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ABSTRACT

The classic problem of constructing the sharp spin states

for n spin- + Particles by simultaneously classifying the states by

their irreducible transformation properties under both SU(2) and Sn

is solved explicitly by recognizing that these states are a special

case of the boson polynomials of U(n).
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x. Introduction

Much of this workshop has dealt with the r81e of the per-

mutation group in elucidating the classical structure of complex mole-

cules. The r81e of the permutation group in the quantum theory of

molecules, while certainly not ignored, has perhaps received less em-

phasis. 1 wish therefore to discuss the r61e of the permutation group

in a simple but important problem in quantum mechanics.

The problem I have in mind is that of constructing the

quantum spin st~tes of a n electron system such that (i) the states

have sharp total ~pin angular momentum; and (ii) the states transform

irreducibly under permutations of the electrons. The importance of

this special result in implementing the Pauli principle is well known.

The solution to this problem has, of course, been given

by numerous authors, using a variety of techniques (a few of the

references are given below, Ref. 1-4). H. Weyl (5) had already given

the structure of the general ~asult in 1928, but he did not give the

explicit answer. My only excuse in presenting this result anew is to

illustrate the novelty and explicitness of results which can be ob-

tained as special cases of the boson polynomials discussed in Prof.

Biedenharn’s talk (6). This classic problem is also a nice one for

illustrating a cooperative r61e of two group structures: The symmetric

group Sn and the quantum mechanical rotation group SU(2).

II. Formulation of the Problem.——
In order to give a precise statement of the problem,

we first uummarize the properties of the irreducible representations

of SU(2) and Sn.

A. Irreducible representations of the quantum mechanical

rotation group.

The Lie algebraic and Hilbert space properties of the

total angular momentum ~ = (J1,J2,J3) of a physical system (Ji is the

component of ~ relative to an inertial frame of reference! may be

summarized as follows:

(1). Each Ji is a linear Hermitian oper~tor on a separable

Hilbert space H. The components of ~ satisfy the commutation rela-

tiona

(1)

(2). ftcontains a subspace I/jof dimension 2j+l, j c {0~1/2?l*...)1

which is invariant ana irreducible under the action of Jl~J2,J3. The

space H possessGs an orthonormal basis
j

{Ijm) I m= jlj-l,...j}j} (2)
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such that the

of the square

J3, that is,

J21jm )

J3~jm )

vect”.s in this basis are simultaneous eigenvectors
222of total angular momentum, J = J1 + J2 + J:, and of

= j(j+l) I jmj , (3)

= mljm) ; (4)

furthermore, the action of JI and J2 on this basis is expressed by

space

about

(Jl t iJ2)ljm ) = [(j~m)(jfm+l)ll/21jmtl J. (5)

The irreducible representation of SW(2) carried by the

H has the following properties.
j
Let R($,fi)denote a rotation of the Euclidean space R3

an axis specified by the unit vector 6 by an angle $. ?ne

Hilbert space H+ then undergoes a

given up to ? s~gn by the unitary

(J = e-i@fi”3
.

In particular, the transformation

Uljm) =
F D~/m(U)[jm’ ) ,
m

transformation onto itself which is

operator

(6)

U of the basis (2) is

(7)

where U denotes the 2x2 unitary matrix

“ = #o(fi*t)17 = 1 cos ~ -i(fi*&)sin# (8)

j denotes ain which ; = (U1,U2,U3) denotes the Pauli matrices.Dm/m

function which maps each UC SU(2) to the complex numbers and is given

explicitly by

1/2
Dj/ (U) = [(j+m’)I(j-m’)l(j+m)l(j-m)1]mm

1122
l“lla22a12a2

E
(Ul) (~~2) (Ul) (U2)

x ~ (a~)l (a:)! (a:)! (a~Y ‘

where

(9)

(lo)

~ hich have the fixedThe summation is over all nonnegative integers ai

raw and calumn sums indicated by the notation (cf. Ref. 6)
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12
al al

j+lnt

2
a: a2 j-t “

(11)

j+m j-m

..

Letting Dj (U) denote the (2j+l)x(2j+l) matrix representation

of U on the space U, we have: The group of matpicee

(12)Dj = {Dj(U)lUCSU(2)}

i8 an irreduoibte unitary representation of SU(2). Furthermore,

letting j = O, 1/2, 1,..., we obtain all the inequivalent irreducible

unitary representations of SU(2).

B. Irreducible representations of the symmetric group

A great deal has already been said in this conference

about the irreducible representations of the symmetric group, Sn, in-

cluding an explicit construction of the Yamanouchi real orthogonal re-

presentations given in Prof. Biedenharn’s talk. We will recall here

three basic results:

(i) The irreducible repr~sentations of Sn are in one-to-

One correspondence with the partitions [Al A2...Xn], ~ Ai = n,

Al>A2> ...> A # O, of n into not more than n nonzero parts. Each

such partition [A] also defines a Young frame

(13)

Enrow n ... An boxes

Thus, an irreducible representation of Sn may be denoted by I’[A] and

the set of all (inequivalent) irreducible representations by
{l’IA]IIA] is a partition of n}.

(ii) The basis vectors of a linear vector space V ‘A] which

carries an irreducible representation of Sn are in one-to-me

correspondence with the set of 8tandard Young tabZeauz of shape [A].

(A standard Young tableaux is a Young frame in which the n boxes ha”,?e

been “filled in” with the integers 1,2,...,n without repetition and

such that the sequence of integers av?earing in any rcnfor any column

f] is strictly increasing when read from left to right across the row
f and from top to bottom down the column.)I
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The Yamanouchi symbol (y) of a standard Young tableau is the sequence

of integers (Y) = (y1,y2,...,yn)in which yn-~+l is the number of the

row in which integer s occurs. Different standard tableaux have

different Yamanouchi symbols. Thus, a basis of V[’] may be denoted by

1“ I1[~]:(Y) J (y) is the Yamanouchi symbol of a standard

I

(14)

Young tableau of shape [A]

●--(iii) Each permutat<.onPcSn defines a mapping of V[x] onto

ViAj; hence,

P: I[a];(y) ) +

Thus, the irreducible

--

z r~;))(y,(P)l[al:(y’) )
(Y’)

representation os Sn carried by V
[a] is

(15)

(16)

c. Coupling of n cinematically independent angular momenta

The Hilbert space for describing the union of two physical

systems, when considered as a single physical system, is the tensor

product of the Hilbert spaces of the individual systems. The space

of interest for the determination of the states of the total angular

!3momentum~ t = k=l (k), of n individual physical systems labelled by

ltzt=. ●tnt where system k is in the angular momentum state
the tensor product space H

(jl.=.jn)
defined by

=/f. OH. lv..mfj .
“(jl...jn) 31 32 n

A basis of this space is

]k? ‘s

(17)

and the dimefisionof the space is

= n (2jk+l) .dim H(jl.o.jn) k

i denote a rearrangementLet il,i2,.e.* n

(ljlml)~I j2m2 )0...
1

dBljnmn)leach mk=jk, . ..-jk ,

of the integers

1,2?...8n. We define the a,ctionof the permutation

()

1 2 ... n
pm

% ‘2””’ ‘n

(18)

(19)

(20)
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on the space H(jl...jn) to be the linear mapping

P: f{(jl...jn) + fl(ji#in)

defined explicity by

p: Ijlml )@... ‘Ijnmn ‘+llj, mi ‘“...eiji ml ) .
11 nn

For the problem at hand, we require only the special

casejl= ... = jn = !/2 and will denote the corresponding

duct space by H:

ff=tilal...offl

z z

with basis

so that

dimU=2n.

In this case, we have

P: H+ff, each

Thu8, U ie the carr<er

Pcsn .

8pace of a representation r of Sn:

r = {r(p)lpesn} ,

uhem each l’(P)$8 a 2nx2n permutation matz+x.

(21)

The unitary rotation (7) of the single electron states

Under a rotation P($,fi)of the c~mPosite n-Pa~ticl@

tensoz product sFace H undergoes the transformation

given by

U:ti+ff,

(22)

tensor pro-

(23)

‘J I*ml‘oo””ol+”n)+ ‘1$’”1‘@”””@‘l~mn)”
Thu8t I/ <8 the aarrder apaoe of the repreetintah<on

D = {D(U) - U@,*. @u@su(2)}

(24)

(25)

(26)

(27)

(28)

system in R2, the

(up to t sign)

(29)

(30)



Of SU(2) (~ h-= designates the matrix di=t Product)”

The actions of the operators P and U commute an H and

correspondingly the matrix representations given by Eqs. (27) and (30)

also commute:

I’(P)D(U)= D(U)r(P), each PcSn, each UCSU(2) . (31)

Accordingly, ffia the carr{er apace of the repreaentat<on

{D(u) r(P) lPEsn#uw(2)} (32)

of the direct product group SU(2) X Sn.

We may now give a precise statement of the problem to be

solved: Spt<t the space H into a direct aum of carrie~ epacea of irre-

ducible ~epreaentation8 of SU(2) X Sn or, equivaZentZy, reduce the

representation (32) of W(2) x Sn into ita irreducible component.

III. Solution to the Problem—. .—
Since the announced purpose of this talk was to demonstrate

that the complete solution to the problem stated above could be ob-

tained as a special case of the boson polynomials discussed in the

previous talk (Ref. 6), we proceed directly to that result.

Consider then the U(n)*U(n) boson state vectors in which the

double Gel’ ‘fand patterns

+]

are specialized in the following

(P)
o .*.

)
o

\/

o

j

manner:

1 2
“ a2-kl a2-k2”””a:-knlO) , (33)

where
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(j.]

(ii)

(iii)

(iv)

(P) is any lexical GelQfand pattern with

weight (1~1~...tl);

i ) is the sequence of O1s and 1’s(ili2..o n

such that under the identification O = 2 the

sequence becomes the Yamanouchi symbol of

the standard Young tableau of shape [nflj,~-j]

that corresponds to the Gel’fand pattern (u):

1)the symbol 2j O denotes the basis vector

ljm) of stan&’d angular momentum theory;

the action of each of the four fundamental

Wigner operators

()

i
i o (i, k = 0,1)

k

on an arbitrary basis vector Ijm ) is obtained

from the pattern calculus rules. For con-

venience, we state these result:s:

()1
1

1
0 ljm)=[~]1’2 1j+~,m+$)t

( : 0’)ljm)=[%w21j+*-w
()

(34)
o

1
1

0 ljm)=-[* 11” Ij -+, m +*> ,

/

()o1 0 ljm)=[~ 11’2Ij-?jrm-+> .
0

-“ ‘ach ‘k ‘n ‘q” (33) may assume the values O or 1

independently. Quite remarkably, the matrix element of the string of

Wigner operators appearing in Eq. (33) is automatically zero unless the

sequence (i1i2...in) is the Yamanouchi symbol for (p) as explained in

(ii) above.

Consider next the tratbsformationproperties of the boson

state vectors (33! (as discussed in Ref. 6).

Under the unitary transformation of the nXn boson matrix

A = (a;) given by

,
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A+?

we see that

where

()
Uo

A,V= UCSU(2) , (35)
O Ir,-2 ‘

the basis vectors (33) undergo the transformation (7).

Consider also the unitary transformation of A given by

~+A~p ,

1P is the permutation matrix

1P = [ei1ei2...ei 1
n

in which ei denotes a unit column vector

elsewhere, and P denotes the permutation

P
(

1 2 ...n=
i2...l

)‘1 - “n “

(36)

(37)

wj.th 1 in rciwi and zeroes

(38)

Then, from the results of Ref. 6, we find that under the transforma-

tion (36) of A, the basis vectors (33) undergo the transformation (15)

in which

[A] = (39)[~+j~-j O...Ol ,

and (y) is the Yamanouchi symbol corresponding to iili2...in) as

described under (ii) above. (The irreducible representation r[A] is

then the Yamanouchi real orthogonal representation.)

Thu%, the orthonormal basis vectors (33) corresponding

‘to fixed n and j (O < j < n/2), but with m = j,....-j and (u) rUIH’iiJ’KJ

over all lexical patterns of weight (1,1,...,1), are the basis vectors

of a vector space which carries the irreducible representation

(40)

of SU(2) x Sn.

Observe next that since the boson operators a~,j = 1,2*.***n

and i = 3?4,...?n do not occur in the basis vectors (33),we can put

a;= Oforj =1, ....nandi=3 .....n. [The general boson polynomial

is then zero unless the lower pattern is of the form occurring in the

left-hand side of Eq. (33).] If we now let A denote the 2Xn matrix

(41)



then the transformation of A corresponding to Eqs. (35) and (36) is

.

A + 6AIP, ucsu(2), Pcsn . (42)

Comparing this transformation of the boson matrix A with the trans-

formations (26) and (29) of If,we see that the appropriate way to make

the transcription from the boson basis vectsrs (33) to basis vectors

of U is to make the replacement

12 1>a2-k1a2-k2”””a;-kn 0

.,,:) dtqlg)lm...ql(o , (43)

where

(44)

Let us summarize the results obtained above. We introduce

the simpler not~tion l(ili2...in); jm ) for the basis vectors obtained

from Eq. (33) by the replacement (43):

I(ili20..iJ; @)=~:(’;+:l({:o)””” (::’) 10’)
‘l”””kn

+y’ooo’’tkj●

Then the set of vectors

(45)

{

I
I

(ili2...in) is a Yamanouchi symbol

>‘i’li2”””in);jm (0=2) of a sta~ldardYoung tableau of

}

(46)

shape [~+ j ~- j]; m= j,j-l,...j-j

is an orthonormal basis of a subspace H (~ + j, ~ - j) of H which

is a carrier space of the irreducible representation

Dj@r[~+j~-j] (47)

af SU(2) x S,l. The explicit transformation properties are:

i); h) =zD~,m(U) l(il...in); j)’) .u I(il... n
m’

(48)
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The solution to the problem posed in Section 11 is

now campleted with the result:

(50)

where the sum is over

j=;, ;-1,..., $orO . (51)

Equation (50) may also be proved by appealing to the known

properties of the boson polynomials: The set of boson polynomials

(
(m’)

B ‘2n 0 “
‘y\\

‘ln ‘2n

‘ln ‘2n

’11 ).0“/
o

(A) (52)

corresponding to all allowed patte=ns (m’) and mll and to all parti-

tions [mlnm2n] of N spans the space of all polynomials in the 2n bosons
jjal, a2(j = 1,2,...,n) which are homogeneous of degree N. For the

case at hand, we have N = n = mln + m2n and 2j . mln - m2n so that

n
‘ln =~+jandm2n=~ - j, where all partit~ons [m1nm2n] of n are

obtained by letting j run over ~, ~ - 1t...? ~ or O. [Observe that

this result is applicable to the space Ifsince the mapping (43) can

be reversed.]

One could, of course, also prove Eq. (50) by a dimension-

ality check, it being necessary then to verify that

where

dim Dj = (2j+l) ,

[*j,~-jl
dim I’ .*) (;-J ●

(53)

(54)

(55)
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Remark. Once one knows the result in the form of Eq. (45),

it is certainly not necessary to use anything as powerful as the

general Un ● Un boson polynomials to obtain it, since one may prove

the validity of Eq. (45) d~.rectly. The boson polynomials, however,

yield many useful results when specialized in various ways, and our

purpose here was to illustrate one such case of physical interest.

We hope that the simplicity of the final result justifies our pre-

senting it here.

In concluding, I would like to give one more notation

for the basis vectors (45) which ~llustrates most vividly the inter-

relationship between SU(2) and Sn. A similar

ployed by Rota and collaborators (7) in their

This notation employs two Young

The Young frame on tl.e right is

frames of the

notation has been em-

studies in combinatorics.

same shape [~ + j ~ - j]:

EEF+
then filled in with ltzt...tn to obtain

a Btandard Young tableau; the Young frame on the left is filled in with

1’s and 2’s to obtain a standard Weyl tableau for SU(2).
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