Dynamic Visualization Techni
for High Consequence Software

Guylaine M. Pollock .
Sandia National Laboratories, MS 1109
Computer Sciences Department
P.O. Box 5800
Albuquerque, NM 87185-1109
505-845-7463

9960401 083

SANVIZ-047 Lo

C
. SAND -~ 9042 LC
ques

Loy

Ce
i f E s

[N
%0 24 o f@
OS 7‘/08

gmpollo@cs.sandia.gov

Abstract--This report documents a prototype tool developed
to investigate the use of visualization and virtual reality tech-
nologies for improving software surety confidence. The tool
is utilized within the execution phase of the software life
cycle. It provides a capability to monitor an executing pro-
gram against prespecified requirements constraints provided
in a program written in the requirements specification lan-
guage SAGE. The resulting Software Attribute Visual Anal-
ysis Tool (SAVAnT) also provides a technique to assess the
completeness of a software specification. The prototype tool
is described along with the requirements constraint language
after a brief literature review is presented. Examples of how
the tool can be used are also presented. In conclusion, the
most significant advantage of this tool is to provide a first
step in evaluating specification completeness, and to provide
a more productive method for program comprehension and
debugging. The expected payoff is increased software surety
confidence, increased program comprehension, and reduced
development and debugging time.

TABLE OF CONTENTS

INTRODUCTION
BACKGROUND

PROJECT GOALS
LITERATURE REVIEW
PROJECT/TOOL OVERVIEW
SAVANT DESCRIPTION
REQUIREMENTS CONSTRAINT LANGUAGE
EXAMPLE USAGE
CONCLUSION
REFERENCES

BIOGRAPHY

—SVPNAUALN =

-

1. INTRODUCTION

The development of software for use in high-consequence
systems--systems where errors cause loss of life or signifi-
cant financial or material loss--mandates rigorous (formal)
processes, methods, and techniques to improve the safety
characteristics of those systems. To address this need,
research efforts must progress in several areas over the next
few decades to allow us to reach, with greater certainty, the
higher levels of reliability required by software used in high-
consequence systems. [1], [2] This paper describes a proto-

DISTRIBUTION OF THIS DOCUMENT 1§ UNIMITED
[mc QUALITY II7SPECTED 5

type tool developed for monitoring of high-consequence
software under an initiative at Sandia National Laboratories
(SNL) to identify how we will develop ultra-reliable soft-
ware in the 2010 time frame.

The initiative is called the High Integrity Software Program
(HIS), and is tasked with guiding strategic investments in the
development of new capabilities and technologies in the
domain of high consequence software at SNL. The program
sponsors research within the strategic surety backbone of the
defense sector to establish predictive confidence that a sys-
tem is safe, secure, and under control through the explora-

* tion, extension and application of the science of software

systems [3]. The program emphasizes high-risk, high payoff
research through a correctness research track focussed on a
“correctness by design,” and more immediate lower-risk,
medium payoff applications research through a “systems
immunology™” track which investigates methods and tech-
niques to render today’s systems safer, more secure and more
reliable. This project is being developed under the correct-
ness by design track. Why is this program important, what
are the key issues, and what approach have we taken for this
project?

Once a software system has been developed, the problem
still remains of assessing software surety status--rigorous
processes and methods applied to early phases of the soft-
ware life cycle alone cannot assure software integrity, safety,
security, and reliability in the final end product. The imple-
mentation itself must be verified, with particular focus on
surety aspects for high-consequence systems. In that regard,
several key issues include whether or not the executing soft-
ware properly incorporates specified constraints, and
whether or not all necessary constraints and their interactions
have been considered, understood, and correctly imple-
mented to avoid loss of life or other undesirable effects. How
do we verify the surety attributes of a system implementa-
tion? This project attempts a first step in this type of verifi-
cation.

Traditionally, there have been three areas of research for ver-
ification of system implementations: logical verification,
mathematical verification, and statistical verification. These
are all excellent approaches. However, Berztiss [4] has
advocated that every possible technique and method should
be utilized to address safety concerns, as current methods to

ConF-9%03/9-—

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed hercin do not necessarily state or
reflect those of the United States Government or any agency thereof.

address this problem are inadequate. While testing the actual
system code does provide substantial information regarding
the correctness of the system, generally this is an incomplete
method for assessing surety aspects, as economic and sched-
uling restraints prohibit the level of testing required to
achieve the necessary confidence in the surety of real-world
systems. Further, tested programs may correctly execute
their specifications, but with current textual and limited
graphical documentation, it is difficult to ascertain whether a
code does what is needed.

Mathematical models can be considered for this task.
Although rigorous, they can only prove that the implementa-
tion meets the specific requirements. They do not allow sup-
port for identifying any cases that have not been considered
within the requirements and specifications--a drawback of
mathematical techniques, they only work if the right cases
are proven. Reliability models are also useful, but again, they
can only provide statistical confidence at levels that are
clearly beneath those required for these high-consequence
systems, and they, generally, are making predictions about
future failures of the systems without addressing the types of
errors or their significance. Finally, none of these existing
methods of research address the difficulty of assessing
whether all necessary constraints have been specified.

Therefore, in addressing the issue of verification as well as
other issues, it is time to consider an additional category,
visualization. Accordingly, several such efforts are under-
way in various laboratories and universities [2], [5], [6],
including this investigation of software attributes visualiza-
tion within the High Integrity Software program at Sandia
National Laboratories.

Visualization techniques have been used quite successfully
within the scientific community for some time; and not sur-
prisingly, many researchers feel the utility of visualization as
a means of illustrating the properties of multiple objects, or
as a means of demonstrating properties of supersets of dis-
crete items, may be considered a given [7]. Fortunately, this
benefit of improved comprehension through visualization
can be achieved in other application areas as long as the
appropriate visual model is selected. Correspondingly,
although system verification is a new context, visualization
provides the capability of increased system comprehension,
thereby facilitating discoveries that are not otherwise possi-
ble. This is a major benefit of using visualization in a formal
method to investigate surety aspects of a system implementa-
tion. However, little work currently has been undertaken to
apply multi-dimensional visualization techniques to software
analysis [8], while a number of projects have focussed on
algorithm animation, at least in two dimensional formats [9].
(It is only fairly recently that hardware support has been suf-
ficient to allow work on information visualization for analy-
sis of software.)

Projects are just beginning to investigate the use of this
methodology for enhancing understanding of system soft-
ware. Initial successes have resulted in recommendations of
investigating the use of virtual reality technology to map
multiple-layer software systems onto expansive 3-dimen-
sional terrains and providing more direct means for traversal

as a more effective facility for software visualization [2]. We
are investigating such a use of visualization and virtual real-
ity techniques, with our efforts going further in utilizing
these technologies in assessing surety factors for high-conse-
quence software through the verification of system software
[10], as current visualization models do not evaluate or por-
tray surety issues. A multi-dimensional abstract model is
used to reduce system complexities associated with the con-
ceptual mapping of a problem domain into a software solu-
tion space.

The goal of this project is to improve cognition of software
systems behaviour and improve software surety confidence
by providing an environment that allows visualization of
abstract objects and animation of program behavior incorpo-
rating requirement constraints. The project focuses on a
multi-dimensional visualization of software abstractions that
incorporates a technique for assessing the correct implemen-
tation of select requirement constraints during the execution
phase of the life-cycle process.

The prototype software attribute visualization tool is devel-
oped on Eigen/VR, a multi-dimensional user-oriented syn-
thetic environment developed at Sandia National Labora-
tories for virtual reality applications. The tool incorporates
the use of requirement constraints, expressed in a require-
ments constraint language, in the visualization of an execut-
ing program. As the program executes, selected requirement
constraints are monitored and if violated, the abstract visual
model indicates those errors have occurred. Before discuss-
ing the tool, a brief review of the background leading to this
project is presented along with clarification of the project
goals. Related projects are briefly presented in the literature
review. An overview of the tool is presented before discuss-
ing SAVAnT and SAGE in more detail. Finally, a few exam-
ples of usage are given before conclusions are presented.

2. BACKGROUND

The High Integrity Software Program (HIS) at SNL was
established to provide a crucial role in guiding internal
research efforts to improve technologies that enhance surety
aspects of high-consequence systems. This program strives
to develop better technologies within the software industry
enabling us to increase our confidence in the correctness of
high consequence systems, many of which may become life-
threatening if flawed.

Examining this industry in general, we see software becom-
ing more complex and being relied upon more often for an
ever-widening variety of applications. In fact, our depen-
dence on software is exploding quietly—"“The amount of
code in most consumer products is doubling every two years
... televisions may contain up to 500 kilobytes of software;
an electric shaver, two kilobytes; while the power trains in
new General Motors cars run 30,000 lines of computer
code.” [11]—and yet software is not reliable in most sys-
tems. As a result, software irregularities, in some instances,
have taken or degraded people’s lives in various system acci-
dents.

Notwithstanding, new types of applications continue to
appear on the technological horizon, generating continued
cause for concern regarding current abilities to evaluate soft-
ware surety. For example, Andy White, Director of Los Ala-
mos National Laboratories Advanced Computing Labora-
tory, has stated that an important goal for new software
applications is to solve large problems (such as helping the
Forest Service fight fires, helping doctors determine which
flu vaccines to use, and making sure that U.S. nuclear bombs
do not go off accidentally) that, in short, require us to trust
computers to predict the future [12].

While some have encouraged expansion of these types of
applications, many others have cited this proliferation as a
potential powder-keg for our society: “These days we adopt
innovations in large numbers, and put them to extensive use,
faster than we can ever hope to know their consequences ...
which tragically removes our ability to control the course of
events” [13].

Even more alarming, this increase in numbers and types of
software applications has increased our vulnerability as a
nation to information warfare. (This is a problem for other
nations as well.) In fact, last year the Joint Security Commis-
sion stated that “The U.S. vulnerability to infowar may be
the major security challenge of this decade and possibly the
next century” [14]. Not surprisingly, Pentagon officials have
reported an attempt at such warfare was actually suggested
to U.S. adversaries during the Gulf war when a group of
Dutch hackers offered to disrupt the U.S. military’s deploy-
ment to the Middle East for $1 Million. If current trends con-
tinue, this type of vulnerability will only increase unless we
work to ameliorate our skills in assessing software surety.

Clearly software integrity and surety (safety, security, reli-
ability) issues are a major concern for U.S. industries; as
such, they are also a concern for Sandia National Laborato-
ries. Current surety technologies just are not good enough
for industries’ increasing needs.

Consequently, the HIS program initiative was formulated to
address high integrity and surety software issues. Sponsors
of the program include the Strategic Surety Backbone of the
Defense Programs Sector and the Vice President of Defense
Programs. The HIS objective is to establish predictive confi-
dence that a system is safe, secure, and under control.

3. PROJECT GOALS

As previously stated, the development of software for use in
high-consequence systems mandates rigorous (formal) pro-
cesses, methods, and techniques to improve the safety char-
acteristics of those systems. Current methods to address this
problem are inadequate. While testing the actual code does
provide substantial information regarding the correctness of
the code, generally this is an incomplete method, as eco-
nomic and scheduling restraints prohibit the level of testing
required to achieve the necessary confidence in the surety of
real-world systems.

Reliability models are useful, but again, they can only pro-
vide statistical confidence at levels that are clearly beneath
those required for these high-consequence systems. Further,
existing methods do not address the difficulty of assessing
whether all necessary constraints have been specified.
Finally, traditional work in the area of visualization has pri-
marily focussed on the use of two-dimensional flow-chart
like structures. However, this project investigates the use of
visualization in a mutiple dimensionsional environment to
improve surety confidence.

Therefore, the primary goal of this project is to improve cog-
nition of software systems behavior and improve software
surety confidence by providing an environment that allows
visualization of abstract objects and animation of program
behavior incorporating requirement constraints. This meets
the project goal of examining techniques for assessing the
correct implementation of select requirement constraints.
Further, the project assesses software during the execution
phase of the life-cycle process.

To achieve this goal, a prototype tool, SAVAnT (Software
Attribute Visual Analysis Tool), was developed to aid in the
visualization of an executing program. The tool is designed
to allow the ability to monitor the execution and compare it
to prespecified requirements constraints expressed in what
we have termed a requirements constraint language. In addi-
tion, a goal was to provide a tool that would be easy to use.
Therefore a preprocessor was developed to generate the
required version of the executable program. Finally, portabil-
ity was important. So standard programming languages were
utilized. Before describing the tool in greater detail, similar
projects are reviewed.

4. LITERATURE REVIEW

Briefly reviewing related literature, we examine two aspects:
what is the state of the art for verification of software
requirement specifications, and how is visualization being
used to aid program development and comprehension. In
reviewing the state of the art in requirements verification
approaches, Yau’s work is typical [15]. This work checks the
completeness between the natural language requirements
statements and the object-oriented requirements specifica-
tion for a given application. However it does not address the
completeness of the natural language requirement state-
ments, which the technique described herein can address.

In reviewing the use of visualization, work in this area has
yet to capitalize on the use of multi-dimensional virtual real-
ity and visualization techniques as applied to the software
development process. While Huff has clearly documented
that visualization has been used in a variety of areas [8];
from his report, it is clear that the use of visualization for the
application of software development lags behind the use of
visualization for scientific applications. However in review-
ing the use of visual techniques for software development, a
number of interesting systems have been developed. Zeus
developed by DEC is one tool to examine. Figures 1 (a) - (d)
illustrate a heap sort animated with Zeus [9]. This tool uti-

‘uono(dwo)) enIed IaJV malA Suniog snaz :(p)] aansiy SIXY X 91 Umo(M3LA :Sutiog snaz :(0)] aan3ig

:Sunuog snaz :(e) | 2anSiyg

*SIXV X 9U) punoIy pajeloy :Surlos snoz :(q)] aIndig SIXY Z 33 umo(J M3IA

@ G Unbalanced: Tree Skefeton

i
|@& G Zeus Photo Album

FA N

3

=)

Figure 2: Zeus Algorithm Comparison.

lizes simple representations for algorithm animation. The
colored bars represent the data values with the colors and the
lengths of the bars indicating the relative value. Smaller
numbers are represented in blue with increases in value rep-
resented by the increase in the color wheel.

Figures 2 illustrates another example of the Zeus prototype
tool and how it can be used. This example illustrates the tree
strductures generated by different algorithms for compari-
sion.

Zeus was developed as a follow on from the Balsa system.
Balsa was used to animate algorithms in Pascal programs for
educational purposes. Balsa models are two dimensional,
black and white models. Zeus, which supports multiple syn-
chronized views of algorithms, has not been used outside a
laboratory. Further, there have been no empirical evaluations
performed on this tool.

Other tools for the reader to investigate are Tango, Anim,
Genie, UWPI, SEE, TPM, Pavane, LogoMedia, and Object-
Center. More detailed information on these tools and others
can be found in [16].

5. PROJECT/TOOL OVERVIEW

What is SAVAnT, and how is it used? To start, figure 3 illus-
trates the semantic view of the system. A selected program is
executed within the SAVAnT environment. The program must

be altered through a preprocessor to feed needed information
to the controller for representation of the visual model. This
information also is analyzed by the constraint system as
specified by the requirements constraint language (RQL).
The RQL program must be developed by the user for this
feature of the environment to be utilized.

The constraint monitor projection utilizes input from the
executing program and the constraint system to determine
the visual representation to depict. A controlling monitor
alters execution control between the modules which are
essentially functioning as coroutines. The entire system is
embedded within Eigen/VR, a spin-off of the Muse system
originally developed internally at Sandia National Laborato-
ries. Muse is a multi-user synthetic environment used to
emulate a virtual realitiy environment. The Eigen/VR sys-
tem provides a consistent interface to utilize virtual reality
technologies. It is utilized by developing an OpenGL visual
model which is then “plugged in” to Eigen/VR. Thus, the
visual model generated by the SAVAnT system is an OpenGL
model.

Functionality

Figure 4 shows what an initial program visualization looks
like. This view depicts a program with one subroutine and a
number of data structures, all of which are arrays. This
model is generated automatically by scanning the original
program to be visualized. A preprocessor was developed to

“JOVS PUB JUVAVS 10J [0IJUOD) SS3001J :¢ N1y

WeI301J
f sjureIIsuo)) SUnNNIIXY

\

sjuWRIMbay

:o—aum_d.ﬁ
JI0JIUOJA] JUIRIISUO))

e

YA UdSIH

"TOPOJAl [BNSIA WeIS01d pajeIauan) Jo malA [eniy] sjdwes i aangiy

R

e

T TR Y I IR T RN A

utomate the scan. The large circular object is the main pro-
gram, and the smaller circular object is a subroutine. When
the subroutine executes, the smaller object rotates and
“orbits” the main program. Additional actions could be spec-
ified as desired by the user. Later work will expand the avail-
able models.

Visual models may be altered by the development of addi-
tional routines. The placement and definition of the data
structures are also automated. While the ability to select the
data structures to be represented is not yet implemented, the
basic structure is in place to allow that functionality.
Advanced development will allow the user to switch among
models during the execution.Figure 5 illustrates the same
program at a later time. Note that the subroutine has altered
position.Eigen/VR allows the user to “fly” around and into
the various structures appearing in the visualization.Figure 6
shows a rotated view that the user sees while reorienting
themselves through the “flight” capabilities, while Figure 7
shows an overhead view.

In moving about the system, it is easy to become disoriented.
This is especially true in development of the visual model.
As the system is developed to automatically place certain
structures, the user may have difficulty determining the cur-
rent orientation of the system in order to add additional fea-
tures. Therefore, a feature is available to show the orientation
of each object in relation to X, ¥, and Z coordinates. This is
achieved by embedding an axis within each object. Figure 8
shows the orientation when this feature is activated. The red
axis is the Z axis, blue the X axis, and the Y axis is white.
Figure 9 is a different view of the orientation. Let us now
consider SAVAnT in more detail.

6. Software Attribute Visual Analysis Tool
Description (SAVAnT)

SAVART is a visual tool that generates a visual model of an
executing C program. This model currently depicts the basic
structures of the program, including functions and data struc-
tures. Additional attributes can be visualized if the desired
visual models are prepared. The visual model allows the user
an easy way to conceptualize the program in their own men-
tal model.

Traditional methods require the user to map the program
solution space to a two dimensional model whereas SAVAnT
allows a multiple dimensional mapping. In addition, the tool
is structured to allow ease of customization. Thus, a user
may alter the visual model to represent the action in what-
ever manner the user conceptualizes the program space. This
allows a concrete representation to view and alter in under-
standing the program execution. Program comprehension is
achieved faster with the additional visual information.

The system currently visualizes C programs that can be rep-
resented within a single file. While real applications typi-
cally consist of several files, due to time limitations, the
prototype only processes a single file. An extension to pro-

cess multiple file programs can easily be done by including
the processing of an “include” statement. In addition, the
preprocessor will not handle compiler directives. A brief
review of the major components/aspects follows. The pre-
processor, the executing program, the visualization routines,
the constraint monitor and the controlling routines will be
discussed.

Preprocessor

The preprocessor consists of a lexical analyzer and parser
that are used as input to LEX and YACC to generate the
complete preprocessor. As the code is parsed, a symbol table
is generated to be used between the executing program, the
visual model routines, and the constraint system. Informa-
tion about structural aspects of the program and selected
attributes is also collected to establish the initial visual
model of the executing program. In addition, the preproces-
sor generates a new version of the executable program. This
new version has appropriate statements inserted to feed exe-
cution data to the visual model and constraint system. How-
ever, the visual model does not depict the inserted
statements.

Any necessary data is queried from the user in driving the
preprocessor. This feature can be extended to allow the user
to specify which data is to be visualized. However, it would
be best to allow all of the data to be collected, and then to
selectively invoke and eliminate desired aspects of the model
as the execution progresses. This can be achieved through
voice commands to the Eigen/VR system.

Additional information can be collected by expanding the
parser and lexical analyzer routines. The entire language is
implemented for the parser. This allows for complete func-
tionality in future extensions by providing the appropriate
“hooks” for expansion. Although the code recognizes all lan-
guage features, the prototype does not process all features at
present.

Executing Program

The executing program must be supplied by the user. It must
be developed in C. As the tool is currently a prototype, the
program selected must not utilize include files or compiler
directives. The preprocessor will generate error messages if
the program exceeds any limitations due to size. The prob-
lem can then be addressed by increasing the associated data
structure within the parser or lexical analyzer and recompil-
ing the routines to regenerate the preprocessor.

A new version of the program will be generated. This new
version is the one that will actually be executed. Appropriate
statements are inserted into the original program to drive the
visual model. This provides an advantage of automating the
process for the user. A disadvantage of this approach is that
some errors might be masked by the process of altering the

"UONISOJ PA1d)[V SBY UONNOIXH aunnoiqng :¢ aangiy

MIIA JUSIIJI(T 10] PAIEIOY [POIA [BUISLIO :9 2anB1]

Overhead View of Visual Model.

Figure 7

icted.

Dep

L S A———

.

rientation

th O

10n wi

=
<
=
=
QL
w2
it
joh
L

A

—
<
on}
72}

i

V

Figure 8

1ve.

R
3]
0
(o R
2]
S
)
[aW
o
34
=
7
=
<
=
=

rientation w

Figure 9: O

size of the code. This is a typical problem shared by all
debuggers.

Visualization Routines

The visualization routines require structural input regarding
the program to be visualized. This information is provided
by the preprocessor. Figures 4-9 show the initial visualiza-
tion of an actual program. The placement of the figures, their
size, color and orientation are all achieved automatically
based on the information provided by the preprocessor. An
advantage of this approach is that it allows for the user to
develop different visual models to be generated by the speci-
fied data. This allows the user to define their preferred model
to coincide with their unique mental model of the executing
code. This is important, because a single model may not pro-
vide sufficient information to address individual needs and
understandings.

In addition, this approach eliminates the need for the user to
alter their original code themselves. Further, the Eigen/VR
environment allows for multiple tools to be utilized at once.
With future expansion, this may significantly improve soft-
ware surety capabilities as well as debugging productivity,
and program comprehension. Additional studies will be
needed for conclusive documentation.

Consequently, when the constraint monitor is fully imple-
mented, this system will provide a unique capability to mon-
itor correct execution as specified by requirement
constraints. This will not identify all errors, but selected con-
ditions can be monitored. If a violation occurs, the visual
model will dramatically increase the user’s ability for detec-
tion. For example, if a routine must have some interaction
within a specific time period, such as a monitoring routine,
and it does not received the required “signal” within the nec-
essary time frame, an unsafe condition may be triggered.
Visually this could be represented as an object dropping
towards the floor as it awaits a signal. If it goes beneath the
floor plane it has “timed out”. This would be analagous to a
night watchman signalling “all’s clear” at specific intervals.
Watching the object drop would give a more noticable
response to the user. '

While not discussed in depth due to space limitations, the
model can also identify situations that have not been
addressed by the requirements constraint language. If an
action is taken by the program that does not map to a con-
straint specification, an unspecified situation has occured if
the complete specification is given. This has an important
impact of providing the first documentable technique to
allow assessment of completeness for the software require-
ments specification. Current methods focus on proving that
an implementation correctly implements a specification, but
do not address the issue of whether the specification is cor-
rect or complete. While this technique will not fully resolve
the completeness problem, it is a first step in identifying
errors in completeness occurring during execution. A disad-
vantage of this approach is that it focuses on the execution
phase, thus the error has already occurred by the time it is

visualized. However, this is a limitation only within the cur-
rent prototype, and can be turned into a definite advantage.
The advantage can be achieved by keying the routines to
“look ahead” or “tentatively compute” ahead of any changes
to be made in the program or visual environment. This would
allow earlier processing of the constraint monitor and allow

the program to be halted or terminated safely.

.Essentially, this is the same concept utilized in processing

software faults, just allowing the faults to be captured at a

- higher phase before a critical error can be initiated. While

undoubtedly there will be code to address this issue within
the program, the expanded functionality of the constraint
system may allow for more extensive checking at any partic-
ular junction. -

Constraint Monitor

The constraint monitor is described in greater detail within
the next section. Basically, it functions similar to a data flow
machine in determining which constraints apply at any given
time. It utilizes the common symbol table routines, and basi-
cally has no action other than to monitor the execution of the
code. So it compares applicable constraints to the changing
execution values and program flow. If a violation occurs, the
appropriate visual routines are invoked.

Controlling Routine

The controlling routine is very primitive in the current defi-
nition of the prototype. It basically directs the coroutines for
switching of execution between the executing program, the
visual routines, and the constraint monitor. Future extension
to this routine will allow the user to selectively alter the
visual models during execution, as well as collapse or
expand world views.

Advantages

In summary, a major advantage of this work is that it pro-
vides a first step in allowing the user to monitor complete-
ness of the specifications. In addition, this work has the
potential to significantly increase software surety confi-
dence, by providing an independent analysis of correct
behavior. Further, this approach can significantly aid in the
assessment of program behavior for systems using advanced
control techniques such as neural net and fuzzy logic based
controls. Additional advantages have been mentioned in pre-
vious sections.

Disadvantages

The main disadvantage of this work, is that the user must
develop a requirements constraint program in order for the
constraint monitoring system to function. This requires the
user to be familiar with a new language, SAGE. However,

this is not a particularly onerous requirement. In addition, the
user must have a similar platform available.

Furthermore, until the extensions are added to process
include statements and compiler directives, the tool cannot
be used for real world applications. This disadvantage will
be resolved once additional development is completed.

Finally, the user must utilize current visual models until they

develop their own models.

Future Extensions

Future work will focus on incorporating multiple world
views, providing more control over the model by the user,
and expanding available visual models. Work will also
progress in completing the requirements constraint monitor
for the SAGE constraint programs. The prototype will be
expanded to handle more typical real world applications.
Once that work is completed. Studies will begin to test the
effectiveness of the tool. Later work should expand the envi-
ronment to visualize the specification phase of the software.

7. Requirements Constraint Language

While a lot of research has been done in the area of con-
straint programming, the idea of a constraint language is
unique to this application, expanding current techniques in
software surety. To understand the type and purpose of this
type of language, one must first understand the concept of a
constraint.

Constraints

A constraint embodies the idea of enforced or defined limita-
tions. In computer programming, constraints are used to
limit the values specific variables can be assigned. More spe-
cifically, upper and lower limits of an array subscript value
are one type of constraint, restricting the subscript value to
be within the range of the upper and lower limits. Alto-
gether, the constraint concept is extremely powerful and has
been used to address a large variety of application areas
through the development of various basic constraint systems.

Constraint Systems

Basic constraint systems are systems of inference on partial
information that provide the ability to perform such func-
tions as constraint propagation, entailment, satisfaction, nor-
malization, and optimization. Classic illustrations of
constraint systems appear throughout many fields. Typically,
the area of operations research investigates many issues spe-
cifically related to constraint analysis. For example in opera-
tions research, often a set of equations must be solved with
specified constraints to either optimize or minimize a partic-
ular value or values. However within the last decade,
researchers have realized that unifying efforts to exploit
ideas for constraint analysis via programming under a com-

mon conceptual and practical framework provides a more
powerful approach to programming, modeling, and problem
solving rather than developing disjunct constraint systems.

Consequently, constraint programming ties together the use
of basic constraint systems with programming languages;
thereby allowing more precise specification of how con-
straints are generated, combined, and processed. Expanding
the utility of these systems by incorporating them with pro-
gramming languages provides a more expressive unified
framework; allowing the user to easily generate, manipulate,
and test constraints--clearly, a more powerful computational
framework. Examples of such frameworks include constraint
logic programming and concurrent constraint programming
systems. Examples of specific systems include cc(fd) [17],

clp(fd) [3], ECL'PS® [18], CIAO [19], and Oz [20]. These
systems generally consist of two levels, the underlying con-
straint system, and the programming language level.

Current research with constraint programming shows that
constraints can be used in a number of different ways. A few
typical applications are to represent knowledge, guide
searches, prune useless branches, filter queries, describe pro-
cess communication, and describe synchronization. The goal
of constraint programming is to determine whether a solu-
tion exists that satisfies all constraints, to identify one or all
solutions, to determine whether a partial instantiation can be
extended to a full solution, or to find an optimal solution rel-
ative to a given cost function.

Accordingly, this type of programming has been used in
many different application areas including artificial intelli-
gence, databases, operations research, user interfaces, con-
currency, robotics and control theory. A new area for
application investigated by the work described by this report
is the area of software engineering. The work described
within this paper applies and expands the concept of con-
straint programming to address software surety issues within
the area of software engineering research by defining a
requirements constraint language (RQL SAGE).

Software Attribute Generic Evaluation

The requirements constraint language SAGE allows the
development of programs to perform constraint analysis on
executing programs as a monitoring process. A program
written in this language is used to provide an independent
audit of an executing program to verify that it is executing as
planned and expected. This allows unexpected program
states to be identified and addressed before critical action
occurs that could cause loss of life or some other unexpected
devastating, costly, undesired action. The idea of a require-
ments constraint language expands the basic constraint pro-
gramming paradigm to a higher level. A requirements
constraint language is expressed in a very high level lan-
guage utilizing functions and operations to address higher
level ideas and conceptualizations related to a system
requirements specification, in addition to more common
lower level functions dealing with variables, registers, vari-
ous arithmetic, character and logical operations, and memory

management. The language primarily expresses what should
be done, rather than how it is done (although some aspects of
how it is done can be specified as a constraint); and provides
mapping capabilities to an underlying program representa-
tion that implements the required functionality. A require-
ments constraint program monitors the execution of the
lower level program to ascertain that constraints are not vio-
lated. It does this through a very high level pattern assess-
ment linked to the executing program.

Thus, a program written in a requirements constraint lan-
guage functions as a bridge between the requirements and
the actual implementation. 1t also provides a second, inde-
pendent assessment of the correct functioning of the targeted
implementation; and while it does not provide a second cal-
culation for comparison, it does function as an independent
monitor similar to established fault tolerant techniques. This
provides a new technique for assessing software surety. As
future advancements provide improved performance for this
approach, it can be incorporated appropriately during run-
time to prohibit select, critical errors.

Implementation

SAGE utilizes C as the underlying language base. Language
extensions are used to expand the ability to define concepts,
objects, and semantic patterns of interest for monitoring pur-
poses. Mapping capabilities are also provided to allow map-
pings between the targeted executable program and the RQL
state space. The mappings identify what state space informa-
tion will be needed, and potentially can be used to drive the
preprocessor in preparing the executable code, by identifying
which state spaces are of interest for observation--a possible
future extension. Mappings are limited to measuring pro-
gram state spaces. In analyzing semantic issues, the concepts
must be translatable into specific program states. The map-
ping capability allows extensive reusability of function con-
straints; such reusable definitions will greatly reduce
development time as experience with the system occurs and
suitable libraries are developed.

Execution patterns can be mapped to program slices through
regular expressions. This allows the execution sequence of
the target program to be assessed. A common approach for
checking prior to execution of critical code is to check the
values of flag variables, however, the SAGE RQL allows
monitoring of the sequence invoked in setting the variables.
This allows identification of an improper execution
sequence, a potential error.

The SAGE RQL program runs in conjunction with a con-
straint analysis system incorporating artificial intelligence
technology. data-flow technology, and (with future develop-
ment) neural network technology to expand pattern analysis
for higher semantic reasoning. The constraints are specified
along with the state variables monitored by the constraints.
When state information is received, it is mapped to corre-
sponding constraints. When the required data is available the
appropriate rules for evaluation are fired. The constraints and

their relevant variable mappings are maintained in a sparse
matrix indexed by standard scoping rules.

As the target program executes, state space information is
generated to drive the visual representation and the SAGE
RQL monitor. Thus the system is basically event driven. The
variables, or rather their specified mappings, are indexed into
the constraint matrix to identify related constraints. If ade-
quate information is available to evaluate a constraint, it is
selected for analysis; otherwise, the information is either
saved for later analysis, or a partial analysis is conducted if
possible. The constraint analysis system identifies conflict-
ing constraints and identifies what happens if constraints are
violated. This allows the user to verify that appropriate prior-
ities have been established between conflicting requirements.

Operations

The basic functions, capabilities, and operators defined
within SAGE as extensions to the C language include sup-
port for first order logic: logical quantifiers, implication
operators, partially defined expressions, as well as access
type collections, type constructors, bounded quantifiers,
mapping constructors, and pattern notation. Examples of
most of these can be seen in languages such as Anna and
Refine.

Additional operations include: hence, precedes, follows, sub-
sumes, distinct, disallow, occurs, and sequenced. Hence
used in conjunction with a logical expression (e.g. if @ hence
b), indicates that the condition following b must not have
been true prior to the occurrence of condition @, and after a
has occurred, b must hold true. Precedes identifies states (or
execution patterns) that must occur prior to other states or
patterns. Follows is similar except that it identifies states that
occur after a known state. It does not address the immediacy
of the occurrence, just that the specified state occurs some-
time after the state initiating the constraint. These two opera-
tors allow greater flexibility in defining and specifying
constraint conditions. (Generally, order of appearance can be
used to indicate dependencies among variable states in pro-
gramming languages. However in this constraint system, that
approach is insufticient to identify required relationships and
does not support constraint orthogonality.)

Subsumes indicates that constraints related to a particular
state i are applied to another state j as a partial definition of
the constraint requirements for the new state j. This allows
reusability of definitions. Distinct specifies that a state or
event, normally occurring as part of a sequence or grouping,
appears temporarily disjunct from that association. Disallow
designates a guard against the occurrence of a noted state,
condition, event, or pattern. Occurs defines a grouping or
selection of states that must occur in relation to one another
without establishing a definitive order. Sequenced deter-
mines an ordering of event or state occurrences.

Syntax Issues

The syntax for these operations are:

[constraint(s)Istate\condition(s)]: Hence {constrain(. 5)}
[baglconstraint(s)]: Precedes {baglconstraint(s)}

[bag]: Follows {bag}

[statelcondition(s)]: Subsumes {bag}

Distinct {constraint(s)}

Disallow {statelcondition(s)}

Occurs {eventlbaglconstraints(s)}

Sequenced {statelconditicn, statelcondition, ... }

A constraint specifies one or more mathematical expressions
and or conditions that apply to the executing program being
monitored. A condition represents mathematical or logical
expressions related to the requirements constraint language
monitoring program; while a state is characterized by a col-
lection and/or sequence of constraints and conditions. A bag
provides a convenient way to reference a collection of
orthogonal or heterogeneous qualifiers such as execution
patterns, states, and conditions. Commas should separate
multiple constraints, states, conditions, or bags.

A simple label naming convention allows constraints to be
referenced by name. The constraints’ names can be specified
when using the operations described above. In addition, a
name can be applied to a group of constraints. Alternatively,
a constraint may be specified instead of using a named refer-
ence. However, a constraint may only be defined once. Defi-
nitions of constraints may appear wherever variable
definitions are allowed.

The new operations are important in establishing appropriate
relationships between the ordering of the specified require-
ment constraints. The normal ordering of control evident in
general purpose languages does not apply to the constraint
definitions, requiring additional syntactic support in specify-
ing ordering relations. When a constraint is defined, it does
not apply until specified by the defined operations. This
allows greater freedom in the application and release of con-
straints onto the program state space. Thus a particular con-
straint may only be applicable under particular conditions.
Normal sequence of execution flow does apply within the
definitions. This approach avoids forcing the constraint pro-
gram into a two dimensional flow mapping.

Examples

A surjection function is a mathematical function that is an
onto mapping. That is, a function from A to B is an onto
function if every object of set A maps onto an object in set B,
and every object in set B is mapped onto by one or more ele-
ments of set A. Thus the function “generates” a mapping to
every element in set B by applying the function to set A. The
constraints that might be coded to represent this type of
function is as follows:

VxinA--x=>yof B,
VyinB --JxinA occurs{x= yof B};

Surjection_Count ==XV A = B;

We read these constraints as: For every x that is an element in
set A, x maps to an element y of set B. For every y that is an
element of B, there exists an element x in set A such that x
maps to that element y of set B, The value of
Surjection_Count is the sum of all possible mappings of A
onto B. The representation of these constraints provide a
greater detail of semantic knowledge than is generally inher-

ent in simple programming code. '

Advantages

The use of the requirements constraint language is important
to this application for several reasons. Usage of this language
provides a technique to address actual software surety issues
during the execution phase of the software life cycle. As per-
formance issues are addressed, this approach can be used to
monitor and approve program execution before critical sec-
tions of the code can be executed for high assurance systems.
Preliminary work focuses on monitoring the correct execu-
tion of critical code after it has executed, but with recent
advancements in performance issues and in the magnitude of
constraints being evaluated, it is reasonable to predict that
the code can be structured to allow the monitoring assess-
ment to be conducted just prior to execution, thereby provid-
ing a independent auditing function as a software surety
technique to ensure that the executing code only executes in
acceptable, expected ways.

In addition to providing monitoring capabilities for the cor-
rect execution of critical code, the RQL SAGE provides
input back to the SAVAnT system to generate visual and other
stimulus for identifying unexpected occurrences within the
executing code. In addition, SAGE provides a second opin-
ion through the auspices of an independent auditor on the
correctness of the code execution--an established fault toler-
ant technique. Other advantages of this techniques include
the ability to assess trade-offs between requirements con-
straints where conflicts occur, and most importantly, the ahil-
ity to identify specification errors or omissions. Particularly
significant, the ability to identify specification errors
addresses an unsolved problem under review for many years
by the software engineering community; the problem of
incorrect specifications. Formal methods have made great
advances in mathematically proving that a particular pro-
gram precisely implements a given specification; however,
those methods do not provide any information as to the cor-
rectness of the specification. SAGE in conjunction with
SAVART provides a mechanism to identify errors and dis-
crepancies within the specification itself. As many people
have been working on this problem with no solutions to date,
our approach is a major advancement in this research area.

Disadvantages

However, as with any technique, several drawbacks exist
with using this approach. The most significant is that the user
must learn the requirements constraint language SAGE; and

in addition, the user must be familiar with the requirement
specifications for the target program in order to encode the
appropriate constraints depicting the specified requirements.
Yet, as similar requirements are often required for imple-
mentation of current technologies; having to learn SAGE and
familiarize oneself with the application’s requirements speci-
fications should not be considered particularly onerous
requirements. Other technical knowledge or skills needed to
apply this technique include knowledge of the SAVANT sys-
tem and of the target program to be monitored. The user
must be familiar with the SAVAnT system in order to specify
the appropriate/desired visual effect to occur for each situa-
tion of interest, while the user must be familiar with the tar-
get program in order to establish the appropriate links
between the executing program and the monitoring SAGE
code. Appropriate visual tool sets will be developed within
SAVANT to facilitate these efforts and depending upon how
the requirements were initially specified for the system, the
program links may be easily determined.

Two restrictions limit application of this technique. First, the
constraint monitoring cannot be applied to all of the code
until performance improvements have been achieved. This is
not as great a problem as it might seem, because the most
critical portions of the code can be targeted for monitoring
initially; and performance advancements in constraint analy-
sis are nearly adequate to handle monitoring of the entire
code--so this problem will be resolved in time. Finally, this
approach does not allow monitoring of timing constraints as
currently planned for implementation. Later developments
can address this shortcoming.

8. EXAMPLE USAGE

Figure 10 (a)-(d) illustrates example usage of the prototype
tool. Figures 10(a) and10(b) show various programs, and
how they would appear initially. Of course, the actual visual-
ization would appear similar to Figures 4-9. These examples
are illustrated to minimize space. Figures 10(c) and 10(d)
illustrate error conditions that could occur as desired by the
user. Additional examples may include the following:

* Flag condition is set and a key variable is
changed when it should be constant under speci-
fied conditions. (perhaps side effect)

* Specific conditions are met; and statements are
executed when they should be barred from exe-
cution (e.g. action taking place in an unsafe con-
dition)

* Timing constraints are not met (will not be able
to handle this in present version)

* Variable is not processed within an array when
all other values are altered, (end of list process-
ing error)

* Wrong array is accessed to retrieve or alter a
value (invalid pointer)
* Process values beyond the storage range of an

array or other data structure (algorithm processes
two structures or alters values outside array
dimensions)

* Statement alters data structures when it is not
expected (side effects)

* In applying semantic overlays to identify point-
ers and links, identification of a variable pointing -
to a different item (variation in consistent pattern
as in linked lists or other structures)

* Program violates stated semantic patterns for
execution sequences

* Program reaches a semantic state not previously
specified in requirement constraints relating to
specific variables and conditions, thereby enter-
ing an unknown condition

* Conditions not set in proper order (concerning
variable states)

* More statements executed than expected

* Changes in execution pattern

* Execution of rarely executed code

* Formation of discrepancies in link patterns

* Unusual formations of data structures

9. CONCLUSIONS

The major advancement of this work is to develop multidi-
mensional visual models of abstract and concrete program
features that cooperate with a constraint monitor, thereby
allowing an approach to identifying completeness errors
within the software specifications. The significance of this
work is that it provides a first step in evaluating specification
completeness, and provides a more productive method for
program comprehension and debugging. The expected pay-
off is increased software surety confidence. In addition,
increased program comprehension and reduced development
and debugging time are expected to be achieved. Future
work will focus on expanding the visual models, completing
the constraint monitor, and expanding the work to the speci-
fication phase of the software life cycle model.

10. REFERENCES

1. Collins, E.. L. Dalton, D. Peercy. G. Pollock, and C.
Sicking, “A Review of Research and Methods for Pro-
ducing High-Consequence Software,” 1995 IEEE Aero-
space Applications Conference, Vol 1, January 1995, pp.
197-245.

"C T9POJA [BNSIA ‘U01039(J Joury djdwres :(p) 91 21n3i g

Joug

"[SPOIAl 91dunts ‘uonndexy urerdoig spdures :(q) O danSiy

"I T9POA [eNSIA ‘uonodle(g oy ajdures :(0) o1 24nS1g

SRS e

W
O

== .
= e — o i =
2 S
O

s

11.

.~ -

Kimelman, D., B. Rosenburg, and T. Roth, “Strata-Vari-
ous: Multi-Layer Visualization of Dynamics in Software
System Behavior,” IBM Thomas J. Watson Research
Center, June 1994, '

Codognet, P. and D. Diaz, “Compiling Constraints in
clp(fd),” Journal of Logic Programming 21, 3, 1996.

Berztiss, A.T., “Safety-Critical Software: A Research
Agenda,” International Journal of Software Engineering
and Knowledge Engineering, Vol. 4 No. 2, 1994, pp.
165-181.

Ball, T., and S.G. Eick, “Software Visualization in the
Large,” Computer, April 1996, pp. 33-43.

Reiss, S. P., “An Engine for the 3D Visualization of Pro-
gram Information,” Dept. of Computer Science, Brown
University, May 1995.

Braham, R., “Math & Visualization: New Tools, New
Frontiers,” IEEE Spectrum, November 1995, pp. 19-37.

Huff, C. C., M. Klein, and S. Stevens, “The State of the
Art in Scientific Visualization,” Technical Report,
CMU/SEI-95-SR-Visualization, Software Engineering
Institute Carnegie Mellon University, September 1995.

Zeus, DEC Systems Research Center, http:/www.
research.digital.conVSRC/zeus, all Zeus images copy-
righted 1997 DIGITAL Equipment Corporation. All
rights reserved. Provided courtesy DIGITAL Systems
Research Center, Pala Alto, California.

. Pollock, G. M., and L. J. Dalton, “A Strategic Surety

Roadmap for High Consequence Software,” 1996 Aero-
space Applications Conference, Snowmass CO, Vol. 4,
February 1996, pp. 351-370.

Gibbs, W., “Software’s Chronic Crisis,” Scientific Amer-
ican, September 1994.

. Albuquerque Journal, Sunday, November 12, 1995,

. Lagedec, P., “Major Technological Risk”, Quoted in

Safeware, System Safety and Computers, Nancy Leve-
son, University of Washington, Addison-Wesley, 1995.

. “Cyberware,” Time, August 21, 1995,

- Yau, S. S., D. Bai, and K. Yeom, “An Approach to

Object-Oriented Requirements Verification in Software
Development for Distributed Computing Systems,” Pro-

ceedings of the Eighteenth Annual International Com-
puter Software & Applications Conference, 1994, pp.
96-102.

16. Price, B.A., Baecker, and I. A. Small, “A Principled
Taxonomy of Software Visualization,” Journal of Visual
Languages and Computing 4(3):211-266.

17. Van Hentenryck, P., V. A. Saraswat, and Y. Deville,
“Constraint Processing in cc(fd),” In Constraint Pro-
gramming: Basics and Trends, A. Podelski, Ed., LNCS
910, Springer-Verlag, 1995.

18. European Computer Research Center, Eclipse User's
Guide,1993.

19. Hermenegildo, M. and the CLIP Group, “Some Method-
ological Issues in the Design of CIA--A Generic, Paral-
lel Concurrent Constraint System,” In Principles and
Practice of Constraint Programming, LNCS 874, May,
Springer-Verlag, New York, 123-133, 1994,

20. Smolka, G., “The Oz Programming Model,” In Com-
puter Science Today, Jan van Leeuwen, Ed., LNCS, No.
1000, Springer-Verlag, Berlin, 324-343, 1995.

11. BIOGRAPHY

Guylaine M. Pollock, a Senior
Member of the Technical Staff at
Sandia national Laboratories,
received a Ph.D. in computer Sci-
ence from Texas a & M Univer-
sity and a BS in computer
Science and Mathematics from
East Texas State University,
graduating with Academic Dis-
tinction and Highest Honors. She
has served on Software Capabil-
ity Evaluation Teams for the Bat-
tle Management Defense Organization of the Department of
Defense. She has investigated software Reliability for mas-
sively parallel codes and is a member of the Sandia Reliabil-
ity Working Group. Dr. Pollock is a member of the Board of
Governors of the IEEE Computer Society, and currently is
serving as 1st Vice President of Conferences and Tutorials.
She previously lectured with the IEEE Computer Society
Distinguished Visitors Program. Pollock has received several
awards including the Richard E. Merwin Scholarship and
Notable Women of Texas. She is a Golden Core Member of
the IEEE Computer Society.

This work was supported by the United States Department of Energy under
contract DE-AC04-94AL85000.
Sandia is 2 multiprogram laboratory
operated by Sandia Corporation, a
Lockheed Martin Company, for the
United States Department of Energy
under contract DE-AC04-94A185000.

M98003134
ARG AN MR

Report Number (14) S AND --4 -04Q06C
CONE-99031G - -

ubl. Date (11))4 PR O
Sponsor Code (18) _ DO/ MA XF

7

JCCategory (19) _ L C.— YOO DOE/ER

DOE

