010 0€60066!

BNL - 64502
CAP-171-MISC-97C

CONF-G770503 -~

N N N S ——

WAVELET APPROACH TO ACCELERATOR PROBLEMS:
II. METAPLECTIC WAVELETS¥*

A. Fedorova and M. Zeitlin ‘ .
Inst. of Problems of Mechanical Engineering JUL 2 4 {387
Russian Academy of Sciences
S. Petersburg, Russia OsTl
and
Z. Parsa

Department of Physics
Brookhaven National Laboratory
Upton, NY 11973

*This work was performed under the auspices of the U.S.
Department of Energy under Contract No. DE-AC02-76CH00016.

Y MASTER

CENTER FOR ACCELERATOR PHYSICS
DISTRIBUTION OF THS DOCUMENT mmé‘”

BROOKHAVEN NATIONAL LABORATORY
ASSOCIATED UNIVERSITIES, INC.

Under Contract No. DE-AC02-76CH00016 with the

,‘ UNITED STATES DEPARTMENT OF ENERGY
Particie Accelerator Conference, Acceleralor Science, Technology and Applications °, Vancouver, B.C., Canada, May 12-16, 1997.

PTIC QUALITY nIEsT TRD 8




DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their
employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process,
or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency, contractor or subcontractor thereof. The views and
.opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency, contractor or subcontractor thereof.




WAVELET APPROACH TO ACCELERATOR PROBLEMS, II.
METAPLECTIC WAVELETS

A. Fedorova and M. Zeitlin, Institute of Problems of Mechanical Engineering,
Russian Academy of Sciences, Russia, 199178, St. Petersburg,
V.O., Bolshoj pr., 61, e-mail: zeitlin@math.ipme.ru
Z. Parsa, Dept. of Physics, Bldg. 901A, Brookhaven National Laboratory,
Upton, NY 11973-5000, USA, e-mail: parsa@bnl.gov

Abstract

This is the second part of a series of talks in which we
present applications of wavelet analysis to polynomial ap-
proximations for a number of accelerator physics problems.
According to the orbit method and by using construction
from the geometric quantization theory we construct the
~ symplectic and Poisson structures associated with gener-

alized wavelets by using metaplectic structure and corre-
sponding polarization. The key point is a consideration
of semidirect product of Heisenberg group and metaplectic
group as subgroup of automorphisms group of dual to sym-
plectic space, which consists of elements acting by affine
transformations.

1 INTRODUCTION

In this paper we continue the application of powerful meth-
ods of wavelet analysis to polynomial approximations of
nonlinear accelerator physics problems. In part 1 we con-
sidered our main example and general approach for con-
structing wavelet representation for orbital motion in stor-
age rings. But now we need take into account the Hamilto-
nian or symplectic structure related with system (1) from
part 1. Therefore, we need to consider instead of com-
pactly supported wavelet representation from part 1 the
generalized wavelets, which allow us to consider the corre-
sponding symplectic structures. By using the orbit method
and constructions from the geometric quantization theory
we consider the symplectic and Poisson structures associ-
ated with Weyl- Heisenberg wavelets by using metaplec-
tic structure and the corresponding polarization. In part 3
we consider applications to construction of Melnikov func-
tions in the theory of homoclinic chaos in perturbed Hamil-
tonian systems.

In wavelet analysis the following three concepts are used
now: 1). a square integrable representation U of a group G,
2). coherent states over G 3). the wavelet transform associ-
ated to U.

We have three important particular cases:

a) the affine (az + &) group, which yields the usual wavelet
analysis

(ns.a)f)(a) = =7 (2 ”)

a

b). the Weyl-Heisenberg group which leads to the Gabor
functions, i.e. coherent states associated with windowed

Fourier transform.

[(q,p, ¢) fl(z) = exp(ip(p — p(z — ¢)) f(z — q)

In both cases time-frequency plane corresponds to the
phase space of group representation.

¢). also, we have the case of bigger group, containing both
affine and Weyl-Heisenberg group, which interpolate be-
tween affine wavelet analysis and windowed Fourier anal-
ysis: affine Weyl-Heisenberg group [7]. But usual repre-
sentation of it is not square—integrable and must be mod-
ified: restriction of the representation to a suitable quo-
tient space of the group (the associated phase space in that
case) restores square — integrability: G,w y—, homoge-
neous space. Also, we have more general approach which
allows to consider wavelets corresponding to more general
groups and representations [8], [9]. Our goal is applications
of these results to problems of Hamiltonian dynamics and
as consequence we need to take into account symplectic
nature of our dynamical problem. Also, the symplectic and
wavelet structures must be consistent (this must be resem-
ble the symplectic or Lie-Poisson integrator theory). We
use the point of view of geometric quantization theory (or-
bit method) instead of harmonic analysis. Because of this
we can consider (a) — (¢) analogously.

2 METAPLECTIC GROUP AND
REPRESENTATIONS

Let Sp(n) be symplectic group, M p(n) be its unique two-
fold covering — metaplectic group. Let V be a symplec-
tic vector space with symplectic form (, ), then R@ V is
nilpotent Lie algebra - Heisenberg algebra:

[R,V]=0,

Sp(V') is a group of automorphisms of Heisenberg algebra.

Let N be a group with Lie algebra RV, i.e. Heisenberg
group. By Stone- von Neumann theorem Heisenberg group
has unique irreducible unitary representation in which 1 —
i. This representation is projective: Uy, Uy, = c(g1,92) -
Ug, g, Where c is a map: Sp(V') x Sp(V) — S',ie cis
S'-cocycle.

But this representation is unitary representation of uni-
versal covering, i.e. metaplectic group M p(V). We give
this representation without Stone-von Neumann theorem.

[v,w]=(v,w)€e R, [V,V]=R.



Consider a new group F' = N’ ba Mp(V), wais semidi-
rect product (we consider instead of N = R & V the
N' =8'xV, S'=(R/2rZ)). Let V" be dual to V,
G(V™) be automorphism group of V*.Then F is subgroup
of G(V*), which consists of elements, which acts on V*
by affine transformations.

This is the key point!

Let ¢1,...,¢n; 1, --., pn be symplectic basis in V, a =
pdg = > pidg; and do be symplectic form on V*. Let
M be fixed affine polarization, then for a. € F the map
a — ©, gives unitary representation of G: 9, : H(M) —
H(M)

Explicitly we have for representation of N on H(M):

(©gf) (z) = e—iqu(z)) O, f(z)=f

The representation of N on H(M) is irreducible. Let A4, A,
be infinitesimal operators of this representation

(z —p)

Aq—llm [@..tq n, 4p = lim [@-tp 1],

then

Agf(z) = i(gz) f(z), Apf(z)= ija

zj
Now we give the representation of infinitesimal basic ele-
ments. Lie algebra of the group F is the algebra of all (non-
homogeneous) quadratic polynomials of (p,q) relatively
Poisson bracket (PB). The basis of this algebra consists of

elements 1,41; +-y9ns D1, ---; Pn> 9iQ5, 4iPj» DiPj, iyj =
1,..,n, i<y,
. of 89 Of 99
PBis .4} = -
(re}=3 3p; ¢; _ Oq; Op:
and {l,g} =0 forallg,
{pi, 45} = &i;,
{Pigj, ok} = kg, {pigj, pr} = —6;kpi,

{pipj,ax} = ikpj + dkpi, {piPj, Pk} = 0,
{9:g5, 0} = 0, {aiqj, px} = —bingqj — djkg;

so, we have the representation of basic elements
flr-)Af 11, g o iy,

J -0 i 0 15..
leJ—:z:T’p'qJng:;:?+§ i

1
Pkpt &~ ; BcF oz Wk Ll s izk 2!

This gives the structure of the Poisson manifolds to rep-
resentation of any (nilpotent) algebra or in other words to
continuous wavelet transform.

3 THE SEGAL-BARGMAN REPRESENTATION
Let

= —-igq), ZI= -p+zq
V2

\.I

p = (p1,---1Pn), Fn is the space of holomorphic func-
tions of n complex variables with ( f, f) < oo, where

. (fg)=(2m " / F(2)a() eV dpdg

Consider a map U : H — F, , where H is with real
polarization, F, is with complex polarization, then we have

(U¥)(a) = / A(a,q)¥(q)dg,

where

A, g) = 7=/ te=1/2a" a7+ 3aq

i.e. the Bargmann formula produce wavelets.We also have
the representation of Heisenberg algebra on F, :

8 ..y _ 1 ( 8

V= m ),
R S U
Uq;U = 7 (zJ + 32_7')

and also : w = dB = dp A dq, where 3 = izZdz.

4 ORBITAL THEORY FOR WAVELETS
Let coadjoint action be

<g-f,Y >=< f,Ad(g)"'Y >,

where<,->ispairingg €eG, feg", YeEG.

The orbitis Oy = G - f = G/G(f).

Also,let A=A(M) be algebra of functions, V(M) is A-
module of vector fields, A? is A-module of p-forms. Vector
fields on orbit is

d
o(0,X);(¢4) = 5 (BlexptX )| _
where ¢ € A(O), f € O. Then O; are homogeneous
symplectic manifolds with 2-form

Q(e(0, X);,0(0,Y)y) =< f,[X,Y] >
and d2 = 0. PB on O have the next form
{¥1,%:} = p(¥,)¥,

where p is A1(O) — V(0O) with definition Q(p(a), X) =
i(X)a. Here ¥,,¥, € A(O) and A(Q) is Lie algebra
with bracket {,}.

Now let N be a Heisenberg group. Consider adjoint and
coadjoint representations in some particular case.

N = (2,t) € C x R,z = p + ig; compositions in N are
(2,8)-(2, V') = (z+2',t+t'+ B(z, 2')), where B(z,2’) =
pq — qp’. Inverse element is (—t,—z). Lie algebra n
of Nis (¢,7) € C x R with bracket [({,7),({',7')] =
(0, B(¢,¢{’))- Centre is 7 € n and generated by (0,1); Z is
a subgroup exp z. Adjoint representation N on n is given
by formula

Ad(z,t)(¢, 7} = ({, 7 + B(2,())



Coadjoint:

for f e n*, g=/(z,1t),

(9- NG = f(¢,7) = B(2,0)f(0, 1)

then orbits for which f|; # 0 are plane in n™ given
by equation f(0,1) = g . KX = ({,0), ¥ =
(¢’,0), X,Y € n then symplectic structure is

Qo(0, X)s,0(0,Y)y) =< f,[X,Y] >=
£(0,B(C,¢')uB(S,C)

Also we have for orbit O, = N/Z and O, is Hamiltonian
G-space.

5 KIRILLOV CHARACTER FORMULA OR
ANALOGY OF GABOR WAVELETS

Let U denote irreducible unitary representation of N with
condition U(0,t) = exp(:tf) - 1, where £ # O,then U is
equivalent to representation 7; which acts in L%*(R) ac-
cording to

Te(z,t)é(z) = exp ((t + pz)) ¢(z — q)

If instead of N we consider E(2)/R we have S! case and we
have Gabor functions on S*.

6 OSCILLATOR GROUP

Let O be an oscillator group,i.e. semidirect product of R
and Heisenberg group N.

Let HPQ,I be standard basis in Lie algebra o of the
group O and H*, P*, @™, I* be dual basis in o”. Let func-
tional f=(a,b,c,d) be

al* + bP" +cQ" +dH".
Let us consider complex polarizations

h=(H,1I,P+iQ), h=(I,H P-iQ)

Induced from h representation, corresponding to functional
f (for a > 0), unitary equivalent to the representation

W(t,n)f(y) = exp(it(h — 1/2)) - Ua(n)V (2),
where

V(t) = exp[-it(P*+Q%)/2d],
P = -d/dz, Q =1iaz,

and U,(n) is irreducible representation of N, which have
the form U, (z) = ezp(iaz) on the center of N.

Here we _have: U(n=(x,y,z)) is Schrodinger representa-
tion, Uy(n) = U(t(n)) is the representation,which ob-
tained from previous by automorphism (time translation)
n — t(n); Ui(n) = U(t(n)) is also unitary irreducible
representation of N.

V(t) = exp(it(P? + Q* + h — 1/2))

is an operator, which according to Stone-von Neumann
theorem has the property

. Ui(n) = VUV ()t

This is our last private case, but according to our ap-
proach we can construct by using methods of geometric
quantization theory many “symplectic wavelet construc-
tions” with corresponding symplectic or Poisson structure
on it. Very useful particular spline-wavelet basis with uni-
form exponential. control on stratified and. nilpotent Lie
groups was considered in [9].

Extended version and related results may be found in 1]-
[6].
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