

256
3-6 79

Sh. 2301

LA-7625-MS

Informal Report

MASTER

**Determination of Relative Hydraulic
Conductivity from Moisture Retention
Data Obtained in the Bandelier Tuff**

University of California

LOS ALAMOS SCIENTIFIC LABORATORY

Post Office Box 1663 Los Alamos, New Mexico 87545

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Work supported by the US Department of Energy, Division of Waste Management, Production, and Reprocessing.

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

UNITED STATES
DEPARTMENT OF ENERGY
CONTRACT W-7405-ENG. 36

LA-7625-MS
Informal Report

UC-11
Issued: January 1979

Determination of Relative Hydraulic Conductivity from Moisture Retention Data Obtained in the Bandelier Tuff

W. V. Abele

— NOTICE —
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

LASL

DETERMINATION OF RELATIVE HYDRAULIC CONDUCTIVITY
FROM MOISTURE RETENTION DATA OBTAINED
IN THE BANDELIER TUFF

by

W. V. Abeele

ABSTRACT

A method for calculating unsaturated hydraulic conductivity from measured values of matric potential and saturation ratio is applied to data for the Bandelier tuff. A method described by Campbell requires that the measured data satisfy a particular log-log relationship. The coefficient of correlation using the predictive formula in actual measurements is highly significant at matric potentials lower than -10 kPa (-0.1 bar). The decrease of the relative hydraulic conductivity with decreasing saturation ratio is more rapid for crushed tuff than undisturbed tuff.

I. INTRODUCTION

Several methods have been suggested to calculate unsaturated hydraulic conductivities as a function of water content. Green and Corey¹ compared the results of such methods with measured values. Some modifications to the methods were suggested subsequently by Jackson² to obtain better agreement between calculated and measured values.

II. METHODS

Campbell³ described a method for calculating unsaturated hydraulic conductivity that depends upon the functional relationship between matric potential and relative water content. The empirical expression employed by Campbell is given in Eq. (1).

$$\psi = \psi_e \left(\frac{\theta}{\theta_s} \right)^{-b} , \quad (1)$$

where ψ is the matric potential,
 θ is the moisture content,
 ψ_e is the air entry matric potential,
 θ_s is the saturated moisture content, and
 b is a constant for a given soil.

$$\ln \psi = \ln \psi_e - b \cdot \ln \left(\frac{\theta}{\theta_s} \right) , \quad (2)$$

where $\ln \psi_e$ is a constant for a given soil.

Equation (2) requires that a log-log plot of relative water content vs matric potential be a straight line, with slope equal to $-b$. Jackson² presents evidence that such a relationship can be used to compute hydraulic conductivity as a function of moisture content using Eq. (3).

$$\frac{K}{K_s} = \left(\frac{\theta}{\theta_s} \right)^{2b+3} , \quad (3)$$

where K is the hydraulic conductivity and K_s , the saturated hydraulic conductivity. Empirical equations similar to Eq. (3) have been used by Hillel and Gardner.⁴

III. RESULTS

The above methods were used to calculate hydraulic conductivity functions for Bandelier tuff at a radioactive waste disposal site at the Los Alamos Scientific Laboratory (LASL). Moisture characteristic data for both solid and crushed tuff were tested for linearity, as expressed in Eq. (2), with data provided by Merle Wheeler from LASL. The coefficient of correlation r between ψ and θ in the observed data was calculated. As predicted by Campbell³ departures from a straight line occurred at potentials >-10 kPa (-0.1 bar). However, for potentials <-10 kPa, r was found to be 0.995 for both solid and crushed tuff when the moisture characteristic was measured with pressure extraction techniques, and 0.999 in crushed tuff when the moisture characteristic was determined with thermocouple psychrometers. The linearity for measurements of matric potential vs relative moisture content is displayed in Fig. 1.

Values for b and $2b + 3$ for solid and crushed tuff, measured with pressure plates or a psychrometer, are given in Table I. It should be kept in mind that

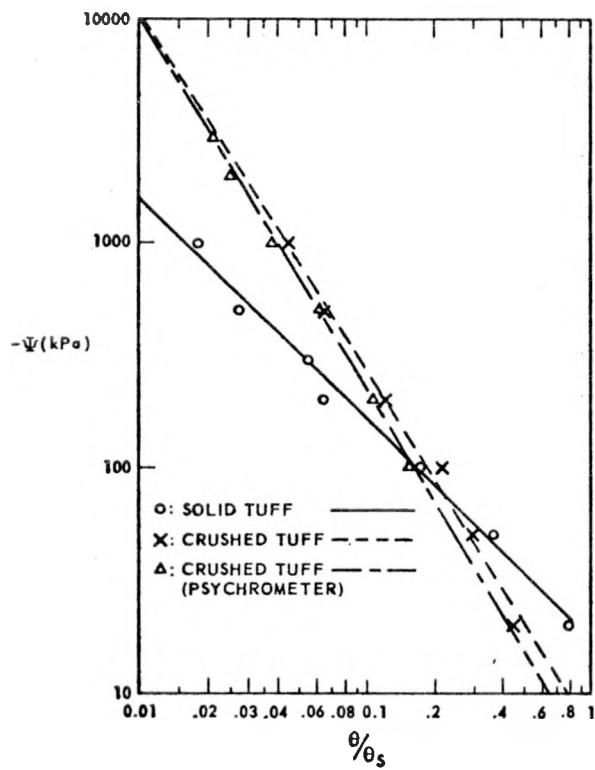


Fig. 1
Matric potential curves for Bandelier tuff used to determine b-values.

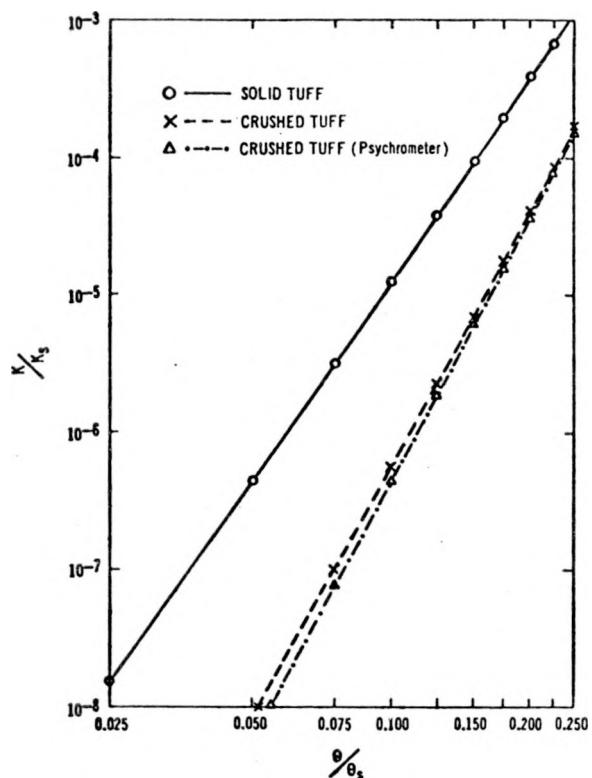


Fig. 2
Relative hydraulic conductivity as a function of degree of saturation.

the higher the values for $2b+3$, the more rapid the decrease of the relative hydraulic conductivity K/K_s will be with decrease in relative moisture content θ/θ_s . Figure 2 shows how the relative hydraulic conductivity varies in function of changing relative moisture content in the three cases under study. The steeper slopes obtained for crushed tuff clearly indicate a more rapid decrease of the relative hydraulic conductivity K/K_s with decreasing saturation ratio.

TABLE I
CONSTANTS USED IN PREDICTING K/K_s

Type of Tuff	Method Used	b	$2b + 3$
Solid	Pressure Plates	0.94230	4.88460
Crushed	Pressure Plates	1.61421	6.22842
Crushed	Psychrometer	1.65965	6.31930

REFERENCES

1. R. E. Green and V. C. Corey, "Calculation of Hydraulic Conductivity: A Further Evaluation of Some Predictive Methods," *Soil Sci. Soc. Am. Proc.*, 35, 3-8 (1971).
2. R. D. Jackson, "On the Calculation of Hydraulic Conductivity," *Soil Sci. Soc. Am. Proc.*, 36, 380-382 (1972).
3. G. S. Campbell, "A Simple Method for Determining Unsaturated Conductivity from Moisture Retention Data," *Soil Sci.*, 117, 311-314 (1974).
4. D. Hillel and W. R. Gardner, "Steady Infiltration into Crust-Topped Profiles," *Soil Sci.*, 108, 137-142 (1969).

Printed in the United States of America. Available from
National Technical Information Service
US Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

Microfiche \$3.00

001-025	4.00	126-150	7.25	251-275	10.75	376-400	13.00	501-525	15.25
026-050	4.50	151-175	8.00	276-300	11.00	401-425	13.25	526-550	15.50
051-075	5.25	176-200	9.00	301-325	11.75	426-450	14.00	551-575	16.25
076-100	6.00	201-225	9.25	326-350	12.00	451-475	14.50	576-600	16.50
101-125	6.50	226-250	9.50	351-375	12.50	476-500	15.00	601-up	

Note: Add \$2.50 for each additional 100-page increment from 601 pages up.