing the computing time and storage requirements to obtain a
given accuracy of the results. To define the accuracy it is necessary to define the error of the approximate solution. In
real problems, where analytical solutions are not available, numerical solutions obtained with the “best”
approximations, e.g. using reasonably fine spatial mesh or high orders of approximation and shown to have
converged with respect to them, are treated as the “exact” reference.

To the best of our knowledge no a posteriori error indicator has been proposed yet to estimate the error in the
solutions produced by numerical transport methods with piece-wise polynomial approximations (spectral methods).
In contrast, in finite element methods and in particular for the diffusion equation several error estimators have been
proposc.ad.“'8

~ In a previous work® we proposed an a posteriori error estimator inspired by some indicators used in transport
finite elements methods and in spectral methods for the diffusion equation.’

The proposed local error estimator E, , for node n in direction m is composed of a residual term plus a

discontinuity term:
En.m = v R:,m + Dr?.m (6)

where the local residual of Eq. (1) is expressed as:
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and the discontinuity term as:
aﬂ

b, .
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where nx [ny] is the index of the neighboring cell in the x- [y-]dimension. The total estimator in the system is given

by E, = [2 EZ, .
n

There is no rigorous proof that the proposed estimator is actually an error estimator. However, some
comparisons were made of this estimator to the exact error measured in L, norm for some problems that possess
analytical solutions.’

The local and total errors, e, and e are expressed as:

ef\ﬁ(‘P:“—‘Pn)zdv ; e=,/2e§ ©)
v, n

The evolution of the estimator and the error with increasing spatial approximation order and mesh refinement
was observed in Ref. 9. In all cases it was found that the ratio of the estimator to the error asymptotically approaches
a constant value. For example, we solved problems of the kind proposed in Ref, 10 where the singular characteristics
always pass through a cell vertex and others where they passes through cell edges, and the behavior of the ratio
mentioned above remained the same. We also observed in some nodes of some problems that the solutions got worse
with increasing spatial approximation order, an unexpected behavior. This feature was exhibited equally by the
estimator, as well as the error.

These observations motivated us to implement this error estimator in an AHOT-N code for solving more realistic
problems, and to apply the estimated errors into an adaptive order scheme.

2.3. ADAPTIVE EXPANSION ORDER

Local mesh refinement is the most popular technique when dealing with adaptivity in finite elements. In finite
difference as well as in nodal methods, local mesh refinement is accomplished by approximations at the interfaces
between fine and coarse meshes.

The AHOT-N method has two degrees of freedom to modify the accuracy in the results, mesh and order of the
spatial approximation. Conceptually, mesh refinement in this method has the same characteristics as the finite
difference method. In particular when it is necessary to make mesh refinement in part of the system, mesh refinement
in other parts or surface approximations must be made.

In contrast adaptive expansion order in the AHOT-N method needs only local approximations. These are the
approximations mentioned before to couple neighboring nodes with different approximation orders and to calculate
scalar fluxes from directions with different order.

In this work we use a simple adaptive strategy based on the following adaptive iteration scheme:

1. Input initial order distribution per node per direction:

" Uniform order distribution is the simplest first approach considering that adaptivity will modify the orders
depending on the estimated errors. At this point, it is interesting to note that even-order approximations usually
produce fewer negative scalar fluxes than odd-order approximations.”

9. Perform the inner iterations until convergence is reached:

We use for the inner iterations the standard pointwise convergence criterion on the scalar fluxes with the same

accuracy in all adaptive stages.

Once the inner iterations converge an additional sweep of the system allows storage of the nodal and transverse

angular flux moments needed to perform the error estimation.

3. Estimate errors per node per direction:

This step is performed using the converged angular moments in Eq. (6) to (8).

4. Convergence test of the adaptive scheme:




Convergence is reached when the maximum estimator for all the nodes and all the directions is less than a
predefined value. '
IF convergence is reached, or maximum number of adaptive iterations reached, STOP,
6. ELSE, automatically modify the order distribution.
For a given direction the order of the approximation increases in the nodes whose estimator lies within a given
range above the maximum estimator. This criterion, that we call “bound criterion” is expressed as follows:
(1)
If "ﬁ;—ﬁ <B >1 then Apn®™" = Apr® + 1, .
) nm
Else Apn™" = Anm®,
where m and n indicate the direction and node respectively, ¢ the iteration of the adaptive process, and E? uxm 18
the maximum estimator over the nodes of the system for the direction m in the iteration .
It is important to notice that this criterion applies to each discrete direction independent of the estimated errors in
other directions. It allows local increase of the order of approximation that is driven in part by the estimated
errors in other parts of the system through the influence of E? am-
7. GOTO2.

th

3. NUMERICAL TESTS

We implemented the adaptive AHOT-N method in a discrete-ordinates steady-state code for solving
monoenergetic, fixed source, isotropic scattering problems in two-dimensional Cartesian geometry. We use the
algorithm described in Ref. 1 in which the simultaneous algebraic equations for the nodal flux moments are solved at
the beginning of the calculation process. We execute this code on a Silicon Graphics computer with all variables
defined in double precision.

We solved two test problems with uniform order distribution and with the adaptive scheme to compare the
number of unknowns used in each method to obtain the same accuracy. In order to investigate the evolution of the
solutions in the adaptive process, we did not apply the convergence test, STEP 4 of the adaptive scheme; instead we
allowed the system to evolve until reaching a prefixed number of adaptive iterations,

The first test problem we solved is presented in Ref. 1. It is a 0.1 m square with reflective left and bottom, and
vacuum right and top boundary conditions. The system contains a unit source region located in a 0.05 m square at the
lower left corner (Region I) with total cross section and scattering ratio 100 m™! and 0.5, respectively, surrounded by
a source-free region with total cross section and scattering ratio 200 m’' and 0.05, respectively.

We solved this test problem using an S4 angular quadrature and a pointwise relative convergence criterion of 10*
for the calculated scalar flux spatial moments to test convergence of the inner iterations.

To validate the programming of our code we solved this test problem with uniform order distribution using
meshes ranging from 2x2 to 128x128 and approximation orders from 0to 9 and the results obtained are identical to
the results presented in Ref. 1.

We also solved this problem adaptively using the bound criterion with B=10? and B=10" on a 4x4 mesh.

The relative error in the Region-averaged scalar flux obtained using uniform order distribution and both adaptive
cases vs. the number of unknowns used to solve the problem are shown in Fig. 1 for the lower left corner (Region I),
the lower right corner (Region II) and the upper right corner (Region IV).

No great advantage is observed in this problem when solving it adaptively. The number of unknowns used to
obtain a given accuracy in the Region-averaged scalar fluxes is similar in all the cases. The adaptive B=10" case uses
in general less unknowns than the uniform order case to obtain the same accuracy, but this saving does not justify the
programming effort and the longer execution times involved to solve the problem adaptively.

These observations do not apply to the adaptive process in general but to the application of the adaptive process
to this particular test problem. The system solved possesses high angular flux gradients for all the discrete directions
in the nodes neighboring the region material (and source) discontinuities and in the lower left node of Region IV.
These nodes represent 50% of the total number of nodes in the system. Therefore it should not be expected that any
adaptive process applied to this test problem will produce great improvement with respect to the uniform order
distribution scheme.
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Fig. 1. Relative error in Region-averaged scalar fluxes of the first test problem.

In order to numerically test the advantages of the adaptive process we solved a modified version of the first
problem. This is a homogeneous 0.4 m. square composed by the material of Region I of the first test problem with a
unit source in the lower left 0.35 m. square. We solved this problem using the same S, angular quadrature and
pointwise convergence criterion as before on an 8x8 mesh.

Fig. 2 shows schematically the Region-averaged scalar fluxes obtained with A=6 in the uniform distribution order
case, where the shadow cells indicate the source region. These fluxes were considered as reference values for the
errors depicted in Fig. 1 since they are converged in the increasing uniform order process.
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Fig. 2. Region-averaged scalar fluxes of test problem 2 with A=6.

The square root of the quadratic sum of the relative error obtained in the Region-averaged scalar fluxes divided
by the number of nodes of the system vs. the number of unknowns used to solve the problem with uniform order
distribution and with the B=10% and B=10’ adaptive schemes are depicted in Fig. 3.
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Fig. 3. Relative error in System-averaged scalar fluxes of the second test problem.




In this problem the adaptive B=10° case uses 61% of the number of unknowns that the uniform order case uses to
reach to the same final Region-averaged scalar fluxes, while the a
differences in the Region-averaged scalar fluxes obtained with.the
distribution when solving the system wit

inner iterations.

daptive B=10? case uses 55%. Moreover, the
daptive B=10° case and with uniform order
h the same maximum order Amax are less than the required accuracy for the

We also calculated the average leakage at the right surface of the upper right quadrant using the homogeneous
and adaptive order schemes.

The angular fluxes at the surfaces of the no
are calculated explicitly by th
general different values are obtained for the leakage in each node depen

des can be obtained using the angular flux transverse moments which
e AHOT-N method, or they can be reconstructed from the angular nodal moments. In
ding on the way it is calculated. In the

following we refer to the leakage reconstructed from nodal moments as “reconstructed leakage” and the leakage

obtained using transverse moments as “direct leakage”.
These results are shown in Table 1 where A refers to the order in the homogeneous order scheme and to the

adaptive step when using variable order.

Table 1. Average leakage at the upper right Region.

Uniform order distribution B=10* B=10’
number Leakage number Leakage number Leakage

A |of unkn. rec. dir. of unkn. rec. dir. of unkn. rec. dir.

0 [2304 |1.007E-02 |[5.986E-03 }2304 1.007E-02 {5.986E-03 {2304 1.007E-02 |5.986E-03
1 |6144 |-3.943E-03 |-1.829E-03 {4314 -3.530E-03 |-1.347E-03 [4929 -3.943E-03 |-1.829E-03
2 111520 }1.347E-03 |1.103E-03 (7143 1.242E-03 {9.683E-04 {18604 1.347E-03 |1.103E-03
3 118432 |2.897E-03 [1.131E-03 {10782 {9.729E-04 3.978E-04 (13005 19.657E-04 |3.770E-04
4 |26880 |-3.012E-05 |1.052E-03 [15231 |[-1.435E-05 5.256E-04 [17702 [-1.507E-05 |5.260E-04
5 36864 [8.939E-04 |5.017E-04 20204 [8.947E-04 5.008E-04 23291 |8.939E-04 |5.017E-04
6 148384 [|2.958E-04 |5.046E-04 (26541 [2.938E-04 5.047E-04 (29645 |2.958E-04 |5.046E-04

The adaptive B=10" case produces the same leakage as the uniform order case when the system is solved with the
n 4. This feature can be explained by observing that the distribution of orders in the
rm order distribution case in all the

maximum order greater tha
adaptive B=10° case is very close to the order of approximation in the unifo

directions and nodes where no flat fluxes appears.

In this work we applied an adaptive scheme
depending on the estimated errors of the solutio
have been obtained using an a posteriori error e

as well as in finite difference schemes.

To accomplish this we proposed simple approximation

4. CONCLUSIONS

to automatically increase the expansion order in regions of a system
n when solving the system using the AHOT-N method. The errors
stimator that could also be used in other polynomial nodal methods

s to modify the nodal method in order to calculate with

different spatial approximation orders each node of the system and each direction of the angular quadrature. This

technique could be applied not only for the purposes use

some nodes of a system by locally increasing the expansion order.

d in this paper but also to avoid negative scalar fluxes in

The two-dimensional numerical test problems solved in this paper constitute a sample analysis of the modified
nodal method and the local adaptive scheme. The results obtained are in agreement with the concept that adaptive
schemes are advantageous when applied to systems with smooth solutions in large regions.

The search for an optimal range above the maximum estimator for increasing the approximation order is one of
the areas worthy of further investigation. In this sense, the second test problem solved is an example of when the
bound B increases the solutions are more accurate in each adaptive step but the saving in the number of unknowns
decreases compared to lower B values.

We also conclude that the criterion used to modify the approximation orders in the adaptive process must be
investigated in more detail to provide alternative means for adapting the order based on the error in quantities whose
accuracy is most important for a given application.




For example to control the scalar flux accuracy in some particular node of the system with the adaptive process, a
local bound criterion could be used rather than the bound criterion proposed above to automatically increase the
approximation order. This local criterion can be implemented by increasing the approximation order in the directions
where the estimated error lies within a range of the maximum estimated error over all directions for a given node.

A more elaborate criterion to modify the approximation orders can take into account the relationship between
the estimated errors and the errors in other quantities of interest as scalar fluxes or leakage. While doing this we will
continue to investigate different applications of the error estimation.
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