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Nuclea_rReactorTechnologyand ScientificComputations
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ABSTRACT

Lattice defect smaemresand energies for palladium,nickel and aluminumcomputed include:single
vacancy, self-interstitial, intrinsic stacking fault, coherent twin boundary and (100), (110), and
(111) free surfaces. The importance of considering lattice defects in obtaining an accurate
EmbeddedAtom Method (EAM) descriptionof real materials,and the applicationof the EAM to the
computation of lattice defect structures for palladium,nickel and aluminumis discussed. The EAM
functions developed in this study reproduce defect properties well and are suitable for future
investigationsof metal hydrides involving defectrelated structures.

INTRODUCTION

This report is the second in a series of documentsdescribing our progress in modeling properties of
metal hydrides. Reference to the initial report DVSRC-TR-90-156 or ref. 1] will be made,
particularly to the methodology employed there. The present report focuses on two issues: The
importance of considering lattice defects in obtaining an accurate EmbeddedAtom Method (F_.AM)
description of real materials, and the applicationof such a description to the computation of lattice
defect structures for palladium, nickel and aluminum.

Metalhydridesa_ vital SRS materialsandwill be usedextensively for hydrogen/tritium storageand
handling in the new Replacement Tritium Facility. Examples of such metals and metal alloys
include palladium (Pd) and lanthanum-nickel-aiuminum (LaNiS.x_l x, x=0.15 to 0.85). Metal
hydrides absorb large quantities of hydrogen/tritium, and the hydrogen density in these materials
can be much larger than that of liquid hydrogen. However, material degradation due to the
ingrowd_ of helium, one of tritium's radioactive decay products, causes unrecoverable damage.
Helium, although inert, tends to remain in the hydrides used at SRS once it is born. A clearer
understandingof such a phenomenon is thegoal of this work.

The main focus is to fundamentally understand hydrogen/tritium and helium behavior and their
interactions in metal hydrides,with the intention to design better and more efficient tritium handling
materials arid_'acilities. As a by-product of this work, we will be able to apply our state-of-the-art
techniques to study other problems involving hydrogen/tritium and helium in SRS materials.
Examples include hydrogen and helium interactions in lithium-aluminum reactor targets, tritium

• reservoirs, and stainless steel reactor tanks.



DISCUSSION

Computational Methods

h_ the section titled EAM Formalism, the EAM is reviewed as is the implementation at SRS of the
method. Fitting EAM Functions presents details of the fitting procedure to obtain accurate EAM
functions. Approximate Atomic Positions for Lattice Defects is concerned with defining unrelaxed
defect structures. Unrelaxed structures are initia_ atomic positions for the energy minimization
scheme employed to find a local minimum corresp/:mding to the "predicted" defect structure. This is
discussed further in the section tiffed Velocity Que!ach Energy Minimization Method..

EAM Formalism

The calculation of fundamental point and planar defects structures and energies presented here
employ a form of po,.ential closely related to the Embedded Atom Method work of Daw and Baskes
[2]. Point defect structures investigated are single vacancy and self-interstitial. Planar defects
studied include intrinsic stacking fault, coherer,_ttwin boundary, and the (100), (110), and (111)
surfaces.

For a pure metal, the energy of an N-atom system is

N

E= _.dE i
i=l

where the energy of atom i is given by

Ei = G(# i) + U(rij)"

Here qj is the distance between the atoms i and j, U is a pair interaction potential, ri is the electron
density at atomic site i due to remaining (N-1) atoms,

N

Pi= EP(rij)

The embedding energy, G(ri), is inte_ixeted as the energy resulting from embedding atom i in an
electron gas of density ri. As described in Ref. 1, atomic electron densities, r(ri'), are taken from.j
the Hartree-Fock wave functions of Clementi and Roetti [3] and U(rij) is defined by the Morse
potential,

U(rij) = D{exf@fl(rij" ro)]2 - 2exp[-fl(rij- ro)]}

where D, b and ro are adjustable parameters.

In this report, the pair potential and the density functions were modified by forcing their values and
derivati_,es to zero at a specified cut-off distance rc. As in past F.AM studies [4] the cut-off distance
was chosen between the third and fomth neighbor distances in the face-centered cubic
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(FCC) structure. This is accomplished by multipling the pair and density functions, F(r), by a
switching function, S(r), to obtain a new function, f(r) which smoothly goes to zero at rc [5].
That is;

. f(r) = S(r)F(r)

where S(r) is defined by

S(r) _ {eXP(o _c) r _ rcr _ rc

Q

and r/is a scaling factor which controls the rate of the cut-off. An 17 of 0.10 was used in our
calculations while rc was set to 1.3 la o where ao is the lattice constant for the material of interest.
The value 1.3 lao restricts the interactions to third neighbors in the FCC structures described here,
and would restrict interaction to second neighbors in the body-centered cubic (BCC) structures and
fourth neighbors in the hexagonal close packed (HCP) structures.

Fitting EAM Functions

The EAM functions were obtained as described in our initial report [1], but with two differences.
First, 'the number of neighbor shells considered in the initial report was four, and we consider only
three as detailed above. This was done because it is difficult to reproduce stacking fault energies
with the EAM and the functions chosen when the interactions extend beyond third neighbor
interactions [6]. The problem appears to be associated with a cut-off value of 1.354ao or the fifth
nearest neighbor _stanee in the HCP structure. In the region of the stacking fault four planes have
the neighbor shells with distances of 0.7071ao, 1.000a o, 1.1547a o, 1.2247ao, 1.354a o, and
1.4142a o aald have 12, 6, 1, 21, 6, and 9 atoms per shell, respectively. The values of 1.1547a o
and 1.354ao, are unique to the HCP structure while the others are members of both HCP and FCC
structures.

The second difference is that the EAM functions were fit to the elastic constants (C 11, C12' and

C44 ), unrelaxed single vacancy formation energy, Euvf, and the unrelaxed intrinsic stacking fault
energy, Eus f. With the exception of Eus f, the numerical evaluation of these were discussed



previously [1]. In the unrelaxed intrinsic stacking fault there are four equivalent planes of atoms
which do not have an FCC nearest neighbor arrangement and the energy per unit area in the plane
is:

/ "4 -ao2

where the sums are over nearest neighbor shells, W n is the number of atoms in the nth shell and ,Fm
is the energy contributed by an atom in the nth shell. The shells are for the FCC neighbor list (fcc)
or the stacking fault neighbor list (sO. The equation above provides a computationally efficient
means of calculating the unrelaxed stacking fault energy (with no relaxation of the atomic
positions). A derivation of this equation is presented ht Appendix A.
Numerical fitting of the Morse parameters, D, b ,andro, was achieved utilizing a simplex search
procedure [7]. The function minimized was the sum of the deviations squared multiplied by a
weight squared where the deviation is the difference between the experimental data and the
calculated property. A variety of "reasonable" fits can be obtained depending on the initial values of
the parameters and the set of weights used. In addition, such a fit may not yield an acceptable G(r)
whose desirable properties include a minimum and upward curvature at higher r values. An
acceptable G(r) results from parameters within the approximate ranges of D = 0.1 to 2.0 eV, b =
0.9 to 2.0 ./i-1 and ro = 1.7 to 3.0 J_ for the metals studied.

The embedding energy, G(r), is determined via an inversion procedure [4] utilizing an equation of
state (EOS) due to Rose,, ct. al. [8], which insures that we repixxluce the experimentally determined
values of the cohesion energy, Ec, the bulk modulus, B, and the lattice constant, ao. G(r) defined
in this manner is numerical in nature. An analytic form is desirable for rapid force evaluation.
Therefore, the inversion method was used to obtain G(r) data for densities associated with a lattice
expansion of 2-5% and compression of 10-20%. The data was nmmrically fit to an analytical form
using a non-linear least squares method. The EOS equations by Rose, ct. al. [8] were fit (and
therefore only accurate) over this range. The analytical form chosen was

Ga(p) = Apcxp(-ap) + Bp3exp(-bp) + Cpexp(-cp)

A variation of this form has been used by Tmong, et. al. [5]• The analytical form, Ga (r), was
compared to the G(r) obtained by inversion of the EOS, Geo s (r), by recomputing the material
properties used to obtain the fit.

Approximate Atomic Positions for Lattice Defects.

Initial positions for atoms in a rectangular box with periodic lattice conditions can be generated by
replicating a unit box consisting of a minimal number of atoms. For an FCC arrangement this
involves translational replication along cartesian axis of a cube containing four atoms where the
repeat distance in ali three directions (x, y, z) is given by the lattice parameter, ao. Slicing this
lattice perpendicular to the z-axis exposes a (100) face of the FCC crystal lattice. The (110) and
(111) FCC faces can be exposed by the same slicing if the lattice is replicated using different unit



cells which are no longer cubic but whose axes are still mutually orthogonal. The cell dimensions
or replication lengths of a, b, and c lie along the x, y, and z axes, respectively, and the atomic
positions in the unit cell are given in Table I. The procedure to generate the atomic cartesian
positions for an array of atoms is expressed as

" Xm=X°+(j-1)a; O<j_J

Ym=Y ° + (k-1) O ; O<k<K

• oZm=Z +(l-1)c; Ogl<L

where a new set of (Xm, Ym, Zm) is produced for every combination of j, k, and I within the limits

and is applied to every atom (index by i) in the unit cell whose positions are denoted (XiO, Yio,
ZiO). The box containing the atoms has (x, y, z) dimensions of Ja x Kb x Lc with atomic
coordinates suitable fct periodic conditions. If periodic conditions are removed for the xy plane
(i.e.; the z-coordinate) then two free surfaces are exposed each with a surface area of Ja x Kb.

Point defects can be easily created by generating an FCC lattice of atoms (as in the (100) case
above) and adding an atom to an octahedral interstitial site to create a serf interstitial or deleting an
atom to create a single vacancy. Since all boundaries should be periodic it should be of no
consequence which octahedral hole is filled or which atom is removed.

Creation of a planar defect is more complicated [9]. An FCC lattice consists of close-packed planes
(i.e.; (111) planes or octahedral planes) stacked and labeled AB CAB CAB CAB C... where the A, B,
or C designation refers to the plane's displacement in the xy plane. That is, ali A planes have the
same xy coordinates and similarly for B and C planes. An intrinsic stacking fault is created when
the stacking pattern gets out of sequence and a plane is skipped (or removed); for example,
ABCABCIBCABC... where the vertical bar marks the skipped plane. To obtain atomic positions
and preserve periodic lattice conditions, a FCC lattice can be generated with the (111) prescription
given above and an A plane can be removed from the center (an xy plane) of the array of atoms and
placed on top of the C plane exposed on the top,

ABCABCAB_

where a gap equal to twice the distance between planes will remain. The final step is to shift ali the
planes above the gap down a distance to obtain the normal spacing. Periodic boundary conditions
in the z-coordinate would produce a periodic infinite array of stacking faults, therefore the condition
of periodic boundaries is removed for the z-coordinate leaving a stacking fault and two (111)
surfaces exposed. Thus, calculation of the stacking fault energy from the array of atoms generated
requires the computation of the (111) surface energy.

A coherent twin boundary can be obtained in a similar fashion to the stacking fault. The stacking in
a coherent twin boundary is

" ...ABCABCABICIBACBACBA...



where the stacking follows the sequence ABC... from either top or bottom and finally meet, only
having to share a plane (in this case C). The generation of the array of atoms is done by filling an
array of one half the desired length (where L must be even) in the z-direction and then reflecting ali
the atoms about the top plane of the generated cell (leaving a gap again in the center) and moving the
top plane to fill the gap in the center. In this case, the periodic boundary condition could apply as in
the static" g fault case, but as with the stacking fault the z-coordinate is made free of periodicity by

-- creating two surfaces. The energy resulting from this array of atoms has contributions of a twin
boundary and two (111) surfaces.

-- In ali cases, the size of the array of atoms (J by K by L unit cells) is determined by convergence.
That is, the defect energy is taken in the limit of large J, K, and L where energies and relative
positions of the atoms farthest from the defect should reflect that of a bulk phase atom.

Velocity Quench Energy Minimization Method.

o The atomic structures created in the previous section are labeled approximate because atoms in the_

= region of the defects will move, or relax, in order to decrease the total energy of the system. This

motion is governed by the forces exerted on the atoms and Newton's law of motion /_"= mS,=
,.m.

_vhere F is the force, m the mass of the atom and (_ is the acceleration. The force on an atom can
be calculated by=

_

= /_= dE p
drz

- where P is the unit vector in the direction of the atom position vector, ?'. Newton's law of motion
: for atom i can be written in the form

- 1 -
= ----F i

- mi

where the acceleration has been replaced by

_ d2_ _

-_ a=_t2 =r

_



For the EAM the force on an atom is given by

Y

 i=- t ,ipy +u'}
ici

where the index i (or j) implies evaluation at atom i (or j) and the primes indicate derivatives with
respect to r (or r in the case of G) [10]. There are 3N equations of motions for an N atom system.

4

The velocityquenchedenergyminimizationmethod(VQEMM) [11]consistsoftheintegrationof
the3N equationsofmof_onandmonitoringeachofthe3N cartesianvelocitiesateachstepofthe
numericalintegration.Whenevertheforceinagivendirectionhastheoppositesignofthevelocity,
thatcomponentofthevelocityissettozzrom_dintegrationcontinuesuntilatomicmotionceasesor
thetotalenergyofthesystemconvergestoa fixedvalue.Atthispoint,anequilibriumstructureof
theatomshasbeenlocatedinthe3N-dimensionalenergyfunction.

By design,thelocalminimum determinedby thismethodisthenearestminimum totheinitial
atomicpositionsasdirectedbytheirenergygradient.To insurereductionoflocalsymmetry,inthe
forcesand possiblya saddlepoint(anunstableequilibriumpoint)inthehyperspacetheinitial
atomiccartesiancoordinateswererandomizedby additionofa uniformrandom displacement
betweentheboundsof+0.05and-0.05A.

Results and Discussion

EAM functions have been developed for palladium (Pd), aluminum (Al) and nickel (Ni), and
comparisons are prc_nted here utilizing these functions with experimentally determined or derived
data. The Morse function parameters, D, ro, and b, obtained in the fit are listed in Table II. In
addition, the parameters describing the analytic form 9f the,embedding function, Ga(r), arc listed.
In Table III, we present a comparison of experimental values used in the fit to those computed using
both Geos(r) and Ga(r). Recall that Ga(r) is the desired form of the embedding function to bc
utilized in the VQE1VLMand Geos(r) is the direct result of the fit utilizing the inversion of the

, equation of state.

In Table III, a comparison is made with experimental values [12] and computational [4,13-15]
valueswherepossible.The computationalstudiesdo notattempttofittheintrinsicstackingfault
whichprovedtobea significantrestriction.EAM functionsdevelopedpreviouslyforpalladium,
whichfitelasticconstantsextremelyweil,gaveunphysical(negative)stackingfaultenergieswhen
tested.To achievereasonablestackingfaultenergiesa smalltrade-offintheaccuracyofelastic
constantsmustbcmade (asimilarexampleofthisexistsintheliterature).Inanattempt[16]tofit
EAM functionstothestackingfaultenergyinnickel,thefittoelasticconstantswasconstrainedby
fittingC44 and(C1I-C12)/2.Thisprocedureconcentratesonobtainingonlythedifferencebetween
C 11 and C 12 ,nottheirabsolutemagnitudes.For ourapplication,argumentw_ d support
obtainingreasonabledefectsu'ucturcandenergiesattheexpenseofhighlyaccuratepurecrystalline
elasticproperties.

As atestoftheEAM functionsdevelopedwe havecomputedtherelaxedvacancyformation,self-
interstitialformation,(I00),(I10)and(III)surface,intrinsicstackingfault,toldcoherenttwin
boundaryenergies.The energyminimizationprocedureconsistedofan initialconfigurationof
atomswitha su_ucturcclosetotheexpecteddefectstructurewhichfollowsa modifiedclassical
U'ajectorypath,sccSectionlID.



Point defect energies are calculated by taking the difference between final relaxed energy of the
system containing the defect and the energy of a reference state with no defect, but an equal number
of atoms [17-18]. Ali calculations are performed at constant volume. Surface energies can be_.
calculated by taking the difference as done in the point defects and dividing by the total surface area.
Remember that the surfaces are created by removing the z-component periodic boundary and there
are two free surfaces of the same area. Stacking fault and twin boundaries cases are similar to the
free surfaces except their total energies are due to two free (111) surfaces and the planar defect. To
calculate their energies one can simply use a (111) surface calculation with the same size of
computational lattice as a reference state. The defect energy is then the difference between the
energy of the system with the defect (and two (11 I) surfaces) and the reference state, ali divided by
the sm'face area of the defect (same as one (111) surface). Ali calculations involving surfaces or
boundaries have x and y periodic boundaries fixed [18].

Convergence tests were performed, using the palladium functions, to determine the appropriate cell
size or number of atoms needed to remove boundary effects. Table IV shows the results of varying
the size of the computational cells. The results i,,dicate that a cell containing 500 atoms is sufficient
for computing defect energies (to three significant figures). In the ease of (110) surfaces, energy
convergence is good even in the case of L=4 oi"eight planes of atoms and in the (111) case of I.,=4
or 12 planes of atoms. For stacking faults and twin boundaries the cell is expanded to twice the
thickness (in the z-direction) in order to isolate the planar defect from the two free (111) surfaces
exposed.

Unrelaxed vacancy formation energies, Euv f, were optimized in the fitting process with the
assumption that relaxation was small and using an approximate formula [1]. This is seen
numerically in Table V. Relaxed vacancy formation energies, Evf, are in good agreement with the
experimental values. Self interstitial formation energies are in good agreement with past EAM
calculations[4b]. Experimental values are not available. Surface energies for Ni are in excellent
agreement with experiment [19]. Pd and A1 surface energies follow the trend of the surface tension
me_uremcnts [19].

Intrinsitic stacking fault energies, Esf, art; in the range of the experimental values, see Table V.

This assessment is made with caution since exl_erimental values vary wildly. For example, in
nickel [20] values range from 120-150 ergs/cm z with no apparent trend with time, although the
value used of 125 ergs/cm 2 appears to be the most accepted. The value of 108 ergs/cm 2 is
acceptable.

An intrinstic stacking fault can be viewed as two coherent twin boundaries separated by a close
packed plane of atoms. Therefore, from a hard sphere interaction model one expects that the energy
of a coherent twin boundary, Etb, is approximately one-half of the intrinstic stacking fault energy
[21]. This fact is borne out in our calculations, see Table V.

Structural relaxation is small in most the defects studied. The self-interstitial structure agrees with
the accepted dumbbell like arrangement (along the <100> direction) observed previously [24] to be
the most stable orientation. The extent of surface (planar) relaxation is given in Table VI for both



the free surfaces and planar defects, The extent of relaxation is measured as the change in the inter-
planar stacking distance fromthe bulk. In the case of planar defects, this is the extent of the shift
for planes near the defect and continuing away from the defect. In the case of the intrinsic stacking
fault, the planar spacings z12 and z23 are defined as

i

z12
A

' A B C A B C B CAB C
V V

z23

and for the coherent twin boundary as

z12

AA
A BC A BC BAC B

V, V
z23

hl the stacking fault the symmetry plane lies between two atomic planes, whereas, in the twin
boundary it is coincident with _ atomic plane. The surface structures deten_ed here account for
relaxation but not surface reconstruction, which is reserved for cases where a surface is annealed
and then quenched. Inter-planar relaxations are in agreement but characteristically smaller than the
range observed experimentally [22] for these materials.

Conclusions and Summary

The EAM functions developed in this study reproduce defect properties well and are suitable for
future investigations of metal hydrides involving defect related structures. Molecular modeling
efforts involving palladium as a metal hydride appear very promising. The functions for nickel and
aluminum (both FCC) metals, represent a start at describing the lanthanum-nickel-aluminum
(LaNi5_xA1x, x=0.15 to 0.85) system. Lanthanum, an HCP metal, may not fit well within the
EAM approach as a pure metal but may alloy in a sufficient manner. This will require further EAM
development.
Helium-metal interactions are currently being developed to investigate helium bubble formatioJa,
which are thought to nucleate at most defects (point defects, twins, stacking faults and grai_,,
boundaries). Hydrogen-metal and hydrogen-helium interactions, also being developed, ave
necessary to understand the interaction of hydrogen present in metal hydrides. These new functions
enable simulation of the behavior and properties of palladium containing hydrogen and helium.
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Appendix A

The.ut.aelaxedstackingfaulte.nergycanbecalculatedbyusingasummationovertheneighborlist
oftheatomsintheregionofthefault.A stackingfaultexistswhen aplaneisskippedinthenormal
FCC stackingsequenceof(I1I)planes.The stacldngintlleimmediatevicinityofthefaultappears

• tobethatofanHCP suucture.Intheregionofthestackingfaultfourplaneshavetheneighbor
shellswithdistancessimilartotheFCC andHCP strucun'es.AllotheratomshaveFCC neighbor
lists.The neighborlistsforthesecasesare

I I . I II I II ._L

Number OfAtoms inShell

Shell _ FCC HCP StackingFault' :_ . m mm,ARwmmL-,.mBmvmmmm_It,lm

o.7-o7i .... ........ 12 12
2 l.(XDao 6 6 6
3 1,,1547eo 0 2 1
4 1.2247a o 24 18 21
5 1.354a o 0 12 6
6 1.4142_0 12 6 9

TheneighborEstsbegintodifferbeyondthedistanceof1.1547ao. Neighborlistscanbe
generatedbycons_g thedc_xxl]ttti_,asdescrib_insectionHC, andcomputinginteratomic
distances.

The energyofanatomwithanFCC neighborlistisgivenby

II 111
m

wh_ anatombloneofthefourplaneswiththestackingfaultneighborlistis

wherethesumsarco,:,.nearestneighborshells,W n isthenumb¢_ofatomsinthenthshellandEn
istheenergycontributedbyanatominthenthshell.The shellsarefortheFCC neighborlist(fcc)
or the stacking fault ncighlxx" list (sf).

The um'claxed stu:king fault energy is four times (one for each plane) the energy required to convert
anormalFCC _,_icea_omintoanatomina stackingfaultplanedividedbytheareaofanatominthe
(11I) plane:

Eus.f= 4 {_W':'F'nsf-_w_ "cEfcc_/nj
.2

,, / 4 0
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Table I

Definition of unit cells used to generate surfaces.

a = b = c = ao

ato_ x° _ z°
1 O.(X)(XXXX) O.(XXXX)(X) 0._
2 0.50(KI(0)0 0.50(_300 0.0(0)0(0)0
3 0.51XlO0_ 0.000(K)_ 0.50(K)(O
4 O.{KIO(KI_ 0.50(KIO_ 0.50(OK}(_

1 1 1

(! 10)fac_ a = .-._a o b = -_ao c = --_a o

atom x° yo zo
1 0._ 0._ 0._
2 0.50(K)0(O 0.500(KIO0 0.5000000

(111_facea a = -_- ao b = o c = ,f3"ao

atom x° _ z°
1 0._ 0._ 0.0000(00
2 0.50(K)O_ 0.5_ O.fKIO{X)_
3 0.50(K)0_ 0.1666667 0.3333333
4 0._ 0.6666667 0.3333333
5 0._ 0.3333333 0.6666667
6 0.5000(0 0.8333333 0.6666667
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Table II. i

EAM Function Parameters.

Pd Ni A1
• EOS data

Ec (eV) 3.91 4.45 3.36

' B (;_) A"3) 1.21723 1.127 0.493ao 3.89 3.52 4.05

Morse function pararneters

D (eV) 0.36937 0.6645 0.13113
,I

ro (A) 2.6179 2.2649 2.75570

r/ (A "1) 0.10 0.10 0.10
rc (A) 5.1 4.62 5.3

Ga(r) parameters

A - 122.006 -76.2136 -181.685
a 74.0547 34.8861 44.0935

B 9.95144x103 2.04296x103 9.67593x105
b -2.14651 6.15084 118.811
C -91.2633 -76.2556 - 181.685
c 31.9016 38.2764 44..0935



Table III.

Pure metal properties used to determine EAM functions.
The first two numbers given are from this work,

the top number iS the calcuated using Ga(r), the second using Geos(r ).

Pd Ni A1 reference

C11 2.37 2.458 1.02 Ga(r) this work
2.33 2.368 1.00 Geos(r) this work
2.34 2.465 1.14 expt., ref. 12a
2.18 2.33 ref. 4b

2.587 1.08 ref. 13
2.44 1.07 ref 14

C12 1.79 1.624 0.694 Ga(r) this work
1.76 1.524 0.683 Geos(r) this work
1.76 1.473 0.619 expt., ref. 12a
1.84 1.54 ref. 4b

1.412 0.68 ref. 13
1.49 0.652 ref 14

(244 0.707 1.215 0.351 Ga(r) this work
0.705 1.214 0.349 Geos(r) this work
0.712 1.247 0.316 expt., ref. 12a
0.65 1.28 ref. 4b

1.299 0.45 ref. 13
1.26 0.322 ref. 14

Euvf 1.518 1.70 0.74 Ga(r) fllis work
1.527 1.69 0.74 Geos(r) this work
1.4 1.51 0.75 expt., ref. 12b-d
1.44 1.63 ref. 4b

1.51 0.64 ref.13
1.60 0.73 ref. 14

1.38 1.62 0.7 ref 15

Eusf 192 116 139 Ga(r) this work
192 116 139 Geos(r) this work
180 125 135 expt., ref. 20

115 ref. 16
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Table IV.

Convergence test for computational cell size using palladium functions.

a b c
. type of cell size number steps cpu Defect

J K I_ _ _ (msec/step)

, singje 3 3 3 107 85 18 1.40
vacancy 4 4 4 255 124 41 1.39

5 5 5 499 168 81 1.39
6 6 6 863 206 140 1.39

self- 3 3 3 109 94 18 3.31
interstitial 4 4 4 257 142 42 3.00

5 5 5 501 207 81 3.01
6 6 6 865 267 141 2.99

(100) 4 4 4 256 275 35 1567
surface 6 6 6 864 373 124 1567

4 4 8 512 189 76 1567
4 4 10 640 467 I00 1567

(110) 4 4 4 128 194 141 1674
surface 5 5 5 250 264 34 1674

6 6 6 432 345 60 1674
8 8 8 1024 484 146 1674

(111) 4 4 4 384 114 55 1476
surface 4 4 6 576 473 8o 1476

4 4 8 786 961 116 1476
4 4 12 1152 2117 180 1476
4 4 16 1536 3681 238 1476

intrinsic- 4 4 4 384 790 55 172
stacking- 4 4 8 786 2607 116 172

fault 4 4 12 1152 4881 180 172

coherent- 4 4 8 786 1917 116 83.3
twin- 4 4 _2 1152 3736 180 89.1

boundary 4 4 16 1536 5352 238 89.1

a Stepsrequiredfor VQEMM with an energy convergence eriterion of 1.Oxl0"6eV.
b

The cpu time in milliseconds per step using the $RL/CRAY X-MP/132.
c

Units are eV for point defects and erg/cm 2 for planar defects.
¢
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Table V.

Calculated Energies for Defects.
Where two numbers are given the top number is calculated

with these functions and the lower is the experimental value.

Pd Ni Al reference ,

Evf 1.4 1.7 0.72
1.4 1.6 0.75 12

Esif 3.0 4.1 1,7

E(100 ) 1567 1780 722
18214-182 19

E(ll0 ) 1674 1944 760
19(KH:190 19

E(lll ) 1476 1671 697

Experimental 2000 18204-180 1140 19
(Surface Tension)

Esf 173 108 119
1804-30 125:t25 1354-30 20

Etb 89 55 63
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Table VI.

Structural relaxation at surfaces and planar defects.

Surface relaxation of the top-layerspacing Dzl2 and the second layer spacing Dz23, for the low-
" index ft ees. Relaxation at planar defects meast_s changes in layer-spacing for the first inter-planar

spacing near the defect Dz 12 and the second layer spacing Dz23. Distances are in A.
t

Pd Ni Al

(100) surface

Dzl2 -0.043 -0.0065 -0.041
Dz23 +0.004 +0.0012 +0.004

(110) surface

Dz12 -0.12 -0.042 -0.13
Dz23 +0.03 +0.008 +0.05

(111) surface

Dz12 -0.051 -0.0054 -0.015
Dz23 -0.001 -_.0022 -v0.003

intrinsic stacking fault

DZl2 +0.050 +0.025 +0.083
Dz23 +0.020 +0.012 +0.032

coherent twin boundary

Dzl2 +0.023 +0.01.2 +0.036
Dz23 -0.003 -0.001 -0.006
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