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Abstract

We present an overview of tha longitudinal insta=~
bilities of Gsussisn bunchas subject to a harmonic RF
potentisl. Our emphasis is on the behavior of long
bunches having lengths gresater than the wavelength of
the perturbing electromagnetic fields. We exikibit the
crossover betwean ths dominance of ths synchrotron
wodes and the coasting-beam-like distortions of the
bunch distribuction, which occurs ss the rsal or imsgi-~
nary part of ths coherent oscillation frequency be-
comes large compared to the synchrotrom oscillation
frequancy. For a narrow band impedance the growth
rate of the coasting-beam—-like modes is determinad by
the average beam current, and for a broad band imped~
ance the growth rate is determined by the peak cur-
rent, We discuss the transition betwsen these two
regines by considering thae growth rate aze a function
of the baadwidth of tha impedance.

Mathematical Formalism

Our scarting peint is the treatment of cohgrent
ingtabilities developed by Wang and Pellegrini,’ and
our notation follows that of Krinlky and Wang“ appesar~
ing in these proceedings. We shall confine our atten~
tion to the case of Gaussian 2" hes subject to a har~
monic RF potential, U (0) ol ) IZ, vhare @  is the

angular frequency of thc lynchrol:ron oscillations, and -

4 1is the azimuthal angular coordinate relative to a
synchronous particle with angular revolution frequancy
Wy and energy Ey. Our interest is in the condi-
tions required for the line charge density A(s$,t) to
exhibit a coherent oscillation of frequency 2, i.e.
for A(#,t) to have tha form:

A(4,t) = o, (¢) + p(#)exp(~ifc), (6 B)

Here, po(¢) denotes the line charge density of the
uaperturbed bunch and p($)exp(=10t) is the coharent
perturbation.

Lat us suppose there to be M equally spaced
bunchee each containing N/M particlee. Wa assume the
distribution [wnetion corresponding to the unperturbed
bunches 1is

v (D) - exp(-3/u 1), )

2
2w .I.

where L is the bunch length in radiars, e the electric
charge of a particle, and the action-variable J is re-
lated_to the syanchrotron oscillation amplitude r via J
= wgr/2. Iatroducing the Fourier transform p, of

the perturbation p(¢) and using the linearized Vlasov
equation, tha cohsrent cscillations are found to Yc
described by tha infinte set of linear equations:

ET p =p (3
g ™ 1 n’

where the summation is restricted to ne= M} + s, for
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integer ] varying from j @« = »,,,,,=, aod fixad sym-
metric muitibunch mode number s » 0,1,2,¢50,M=1. Tak=
ing ¢,(J,0) = r cos & in Eq. (21) of ref.”, the ma-
trix element T, is found to be given by

o
Tln - -c::zqu I —= [ d8'exp(-1Q8')

"2'
L ] dObxp iar ] )-1 ) 4 e) (“)
W <o a+8' ar cos 1]

where Z, 3 Z(nu, + Q) denotes the loangitudinal
i{mpedance, snd we have defined

Q= nlu , . ) (5)‘
2wx = eow /2'! (6)

with a being the momentum compaction.

The representation of the matrix element T,
glven in Eq. (4) can be simplified by upi.oyins the
two integrals:

e 2.2

J/ desxp(ia cos(8+8" )~1bcos8)=27J (Va+h °-2abcosd’),
-2% ()]
Jrlaraxp(-ar)3, (br)=(b/iaDexp(-b7/4n), (8)

where J,(x) is the k-th order Bessel function. In
this manner, wa find the following representation for
Tan involving only a single intsgration:

2

-jlonel 2
Ta" 2 "-—‘!C!p(-('ll |n.)2L2/2)H(ﬂnL Q) (9
2%E W
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with I,y = Nnuolz'l the average curreat, and

Ax,Q) = = exp(~|x|) A(x,Q) (10)
[+

[1-exp(2¥1Q) JA(x, Q= )2’ dbsindexp(~1Q64xcoeb). 80
-y

The relationship between this integral repcesentation
and the conventional expansion in synchrotron modes is
estabished by using in Eq. (11) the generating func-
tion for I - Bessel functions, yielding

- ka(x)

“‘-Q""%k__z__ k-q °

(12)

The synchrotron mode expansion of Eq. (12) is useful
when one synchrotron mode dominates, however, when
many synchrotron modes contribute, then the integral
rcpnun:ation of Eq. (11) is more appropriate.
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. Short Havohnl th Liaic

Lat us consider the cass when the wavelengths of
the perturbing electromagnetic fields are short com~
pared to the buach length, Using the integral repre-
sentation of Eqs. (9) = (11), we derive an asymptotic
expression for T, valid vhen aL and nL are large
comparsd to unity. Thia representation explicitly
shows the cross-over behavior between synchrotron mode
oscillations and coasting beam like perturbations of
the line charge demsity.

To procesd wa rewrite Eq. (.1) defining A(x,Q) in
the form:

xA(x,Q)= -xpcx)+-,-1—f,’~;6f 40 cosQ(7-6) exp(xcost).(13)

We restrict our attsntion to the case when

|a]<<|x| and |1aq|<< V]x| , (14)
and we find for lx'*_’:

H(x,Q)*1~(Qcot®Q)c(x,Q)=-Qs(x,Q), xDo, (15a)

H(x,Q) = grmag S(=%:Q) » x4o, (15b)

where we have defined

o(x,Q)+is(x,Q) = [ d@ exp(-x&zlz + 1Q9) . (16)
Q
Now we note that
a(x,Q) = Y¥72x exp(-Q*/2x) an
aad
1 + 1Qe(x,Q) - Q8(x,Q) = h(Q/Vx) , (18)

where the dispersion integral h(x) is defined by1

niz) = | 640 exp (=0%/2 + 1x8) (19)
a
- 2
- - [ dg exp(~2°/2) . (20)
27 (g - x)2

Employing Eqas., (17) and (18) in Eqs. (15a, b), we find

H(x,Q) = h(Q/'x) - E{i-&cotnq)%% ¢xp(-02/2x),x>o,(2h)

x 2
H(x,Q) = - Em exp(-q%/2[x|) , x<0 . (211)

The desired asymptotic representation oi
follows from using Eqs. (2la,b) with x = mnl m Eq.
(2). The poles at Q = integer of the function cot xQ
in Eq. (21a), correspond to the synchrotron oscilla-
tion modes wiich dominate for slow blowup. When
IaQ d>1 or Puql > ¥x, the second tera in Eq. (2la)
becou! negligl
exp(=Q“/2x), respectively, leaving the coasting beam
type of behavior exhibited by h(Q/vx).

In the case of a coasting beam different revolu-
tion modes m and n are not coupled, n Cthe other
hand, thess modes are coupled for a bunched beam by

le, due to the factors (i + cotrQ) and

the matrix Tyye When aL and nL are large in mag-

nitude, and the growth rate is fast, ImQ >> 1, then
Eq. (21b) shows that the coupling between modes with
an < ‘o becomes negligible.. Hence, there is no cou-
pling batween the slow and fast waves. It is also
seen from Eq. (21b) that_for ol and nL iarge in
magnitude and |ReqQ} >> L, the slow and fast’
vaves decouple, even when the growth rate is slow.

It therefore follows that when |ma| L? >>1 and
sither ’I-ql » Jlln‘ L or ImQ >>1, one has

2
-ige” el 4
Ton ™ 2 > ~= B(a=n)h —9—) , an>o, (228)
288 W L LYan
Ten " 0 , ando , (22b)

vhere B(n) = txp(-nzl.zlz) is the Fourier transfom of
the unportu:b.d bunch density, p,(9)= exp(-¢%/2L%).

Narrow Band Impedance

As an sxample we consider a resonant impedance
with bandwidth so narrow that it may be approximated

by

x -
zZ, - znoan,n + z“o Gn.-no R (23)

where &, 5  1s the Xronecker delta function.

Although "tRe approxisacion of Eg. (23) violates cau-

sality, as embodied in the Kramers-Kronig dispersion

relations, it is useful as an illustration of the for-

malisa under study in this note. We take ngl >>l,

and we suppose that either ReQ or ImQ are large so

that Eqs. (22a,b) are valid. It thea follows from

Eqs. (3) and (22b) that the coherent frequency 22 is

deternined by 1 = r“o’no' which upon using

Eq. {(22a) bacomes

~lawlel 2
o av no Q
l= h( ) ’ (24)

2 fno ra

n
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where 0 = w,l 1s the spread in revolution frequency
among particles in a bunch. Eq. (24) has the form of
a dispersion relation for a coasting beam with curreat
I.v.

The Fourier transform of the perturbation to the
1ine charge density is seen from Eq. (3) to be py
Tmn « Using Bq. (22a) and performing the inverse
Fouller transform, we find that the perturbation p(9)
ig given up to a multiplicative constant by

p(9) -— (exptin L2 (4)) . (25)

Broad Band Impedance

Consider a high-frequency broad-band imp:dance
satisfying Z -zno, for ln-n°|<A, vhere a >> 8>1/L.

Since the range of the wake field, 1/4, is short
compared to the bunch length L, and certainly short
compared to the spacing between bunches, we can ignore
interaction between bunches. 7To ease the notation we
assume ons bunch to be in the ring (M = 1), For

n, - A< mn<n, +4, we approximate Eq. (22a) by

-1nu2e1 Z
o m,
T @ c—— —— h(ﬂ/n o)B(m~a) , (26)
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where I, is the average current of tha single
bunch. To proceed we approximate the infinite set of
linear equations (3) by a finite subset,

n M
Py = uzn o T fa [aen_| 8. @n
o

In this case we make use of the representation for
Tan 8iven in Eq. (26), and our problem reduces to
solving the following eigenvalue problem:

o +4

A o

My o= [ Saen) v . (28)
n-no-A

The coherent frequency is determined in terms of an
eigenvalue A2 by the dispersicn relation:

~taud eIohd zZ

- h(@/n o) . (29)
2:!042 % °

1=

Since B{m-n) is sharply peskad about m = n, the
peak width baing of order 1/L << A, we expect thet the
largest eigenvalues do not depend strongly upon the
cutoff value A, Therefore, they should be closely
approximated by the eigenvaluse of the sssier problem
which results when A + =, In this case the sigen-
functions of Eq. (28) become vn(;)=exp(~ing) and the
corresponding eigenvalues A®(Z) = I8(n) exp{ing),
vhere o < { < 2¥ paramatrizes the different
eigensolutions. When the bunch lsngth is lhorf
compared to the ring circumference, L{<l, then

-
the largest sigenvelue A = Y2rjL = IP.‘k/IO. where
Ipeak 18 the peak current of the bumch, To
illustrate the rate of convergence as A + =, wa plot

in Fig. 1, the ratio AA /A. , &8 a function of LA,

oax’  max
It is sesn that when LA > 3, the ratio is greater than
90%. Hence, for LA > 3, it is a good approximation to
replace I,A® by Ijeqk in the dispersion relation

of Eq. (29)-

To gain some insight into the nature of the
perturbed line charge density, we taksa as an
approximation to the eigenvectors of Eq. (28),

exp(~inZ) l“'“o , LA
p_ = (303

0 In-nol >a

The perturbation to the line charge dsnsity is

n 44

[+]
p(9) = [ exp(1n(4-5))mexp(1a(4=2))E,(#=2) , (31)

o= =-A

[+ ]
wherel
s1al(8) (-]
£(470) ® —grrreyr— (32)

We see that p(9) is a plane wave modulated by the
function f,(¢-Z), which is sharply peaked about ¢ =
% with pesk width of order 1/A., The detailed struc=

‘ ture within the peak depends on the short distance be-

havior of the wake field, which has been ignored in
ouz approximate treatment, and hence ie outside the
scope of our discussion.

Let us clowxe by cgn-nnting on the attempt made by
Messerschmid and Month” to describe the microwave in-
stability., Their approach was based upon the ansatz,
p(#) = axp(ing$) po(4), where po(4) is the un-
perturbed bunch density. This has the form of a. plane
wave modulated by a shape function, however, the shape
function 1is slways taken to be po(4) independent of
the bandwidth, 4, of the impedance. Our discussion
shows that this is incorrect, and that the shape func-
tion should have a peak width of order 1/4, the range
of the waks field. This local behavior is closely re-
lated to the peak current dependence’ of the coherent
frequency . for 4 >> 1l/L. The znsatz of Masserschaid
and ¥onth” 1s more appropriate to the case of a.narrow
band resonant impedance with bandwidth A << 1/L. Then

-the coherent frequency depends on the average current

[sae Eq. (24)] and tha perturbed density is approxi-
mately as given in Eq. (25).
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Fig. l. The ratio of the largest eigenvalues corres-

ponding to finite bandwidth 4 and infinits
bendwidth, plotted against LA, where L ig the
bunch length in radians
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