- 19960406 104

SANDAY-0I2.9 C

Patterns of Change in Design Metaphor

A Case Study

RECFEIVED
JAN 2 9 1988
OS 1

ABSTRACT

Design metaphors play an important role in the develop-
ment of many software projects. However, the influence
of metaphors on project functionality, design methodol-
ogy and the interactions among members of the develop-
ment team is not well understood. This paper seeks in-
sights into these issues by examining the experiences of a
design team in building a system under the influence of a
particularly strong design metaphor.

Keywords
Metaphor, software design, user-oriented design.

INTRODUCTION

Metaphor has long been recognized to play an important
role in user interface design, with developers systemati-
cally exploiting desktop metaphors, agent metaphors and
similar figures to enhance the usability of computer inter-
faces. Recently, there has been an increased recognition of
metaphor’s larger role in the design process [1]. This pa-
per examines the effect of a strong design metaphor on the
development of an interactive computer system.

The Design for Machinability Advisor [DFM] was built
to assist mechanical engineers in improving the manufac-
turability of machined parts. From the beginning, the pro-
ject was conceived to be a “spelling checker” for machin-
ability problems. This paper examines the influence of the
“spelling checker” metaphor on DFM’s design, as well as
the changes that occurred in our understanding of the
metaphor itself as the design matured. It also considers the
metaphor’s social context, particularly differences in the
way team members interpreted it, and the effects of these
differences on their interactions.

THE USE OF METAPHOR IN DESIGN

The use of metaphor in design reflects its function in such
areas as the development of language [2-4] and scientific
discovery [5-7]. Metaphors are figures of the form: “A is
B”, where B is said to be the source of the metaphor, and
A is the target. Interpretation of a metaphor is a process of
discovering which properties of the source may be valid
and useful to understanding the target. For example,
cognitive science’s use of an information processing
metaphor can be regarded as a process of finding which
properties of computers can effectively be used to explain
human thought. The metaphor provides a restricted set of
hypotheses about human cognition. By focusing our
attention on the significant properties of relatively well
understood concepts (the source), metaphors impose an

William A. Stubblefield
Sandia National Laboratories
P. O. Box 5800
Albuquerque, New Mexico 87185
505-284-2856
wastubb@sandia.gov

SAND--9 €-01/29C~
coNF- 7801 ~—

Sandia is a multiprogram laboratory
operated by Sandia Corporation, a

f.ockheed Martin Company, for the
United States Department of Encrgy

essential structure on the enormous problem spaces found
in such areas as scientific discovery and the development
of language. This focusing ability also underlies
metaphor’s contributions to design.

Hesse [5] has examined the use of models and analogies in
science, providing a foundation for understanding the na-
ture of design metaphors. She describes three components
of analogies: the positive analogy consists of those prop-
erties of the source that are known to apply to the target,
the negative analogy includes properties of the source that
either untrue or irrelevant for the target, and the reutral
analogy contains those properties that have not yet been
classified as positive or negative. Scientific discovery is a
process of evaluating these yet unclassified components of
the neutral analogy. A similar analysis can be applied to
the development of linguistic and design metaphors.

Design and the interaction theory of metaphor

There are several aspects of this initial model that must be
refined if we are to understand the role of metaphor in
design. Aspects of a design metaphor can seldom be
classified as simply positive or negative: in transferring
properties from the source to the target, the designer
generally will re-interpret them. For example, direct
manipulation interfaces are not so much an instantiation
of the ways we manipulate objects in space, as they are a
rethinking of those operations. Instead of grasping an
object, we select it. Placing one object on top of another
(such as placing a document on a printer icon) is not a
simple act of stacking, but often invokes some computer
operation (such as printing).

Similarly, properties that might initially seem to be part
of the negative metaphor are often modified during design
to maintain the metaphor’s consistency. An example of
this is in the use of a “trash can” icon to invoke file
deletion. Unlike real trash cans, trash can icons never
become full. This negative aspect of the metaphor can
cause problems: users who only empty their physical
trash cans when they overflow may neglect to empty their
computer trash, eventually causing disk storage to fill up
with deleted files. Some interfaces (e.g. the Macintosh)
ignore this problem, while others attempt to repair the
metaphor through such techniques as prompting the user
to empty the trash when logging off of the system.

Black’s interaction theory of metaphor [2] provides a
framework for understanding these processes of adapting
the positive and repairing the negative components of a

oo o s ower s e X NAS | ER

under contract DE-AC04-94A1.85000.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

v *

.

design metaphor. Black argues that metaphor is not
simply a process of transferring properties from the source
to the target, but a complex interaction between them in
which our knowledge of the target is equally capable of
changing our understanding of the source. Metaphor
induces complex shifts of meaning across both the target
and the source. To paraphrase Black!, if implementing file
deletion with a trash can icon improves usability, we
must not forget that this will also change our
understanding of “real” trash cans. As an informal
example, colleagues have told me that they depend on the
ability to retrieve things from their computer trash,
treating it as an intermediate stage between long term
storage and deletion. This has made them wish for more
control over the schedule for emptying the physical trash
cans in their offices.

The interaction theory’s view of metaphor as inducing
shifts of meaning in both the target and source is
particularly important to understanding design metaphors.
During DFM’s design, we encountered many Situations
that required modification of the “spelling checker”
metaphor. One of the most notable resulted from the
complexity involved in detecting machinability problems.
Unlike a word processor’s spelling checker, which simply
looks for words that fail to appear in its dictionary,
determining the machinability of a feature in a metal part
requires an understanding of the designer’s intention, as
well as the feature’s interactions with other features.
Consequently, DFM required much richer interactions
with the user than conventional spelling checkers. As will
be discussed, this led to significant changes in our
understanding of what it means to be a spelling checker.

Do metaphors ever die?

A commonly accepted view of the use of metaphor in
language or discovery holds that, as a metaphor develops
and becomes better understood, its interpretation becomes
conventionalized, and it looses its ability to convey new
ideas about the target. According to some views, the
metaphor eventually becomes so conventionalized that it
loses whatever suggestive power it had as a metaphor and
effectively “dies.” Linguistic idioms are common
examples of dead metaphors. For example, “clawing his
way to the top” is no longer seen as a metaphor for
corporate success, but is simply a common, if not trite,
idiom of everyday language. Similarly, as cognitive
science has matured, the information processing metaphor
has been conventionalized into the accepted problems of
representation, search and cognitive architecture.

In general, design metaphors clearly follow this life cycle,
shifting from the broadly suggestive to the more
conventionalized as they become reified in an artifact. For
example, as DFM neared completion, at least certain

~aspects of our interpretation of the “spelling checker”

1 “If 1o call a man a wolf is to put him in a special light, we
must not forget that the metaphor makes the wolf seem more
human than he otherwise would.” [2] (page 44)

metaphor became effectively fixed in the design.

However, the details of this process are far from
straightforward. Rather than a process of steadily refining
the metaphor, design seems to alternate between periods of
gradual refinement of a stable design, and periods of radical
shifts in the design and the underlying interpretation of the
design metaphor. As will be described below, the Design
for Machinability advisor went through at least three such
radical interpretive shifts.

Many theorists [3] argue that metaphors never completely
die, but retain both the structural properties of metaphor
and at least some potential for revealing new meanings.
This is also true of design metaphors, in spite of the
reifying effect of the design artifact. As the development
of DFM reveals, the eventual success of the project’s
initial stages further stimulated the “spelling checker”
metaphor, and led to its expanded use in both talking
about DFM and in proposing future projects.

The social lives of metaphors

An important function of linguistic metaphors is in
defining the structure and boundaries of social groups,
with societies or segments of a society being defined by
shared metaphors. Teenagers seek new figures of speech
that adults will not share, just as hipsters have always
used dense and rapidly changing metaphors to lock out
“straight” society. Cognitive science’s use of an
information processing metaphor virtually defines the
field, and distinguishes it from other psychological and
biological approaches to understanding thought.

As the development of the DFM advisor showed, this
social function is one of the most important aspects of
design metaphors. The “spelling checker” metaphor
provided a common frame of reference that enhanced
communication among members of the design team. The
importance of this shared frame of reference was
particularly important in enabling us to rapidly outline an
initial system design and development plan. This common
focus remained important as the project grew in
complexity and different team members experienced
potentially conflicting pressures from users, customers,
technology, schedules, budget and organizational demands.
The shared metaphor helped us to maintain a common
understanding of the project and made it easier for us to
negotiate compromises as the pressures of these
competing demands both diverged and increased.

These benefits were not without price. Because the
“spelling checker” metaphor enabled such rapid early
progress, we made many decisions before we had a
complete understanding of the user’s needs and
assumptions. As this paper will discuss, these early
commitments and the power of the metaphor made it
difficult to modify the design to correct these problems.

PATTERNS OF CHANGE

The remainder of this paper uses the development of the
Design for Machinability Advisor as a case study in the
evolution of a strong central metaphor across the design
process. It considers both the influence of the metaphor on

v

the design, and the ways in which the design process
changed the team members’ understanding of the metaphor
in turn. The paper examines the following conjectures:

« Although design metaphors do tend to move from
being richly suggestive to more fixed as the design
matures, the patterns of change are far from linear, but
involve radical shifts in the interpretation and use of the
metaphor. Periods of relatively stable interpretation
alternate with more dynamic periods where the meaning
of the metaphor once again becomes highly plastic and
suggestive of multiple design options. Shifts in the
metaphor are often reflected in radical changes in the
design. Finally, the metaphor never really “dies” but
retains its metaphoric foundations and suggestive power
even after the system has been completed.

Strong design metaphors can be both a benefit and
an obstacle. Where the metaphor is appropriate, it can
quickly lead to a powerful solution; where it is not, it
may make it harder to solve design problems.

Design metaphors do not work only at a semantic
level, i.e. in terms of system functionality and user
interface. The metaphor also influences system
architecture, complexity and algorithm design. These, in
turn, can change the interpretation of the metaphor.

A central function of design metaphors is social,
supporting communication and cooperation among
members of the design team. This process is far from
simple. Different team members arrive at different inter-
pretations of the metaphor, with often surprising results.

THE DESIGN FOR MACHINABILITY ADVISOR

The Design for Machinability Advisor was intended to
help mechanical designers improve the manufacturability
of machined metal parts. Typical problems that add to the
difficulty of machining a part include unnecessarily tight
tolerance requirements, features that require specialized
tools in order to be machined, failure to standardize
features across different parts, and use of hard to machine
materials. Traditionally, mechanical designers have
focused primarily on the functionality of parts, leaving
manufacturability concerns until later in the design
process. This delay in addressing manufacturability
increases the cost and difficulty of changing a design.
DFM’s goal is to help mechanical designers consider
manufacturability early in the process, when designs are
still flexible and easy to change.

When launching the project, our customer (a mechanical
designer) proposed the metaphor of a “spelling checker”
for mechanical designs. Consequently, the initial
specification called for a system that used a feature
recognizer to find machined features (holes, slots, pockets,
etc.) in a solid model of a part. Once found, these features
were to be passed on to a knowledge-based system that
evaluated their machinability.

The design team was composed of:

* A feature recognition team consisting of two
software engineers who were to refine and adapt existing
feature recognition software to the needs of the DFM

advisor. One member of this team was also experienced
in artificial intelligence, and was extensively involved
with the knowledge engineering team.

A knowledge engineering team consisting of a
knowledge engineer (myself) and an experienced
manufacturing engineer who was initially intended to
serve as a domain expert, but who also contributed
significantly and actively to design decisions.

A project management team consisting of two
people, one who took primary responsibility for
planning, budget and organizational concerns. This
person also participated in the early phases of design,
and helped the design team remain synchronized with
more global requirements, such as organizational
standards for network interactions, and the need for our
system to eventually interact with other software also
under development. The other member of the design
team was primarily concerned with funding and project
development, and did not participate actively in design
after the early stages.

« The customer for the system was also a mechanical
engineer and functioned as our primary source of user
input. We also sought out other engineers and
machinists for their evaluation of prototype systems.

The organization of the design team was complicated by
the fact that it was spread over four different organizations
and buildings at Sandia Laboratories. The feature
recognition team was at one site, the project manager and
I were at a second, the domain expert at a third, and the
customer and sample users at several other organizations.
Although we met regularly (at least once or twice per
week during the early phases of the project), and
communicated by phone and e-mail as needed, this
organizational scattering did complicate our interactions.
One of the benefits of the unusually strong design
metaphor was in providing a common focus, one that
allowed us to work independently while maintaining a
shared but flexible understanding of our common goals.

Because of the ambitious nature of the project, we made
an early decision to use an iterative, prototype-based
methodology that would allow us to explore the design
space more freely. Selecting this exploratory approach in
place of a more structured, top-down approach was clearly
the right decision, as many of our early assumptions even-
tually proved mistaken. Three prototypes were imple-
mented and evaluated in the process of refining the design.

It is important to note that a critical implication of the
“spelling checker” metaphor, that the DFM advisor should
be driven by feature recognition was effectively fixed very
early in the project by our choice of the design team.

A final important aspect of the development milieu is
Sandia Laboratories commitment to both research and the
development of practical, immediately useful tools. As the
project developed, these twin goals both supported the
exploratory methodology we had selected, and also
provided an additional set of design constraints that
influenced our development of the machinability advisor.

PROTOTYPE 1: A PURE SPELLING CHECKER

The first prototype system we constructed was an attempt
at a direct translation of the “spelling checker” metaphor.
The feature recognizer acquired features from a solid model
of a part, and sent them to the design advisor. This
prototype was only concerned with holes.

The advisor applied a list of critics to each feature, and
displayed those critics that detected potential problems.
The advisor displayed these “fired” critics one at a time,
just as a word processor’s spelling checker displays
misspelled words. The “Next” button allowed the user to
step through the applicable critics, while additional
buttons allowed the user to skip a feature, redo a feature or
start over with the first feature.

Figure 1 shows the main screen of this prototype. In order
to let the user know which feature was being checked, the
feature recognizer displayed the part with the current
feature highlighted (not shown). The screen displays the
feature in profile (upper right), surrounded by information
about its dimensions and tolerances. The box below
displays the text of critics (in the figure, it shows a
“dummy” test critic). The buttons at the bottom allow the
user to move through both features and the critics of a
given feature. Note that this order is fixed in prototype 1.

The order of feature evaluation

Implementing such a direct translation of the “spelling
checker” metaphor required that we repair several potential
breakdowns of the metaphor. The first of these was lack of
any obvious sequence in feature recognition. A
conventional spelling checker scans a document from start
to finish, highlighting potentially misspelled words as it
checks. Although feature recognition exhibited no obvious
sequence, we did highlight the current feature in the feature
recognizer’s display. In initial discussions of the design
with the domain expert and potential users, this solution
was accepted; the users saw no difficulty in the essentially
unpredictable order with which features were evaluated.

On reflection, the design team decided that there was no
reason to be bound to an arbitrary order of evaluation and,
in prototype 2, developed a “feature browser” that allowed
the user to check features in any desired order. This
browser displayed a list of features. Clicking on a feature
caused it to be highlighted in the display of the part
drawing, and sent to the advisor to be evaluated. The users
appreciated this improved flexibility, although it is
interesting to note that no one complained about the
original, more rigid interaction. I believe this to result
from the power of the original metaphor, and illustrates
the way a strong design metaphor can lead a user to accept
a less than optimal solution to their problem.

l Feature type: Through haole for screw.

% 0,175} mm

Countersink | 12,675

diameter: 0.015

Countersink
depth: | 3826
+

Diameter:

Dummy Compound Feature Gritic.

RMAMAR000S

Figure 1
limitations of the solid modeling software the feature
recognizer was built upon, it was unable to recover
information about tolerances from the original engineering

The problem of missing information
{\ more difficult problem was in the lack of complete
information from the feature recognizer. Due to

drawing. This was a severe limitation, since nearly all
machinability problems involve tolerances at some level:
if you don’t care about tolerances, practically anything can
be machined. Although a related project was exploring the
possibility of adding this capability to the feature
recognizer, it was not available to us as our project

developed.

In order to minimize the data entry requirements on the
user, we felt it important to provide useful default values
for tolerances on feature dimensions. This proved difficult,
since “reasonable” tolerances depend upon the intended use
of the feature. Our solution to this problem was to
construct a database of typical features that could be
matched with new features in order to provide default
tolerance values. For example, a countersunk hole for a
standard screw could be easily recognized, providing the
user with recommended tolerance values for that feature.

This solution never proved fully satisfactory. Although
we were able to classify many simple features, such as
holes, in a reasonable manner, it was clear that we would
have difficulty in extending this approach to more
complex, novel features. Also, by providing recommended
tolerances rather than those the user had initially entered
into the design drawing, we were introducing an
unacceptable possibility for error into the interaction with
the system. These problems were among the main reasons
for changing the approach taken in this early prototype.

Metaphor breakdown due to complexity mismatch

A deeper problem was in the complexity of recognizing
machinability problems. Spell checking a textual
document is a relatively straightforward process of
matching words in the document against those in a
dictionary and indicting words that failed to match.
Formally, this is a process of matching regular
expressions, and algorithms exist for doing this
efficiently. As we worked with our domain experts in
acquiring knowledge of machinability problems it became
clear that evaluating machinability problems was
significantly more complex than finding a word in a
spelling checker’s dictionary. For example, determining
whether a 0.002” diameter tolerance on a 0.25” hole is
excessive or not depends entirely on the intended use of
the hole. This, in turn, required asking extensive questions
of the user, a further violation of the “spelling checker”
metaphor. Although we did not formally characterize the
complexity of evaluating features, it clearly cannot be
done by matching regular expressions and is most likely
context sensitive.

This impact of complexity problems on a design
metaphor is both unexpected and significant. None of the
literature I have encountered on the use of metaphor in
discovery or design mentions the impact of complexity
" issues on metaphor interpretation. Generally, metaphors
are assumed to fail if they make predictions that prove to
be false. As we discovered, it is possible to implement the
general patterns of a metaphor, only to see the metaphor
break down because of differences in complexity between
the source and target situations.

It is interesting to note that our customer had initially
specified that we should not consider design intent in our
evaluations, as this was too difficult. On subsequent
conversations with the customer, our domain expert and
other engineers and machinists, everyone acknowledged
the importance of this type of information. Although I
can only speculate, it seems reasonable that the “spelling
checker” metaphor may have led the customer to add this
limitation to our initial requirements in an effort to fit the
problem to the metaphor.

Finding vs. preventing mistakes

The final difficulty encountered in prototype 1 was in its
emphasis on error detection, rather than error prevention.
As a “spelling checker” for designs, it was natural to
apply the advisor to existing engineering drawings. It was
only as we made progress in knowledge acquisition that
we recognized that machinability knowledge could be
more easily and more effectively applied if we offered it to
the engineer as he or she was creating a design, rather than
after the design already existed. It is interesting to note
that although the maxim, “it is better to prevent errors

- than to detect them,” is part of every designer’s

knowledge, the influence of the “spelling checker”
metaphor led us to ignore this valuable rule of thumb
until empirical evaluations of the first prototype led us to
reconsider our assumptions. Similarly, although our
customer clearly specified that the advisor would be used
to check finished designs, on seeing the prototype, he
asked it couldn’t “detect errors as he was working.”

PROTOTYPE 2: THE MIXED USE APPROACH

The second prototype addressed these difficulties we
encountered in applying the “spelling checker” metaphor
to the design of the machinability advisor. We did not,
however, abandon the metaphor entirely. There were
several reasons for this. Although the domain expert and I
had doubts about the metaphor by this time, the feature
recognition team and the customer still found it to be
useful. Our discussions revealed a number of effective
arguments for the benefits of a feature driven approach.
Among these was the ability of the advisor to serve as a
final check before manufacture, the learnability and
usability gains provided by the metaphor, the ease of
fitting a “spelling checker” into the engineering
development process, and the technical benefits of
providing the feature recognition team with a challenging
test of their capabilities. Consequently, we decided to
retain at least a feature-driven approach as at least part of
the tool.

In order to address these limitations, we implemented a
dual use advisor. When used as a checker for existing
models, it took an approach that was similar to prototype
1. The only real difference was in replacing the one-at-a-
time approach to checking features with a more flexible
feature browser. This allowed the user to select features
from the solid model and check them in any order.

In providing the second, non-feature driven interface, we
made the database of typical features directly available to
the user. They could browse this list, selecting, for
example recommended configurations for common features

such as countersunk holes or holes for a rotating pin or
shaft. The user could then edit these recommended
configurations, changing either dimensions or tolerances.
Where these changes violated any of the machinability
checks, the advisor warned the user. Although not
implemented in this prototype, we felt that completing
this approach would require some way of “pasting” the
resulting feature into the engineering drawing.

In evaluating this prototype, it was clear that we had
moved in the right direction. Although everyone agreed on
the merits of a dual use strategy, the team remained
divided over the relative merits of the “front end design
tool” vs. the “spelling checker” approach.

PROTOTYPE 3: TOOLS AND CRITICS

The final prototype built on its predecessor’s dual-use
approach, but made two notable additions to it. The first
of these was in recognizing that certain types of
knowledge could be useful for either front-end design or
feature checking, but not both. We supported this by
dividing our knowledge base into “tools” and “critics.”
Critics were used exclusively to evaluate existing features,
whereas tools could be used for either evaluation of
existing features, or to design features from scratch. A key
difference between tools and critics was that tools involved
more extensive user interaction, while critics simply

detected potential problems. The second addition to
prototype 2 was in rewriting the system into a more
flexible, modular architecture.

Evaluating solid models

When checking a model, the user browsed through
features, and selected those to be checked. Each tool or
critic included a condition test to determine its relevance to
a given feature. When the user requested a feature be
checked, DFM applied each test to the selected feature.
The advisor then displayed a list of tools and critics whose
conditions applied. Selecting an entry either displayed its
text (for the critics) or initialized the tool with the
feature’s dimensions and launched it as a separate
application.

An example of a tool was the PIN FIT ADVISOR (Figure 2)
which advised the user on dimensions and tolerances of
holes that were to fit a pin or moving shaft. Even when
initialized with the diameter of a recognized hole, the pin
fit advisor still asked the user a number of questions about
the use of a hole (e.g. “is the hole intended to allow ashaft
to rotate, or is it intended to fit tightly over a pin to
accurately position a part?”), and recommended the
tolerances for the pin and hole. Note from the screen in
Figure 2 that this evaluation involved extensive

unning and Sliding Fit - RCI
| Runring and Sliding Fit - R

g{Running and Sliding Fit — RC3:
[{ Running and Sliding Fit - RC4
| Running and Siiding Fit - RCS
{ Running and Sliding Fit - RCB
;| Running and Sliding Fit - RC?
{ Running and Stiding Fit - RC3
| Running and Sliding Fit - RC3

unning and Sliding Fit - RC3

RC3: Preci abo

differences are expected.

:]
for precision work at siow speeds and light journal pressures, but where no appreciable temperature

Figure 2

interaction with the user, and moves considerably beyond
the “spelling checker” metaphor.

In contrast, a typical critic was one that detected holes

whose diameter failed to match any standard size drill bit,
and called this problem to the user’s attention. This critic
required no user input, and could be used in a standard
“spelling checker” mode. Note that, because of their

.

- simplicity, critics were able to fit the “spelling checker”
metaphor more directly than tools like the pin fit advisor.
In effect, prototype #3’s critic facility implemented an
almost pure “spelling checker” for designs within the
context of the more general tool.

An initial design toolkit

When a tool was used during initial design (i.e. without a
solid model), the user selected tools from a browser.
Critics were not available in this mode of use. Because the
advisor did not use the feature recognizer to initialize tools
with feature dimensions, the user entered the required
dimensions and tolerance information directly.

Because the toolkit no longer depended upon the feature
recognizer, we had more freedom in designing tools that
were not feature oriented. One of these tools, the
SURFACE FINISH EVALUATOR, determined which
machining processes would be needed to achieve a
specified surface finish, and evaluated the relative cost of
these processes. This tool bore no direct relationship to
the feature recognizer.

This toolkit approach represents a fairly drastic break with
the “spelling checker” metaphor. The metaphor no longer
was the dominant interpretation of the design, although it
“re-appeared” when the advisor was applied to existing
solid models.

Architectural implications

A significant change in the third prototype was
architectural. The advisor was decomposed into much
smaller, specialized objects than the earlier versions. For
example, we recognized that the feature browser was a
potentially valuable addition to the feature recognizer that
could stand alone from the Design for Machinability
advisor. Consequently, it was separated from DFM, and
implemented as a pure feature browser that communicated
with DFM through message passing. Similarly, each tool
was an independent object that could be either invoked as
an independent application, or first initialized with data
from the feature recognizer. These were deliberately
designed as independent objects to enable later migration
to a distributed object environment, as is consistent with
broader corporate software strategy.

This change in architecture was another unanticipated, and
somewhat paradoxical, result of the maturation of the
metaphor. Although it was written in an object-oriented
style, Prototype 1 was essentially a “monolithic”
program. Most objects were closely coupled and could not
be realistically described as independent. As we came to
understand the design (and the “spelling checker”
metaphor) better, we were able to focus more clearly on
architectural issues. This is somewhat paradoxical in that
highly modular designs are conventionally regarded as a
benefit to exploratory prototyping. However, in the early
stages of development, our lack of understanding of the
design and the dominance of the design metaphor made it
hard to address these purely architectural concerns.

CONCLUSION

The development of the Design for Machinability Advisor
was a valuable lesson in the use of design metaphors. In

summary, lessons learned from the pfoject include:

Design metaphors have complex life cycles

The development of design metaphors closely follows the
interaction theory [2], being characterized by shifts in the
interpretation of both the design (the metaphoric target)
and the source metaphor. As the DFM advisor developed,
it extended our understanding of “spelling checkers” to
include more complex interactions with the user and
greater user control over the order with which items are
checked.

Although design metaphors do tend to move from the
broadly suggestive to a more static interpretation as the
design becomes fixed, this is far from a steady progress,
but alternates between periods where the interpretation of
the metaphor remains relatively stable, and times of
radical shift in the understanding of the metaphor. In the
development of DFM, there were three such shifts:

1. Recognizing the implications of the feature recognizer’s
lack of obvious order, and the rejection of a fixed order
of analysis in favor of a more flexible feature browser.

2. The adoption of a dual use strategy that allowed the
user to access system knowledge either to check features,
or as an initial design tool.

3. Prototype 3’s division of machinability knowledge into
distinct “tools™ and “critics”, where only critics were

- required to be applicable to geometric features. This

allowed us to create tools that had no direct link to the
feature recognizer. Essentially, this step pushed the
“spelling checker” metaphor back into part of the DFM
Advisor (the feature recognizer/critic combination), both
returning to a “purer” instantiation of the metaphor and
allowing other parts of the tool to function in a less
constrained manner.

In addition to exhibiting the shifts of meaning predicted
by the interaction theory, the development of the “spelling
checker” metaphor also supports Lakoff and Johnson’s [3]
contention that metaphors never really die. Although the
third prototype of the advisor both reduces the metaphor’s
importance and fixes its interpretation in an artifact, both
the customer and the project managers continue to use the
metaphor for marketing DFM and planning future
projects. The Design for Machinability Advisor has
become one instance of a larger metaphor that will
continue to be explored through future projects.

Strong design metaphors are a benefit and an
obstacle

Because the “spelling checker” metaphor was so strong, it
enabled us to quickly agree on a basic design and rapidly
develop the first prototype. Prototype 1 was completed in
about 4 months, which was fairly impressive given the
fact that it involved a separate feature recognizer and
knowledge based system interacting over a computer
network. However, as the design matured, the metaphor
also interfered with our ability to respond to an emerging
understanding of the user’s needs and abilities. In
particular, the “spelling checker” metaphor made it
difficult to move into a fully dual-use approach.

»

Metaphors and complexity

Although my understanding of metaphors in language and
science had prepared for the likelihood that certain
implications of the “spelling checker” metaphor would
prove wrong for the design advisor, I had assumed that
these would be strictly semantic in nature; that is, I
assumed that the metaphor would fail if it led to the
wrong functionality or a difficult to understand interface.
My experience with the Design for Machinability advisor
demonstrated that a metaphor could also break down if the
underlying computational complexity of the resulting
design was drastically different from that of the source.

The social life of design metaphors

The most unexpected lesson learned was the importance of
the design metaphor’s social role. Because the design team
was separated both geographically and organizationally,
and because of the short development times required for a
prototyping methodology, we often had to make design
decisions without adequately consulting other members of
the design team. This was particularly true of the feature
recognizer and the knowledge based system parts of the
tool. Although these often resulted in minor
inconsistencies, none of these involved deeper semantic
problems and all were easily repaired. I believe that this
was due to the shared semantic understanding engendered
by the shared metaphor.

Another surprising discovery was that different
interpretations of the design metaphor coexisted quite
harmoniously within the design team. As the project
progressed, the interpretations of the metaphor seemed to
grow along multiple lines: the machining expert and I
came to reduce the importance of the “spelling checker”
metaphor, while the customer and one of the management
team retained a more direct interpretation. We were
concerned that this might cause misunderstanding or
rejection of the system. Surprisingly, they were quite
happy to continue characterizing the advisor as a spelling
checker, and accepted the final prototype as a faithful
rendering of the metaphor. Ironically, the finalization of
the design did not detract from the flexibility with which
different team members interpreted the metaphor.

Similarly, the feature recognition team continued to regard
the advisor as a “spelling checker” for designs, which is
not surprising, since the use of the feature recognizer was
closely tied to this metaphor. However, they were quick to
accept such changes in the metaphor’s interpretation as the
shift to a feature browser driven approach. It is also
interesting to mention that as the feature recognition team
has started to explore other applications for their software,
they have largely ignored the “spelling checker” metaphor.
Although they continue to use it in discussing DFM, the
metaphor plays little role in their continuing work.
Because it serves no useful function, it is essentially dead
for this portion of our team.

Design metaphor as a necessary fiction

As our experience with the Design for Machinability
Advisor indicates, the use of a strong metaphor in design
is far from a simple affair. It is characterized by radical
shifts in interpretation of the metaphor and resulting

changes in the design. In spite of the metaphor’s ability to
bring the design team to a common focus in a rapid
manner, it often hindered our understanding of user
reactions and a flexible response to problems in the
developing design.

On balance, I believe that these are not so much problems
that need to be fixed as they are essential features of an
inherently complex process. I do not believe that we could
have started, let alone completed, this project without the
contributions of this very strong central design metaphor.
Although the system largely moved beyond it, the
“spelling checker” metaphor was, and remains an essential
component of our understanding of the design. I believe
that the lessons to be learned are not that we should avoid
strong metaphors, but that we should be prepared for the
shifts in meaning that accompany their development, and
their tendency to blind us to design possibilities that do
not fit the metaphors obvious interpretations.

ACKNOWLEDGMENTS

I would like to thank Sandia National Laboratories for

their generous support of the Design for Machinability

Project. Ken Washington, Steve Kleban and Dwight

Miller provided valuable comments on early ideas and

drafts of this paper. I also thank the members of the

Design for Machinability team: John Mitchiner, Kim

Mahin, Jill Rivera, Lothar Bieg, Robert LaFarge, David

Plummer and Marcus Craig. Their technical skill, design

sophistication and friendship made this project unusually

rewarding.

REFERENCES

1. Madsen, K.H., A Guide to Metaphorical Design.
Communications of the ACM, 1994. 37(12).

2. Black, M., Models and Metaphors. 1962, Ithaca, NY:
Cornell University Press.

3. Lakoff, G. and M. Johnson, Metaphors We Live By.
1980, Chicago: University of Chicago Press.

4. Gibbs, R.W.J., The Poetics of Mind. 1994,
Cambridge: Cambridge University Press.

5. Hesse, M., Models and Analogies in Science. 1966,
Notre Dame, Indiana: University of Notre Dame Press.

6. Gentner, D., Flowing waters or teaming crowds:
Mental models of electricity, in Mental Models, D.
Gentner and A.L. Stevens, Editor. 1983, Lawrence
Elbaum Associates: Hillsdale, N. J.

7. Stubblefield, W.A., Source Selection for Analogical
Reasoning: An Interactionist Approach. 1995. PhD
Dissertation, Department of Computer Science,
University of New Mexico.

M98003144
TR TR OO

Report Number (14) 24D ~- 9§ - O/2G .

CONYE -G go4k14)~ ~

Publ. Date (11) /GG 9 04

Sponsor Code (18) POE/ Df XE

UC Category (19) U.Co 7 60 y DOE [ER

DOE

