Conf-q7101857~

19980401 003

K. D. Kimsey", S. J. Schraml® & E. S. Hertel'

* U.S. Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving
Ground, MD 21005-5066
Y Sandia National Laboratories, Albuguerque, NM 87185

PR oy o
QM OHR> O 4
SAND--G §-05¥<
Sandie is a mulliprogram laboratory
operated by Sandia Corporation, a
Lockheed Martin Company, for the

United States Department of Energy
under contract DE-AC04-94AL85000.

Scalable computations in penetration mechanics RECE VEQ
FFR 10 1998

08T/

This paper presents an overview of an explicit message-passing paradigm for an
Eulerian finite volume method for modeling solid dynamics problems involving

shock wave propagation, multiple materials, and large deformations. Three-
dimensional simulations of high-velocity impact were conducted on the IBM SP2,
the SGI Power Challenge Array, and the SGI Origin 2000. The scalability of the
message-passing code on distributed-memory and symmetric multiprocessor
architectures is presented and compared to the ideal linear performance.

1 INTRODUCTION

The mechanics of penetration and perforation of
solids has ‘long been of interest for military
applications in terminal ballistics. Kinetic energy
penetration phenomena are also germane to
applications involving high-mass and high-velocity
debris due to accidents or high-rate energy release,
the transportation safety of hazardous materials, the
safety of nuclear reactor containment vessels, the
design of lightweight body armors, the erosion and
fracture of solids due to repeated impacts by liquid
or solid particles, and the protection of spacecraft
from meteoroid impact. A thorough review of the
fundamentals of penetration and perforation and
their application to practical problems has been
prepared by Goldsmith,! Johnson,”> Backman and
Goldsmith,’ and Zukas et al.*’

Analytical approaches to penetration mechanics
tend to fall into three categories: empirical or quasi-
analytical, approximate analytical, and numerical
methods. While empirical and approximate
analytical methods are quite useful for developing
an appreciation for the dominant physical

phenomena, they are limited in scope. Numerical

- methods provide a complete description of the

dynamics of impacting solids accounting for the
geometry of the interacting bodies; elastic, plastic,
and shock wave propagation; hydrodynamic flow;
finite strains and deformations; high strain rate
material behavior; and the initiation and propagation
of failure in the colliding bodies. Computer codes
for modeling wave propagation and impact have
matured considerably since their initial development
some 45 years ago. Today they serve as valuable
tools in studies of materials and structures subjected
to intense impulsive loading. Recently, Benson®
documented a comprehensive review of the physics
and numerics in wave propagation codes.
Three-dimensional simulations of high-velocity
impact phenomena continue to delineate the high
performance computing resources for Army
applications in terminal ballistics. Current
applications in high-velocity impact phenomena
require that the simulation time increase from the
microsecond to millisecond regime; complex
geometries dictate a finer mesh Tresolution that
mandates a smaller time integration increment to

DISTRIBUTION. OF mrsnocmssummx MAS{EB

|DTIC QUALITY INEZECTED 3

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

satisfy stability criteria and additional time
integration cycles. Memory requirements for large-
scale Eulerian finite volume simulations scale with
the cube of the zone size (i.e., for a fixed
computational domain). Doubling the number of
zones in each coordinate direction by halving the
characteristic zone length increases the memory
requirement by a factor of 8 and halves the time
step. These factors, when coupled with the
requirement to model larger physical domains, are
strong stimuli for exploiting scalable architectures
and algorithms.

Under the aegis of the DOD High Performance
Computing (HPC) Modernization Program,” DOD
researchers are afforded access to scalable HPC
computing resources. The successful utilization of
scalable architectures for large-scale simulations of
high-velocity impact requires reliable and robust
scalable applications algorithms. The Common
HPC Scalable Software Initiative (CHSSI)
component of the DOD HPC modernization
program addresses the development, validation, and
demonstration of scalable software in a number of
defense computational technology areas. This paper
presents an overview of an explicit message-passing
paradigm for applications in shock physics.
Scalable performance of a three-dimensional
oblique rod impact is presented for distributed-
memory and symmetric multiple processor
architectures.

2 SCALABLE PARADIGM FOR IMPACT
PROBLEMS

CTH? is an Eulerian finite volume code for
modeling solid dynamics problems involving shock
wave propagation, multiple materials, and large
deformations in one, two, and three dimensions.
CTH is widely used across the defense research and
development community to model problems in
shock wave propagation. CTH employs a two-step
solution scheme; a Lagrangian step followed by a
remap step. The conservation equations are
replaced by explicit finite volume equations that are
solved in the Lagrangian step. The remap step uses
operator-splitting techniques to replace
multidimensional equations with a set of one-

dimensional equations. The remap or advection
step is based on a second-order-accurate van Leer’
scheme. High-resolution material interface trackers
are available to minimize material dispersion. Both
analytical and tabular equations of state are
available to model the hydrodynamic behavior of
materials. Models for elastic-plastic behavior and
high-explosive detonation are also available.

Robinson!® developed the algorithmic framework
for conducting scalable Eulerian finite volume
simulations for modeling problems in solid
dynamics based on object-oriented programming.
Robinson demonstrated that the structured mesh of
the Eulerian finite volume method is well suited for
scalable paradigms employing message passing
between computational subdomains.

Distributed-memory, scalable architectures are
characterized by a large number of discrete
computational nodes consisting of memory, a
commodity CPU chip, and access to an internal
communications network. One ' computing
technique that can be employed on this architecture
is referred to as single program multiple data
(SPMD). The SPMD technique has the same
executable running on each computational node, but
each executable is working on a different data set.
Algorithms that depend on a fixed logically
connected mesh are relatively simple to map onto an
SPMD machine. The technique used for CTH is
similar to that developed by Robinson,'? in that the
entire problem domain is broken up into
subdomains that reside on individual computational
nodes. Communication between subdomains is
handled by the use of “ghost” cells and explicit
messages that are passed between nodes. The use of
“ghost” cells is a common technique for applying
boundary conditions (i.e., finite difference scheme)
independent of edges and cormers in Eulerian codes.
At an external boundary, the ghost cell data are
based on the selected boundary condition
approximation. Similarly, at a subdomain or
internal boundary, the ghost cells contain data
acquired in a message passed from a neighboring
node. A simple example of mesh decomposition is
displayed in Fig. 1.

CTH is a set of codes that work together to solve
the conservation equations of mass, momentum, and
energy for shock physics simulations. The two

Domain Subdomains

|~ Messages

Fig. 1. CTH explicit message-passing paradigm.

primary codes for modeling solid dynamics
problems are CTHGEN and CTH. CTHGEN reads
the user input and builds a time-zero representation
of the problem specifications. CTH reads additional
user input and the time-zero data from CTHGEN
(through a disk file known as a “restart” file) and
initiates the time integration process. A similar
computational paradigm for problem generation or
initialization and integration of the governing
equations is employed on scalable architectures. A
copy of CTHGEN runs on node 0, reads the user
input, and broadcasts the input to all other nodes.
Based on the total number of nodes requested by the
user and the total problem size, CTHGEN performs
the mesh decomposition to map the problem space
onto the nodes. The mesh decomposition algorithm
builds near-cubic computational subdomains that
equalize the amount of work on each node (equal
number of cells per node). The requirement for
cubic subdomains is for two reasons: (1) to
minimize the surface-to-volume ratio, and (2) to
keep the size of explicit messages between nodes as
equal as possible. Once the problem is mapped
onto the available nodes, the individual copies of
CTHGEN insert material into the respective
subdomains, define material properties, and
complete the time-zero representation of the
numerical model.

Time integration of the governing equations is
controlled by CTH. A copy of CTH runs on node 0,
reads the user input, and broadcasts the input to all
other nodes. Once the broadcast is complete, each
node reads its individual restart or database file. At

this point, the time integration starts. The solution
sequence for CTH has not changed for scalable
architectures; a Lagrangian step followed by a
remap step. Essentially, every time ghost cell
values change, CTH exchanges these new values
with neighboring nodes before the updated values
are used in the solution sequence. The overall
solution sequence of CTH is a Lagrangian step
followed by a remap and then a database
modification step where materials may be discarded
or velocity transformations applied. The
Lagrangian step consists of several tasks. The first
task defines the artificial viscosity. During this task,
messages are exchanged with neighbors to calculate
the correct boundary values. Once the artificial
viscosity and pressure are defined, CTH calculates
new cell velocities that are exchanged with
neighboring nodes. The new cell velocities are used
to update the stress deviators at this time, and then
the new stress deviators are exchanged with
neighboring nodes. The new stress deviator
information leads to new energy terms from the
updated work terms. After the energy is updated,
the Lagrangian step is effectively complete. Special
models like the multiphase reactive flow package
perform tasks to prepare for the remap step. At the
end of the Lagrangian step, all ghost cell values are
exchanged for the last (fourth) time.

CTH uses a second-order-accurate advection
scheme. This scheme, based on work by van Leer,’
determines a linear slope across each “donor” cell.
To calculate this slope, data from three cells are
required: the donor cell, the cell upstream, and the
cell downstream. At an internal or subdomain
boundary, a given node “knows” the values in the
ghost cell, the first real cell, and the next adjacent
real cell near the internal boundary. If the flow is
“outward” (from the last real cell into the ghost
cell), the code has enough information to calculate
the slope across the donor cell (the last real cell).
However, if flow is from the ghost cell into the first
real cell, the code does not have information about
the “upstream” cell (the cell beyond the ghost cell).
But, if a node shares this boundary, the inflow for
this node is exactly the same as the “outflow” for
the adjacent node. A new set of subroutines that
calculate outflow values for each node boundary has
been developed. These values are collected and

passed to the adjacent nodes. If a node calculates an
“inflow” value and finds that another node shares
that boundary, the value from the message is used
rather than the incorrectly calculated value. By
using the second-order-accurate outflow value from
the adjacent node, results from single-node
simulations can be exactly duplicated on muliple-
node simulations.

Several exchanges must be completed during the
Eulerian (or remap) step. As noted previously, each
time ghost cell values are modified, data must be
exchanged with neighboring nodes. The first task in
the remap step converts cell volume fractions to
volumes, which requires new ghost cell data to be
exchanged with neighbor nodes. CTH uses an
operator-splitting technique for the remap step.
Each time the remap is completed in a particular
coordinate direction, the ghost cell values are
exchanged with neighboring nodes. During this
step, momenta and updated mass values are also
exchanged because CTH uses the half index shifted
momentum advection scheme of Benson."! This
method requires correct velocities at the node mesh
boundaries. Since velocities on the edges of
isolated material cells are also modified during the
remap step, these corrected velocities must also be
exchanged. - Finally, after all remap steps have been
completed, the volumes are converted back to
volume fractions and the Eulerian energy balance is
accomplished. This step calls the equation of state
for each material yielding new cell pressures,
temperatures, and sound speeds. One of the last
steps in the remap is to calculate the minimum time
step. This is first done for each subdomain, and
then a global minimum over all subdomains is
calculated to determine the time step. This is the
last time that significantly sized messages are
exchanged.

An additional feature that needs to be addressed
for scalable architectures is the use of tracer
particles or data collection points. CTH records
flow field data at tracer particle locations as the
simulation progresses. The particles can either
move with the bulk flow field or be fixed in space.
Each tracer particle is initially placed in the mesh
based on user specified coordinates. If the tracer
particle coordinates are in the interior of the volume

of a computational subdomain, the coordinates are
recorded by that computational node and a flag is
set in the tracer data storage. This tracer particles’
coordinates in all other subdomains are recorded as
(1.0¢20, 1.0e20, 1.0e20), the upper right-hand
coordinate of the universe. In addition, the tracer
particle location flag is set to indicate nonownership
by that node. This flagging technique permits a
quick check on whether or not a particular tracer is
active in a given subdomain or node. At the end of
each time step, the tracer particles’ coordinates are
updated by the nodes “owning” the tracers.
Messages are then exchanged between nearest
neighbor nodes. After all six messages have been

exchanged, all 27 nodes surrounding the actual -

position of the tracer particle know the true
coordinates. These coordinates are then compared
with the limiting coordinates for each node. If the
tracer has migrated to a new node, the new
coordinates are set in the tracer array and the tracer
flag is reset to indicate ownership. The tracer
coordinates for all other nodes are set to (1.0e20,
1.0e20, 1.0¢20). There is no need to propagate the
coordinates to nodes beyond nearest neighbors since
the time step controls prevent any tracer particle
from moving more than one cell width in any given
time step.

For a three-dimensional calculation,
approximately 24 large messages are passed during
the Lagrangian step, and approximately 48 large
messages are passed during the Eulerian step. A
large message contains all cell variables on the face
adjoining two nodes. Typical problems consist of
40-80 variables per cell. Therefore, large messages
are at least 200-400 kB. Several small messages
are exchanged during the solution sequence. These
messages are typically exchanged during the
calculation of global sums and minimization
processes, such as calculation of the global time
step. All message passing is done through an
interface independent code specific software layer.
This technique allows support of both serial and
parallel code versions in a simple, yet effective
fashion. Scalable performance discussed in this
paper is based on message-passing-interface
(MPI)!?! routines for explicit message passing.

3 SCALABLE ARCHITECTURES

The IBM SP2 located at the Aeronautical Systems
Center (ASC),Wright-Patterson Air Force Base, was
used to conduct scalability studies on the
distributed-memory architecture. This system is
comprised of 256 R6000 processor elements, 233 of
which are used as dedicated compute nodes. Each
compute node has 1 GB of memory.

Scalability studies were also conducted on two
different types of Symmetric Multiple Processor
(SMP) systems, the SGI Power Challenge Array
(PCA) and the SGI Origin 2000 (O2K). The PCA
system that was employed for the study is located at
the U.S. Army Tank-Automotive Research,
Development, and Engineering Center (TARDEC).
This system consists of four nodes, each containing
16 R10000 processors, 4 GB of memory, and a high
performance parallel interface (HIPPI). For parallel
CTH calculations utilizing processors on multiple
nodes, TCP sockets were used to transfer messages
across the HIPPI channels for internode
communication.

Two different O2K systems were also used in the
study, one of which is located at the U.S. Army
Research Laboratory (ARL) and the other at ASC.
The ARL system consists of 32 R10000 processors
and 12 GB of memory. At the time this study was
performed, the ASC system consisted of seven
individual O2K systems, each with 32 R10000
processors and 16 GB of memory. Limitations of
the batch-queuing software on the ASC system
prohibited running parallel calculations across
multiple O2K hosts. Thus, only one of the seven
ASC O2K systems was used in the scalability study.

4 SCALABLE HIGH-VELOCITY IMPACT
SIMULATIONS

CTH with explicit message passing has been used to
model a long-rod projectile impacting an oblique
steel plate on both distributed-memory and
symmetric multiple processor architectures. This
problem was selected due to well-characterized
experimental data reported by Fugelso and Taylor'*
and previous serial CTH simulations conducted by
Hertel.’” Fugelso and Taylor conducted a series of

ballistic experiments to evaluate the effects of
combined obliquity and yaw on high-density long-
rod projectiles. Depleted uranium alloy long-rod
projectiles with no yaw were obliquely launched
into a rolled homogeneous armor (RHA) plate that
had been accelerated by an explosive charge,
resulting in a yawed impact in the plate frame of
reference. The depleted uranium alloy (DU
0.75%Ti) projectiles were right-circular cylinders
with a hemispherical nose, and the impact velocities
ranged from 0.85-1.65 km/s. Yaw and obliquity
angles ranged from 0-70° and 10-0°, respectively,
in the test series. The length and diameter of the
projectile in shot 58 of the test series are 7.67 cm
and 0.767 cm, respectively, for a length-to-diameter
(/D) ratio of 10. The striking velocity was
1.289 km/s, and the thickness of the RHA was
6.4 mm. In the laboratory frame of reference, the
angle of obliquity was 73.5°, the plate velocity was
0.217 km/s, and the projectile velocity was
1.21 km/s. In the plate frame of reference, the angle
of obliquity was 64.2°, the projectile velocity was
1.289 km/s, and the yaw angle was -9.3°. A
schematic of the initial condition for shot 58 is
illustrated in Fig. 2.

Yow = 9.3
V= 1210 m/s
' .
1 /

W
U=27m/s

Fig. 2. Initial conditions for combined yaw and obliquity
simulation.

The scalability study was carried out maintaining
a constant work load (i.e., the number of
computational cells on each processor for each of
the simulations). This was done to keep the
computation-to-communication ratio constant for
simulations involving different numbers of
processors. Maintaining a constant computation-to-
communication ratio and eliminating disk access for
intermediate plot and restart files during the time
integration permitted the .- computational
performance to be isolated and measured as a
function of the number of processors used.

The single processor, baseline calculation used a
Cartesian computational domain spanning 21.5 cm
in the X direction, 3.0 cm in the Y direction, and
6.0 cm in the Z direction. The computational
domain was discretized into uniform cubic zones of
length 0.1 cm, resulting in a three-dimensional grid
of 215 x 30 x 60. The scalability study used power-
of-two sets of processors, and the number of zones
in the model was varied to maintain a nearly
constant number of computational zones per
processor.

All calculations were conducted for a simulated
time of 40 ps. The grid was incrementally refined
by uniformly decreasing the characteristic zone
length in each coordinate direction by a factor of
273, This approach approximately doubles the
number of grid points with each successive mesh
refinement. The characteristics of the grids used in
the scalability study are summarized in Table 1.
The number of zones (NI, NJ, and NK) in each
coordination direction (X, Y, and Z) listed in
Table 1 does not include ghost cells. An alternative
to this mesh refinement technique would have been
to double the number of zones in one direction for
one refinement, then double the number of zones in
another direction for the next refinement, and so on.
This approach would reduce the time step by a
factor of 2 on the first refinement and would have
doubled the number of time integration cycles (i.e.,
computational cycles) to reach the desired
simulation time of 40 ps, whereas the method of
uniform zone size reduction reduces the time step
by a factor of 27? with each refinement. As a
result, the number of computational cycles required
to reach 40 ps of simulated time increased only by
a factor of approximately 2'? as the number of
processors was increased.

The scalable performance of the message-passing
code is measured by the “grind time,” which is the
average CPU time required for the code to update
all flow field variables for one computational cell in
a given time increment (cycle). The grind time is
expressed in units of ps/zone-cycle. The grind time
for ideal linear scalability decreases by a factor of
2 for every doubling of processors used if the work
per node is constant.

The results of the CTH scalability study on the
IBM SP2 are presented graphically in Fig. 3. A

Table 1. Computational grids used in scalability study

No. of Total No. Ave. No. of Char. Zone
Proc. NI NJ NK ofZones Zones/Proc. Length
(cm)
1 215 30 60 387,000 387,000 0.100
2 271 38 75 772,350 386,175 0.080
4 341 48 95 1,554,960 388,740 0.063
8 430 60 120 3,096,000 387,000 0.050
16 541 76 151 6,208,516 388,032 0.040
32 683 95 191 12,393,035 387,282 0.031
64 860 120 240 24,768,000 387,000 0.025
100 OMeasured
~— (deal Linear

10

Grind Time (ps/zone—cycle)

1 10 100
Number of Processors

Fig. 3. Measured vs. Linear scalability performance
on IBM SP2.

maximum of 64 processors was used on the SP2.
The table illustrates the effect of decreasing zone
size on the number of integration cycles required to
reach the simulation time of 40 ps. With each
successive refinement, the reduction of the time step
results in an increase in the required number of
cycles by a factor of approximately 2'°.

Figure 3 shows the measured grind time results as
a function of the number of processors used. These
data are compared to the “ideal linear” performance
that is obtained by dividing the single processor

- grind time by the number of processors used. When

plotted on a log-log scale, the ideal linear
performance data form a straight line. This figure
shows that the performance of message-passing
CTH on the SP2 does scale with the number of
processors used. The results of the intermediate
processor sets (8, 16, and 32 processors) fall slightly
off of the ideal performance line. However, the

measured results return to the ideal performance
line for the 64-processor result.

Tests on the SGI Origin 2000 systems located at
ARL and ASC were limited to a maximum of 16
processors. As described earlier, each system has a
total of 32 processors. All of the scalability tests
were performed using power-of-two sets of
processors. In order to avoid contention between
the operating system and the parallel application, a
decision was made to avoid running calculations in
which all of the processors were used by the
application. ’

Figure 4 is a plot of the measured grind times as a
function of the number of processors. The results of
the ARL- system are represented by the circle
symbols, and results from the ASC system are
represented by the squares. There are also two
straight lines on this plot, one of which is labeled
“Ideal (m = 1.000)” and the other is denoted as
“Linear (m = 0.727).” The “ideal” line extends
below the measured data and the “linear” curve.
Like the straight line in Fig. 3, this line represents
the ideal scalability of the application on the parallel
computer as represented in eqn (1):

grind time, = grind time,/n)

100 =

QARL 02K

[ASC 02K
— Ideal (m = 1.000)
== Linear (m = 0.727)

N
S~
-~

Grind Time (us/zone-cycle)
)

1 10
Number of Processors

Fig. 4. Measured vs. linear scalability on SGI Origin
2000.

The measured data do not follow this ideal
scalability line, but do appear to form a straight line
on the log-log plot. By computing the log of the
measured data (number of processors and grind
times), linear regression may be used to determine
the slope of the line that best fits the measured data.
The expression that represents this best fit line is
presented in eqn (2):

grind time, = 10%n™,)
where the values of m and b are the slope and
intercept of the line from the regression analysis.
The value of m can be considered to represent the
parallel efficiency of the application on that
particular system. The value 10° closely
approximates the measured grind time on a single
processor. For the ideal scalability case,
substitution of m = 1.0 into eqn (2) yields eqn (1).
The fact that near ideal linear performance was
obtained on the IBM SP2 proves that the message-
passing CTH algorithm is not the source of the less-
than-optimum parallel efficiency of the O2K. These
results suggest that either the message traffic
between processors or the movement of data from
main memory to the individual processors is the
limiting factor in the scalability of the O2K system.
Tests on large parallel systems show that nearly
ideal scalability extends to greater than 2,000
Processors.

The SMP architecture scalability study was
performed on the SGI PCA using power-of-two sets
of R10000 processors. As stated earlier, this system
consists of four nodes, each with 16 processors. In
a manner similar to the O2K tests, tests were
avoided in which all processors on a node would be
used. Thus, the scalability tests involved a
maximum of eight processors per node. The results
of the tests are summarized and plotted in Fig. 5.
The four-node calculations using 16 and 32
processors were not completed to 40 ps at the time
this paper was written. Grind times from
simulations that were run to 1 ps were used as a
substitute.

In the plot in Fig. 5, the grind time results from
the single-node calculations are represented by the
circle symbols, squares are used to represent the

100

O1 Node
12 Node
<©4 Node
44 Node (1 pus)
- {Inear (m = 0.789)

10}

Grind Time (us/zone—cycle)

All calculations run to 40 ps
except where indicated

1 10
Number of Processors

Fig. 5. Measured performance on SGI PCA at TARDEC
(R10000 processors).

two-node results, and diamonds identify the four-
node results. The four-node results on four and
eight processors that were run to 40 ps use an empty
diamond, and the filled diamonds represent the 16-
and 32-processor calculations that were run to 1 ps.
This figure shows that the single-node and
multinode results form a straight line on the log-log
plot signifying linear scalability. The agreement
between the single- and multiple-node results
indicates that the communication overhead for
messages passed between nodes is not significantly
greater than that of messages passed between
processors of a given node. Like the O2K results,
the measured data were used to perform a regression
analysis, the results of which are represented by the
straight line in the figure. This regression analysis
produced a parallel efficiency value, m, of 0.789.
As described earlier, scalability tests on the O2K
and PCA systems were limited to a maximum of
half the number of available processors per system
(16 processors on the 32-processor O2K, and
8 processors on the 16-processor PCA nodes). This
was done to avoid possible contention between the
application software and the operating system in the
event that all of the available processors are
requested for the parallel CTH calculation. To
determine the impact of such a situation on the
parallel performance of the code, a series of tests
was performed on a 16-processor node of the
TARDEC PCA. Each calculation was run

independently for a simulation time of 1 ps, with no
other applications running. Three sets of problems
were run using 1-16 processors. One of the
problem sets used identical problem definitions
from the 40-ps simulations and contained
approximately 387,000 computational zones per
processor (not including ghost cells). The other two
sets used half and double the number of
computational zones at the first set (193,500 zones
per processor and 774,000 zones per processor).
The measured results from these three sets of
calculations are presented in Fig. 6. Figure 6
illustrates the grind time as a function of the number
of processors for the three sets of calculations. The
results for 1-8-processors fall in an approximately
straight line. The data from the 1-8 processor
results were used in a regression analysis to generate
the straight line in the figure. The tests that used 10
or more processors (more than half the total number
of processors in the machine) produced grind times
that gradually grew away from the regression line
and either reached an asymptotic value or began to
increase, depending on the problem size.

100 —
o 387k zones/processor
0194k zones/procassor
— 774Kk zones/processor
% = Linear (m = 0.848)
@
c
i
e
€
=
©
E °
(G
10} b
8eb
All cakculations run to 1 us

1 10
Number of Processors

Fig. 6. Single-node measured performance for 1 ps on
SGI PCA (R10000 processors).

5 CONCLUSIONS

Three-dimensional simulations of a long-rod
projectile impacting an oblique steel plate were

conducted on the IBM SP2, SGI PCA, and the
SGI 02000 systems as part of a scalability study.
The scalability study was conducted using a
constant work load (i.e., number of computational
cells on each processor). This approach maintained
a constant computation-to-communication ratio and
employed an average of 387,000 cells per processor.
A maximum of 64 processors (~25 million
computational cells) was used in the scalability
study.

Scalable performance of an explicit message-
passing implementation of CTH was measured by
the “grind time,” which is the average CPU time
required for the code to update all flow field
variables for one computational cell in a given time
increment (cycle). Scalable performance on the
distributed memory IBM SP2 system demonstrated
near “ideal” linear performance based on measured
grind times for 1-64 processors. The measured
grind times on the SGI 02000 and SGI PCA do not
follow the ideal linear scalability, but do appear to
form a straight line on a log-log plot. In addition,
scalable performance on the SGI PCA (R10000
processors) using multiple nodes indicates that the
communication overhead for messages passed
between nodes is not significantly greater than that
for messages passed between processors on a given
node.

REFERENCES

1. Goldsmith, W., Impact, Edward Amold,
London, 1960.

2. Johnson, W., Impact Strength of Materials,
Crane, Russak, New York, 1972.

3. Backman, M. E., and Goldsmith, W., “The
mechanics of penetration of projectiles into
targets,” Int. J. Engrg. Sci., 1978, 16, 1-99.

4. Zukas, J. A. et al., Impact Dynamics, Wiley-
Interscience, New York, 1982.

10.

11.

12.

13.

14.

15.

Zukas, J. A. et al, High Velocity Impact
Dynamics, Wiley-Interscience, New York,
1990.

Benson, D. J., "Computational methods in
Lagrangian and Eulerian hydrocodes,” Comput.
Methods Appl. Mech. Engrg., 1992, 99,
235-394.

Jones, A. K., “Modernizing high performance
computing for the military,” Computational
Science and Engineering, 1996, 3(3), 71-74.
McGlaun, J. M., and Thompson, S. L., “CTH:
A three-dimensional shock wave physics code,”
Int. J. Impact Engng., 1990, 10, 351-360.
Van lLeer, B., “Towards the ultimate
conservative difference scheme IV, a new
approach to numerical convection,” J. Comp.
Phys., 19717, 23(276).

Robinson, A. C., Ames, A. L., Fang, H. E,,
Pavlakos, C., Vaughan, C. T. and
Campbell, P., “Massively parallel computing,
C++ and hydrocode algorithms,” Proceedings
of the Eighth Conference in Computing in Civil
Engineering, Dallas, TX, 1992.

Benson, D. J., “Momentum advection on a
staggered mesh,” J. Comp. Phys., 1991, 100(1).
Gropp, W., Lusk, E., and Skjellum, A., Using
MPI, MIT Press, ISBN 0-262-57104-8, 1994,
Snir, M., Otto, S. W., Huss-Lederman, S.,
Walker, D., and Dongarra, J., “MPL The
Complete Reference,” MIT Press, ISBN 0-262-
69194-1, November 1995.

Fugelso, E., and Taylor, J. W., “Evaluation of
combined obliquity and yaw for U-0.75% Ti
penetrators,” LA-7402-MS, Los Alamos
National Laboratory, Los Alamos, NM, 1978.
Hertel, E. S., “A comparison of the CTH
hydrodynamics code with experimental data,”
SAND92-1879, Sandia National Laboratories,
Albuquerque, NM, 1992.

M98002636
AR WO

Report Number (14S AND -498-0a54¢e
CONE -27/Q] DS -~

>ubl. Date (11) 1990\
sponsor Code (18) _{D) O ! DY XF
JC Category (19) _ L C —"700) HDOE/ER

DOE

