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WSRC-TR-90-275

Molecular Modeling of Metal Hydrides:
I1. Calculation of Lattice Defect Structures and Energies Utilizing the Embedded
Atom Method

By
R.J. Wolf and K. A. Mansour

Westinghouse Savannah River Company
Savannah River Laboratory
Nuclear Reactor Technology and Scientific Computations
Aiken, SC 29808

ABSTRACT

Lattice defect structures and energies for palladium, nickel and aluminum computed include: single
vacancy, self-interstitial, intrinsic stacking fault, coherent twin boundary and (100), (110), and
(111) free surfaces. The importance of considering lattice defects in obtaining an accurate
Embedded Atom Method (EAM) description of real materials, and the application of the EAM to the
computation of lattice defect structures for paliadium, nickel and aluminum is discussed. The EAM
functions developed in this study reproduce defect properties well and are suitable for future
investigations of metal hydrides involving defect related structures.

INTRODUCTION

This report is the second in & series of documents describing our progress in modeling properties of
metal hydrides. Reference to the initial report [WSRC-TR-90-156 or ref. 1] will be made,
particularly to the methodology employed there. The present report focuses on two issues: The
importance of considering lattice defects in obtaining an accurate Embedded Atom Method (EAM)
description of real materials, and the application of such a description to the computation of lattice
defect structures for palladium, nickel and aluminum.

Metal hydrides are vital SRS materials and will be used extensively for hydrogen/tritium storage and
handling in the new Replacement Tritium Facility. Examples of such metals and metal alloys
include palladium (Pd) and lanthanum-nickel-aluminum (LaNis_xAly, x=0.15 to 0.85). Metal
hydrides absorb large quantities of hydrogen/tritium, and the hydrogen density in these materials
can be much larger than that of liquid hydrogen. However, material degradation due to the
ingrowtk of helium, one of tritium's radioactive decay products, causes unrecoverable damage.
Helium, although inert, tends to remain in the hydrides used at SRS once it is born. A clearer
understanding of such a phenomenon is the goal of this work.

The main focus is to fundamentally understand hydrogen/tritium and helium behavior and their
interactions in metal hydrides, with the intention to design better and more efficient tritium handling
materials and facilities. As a by-product of this work, we will be able to apply our state-of-the-art
techniques to study other problems involving hydrogen/tritium and helium in SRS materials.
Examples include hiydrogen and helium interactions in lithium-aluminum reactor targets, tritium
reservoirs, and stainless steel reactor tanks.



DISCUSSION
Computationai Methods

I the section titled EAM Formalism, the EAM is reviewed as is the implementation at SRS of the
method. Fitting EAM Functions presents details of the fitting procedure to obtain accurate EAM
functions. Approximate Atomic Positions for Lattize Defects is concerned with defining unrelaxed
defect structures. Unrelaxed structures are initial atomic positions for the energy minimization
scheme employed to find a local minimum corresponding to the "predicted” defect structure. This is
discussed further in the section titled Velocity Quench Energy Minimization Method..

EAM Formalism

The calculation of fundamental point and planar defects structures and energies presented here
employ a form of potential closely related to the Embedded Atom Method work of Daw and Baskes
[2). Point defect structures investigated are single vacancy and self-interstitial. Planar defects
studied include intrinsic stacking fault, coherent twin boundary, and the (100), (110), and (111)
surfaces.

For a pure metal, the energy of an N-atom system is
N
where the energy of atom i is given by
E’ = G(pl)+ U(ru-).

Here rj; is the distance between the atoms i and j, U is = pair interaction potential, rj is the electron
density at atomic site i due to remaining (IN-1) atoms,

N

p;= ZP (rip)
Jwi .

The embedding energy, G(r;) , is interyreted as the energy resulting from embedding atom i in an

electron gas of density r;. As described in Ref. 1, atomic electron densities, r(rij), are taken from

the Hartree-Fock wave functions of Clementi and Roetti {3] and U(rij) is defined by the Morse
potential,

U(r;) = D{expl-B(rj;-ro)1 - 2expl-B(ry;-r, )]}
where D, b and 1 are adjustable pararneters.
In this report, the pair potential and the density functions were modified by forcing their values and

derivatives to zero at a specified cut-off distance r.. As in past EAM stdies {4] the cut-off distance
was chosen between the third and fourth neighbor distances in the face-centered cubic



(FCC) structure. This is accomplished by multipling the pair and density functions, F(r), by a
switching function, S(r), to obtain a new function, f(r) which smoothly goes to zero at r¢ [S].
That is; ,

f(r) =S(r)F(r)

where 5(r) is defined by

n
S(ﬂ:{cxP(""'c) r<re
0

rere

and 7 is a scaling factor which controls the rate of the cut-off. An 1 of 0.10 was used in our
calculations while r¢ was set to 1.31a,, where ag is the lattice constant for the material of interest.

The value 1.31ag restricts the interactions to third neighbors in the FCC structures described here,

and would restrict interaction to second neighbors in the body-centered cubic (BCC) structures and
fourth neighbors in the hexagonal close packed (HCP) structures.

Fitting EAM Functions

The EAM functions were obtained as described in our initial report [1], but with two differences.
First, the number of neighbor shells considered in the initial report was four, and we consider only
three as detailed above. This was done because it is difficult to reproduce stacking fault energies
with the EAM and the functions chosen when the interactions extend beyond third neighbor
interactions [6]. The problem appears to be associated with a cut-off value of 1.354a,, or the fifth

nearest neighbor distance in the HCP structure. In the region of the stacking fault four planes have
the neighbor shells with distances of 0.7071ag, 1.000ay, 1.1547a,, 1.2247a,, 1.354a,, and

1.4142a;, uand have 12, 6, 1,21, 6, and 9 atoms per shell, respectively. The values of 1.1547a5
and 1.354a,, are unique to the HCP structure while the others are members of both HCP and FCC
structures.

The second difference is that the EAM functions were fit to the elastic constants (Cll, Cyp and
C4q), unrelaxed single vacancy formation energy, E,vp and the unrelaxed intrinsic stacking fault
energy, Eysf. With the exception of Eysf, the numerical evaluation of these were discussed



previously [1]. In the unrelaxed intrinsic stacking fault there are four equivalent planes of atoms
which do not have an FCC nearest neighbor arrangement and the energy per unit area in the plane
is:

By = {;anEnV —;w,{ccE,{cc}

V3 2
G

where the sums are over nearest neighbor shells, Wy, is the number of atoms in the nth shell and Ey
is the energy contributed by an atom in the nth shell. The shells are for the FCC neighbor list (fcc)
or the stacking fault neighbor list (sf). The equation above provides a computationally efficient
means of calculating the unrelaxed stacking fault energy (with no relaxation of the atomic
positions). A derivation of this equation is presented in Appendix A.

Numerical fitting of the Morse parameters, D, b and rg, was achieved utilizing a simplex search
procedure [7]. The function minimized was the sum of the deviations squared multiplied by a
weight squared where the deviation is the difference between the experimental data and the
calculated property. A variety of "reasonable” fits can be obtained depending on the initial values of
the parameters and the set of weights used. In addition, such a fit may not yield an acceptable G(r)
whose desirable properties include a minimum and upward curvature at higher r values. An
acceptable G(r) results from parameters within the approximate ranges of D =0.1t0 2.0eV, b=
0.9 t0 2.0 A-1 and ry = 1.7 t0 3.0 A for the metals studied.

The embedding energy, G(r), is determined via an inversion procedure [4] utilizing an equation of
state (EOS) due to Rose, et. al. [8], which insures that we reproduce the experimentally deterrnined
values of the cohesion energy, E, the bulk modulus, B, and the lattice constant, ag. G(r) defined
in this manner is numerical in nature. An analytic form is desirable for rapid force evaluation.
Therefore, the inversion method was used to obtain G(r) data for densities associated with a lattice
expansion of 2-5% and compression of 10-20%. The data was numerically fit to an analytical form
using a non-linear least squares method. The EOS equations by Rose, et. al. [8] were fit (and
therefore only accurate) over this range. The analytical form chosen was

Ga(p) = Apexp(-ap) + Bpexp(-bp) + Cp exp(~cp).
A variation of this form has been used by Truong, et. al. [S]. The analytical form, Gg (r), was

compared to the G(r) obtained by inversion of the EOS, Geqng (r), by recomputing the material
properties used to obtain the fit.

Approximate Atomic Positions for Lattice Defects.

Initial positions for atoms in a rectangular box with periodic lattice conditions can be generated by
replicating a unit box consisting of a minimal number of atoms. For an FCC arrangement this
involves translational replication along cartesian axis of a cube containing four atoms where the
repeat distance in all three directions (x, y, z) is given by the lattice parameter, a,. Slicing this
lattice perpendicular to the z-axis exposes a (100) face of the FCC crystal lattice. The (110) and
(111) FCC faces can be exposed by the same slicing if the lattice is replicated using different unit



cells which are no longer cubic but whose axes are still mutually orthogonal. The cell dimensions
or replication lengths of a, b, and ¢ lie along the x, v, and z axes, respectively, and the atomic
positions in the unit cell are given in Table I. The procedure to generate the atomic cartesian
positions for an array of atoms is expressed as _

Xm=Xio+(j--1)a; 0<j<J
Ym=Y;’+(k—1)b; 0sksK
Z,=2] +(-1)c;  0sIsL

where a new set of (X, Ym, Zpy) is produced for every combination of j, k, and 1 within the limits
and is applied to every atom (index by i) in the unit cell ' whose positions are denoted (X;°, Y;©,
Zi%). The box containing the atoms has (x, y, z) dimensions of Ja x Kb x Lc with atomic

coordinates suitable for periodic conditions. If periodic conditions are removed for the xy plane
(i.e.; the z-coordinate) then two free surfaces are exposed each with a surface area of Ja x Kb.

Point defects can be easily created by generating an FCC lattice of atoms (as in the (100) case
above) and adding an atom to an octahedral interstitial site to create a self interstitial or deleting an
atom to create a single vacancy. Since all boundaries should be periodic it should be of no
consequence which octahedral hole is filled or which atom is removed.

Creation of a planar defect is more complicated [9]. An FCC lattice consists of close-packed planes
(i.e.; (111) planes or octahedral planes) stacked and labeled ABCABCABCABC... where the A, B,
or C designation refers to the plane's displacement in the xy plane. That is, all A planes have the
- same xy coordinates and similarly for B and C planes. An intrinsic stacking fault is created when
the stacking pattern gets out of sequence and a plane is skipped (or removed); for example,
ABCABCIBCABC... where the vertical bar marks the skipped plane. To obtain atomic positions
and preserve periodic lattice conditions, a FCC lattice can be generated with the (111) prescription
given above and an A plane can be removed from the center (an xy plane) of the array of atoms and
placed on top of the C plane exposed on the top,

ABCABCABUABCABCA

where a gap equal to twice the distance between planes will remain. The final step is to shift all the
planes above the gap down a distance to obtain the normal spacing. Periodic boundary conditions
in the z-coordinate would produce a periodic infinite array of stacking faults, therefore the condition
of periodic boundaries is removed for the z-coordinate leaving a stacking fault and two (111)
surfaces exposed. Thus, calculation of the stacking fault energy from the array of atoms generated
requires the computation of the (111) surface energy.

A coherent twin boundary can be obtained in a similar fashion to the stacking fault. The stacking in
a coherent twin boundary is

..ABCABCABICIBACBACBA...
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‘where the stacking follows the sequence ABC... from either top or bottom and finally meet, only

having to share a plane (in this case C). The generation of the array of atoms is done by filling an
array of one half the desired length (where L. must be even) in the z-direction and then reflecting all
the atoms about the top plane of the generated cell (leaving a gap again in the center) and moving the
top plane to fill the gap in the center. In this case, the periodic boundary condition could apply as in
the stacking fault case, but as with the stacking fault the z-coordinate is made free of periodicity by
creating two surfaces. The energy resulting from this array of atoms has contributions of a twin
boundary and two (111) surfaces. ,

In all cases, the size of the array of atoms (J by K by L unit cells) is determined by convergence.
That is, the defect energy is taken in the limit of large J, K, and L where energies and relative
positions of the atoms farthest from the defect should reflect that of a bulk phase atom.

Velocity Quench Energy Minimization Method.

The atomic structures created in the previous section are labeled approximate because atoms in the
region of the defects will move, or relax, in order to decrease the total energy of the system. This

motion is governed by the forces exerted on the atoms and Newton's law of motion F = md,

where F is the force, m the mass of the atom and @ is the acceleration. The force on an atom can
be calculated by

F=-%;

dr.

where 7 is the unit vector in the direction of the atom position vector, 7. Newton's law of motion
for atom i can be written in the form :

s 1z
7 =-—F;
m;

where the acceleration has been replaced by

Q
[
~i

i
i
]
~

8
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For the EAM the force on an atom is given by

. .
= A Wl TR ~p P FreY) &
r,=- pL+ G o+ U b or,,
i=~21G P} +Gip + ULy

where the index i (or j) implies evaluation at atom i (or j) and the primes indicate derivatives with
respect tor (or r in the case of G) [10]. There are 3N equations of motions for an N atom system.

The velocity quenched energy minimization method (VQEMM) [11] consists of the integration of
the 3N equations of motion and monitoring each of the 3N cartesian velocities at each step of the
numerical integration. Whenever the force in a given direction has the opposite sign of the velocity,
that component of the velocity is set to zero and integration continues until atomic motion ceases or
the total energy of the system converges to a fixed value. At this point, an equilibrium structure of
the atoms has been located in the 3N-dimensional energy function.

By design, the local minimum determined by this method is the nearest minimum to the initial
atomic positions as directed by their energy gradient. To insure reduction of local symmetry in the
forces and possibly a saddle point (an unstable equilibrium point) in the hyperspace the initial
atomic cartesian coordinates were randomized by addition of a uniform random displacement
between the bounds of +0.05 and -0.05 A.

Results and Discussion

EAM functions have been developed for palladium (Pd), aluminum (Al) and nickel (Ni), and
comparisons are presented here utilizing these functions with experimentally determined or derived
data. The Morse function parameters, D, 1y, and b, obtained in the fit are listed in Table II. In
addition, the parameters describing the analytic form of the embedding function, G,(r), are listed.
In Table III, we present a comparison of experimental values used in the fit to those computed using
both Geqgg(7) and G,(r). Recall that G4(r) is the desired form of the embedding function to be
utilized in the VQEMM and Gegg(7) is the direct result of the fit utilizing the inversion of the
equation of state.

In Table III, a comparison is made with experimental values [12] and computational [4,13-15]
- values where possible. The computational studies do not attempt to fit the intrinsic stacking fault
which proved to be a significant restriction. EAM functions developed previously for palladium,
which fit eiastic constants extremely well, gave unphysical (negative) stacking fault energies when
tested. To achieve reasonable stacking fault energies a small trade-off in the accuracy of elastic
constants must be made (a similar example of this exists in the literature). In an attempt [16] to fit
EAM functions to the stacking fault energy in nickel, the fit to elastic constants was constrained by
fitting C44 and (Cj1-C12)/2. This procedure concentrates on obtaining only the difference between
C11 and Cy7, not their absolute magnitudes. For our application, argument wo d support

obtaining reasonable defect structure and energies at the expense of highly accurate pure crystalline
elastic properties.

As a test of the EAM functions developed we have computed the relaxed vacancy formation, self-
interstitial formation, (100), (110) and (111) surface, intrinsic stacking fault, and coherent twin
boundary energies. The energy minimization procedure consisted of an initial configuration of
atoms with a structure close to the expected defect structure which follows a modified classical
trajectory path, see Section IID.



Point defect energies are calculated by taking the difference between final relaxed energy of ihe
system containing the defect and the energy of a reference state with no defect, but an equal number
of atoms [17-18]. All calculations are performed at constant volume. Surface energies can be
calculated by taking the difference as done in the point defects and dividing by the total surface area.
Remember that the surfaces are created by removing the z-component periodic boundary and there
are two free surfaces of the same area. Stacking fault and twin boundaries cases are similar to the
free surfaces except their total energies are due to two free (111) surfaces and the planar defect. To
calculate their energies one can simply use a (111) surface calculation with the same size of
computational lattice as a reference state. The defec’ energy is then the difference between the
energy of the system with the defect (and two (111) surfaces) and the reference state, all divided by
the surface area of the defect (same as one (111) surface). All calculations involving surfaces or
boundaries have x and y periodic boundaries fixed [18].

Convergence tests were performed, using the palladium functions, to determine the appropriate cell
size or number of atoms needed to remove boundary effects. Table IV shows the results of varying
the size of the computational cells. The results i..dicate that a cell containing 500 atoms is sufficient
for computing defert energies (to three significant figures). In the case of (110) surfaces, energy
convergence is good even in the case of L=4 or eight planes of atoms and in the (111) case of L=4
or 12 planes of atoms. For stacking faults and twin boundaries the cell is expanded to twice the
mickn:gs (in the z-direction) in order to isolate the planar defect from the two free (111) surfaces
exposed. ,

Unrelaxed vacancy formation energies, E,jyf, were optimized in the fitting process with the
assumption that relaxation was small and using an approximate formula {1]. This is seen
numerically in Table V. Relaxed vacancy formation energies, Eyf, are in good agreement with the
experimental values. Self interstitial formation energies are in good agreement with past EAM
calculations[4b]. Experimental values are not available. Surface energies for Ni are in excellent
agreement with experiment [19]. Pd and Al surface energies follow the trend of the surface tension
measurements [19].

Intrinsitic stacking fault energies, Egf, arc in the range of the experimental values, see Table V.
This assessment is made with caution since cxgeﬁmental values vary wildly. For example, in
nickel [20] values range from 120-150 ergs/cm# with no apparent trend with time, although the

value used of 125 ergs/cm? appears to be the most accepted. The value of 108 ergs/cm? is
acceptable.

An intrinstic stacking fault can be viewed as two coherent twin boundaries separated by a close
packed plane of atoms. Therefore, from a hard sphere interaction model one expects that the energy
of a coherent twin boundary, E,}, is approximately one-half of the intrinstic stacking fault energy

[21]. This fact is borne out in our calculations, see Table V.

- Structural relaxation is small in most the defects studied. The self-interstitial suructure agrees with
the accepted dumbbell like arrangement (along the <100> direction) observed previously [24] to be
the most stable orientation. The extent of surface (planar) relaxation is given in Tuble VI for both



the free surfaces and planar defects. The extent of relaxation is measured as the change in the inter-
planar stacking distance from the bulk. In the case of planar defects, this is the extent of the shift
for planes near the defect and continuing away from the defect. In the case of the intrinsic stacking
fault, the planar spacings z19 and z33 are defined as

212
A
ABCABCBUCABGC
V V
223
and for the coherent twin boundary as
212
AN
A BZC
V
223

ABC BACSEB
\Y

In the stacking fault the symmetry plane lies between two atomic planes, whereas, in the twin
boundary it is coincident with an atoric plane. The surface structures determined here account for
relaxation but not surface reconstruction, which is reserved for cases where a surface is annealed
and then quenched. Inter-planar relaxations are in agreement but characteristically smaller than the
range observed experimentally [22] for these materials. '

Conclusions and Summary

The EAM functions developed in this study reproduce defect properties well and are suitable for
future investigations of metal hydrides involving defect related structures. Molecular modeling
efforts involving palladium as a metal hydride appear very promising. The functions for nickel and
aluminum (both FCC) metals, represent a start at describing the lanthanum-nickel-aluminum
(LaNi5_yAly, x=0.15 to 0.85) system. Lanthanum, an HCP metal, may not fit well within the
EAM approach as a pure metal but may alloy in a sufficient manner. This will require further EAM
development. ‘

Helium-metal interactions are currently being developed to investigate helium bubble formation,
which are thought to nucleate at most defects (point defects, twins, stacking faults and grain
boundaries). Hydrogen-metal and hydrogen-helium interactions, also being developed, ave
necessary to understand the interaction of hydrogen present in metal hydrides. These new functions
enable simulation of the behavior and properties of palladium containing hydrogen and helium.
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Appendix A

The urrelaxed stacking fault snergy can be calculated by using a suinmation over the neighbor list
of the atoms in the region of the fault. A stacking fault exists when a plane is skipped in the normal
FCC stacking sequence of (111) planes. The stacking in the immediate vicinity of the fault appears
to be that of an HCP structure. In the region of the stacking fault four planes have the neighbor
shells with distances similar to t.e FCC and HCP structures. All other atoms have FCC neighbor
lists. The neighbor lists for these cases are

Shell Distance FCC HCP Stacking Fault
i 0.7071a, 12 T 12 12‘E
2 - 1.000ag 6 6 6
-3 1.1547a¢ 0 2 1
4 1.2247a, 24 18 21
5 1.354a, 0 12 6
6 1.4142a, 12 6 9

e g g St 2 AP ot Mt 03600 3 e e St oy eSS om SO T e e o g SRR AP AR s SemcEgr

The neighbor lists begin to differ beyond the distance of 1.1547a,. Neighbor lists can be
generated by constructing the desived lattice, as described in section IIC, and computing interatomic

distances.
The energy of an atom with an FCC neighbor list is given by
fec . fee
Z Wo E,

while an atom in one of the four planes with the stacking fault neighbor list is
S
WAL

where the sums are 0-... nearest neighbor shells, Wy, is the number of atoms in the nth shell and Ep,

is the energy contributed oy an atom in the nth shell. The shells are for the FCC neighbor list (fcc)
or the stacking fault neighbor list (sf).

The unrelaxed stacking fanlt energy is four times (one for each plane) the energy required to convert

a normal FOC Lwice atom into an atom in a stacking fault plane divided by the area of an atom in the
(111) plane:

Eyor= {ZW,,VE,;‘J' -y wleegle }
n n -‘J—-é_‘a 2
4 ©
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Table 1

Definition of unit celis used to generate surfaces.

Awui—g

1
(110) faces “=7§'-“o

1
(]”)fﬂﬁﬁs 027—'2-"(10

O\thNHg

05000000

14

= ao

Y°
0.0000000

0.5000000
0.0000000
0.5000000

0.0000000
0.5000000
0.1666667
0.6666667
0.3333333
0.8333333

0.0000000
0.0000000
0.5000000
0.5000000

0.0000000
0.5000000

z°
0.0000000

0.0000000
0.3333333
0.3333333
0.6666667
0.6666667



NH\ I

Table II.

EAM Function Parameters.

Pd Ni Al

EOS data

Ec (eV) 3.91 4.45 3.36

B (eV A3 121723 1.127 0.493

ap (A) 3.89 3.52 4.05
Morse function parameters

D (eV) 0.36937 0.6645 013113

b A 1.3485 1.9372 0.99808

1o (A) 2.6179 2.2649 2.75570

7 A Y 0.10 0.10 0.10

re (A) 5.1 4.62 53
Ggy(v) parameters

A -122.006 -76.2136 -181.685

a 74.0547 34,8861 44.0935

B 9.95144x10° 2.04296x10> 9.67593x10°

b 22.14651 6.15084 118.811

C -91.2633 -76.2556 -181.685

c 31.9016 38.2764 44.0935

15



the top number is the calcuated using Gq(r), the second using Gegg(r).

C11

Eysf

Table III.

Pure metal properties used to determine EAM functions.
The first two numbers given are from this work,

Pd

2.37
2.33

2.34
2.18

1.79
1.76

1.76
1.84

0.707
0.705

0.712
0.65

1.518
1.527
1.4
1.44

1.38

192
192
180

Ni

2.458
2.368
2.465
2.33
2.587
244

1.624
1.524

1.473
1.54
1.412
1.49

1.215
1.214

1.247
1.28
1.299
1.26

1.70
1.69

1.51
1.63
1.51
1.60
1.62

116
116

125
115

Al

1.02
1.00
1.14

1.08
1.07

0.694
0.683
0.619

0.68
0.652

0.351
0.349
0.316

0.45
0.322

0.74
0.74
0.75

0.64
0.73
0.7

139
139
135

16

reference

Ga(r) this work
Gegg(r) this work
expt., ref. 12a
ref. 4b

ref. 13

ref 14

Ga(r) this work
Geos(r) this work
expt., ref, 12a
ref. 4b

ref. 13

ref 14

Gy () this work
Geos(r) this work
expt., ref. 12a
ref. 4b

ref. 13

ref. 14

Ga(r) this work
Geos(r) this work
expt., ref. 12b-d
ref. 4b

ref.13

ref. 14

ref 15

Gg(r) this work
Geos(r) this work

expt., ref. 20
ref. 16



Table IV.

Convergence test for computational cell size using palladium functions.

b

type of cell size number stcpsa cpu Defcctc
defect I K L ofatoms required (msec/step)  Energy
single 3 3 3 107 85 18 1.40
vacancy 4 4 4 255 124 41 1.39
5 5 5 499 168 81 . 139

6 6 6 863 206 140 1.39

self- 3 3 3 109 94 18 3.31
interstitial 4 4 4 257 142 42 3.00
5 5 5 501 207 81 3.01

6 6 6 865 267 141 2.99

(100) 4 4 4 256 275 35 1567
surface 6 6 6 864 373 124 1567
4 4 8 512 189 76 1567

4 410 640 467 100 1567

(110) 4 4 4 128 194 141 1674
surface 5 55 250 264 34 1674
6 6 6 432 345 60 1674

8§ 8 8 1024 484 146 1674

(111) 4 4 4 384 114 55 1476
surface 4 46 576 473 80 1476
4 4 8 786 961 116 1476

4 412 1152 2117 180 1476

4 416 1536 3681 238 1476

intrinsic- 4 4 4 384 790 55 172
stacking- 4 4 8 786 2607 116 172
fault 4 412 1152 4881 180 172
coherent- 4 4 8 786 1917 116 83.3
twin- 4 472 1152 3736 180 89.1
boundary 4 416 1536 5352 238 89.1

6eV.

: Steps required for VQEMM with an energy convergence criterion of 1.0x10
The cpu time in milliseconds per step using the SRL/CRAY X-MP/132.

¢ Units are eV for point defects and erg/cm? for planar defects.
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Table V.

Calculated Energies for Defects.
Where two numbers are given the top number is calculated
with these functions and the lower is the experimental value.

Pd Ni Al reference .
Evf 1.4 1.7 0.72
14 16 0.75 12
Esif 3.0 4.1 1.7
E(100) 1567 1780 722
1821+182 19
E(110) 1674 1944 760
1900£190 19
E(111) 1476 1671 697
Experimental 2000 1820180 1140 19
(Surface Tension)
Egf 173 108 119
180130 125125 135430 20
Ep ‘ 89 55 63
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Table VL
Structural relaxation at surfaces and planar defects.

Surface relaxation of the top-layer spacing Dz15 and the second layer spacing Dzy3, for the low-

index f- ces. Relaxation at planar defects measures changes in layer-spacing for the first inter-planar
spacing, near the defect Dz17 and the second layer spacing Dzp3. Distances are in A

Pd Ni Al

(100) surface

Dz1p -0.043 -0.0065 - -0.041

Dzp3 +0.004 +0.0012 +0.004
(110) surface

Dz1p -0.12 - -0.042 - -0.13

Dzp3 +0.03 +0.008 +0.05
(111) surface o ‘

Dz13 -0.051 -0.0054 -0.015

Dzy3 -0.001 - -N.0022 +0.003
intrinsic stacking fault

Dz1y +0.050 +0.025 +0.083

Dz3 +0.020 +0.012 +0.032
coherent twin boundary

Dz13 | +0.023 +0.012 +).036

Dzy3 -0.003 -0.001 -0.006
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