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ABSTRACT

The classic problem of constructing the sharp spin states
for n spin- % particles by simultaneously claszifying the states by
their irreducible transformation properties under both SU(2) and Sn
is solved explicitly by recognizing that these states are a special
case of the boson polynomials of U(n).
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I. Introduction

Much of this workshop has dealt with the r8le of the per-
mutation group in elucidating the classical structure of complex mole-
cules. The rfle of the permutation group in the quantum theory of
molecules, while certainly not ignored, has perhaps received less em-
phasis, I wish therefore to discuss the r8le of the permutation group
in a simple but important problem in gquantum mechanics.

The problem I have in mind is that of constructing the
quantum spin states of a n electron system such that (i) the states
have sharp total spin angular momentum; and (ii) the states transform
irreducibly under permutations of the electrons. The importance of
this special result in implementing the Pauli principle is well known.

The solution to this problem has, of course, been given

by numerous authors, using a variety of techniques (a few of the
references are given below, Ref, 1-4), H. Weyl (5) had already given
the structure of the general r2sult in 1928, but he did not give the
explicit answer. My only excuse in presenting this result anew is to
illustrate the novelty and explicitness of results which can be ob-
tained as special cases of the boson polynomials discussed in Prof.
Biedenharn's talk (6). This classic problem is also a nice one for
illustrating a cooperative r6le of two group structures: The symmetric
group Sn and the quantum m~achanical rotation group SU(2).

I1. Formulation of the Problem

In order to give a precise statement of the problem,
we first summarize the properties of the irreducible representations
of SU(2) and Sn‘
A. Irreducible representations of the quantum mechanical
rotation group.
The Lie algebraic and Hilbert space properties of the
total angular momentum J = (Jl,Jz.J3) of a physical system (Ji is the
component of J relative to an inertial frame of refererce)! may be
summarized as follows:
(1). Each Jy is a linear Hermitian operutor on a separable
Hilbert space H. The components of K] satisfy the commutation rela-
tions

Ix3=1 5. (1)

(2), H contains a subspace Hj of dimension 2j+1, J ¢ {0,1/2,1,...},
which is invariant and irreducible under the action of 31'32'33' The
space Hj possesscs an orthonormal basis

{|3m) ‘ m=3,j=1,...,=3} (2)



such that the vect..s in this basis are simultaneocus eigenvectors
of the square of total angular momentum, J2 = Ji + Jg + Jg, and of

33. that is,
32|4m ) = $(3+1) | Im> , (3)
Jsljm ) = m|im) ; (4)
tuorthermore, the action of Jl and J, on this basis is expressed by
(3, ¢ 13,) 13m) = (37 (Geme 1M/ 2 [ 5me1 (5)

The irreducible representation of SU(2) carried by the
space H, has the following properties,
Let R(¢,fi) denote a rotation of the Euclidean space R3
about an axis specified by the unit vector fi by an angle ¢. The
Hilbert space Hj then undergoes a transfcrmation onto itself which is
given up to * sign by the unitary operator
-i¢h-JF

U=e (6)

In particular, the transformation U of the basis (2) is

- 3 ‘o
Uldm ) = E; szm(U)IJm ) (7
where U denotes the 2x2 unitary matrix
-*>
v PB9/7 1) cos § —1(AeB)sin £ (8)

in which § = (01,02,03) denotes the Pauli matrices.Dg‘,m denotes a
function which maps each Ue SU(2) to the complex numbers and is given
explicitly by

D, (U) = [(3+m')1(G-m' )1 (F4m) 1 (§-m) 11272
1 1 2 2
a o] a Q
) (uly "Leuly "2 qul) L u2) 2
"B @ht @ )t el ’ ®
G (ot (ag)t (o)t fag
where
12
ul ul a0)
U= .
ul uz
2 Y2

The summation is over all nonnegative integers “2 which have the fixed
row and column sums indicated by the notation (cf. Rei. 6)



ai ai j+m’
a; ag jem’ (11)
j4m  j-m

Letting Dj(v) denote the (2j+1)x(2j+1) matrix representation
of U on the space H, we have: The group of matrices

pd = { o3 (v)|uesu(2)} (12)

ie an irreducible unitary representation of SU(2)}. Furthermore,
letting j = 0, 1/2, 1,..., we obtain all the inequivalent irreducible
vnitary representations of SU(2).
B. Irreducible representations of the symmetric group

A great ceal has already been said in this conference
about the irreducible representations of the symmetric group, Sn' in-
cluding an explicit constriuction of the Yamanouchi real orthogonal re-
presentations given in Prof. Biedenharn's talk. We will recall here
three basic results:

(1) The irreducible reprssentations of Sn are in one-to-
one correspondence with the partitions [Al Az...xn], i Ai = n,
Al > 12 Peee?® A R 0, of n into not more than n nonzero parts. Each
such partition [)A] also defines a Young frame

row 1 . .. . A, boxes
row 2 PP Az boxes

(13)
row n L" An boxes

Thus, an irreducible representation of Sn may be denoted by P[A] and
the set of all (inequivalent) irreducible representations by
{P[Alllxl is a partition of n}.

(1i) The basis vectors of a linear vector space V[A] which
carries an irreducible representation of S, are in one-to-one
correspondence with the set of standard Young tableauzr of shape [A].
(A standard Young tableaux is a Young frame in which the n boxes have
been "filled in" with the integers 1,2,...,n without repetition and
such that the sequence of integers arpearing in any row or any column
is strictly increasing when read from left to right across the row
and from top to bottom down the column.)



The Yamanouchi symbol (y) of a standard Young tableau is the sequence
of integers (y) = (yl.yz....,yn)in which Yo-s+l is the number of the
row in which integer s occurs. Different standard tableaux have
different Yamanouchi symbols. Thus, a basis of V[x) may be denoted by

[[Al: (y) ) |({y) is the Yamanouchi symbol of a standard (14)

Young tableau of shape [(A]

(2]

(iii) Each permutation Pes  defines a mapping of V onto
.4
v{*3; nence,
P: |[A]:(y) ? = 2: rE‘})( )(P)llkl:(y’) ) (15)
) WY
Thus, the irreducible representation or sn carried by V[x] is
p . %r‘*‘(p)lpesn ) (16)

C. Coupling of n kinematically independent angular momenta
The Hilbert space for describing the union of two physical
systems, when considered as a single physical system, is the tensor
product of the Hilbert spaces of the individual systems. The space
of interest fornthe determination of the states of the total angular
momentum, 3= k§13(k), of n individual physical systems labelled by
1,2,...,n, where system k iz in the angular momentum state jk’ is

the tensor product space H,. . defined by
(31"’Jn)
H = H, @H., ®,.. ©®H, . (17)
(jl"'jn) 25 32 In
A basie of this space is
|3m) 2@ | j,m, ve@...@5 m ) |each LIS NP Y (18)
and the dimension of the space is
dim H = 0 (29,+1) . (19)
(jl"'jn) k k .

Let 11'12""’in denote a rearrangement of the integers
1,2,...,n. We define the action of the permutation

l 2 .. n
P = (20)

i, 4,004,



on the space H(jl...jn) to be the linear mapping

P: H(jl...jn) - H(jil"'ji ) (21)
n

defined explicity by

P: |im 0@...2[3m Y+lj, m, V@, .. @F., m, ) . (22)
1M1 nn i il i
For the problem at hand, we require only the special
case jl = L., = jn = 1/2 and will denote the corresponding tensor pro-
duct space by H: '

H=#H ®..0H (23)
2 z
with basis
1 1 1 1
Iz mre...@3m |n =3 2} (24)
so that
aim H = 2" . (25)
In this case, we have
P: H -+ H , each PeSn . {26)
Thus, H {8 the carrier epace of a representation I of Sn:
T = {I’(P)IPeSn} ’ . (27)
where each T(P) is a 2"x2™ permutation matriz.
The unitary rotation (7) of the single electron states
I%,% Y, l%.- % Y takes the form
uldd = o33+ 0glg- 30, (28)
1.1, ,2/11,,,21_1
Ulge= 3= uplzez )+ wlye- 30 .

Under a rotation F(¢,A) of the cumposite n-particle system in R3, the
tensor product space H undergoes the transformation (up to : sign)
given by

Us 4 » H ,

. 11 1 1 1
u: [5my ’®...8|5m )~ ul5m, )@...® ulzm. ). (29)

Thue, H isa the carrier space of the representation

D = (D(U) = ve,,.eu|uesu(2)} (30)



of SU(2) (® here designates the matrix direct product).

The actions of the operators P and U commute an H and
correspondincly the matrix representations given by Eqs. (27) and (30)
also commute:

r(e)p(u) = D(u)r(P), each PeS ., each UeSU(2) . : (31)
Accordingly, H is the carrier space of the representation

{D(U)r(p)lpesn.UeSU(z)} (32)

of the direct product group SU(2) X S..

We may now give a precise statement of the problem to be
solved: Split the space H into a direct sum of carrier spaces of irre-
ducible representations of SU(2) X Sn or, equivalently, reduce the
repreasentation (32) of SU(2) X S, into its irreducible components.
IXI. Solution to the Problem

Since the announced purpose of this talk was to demonstrate
that the complete solution to the problem stated above could be ob-
tained as a special case of the boson polynomials discussed in the
previous talk (Ref. 6), we proceed directly to that result.

Consider then the U(n)*U(n) boson state vectors in which the
double Gel'fand patterns are specialized in the following manner:

(u)
g + 3 % -\\i o\<; ;//ﬁ
3 +3 3z -3 0
$ ey §-s
3+ om
1 . :
25 O i i i
- 0 <<; 1oy A "o\ ... (™o \o 0
kyeo ok j+m kn kn-1 ky 0
. al 2 n
82-k, "2-k,"*%2-k |o) (33)

where



(1) (n) is any lexical Gel'fand pattern with
weight (1,1,...,1);

(i) (iliz...in) is the sequence of 0's and 1's
such that under the identification 0 = 2 the
sequence becomes the Yamanouchi symbol of
the standard Young tableau of shape [g+j,% -3l
that corresponds to the Gel'fand pattern (u):;

(ii1i) the symbol 23 0 denotes the basis vector

j+m
|3m ) of standard angular momentum theory;

(iv) the action of each of the four fundamental

Wigner operators

i

1 0 (i, k = 0,1)

k
on an arbitrary basis vector |jm ) is obtained
from the pattern calculus rules. For con-
venience, we state these results:

1 . 1/2
. = +m+1 ] . 1 1
1 ) 0 bm) [%ﬂj— h +2,m-+2) ,

]1/2 B

. j-m+1
o) lm>- [L33

+
N =
-
3
i
N~
7

34)
] i-m 1/2 . (
limd=-[35r | 13

o

o) |im)= [l‘tﬂ-

1/2
2)+1 ]

[
N
v

Iy - 30 m -

AN O
=3 = o o
- o
1
N
-
=]
+
N =
4

Remark. Each ik in Eq. (33) may assume the values 0 or 1
independently. Quite remarkably, the matrix element of the string of
Wigner operators appearing in Eq. (33) is automatically zero unless the
seguence (iliz...in) is the Yamanouchi symbol for (u) as explained in
(ii) above.

Consider next the transformation properties of the boson
state vectors (33) (as discussed in Ref. 6).

Under the unitary transformation of the nXn boson matrix
A= (az) given by



A+VA, V= , Uesu(2) , (35)

0 Ir-.-z

we see that the basis vectors (33) undergo the transformation (7).
Consider also the unitary transformation of A given by

A + AL, , (36)
where IP is the permutation matrix
I, = (e, e, ...e; ) ' (37)
} 4 i,71, 1n

in which e; denotes a unit column vector with 1 in row i and zeroes
elsewhere, and P denotes the permutation

l 2 ...n
P = i A . 38
(11 12...1'“) ( )

Then, from the results of Ref. 6, we find that under the transforma-
tion (36) of A, the basis vectors (33) undergo the transformation (15)
in which

n . n .
and (y) is the Yamanouchi symbol corresponding to (iliz...in) as
described under (ii) above. (The irreducible representation F[A] is

then the Yamanouchi real orthogonal representation.)

Thus, the orthonormal basis vectors (33) corresponding
"to fixed n and j (0 < j < n/2), but withm = j,...,-j and (u) runnirg
over all lexical patterns of weight (1,1,...,1), are the basis vectors
of a vector space which carries the irreducible representation

o n,.n N
pl e rlztiz -3] . (40)

of sU(2) X Spe )

Observe next that since the boson operators ag,j =1,2,...,n
and i = 3,4,...,n do not occur in the basis vectors (33), we can put
ai =0 for j =1,...,nand i = 3,...,n. [The general boson polynomial
is then zero unless the lower pattern is of the form occurring in the
left-hand side of Eq. (33).] If we now let A denote the 2Xn matrix

a
, | (41)

a Qe

N

2
aj...a

2

2

NS =3



R gy

ey

then the transformation of A corresponding to Egs. (35) and (36) is
A+ UAI,, UeSU(2), PeS_ . (42)

Comparing this transformation of the boson matrix A with the trans-
formations (26) and (29) of H, we see that the appropriate way to make
the transcription from the boson basis vectors (33) to basis vectors
of H is to make the replacement

1l 2 n
a a cesdo_ 0
2-k, %2k, 2 kn' >
- |1 o> ® |1 o> e... |1 o> , (43)
ky ka kn
~ 111 _J11
|1 <> = -2-,2> , 1 o> = 3.7> . (44)
1 0

Let us summarize the results obtained above. We introduce

where

the simpler notation I(iliz...in); jm ? for the basis vectors obtained

from Eq. (33) by the replacement (43):

i i
- 1 1 n

. . . 23 0 1 0 1 0 |ooo

l(ilxz...ln); Jm> = ,0 j+m K, ky
k)
. 1°> ®...®
ky

...k
n
(1112...1n) is a Yamanouchi symbol

l(iliz--.in): jﬁ> (0=2) of a standard Young tableau of (46)

shape [% + 3 % -3l:m=3,5-1,...,-%

1 0\/ ) (45)
k
n/

Then the set of vectors

is an orthonormal basis of a subspace H (% + 3, % - j) of H which
is a carrier space of the irreducible representation

n . N
pl erlz *+3 3 - 13l (47)

of 8U(2) X sx' The explicit transformation properties are:

u Jtiyeeed ) 9m) =}; Dg‘,m(U)Hil;..in): jm’) . (48)
m
3+3%-3
P:)(i,.0.i): Im) - Z r 7, 2z .. .17 5m).
1 n | ‘ii"'iﬂ’ (11...13),(11...in) ' 1 n >

(49)
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The solution to the problem posed in Section 1I is
now completed with the resvlt:

H=§:°H(§+j.%-j) ' (50)
where the sum is over
j='2—‘,§--1,..., %oro . (51)

Equation (50) may also be proved by appealing to the known
properties of the boson polynomials: The set of boson polynomials

(m’)

m m 0. .. 0
v R N

™n M2n

B (A) (52)

mln ™on

™2

corresponding to all allowed patterns (m’) and my and to all parti-
tions [mlann] of N spans the space of all polynomials in the 2n bosons
ai, a2(j =1,2,...,n) which are homogeneous of degree N. For the
case a: hand, we have g =n=m. + Mo and 23 = M, = My, SO that
mhE T3 + 3 and My, = 3 i, whgrenall partitions [mlnm2n] of n are
obtained by letting 3 run over 50 3 " l,..., 5 or 0. [Observe that
this result is applicable to the space H since the mapping (43) can
be reversed.] )

One could, of course, also prove Eq. (50) by a dimension-

ality check, it being necessary then to verify that

. (245,50 - 51
2aimpd « aimr 2 2 =2, (53)
3
where
aim b3 = (25+1) (54)
["n"'joﬁ'j ] n
27712 = 2(2j+1)
dim T Z_jT"JZ'P_n % -3 . (55)
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Remark. Once one knows the result in the form of Eq. (45),
it is certainly not necessary to use anything as powerful as the
general Un * Un boson polynomials to obtain it, since one may prove
the validity of Eq. (45) directly. The boson polynomials, however,
yield many useful results when specialized in various ways, and our
purpose here was to illustrate one such case of physical interest.
We hope that the simplicity of the final result justifies our pre-
genting it here.

In concluding, I would like to give one more notation
for the basis vectors (45) which illustrates most vividly the inter-
relationship between SU(2) and Sn. A similar notation has been em-
ployed by Rota and collaborators (7) in their studies in combinatorics.

This notation employs two Young frames of the same shape [% + 3 ;- jl:

vee .- 1 .- NN

(56)

The Young frame on ti.e right is then filled in with 1,2,...,n to obtain
a standard Young tableau; the Young frame on the left is filled in with
1's and 2's to obtain a standard Weyl tableau for SU(2).
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