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Abstract

Since the classic work of Postma [1955]) and Backus [1962), much has been learned about elastic
constants in vertical transversely isotropic (VTI) media when the anisotropy is due to fine layer-
ing of isotropic elastic materials. However, new results are still being discovered. For example,
the P-wave anisotropy parameter ¢;1/cs3 lies in the range 1 < e13/caz < (A + 2p) (1/(A + 21)),
when the layers are themselves composed of isotropic elastic materials with Lamé constants A
and p and the vertical average of the layers is symbolized by (-). The lower bound corrects a
result of Postma. For porous layers, a connected solid frame forms the basis of the elastic be-
havior of a poroelastic medium in the presence of confining forces, while connected pores permit
a percolating fluid (if present) to influence the mechanical response of the system from within.
For isotropic and anisotropic poroelastic media, we establish general formulas for the behavior
of transversely isotropic poroelasticity arising from laminations of isotropic components. The
Backus averaging method is shown to provide elementary means of constructing general for-
mulas. The results for confined fluids are then compared with the more general Gassmann
[1951] formulas that must be satisfied by any anisotropic poroelastic medium and found to be
in complete agreement. Such results are important for applications to oil exploration using
AVO (amplitude versus offset) since the presence or absence of a fluid component, as well as
the nature of the fluid, is the critical issue and the ways in which the fluid influences seismic
reflection data still need to be better understood.

1 Imtroduction

Two primary goals of seismic reflection data processing are: (1) to image geologic structure
and (2) to provide information about lithology for interpretation. The process used to achieve
the second goal is made complex by the fact that the same seismic velocity may result from
several different combinations/mixtures of materials in the earth. The resulting questions of
uniqueness make it necessary to explore the possible range of seismic velocities that can occur
within the set of circumstances deemed mostly likely to occur in the earth at the site of interest.

Fine horizontal layering (i.e., layers with thickness small compared to the wavelength of the
seismic wave) is known to cause vertical transverse isotropy (VTI) — wherein wave speeds vary
with angle in such media, but are uniquely determined by the angle from the vertical. Efforts in
this area are represented in the literature by work of Postma [1955], Backus [1962], Berryman
[1979), Schoenberg and Muir {1987], Anderson [1989], and many others. There has continued
to be some doubt about the range of anisotropy parameters possible in such media. Here I will
correct an error of Postma [1955] and show that the P-wave anisotropy parameter cy1/ca3 can
be a factor of 2 smaller than previously supposed. I also obtain a simple upper bound on this
parameter in terms of layer elastic parameters.

Then, in order to explore the area of most interesting applications of such results, we
consider percolation phenomena in fluid-saturated porous media, where two distinct sets of
percolating continua intertwine. A connected solid frame forms the basis of the elastic behavior
of a poroelastic medium in the presence of external confining forces, while connected pores
permit a percolating fluid (if present) to influence the mechanical response of the system from
within.

There is a great deal of current interest in the anisotropy of Earth materials, and especially




so when there is fluid present in pores and fractures in the Earth. Fluids of economic interest
to the oil industry are typically oil, gas, and water, while fluids of interest in environmental
remediation applications are generally the same. Environmental concerns often center around
fluid contaminants which may be in the form of oil or gas, or could be other undesirable
organic materials in ground water. Brines or steam may be used to flush other fluids out of the
ground, whether for economic purposes or for environmental cleanup. Thus, it is important to
understand the role of pore fluids in determining effective constants of such materials, and the
fine layering or laminate model of earth materials plays a significant role in the analysis.

In this work, I study some simple means of estimating the effects of fluids on elastic con-
stants and in particular we will derive formulas for anisotropic poroelastic constants using a
straightforward generalization of the method of Backus [1962] for determining the effective con-
stants of a laminated elastic material. There has been some prior work in this area by Norris
[1993), Gurevich and Lopatnikov [1995], among others. One distinction between these earlier
approaches and mine arises from the desire to understand the transition from elastic analysis
to poroelastic whereas the earlier work in this area has started with poroelasticity as given and
then applied a generalization of Backus’ approach to the lamination analysis. Finally, I want
to mention that methods similar to the ones to be presented here could as easily be applied
in the same context to the problem of determining percolation for fluid flow or effective fluid
permeability (Darcy’s constant) and that would be of some interest in these applications as
well.

2 'Wave Propagation in Anisotropic Elastic Media

First, I will introduce the notation needed in the later analysis.
In tensor notation, the relationship between components of stress o; and strain uj, is given

by
Oij = CijriBk iy (1)

where ¢;;i is the adiabatic stiffness tensor, and repeated indices on the right hand side of (3)
are summed. In (1), ux is the kth Cartesian component of the displacement vector u, and
uj, = Ouy/8z;. Whereas for an isotropic elastic medium the stiffness tensor has the form

cijki = M6k + 1 (kb + 6arbj) (2)

depending on only two parameters (the Lamé constants, A and ), this tensor can have up to 21
independent constants for general anisotropic elastic media. The stiffness tensor has pairwise
symmetry in its indices such that c;ju = cjit and ¢ijl = Cijik, which will be used later to

simplify the resulting equations. . . .
The general equation of motion for wave propagation through an anisotropic elastic medium

is given by
pil; = 0ij,j = Cijkitklj» (3)

where #; is the second time derivative of the ith Cartesian component of the displacement
vector u and p is the density (assumed constant). Equation (3) is a statement that the product
of mass times acceleration of a particle is determined by the internal stress force oy;,;.
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A commonly used simplification of the notation for elastic analysis is given by introducing
the strain tensor, where

Y y [ Oui | Ou;

e =5(ui;+uji)=21—+-21}.

t2 2( 1,7 J,l) 2 (amJ + 63;’) (4)
Then, using one version of the Voigt convention, im which the pairwise symmetries of the stiffness

tensor indices are used to reduce the number of indices from 4 to 2 using the rules 11 — 1,
22-+2,33-+3,230r32—-4,130r 31 — 5, and 12 or 21 — 6, I have

o1 i1 ¢i2 €13 €11
022 €12 C22 €23 €22
o3| | c13a ca3 ca €33
o | 2¢44 eas | (5)
o3 2¢s5 €31
012 2ce6 €12

Although the Voigt convention introduces no restrictions on the stiffness tensor, I have chosen
to limit discussion to the form in (5), which is not completely general. Of the 36 coefficients
(of which 21 are generally independent), I choose to treat only those cases for which the 12
coefficients shown (of which nine are generally independent) are nonzero. This form includes
all orthorhombic, cubic, hexagonal, and isotropic systems, while excluding triclinic, monoclinic,
trigonal, and some tetragonal systems, since each of the latter contains additional off-diagonal
constants that may be nonzero. Nevertheless, I restrict the discussion to (5) or to the still
simpler case of transversely isotropic (TT) materials.

For TI materials, c11 = cz2 = @, c12=b,c13=¢c3 = f, caa = ¢, c4a = ¢55 = |, and cgg = M.
There is also one further constraint on the constants that a = b+ 2m, following from rotational
symmetry in the z,z2-plane. In such materials, (5) may be replaced by

11 a b f €11

022 b a f €22

o | _|f f ¢ €33 ,

023 - : 2l €23 ? (6)
o3 21 €31

o012 2m €12

in which the matrix has the same symmetry as hexagonal systems and of which isotropic
symmetry is a special case (havinga =¢c¢=A+2u,b=f =), andl=m =p).
Recall that the equation of motion may be written as

pili = Cijkiti,lj- (M

After Fourier transforming in both space and time [i.e., u(x,t) = uexpi(k - x — wt), where k
is the wavevector and w is the angular frequency}, I find

(pw?8ik — cijukiki)ur = 0, (8)

which provides three equations for the components of displacement u, u2, u3. These equations
can be solved if and only if the determinant of the coefficients vanishes, which implies

det(pw26u - c,'jk(kjkz)‘ =40. (9)
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The left hand side of this equality would be a perfect square for all values of k? and k3 if
f + 1 = 0, while the right hand side would be a perfect square if the quantity defined as
A= (a=0)(c—1)=(f+1)? = 0. The first case with f + = 0 will virtually never happen
because both f and ! are normally positive quantities. The second case with A = 0 can occur
for some types of anisotropic media, but I show later that this cannot occur for finely layered
media. Nevertheless, if A = 0, then the dispersion relations of (14) reduce to

puwy = ak] + ck} 17)
for wp, = w; and
pl, = (k] + k3) = Ik? (18)

for w,, = w_, showing that the P-wave surface for velocity squared is elliptical if a # ¢, while
the SV-wave surface for velocity squared is circular and therefore isotropic. The dispersion
relation (15) shows that the SH-wave surface for velocity squared is always an ellipse as long
as I # m. I call A the anellipticity parameter because, if A # 0, then the dispersion relations
for qP- and qSV-waves are anelliptical (i.e., something other than elliptical) in shape.

Phase velocities are obtained as a function of angle from these expressions by first defining
the wavevector angle @ such that

k = k(sin 8%; + cos0%3). (19)
Then, the phase velocity vector for each type of wave is given in general by
Vph = Uph(sin 8% + cos823), (20)
where v, = w/k.
The group velocity is defined by

Ow .  Ow., s .
Vor = 5521 + T vgr(sin 2y + cos $3), (21)

where the group angle ¢ is determined by
Ow/ 0k,
= Bw/oks
One other angle is particularly important, since it is the one that is most easily measured,

and that is the angle of particle motion % for a wave passing a particular point in space. The
particle motion is given by the displacement vector u, so

(22)

u = u(sin ¥, + cos Yi3), (23)
where

tan v = uy/ua. (24)




3 Averaging Thin Layers for Low Frequency Behavior

Backus [1962] presents an elegant method of producing the effective constants for a thin layered
medium composed of either iostropic or anisotropic elastic layers. For simplicity, I assume that
the layers are isotropic, in which case equation (5) becomes

on A+ 2u A A €1
022 A A+2u A €22
o33 | _ A A A+ 2u €33
023 - 2[1 €23 (25)
31 2u €esy
o12 2u/ \en

The key idea presented by Backus is that these equations can be rearranged into a form where
rapidly varying coefficients multiply slowly varying stresses or strains. By doing so, I arrive at
the following equation

4AA(A+p) 22 A
11 ( +2u X¥2u X+2u \ €11
o 27p 42(A+u) A
22 Mn M2 X¥2p €22
Bl=| ¥m Num T B, (26)
€23 2L 023
n
€31 1 o3
012 2 €12

\

2u/
which can be averaged essentially by inspection. Equation (26) can be viewed as a Legendre
transform of the original equation, to a different set of dependent/independent variables in
which both vectors have components with mixed physical significance, some being stresses and
some being strains. Otherwise these equations are completely equivalent to the original ones.

Performing the layer average, while assuming the variation is along the z or z3 direction, I
find, using the notation of (6),

/\-:2u> \

(55D (B

<on > 22p A+p) e11
< 022 > < +2“> < A+2u > <X 2#> €22
-<es> | _| (xim) e e | o
< é23 > ' .2_1_> 023
< €31 > # <L> o31
< 012 > \ 2u (2 )) €12
m
a-fie b-fc fle en
b—f%c a—f*c flc €22
_ fle fle -1/e 033
- 1/2! 023 ’ (27)
1/2' 031
2m €12
which can then be solved to yield the expressions
AN L N e #))
= 4( =), 28
. <A+2p> <,\+2p> * <A+2u (28)
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A \? 1 -1 A
s=(xr3n) ) +2(5
Yt/ \xvo/ YE5vm) (29)

€= <r\ -11-12,u>_l | (30)
f=<)\-:2u><z\+l2u>—l’ (31)
(3"
and
m = (p). @Q

One very important fact that is known about these equations is that they reduce to isotropic
results with @ = ¢, b = f, and | = m if the shear modulus is a constant, regardless of the
behavior of .

4 Review of Known Inequalities for the Elastic Constants

Since the stress-strain relation (6) is derivable from an energy functional, it is not hard to show
that the matrix must be nonnegative or the material will be mechanically unstable. Nonneg-
ativity of the matrice implies that all its principal minors must be nonnegative, which in turn
implies the following inequalities:

a=b+2m >0, ¢c>0, (34)
120, m20, (35)

and
(a2 - bz)/4m =b4+m>0, ac— f2 >0, (36)

and
[a(ac - 2%) = b(be - 2/%)] /am = (b+ m)e~ f2 > 0. (37)

The second inequality in (36) follows from (37), (35), and the second inequality in (34) and
is therefore often omitted from such listings. Similarly, the inequality for a follows from those
for m and b + m. All of these inequalities must be satisfied regardless of the source of the

anisotropy.
The formulas (28)-(33) can be used to derive some very simple relations among the constants.

For example,

c2 f (38)

7




follows directly from (30) and (31), simply noting that A/(A + 2x) < 1 in every layer. The
inequality

4
c> 51 (39)

is derived directly from the fact that

</\+12u>s<@1—/§>=§<%>’ (40)

which follows from the fact that the bulk modulus must be nonnegative in each layer so that
A+2u/3>0 eyerywhere. Then, the two shear moduli must satisfy

I<m _ (41)

since
1< (p) <%> (42)

follows easily from the well-known Cauchy-Schwartz inequality (a8)? < (a?) (82?) by setting
= p!/? and B = 1/p"/%. Equali lies i i iti
a = p'/% and 8 = 1/u'/%. Equality applies in the Cauchy-Schwartz inequalities only when
a = const X 3, which implies in the present circumstances that u must be constant for | = m.
But this is precisely the condition mentioned earlier for the layer equations to be isotropic, so
I exclude this case from consideration.
Another inequality can be derived from the formulas obtained for finely layered media. I
showed earlier that the anellipticity parameter given by

A=(a=De-D)-(f+1) (43)

has the property that the dispersion relations for both qP- and qSV-waves are simple ellipses
when A = 0 and are anelliptic otherwise. Using the results (28)-(33), A is shown to satisfy
A > 0 for any fine layered transversely isotropic medium by noting that

T (i (o)) - (34

- ol - >0.

A cl[(p(A+2p : (e ) | 20 (44)
The inequality follows again from the Cauchy-Schwartz inequality in another form somewhat
more transparent for the present application {(a)® = <(ya)‘/ Yafp)/ 2) < (pa) (o/p). Equality
again applies only when y4 is identically constant. But, it was mentioned earlier that finely

layered media are isotropic if 4 does not vary, so A > 0 holds for all such finely layered media
if their overall constants are anisotropic.

5 Range of the Anisotropy Parameters

From (15), we know that the SH-wave in finely layered VTI media has an elliptical surface for
velocity squared. Furthermore,

mfi= ) (5) 21 o (45)
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follows from (32), (33), and (42). So the horizontal shear wave velocity for SH-waves is always
greater than or equal to the vertical velocity. I choose to define the ratio m/l as the SH-wave
anisotropy parameter, and have the simple universal result that this parameter is always greater
than or equal to unity.

The qP-wave does not always have an elliptical dispersion relation, but it is nevertheless
always true that if k3 = 0 then pw} = ak{ and if k; = 0 then pw? = ck2. Thus, I may define the
P-wave anisotropy parameter to be a/c and seek to determine what the range of this parameter
might be. Formula (28) for a may be rewritten as

. A+ 2u)? - A2 A \%27 1 \7!
o= (BEBEY (A 1y 10
A+ 2u A+2u A+2u/
which can be rearranged into the convenient and illuminating form
| A2 1 UV
=(A+2u) - - —
a=(A+2) [<A+2p><).+2u> <f\+2#>}<)\+2p> ‘ (47)

This formula is very instructive because the term in square brackets is again in Cauchy-Schwartz
form, so this factor is nonnegative. Furthermore, the magnitude of this term depends principally
on the fluctuations in the A Lamé constant, largely independent of u. Clearly, if A = constant,
then this factor vanishes identically, regardless of the behavior of u. Large fluctuations in A
will tend to make this term large. If in addition I consider the combination

1= [</\+2“)<,\+12p> B 1] - [<A-;\-22y><A-:2p> - <A:2u>2] )

the first bracket on the right hand side is again in Cauchy-Schwartz form showing that it always
makes a positive contribution unless A + 2 = constant, in which case it vanishes. Similarly,
the second term always makes a negative contribution unless A = constant, in which case it
vanishes.

If the finely layered medium is composed of only two distinct types of isotropic elastic
materials and they appear in the layering sequence with equal spatial frequency, then I find
that

e (A= A)+(p2 - )
; -1= (“2 #1)(Al + 2”1)(/\2 + 2“2) . (49)

This result agrees with Postma [1955) except for an obvious typographical error in the denom-
inator of his published formula. This formula shows clearly that if u3 = y3 then the P-wave
anisotropy parameter is identically equal to unity as expected. Also, if u; # pz but A\ = Ay,
then (49) implies a/c > 1, as we inferred from (48).

Now, I use this formula to deduce the smallest possible value of the right hand side of (49).
The shear moduli must not be equal (for anisotropy), so without loss of generality I suppose
that g2 > u;. Then, the numerator is seen to become negative by taking A; towards negative
values and A\; — +00. The smallest value A; can take is determined by the bulk modulus bound
A2+ %pg > 0. So we may set Ay = —gﬂg in b(_)th the numerator and denominator. This choice




also makes the factor Ay + 2us = %pg as small as possible in the denominator, thus helping to
magnify the effect of the negative numerator as much as possible. The result so far is that

a 3 pa—m\ =M +p/d-m
e 1= ( ) ( X ) (50)
H2 1+ 2m
The parameter A; may vary from —2p, to plus infinity. At A\; = —%u,, the second expression

in parentheses is positive, But, this expression is also a monotonically decreasing function of \;
and approaches —1 as Ay — +00. Thus, the smallest value of the P-wave anisotropy parameter
is given by

ury

3pg —
_op2 ﬂ1>__. (51)

=1
4 pup T 4

YRR~}

This result differs by a factor of 2 from the corresponding result of Postma [1955], the earlier
result being obtained improperly by allowing three of the four elastic constants to vanish and
also using a physically motivated but unnecessary restriction that both A, and A; must be
nonnegative. If we had used the nonnegativity constraint on the A’s, my result would have
changed to

a el R

-=1 >~ '
c 2u 2 (52)

which is the same inequality as that found by Postma, but his equality differed from that in
(52) and was in fact improperly obtained.
As a final point about the formula (47), note that it implies in general that

a < (A+2p), (53)

so I have a general upper bound on the P-wave anisotropy parameter stating that

) . (54)

a 1

-< (A

c” ( +2p)<’\+2"
Before concluding this section, note one further identity for the P-wave anisotropy param-

eter. The general formula can be rearranged to give

2-1= 4[5 () - ) ()] 9

This formula is not in Cauchy-Schwartz form, but is nevertheless probably the simplest form
of the result for this anisotropy parameter. In particular, it is easy to see from this form that
if either y = constant or A + p = constant, then the right hand side vanishes identically. The
first result is well-known and the second has been known since Postma’s [1955] work to be
true for two-constituent layered media [also see (49)]. The present result generalizes Postma’s
observation in this case.
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6 Significance of Fluctuations in Lamé )

Some further results of the type presented in the preceding section have been found recently
by Anno [1997] and by Berryman, Grechka, and Berge [1997]. In all cases, it is found that
fluctuations in the Lamé parameter A play a key role in the analysis. In some sense this is
inevitable for anisotropy due to layering because there are only two independent parameters,
A and g, and the first result is that the anisotropy cannot exist if the shear modulus does not
fluctuate. Thus, fluctuations in 4 may be assumed from the outset, and the only question to
be addressed is how fluctuations in A affect the results. |

It is very important to recognize however that poroelastic analysis shows the mechanical
effect of fluids is negligible on the shear modulus x but not negligible overall and therefore must
be contained entirely in changes in Lamé A. This fact provides the motivation to study effects
of layering in poroelastic media containing fluids, which is the subject of the following sections.

7 Porous Elastic Materials Containing Fluids

Now I want to broaden my scope and consider materials composing the laminate are not homo-
geneous isotropic elastic materials, but rather elastic materials containing voids or pores. The
pores may be either air-filled, or alternatively they may be partially or fully saturated with a
liquid, a gas, or a fluid mixture. For simplicity, I suppose here that the pores are either air-filled
or they are fully saturated with some other homogeneous fluid. When the porous layers are
air-filled, it is generally adequate to assume that the analysis of the preceding section holds, but
with the new interpretation that the Lamé parameters are those for the porous elastic medium
in the absence of saturating fluids. The resulting effective constants A4r and ug, are then said
to be those for “dry” — or somewhat more accurately “drained” — conditions. These con-
stants are also sometimes called the “frame” constants, to distinguish them from the constants
associated with the solid materials composing the frame, which are often called the “grain” or
“mineral” constants.

One simplification that arises immediately is due to the fact that the presence of pore fluids
has no mechanical effect on the shear moduli, so u4r = u. There may be other effects on the
shear moduli due to the presence of pore fluids, such as softening of cementing materials or
expansion of interstitial clays, which I call “chemical” effects to distinguish them from the purely
mechanical effects to be considered here. We neglect all such chemical effects in the following
analysis. This means that the lamination analysis for the effective shear moduli (since it is
uncoupled from the analysis involving A) does not change in the presence of fluids. Thus,
equations (32) and (33) continue to apply for the porcelastic problem, and we can therefore
simplify our system of equations in order to focus on the parts of the analysis that do change
in the presence of fluids.

The presence of a saturating pore fluid introduces the possibility of an additional control
field and an additional type of strain variable. The pressure p; in the fluid is the new field
parameter that can be controlled. Allowing sufficient time for global pressure equilibration will
permit us to consider p; to be a constant throughout the percolating (connected) pore fluid,
while restricting the analysis to quasistatic processes. The change ¢ in the amount of fluid mass
contained in the pores (see Berryman and Thigpen [1985]) is the new type of strain variable,
measuring how much of the original fluid in the pores is squeezed out during the compression
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of the pore volume while including the effects of compression or expansion of the pore fluid
itself due to changes in ps. It is most convenient to write the resulting equations in terms of
compliances rather than stiffnesses, so the basic equation to be considered takes the form:

en sun $12 sz —pB o\

ex2 | _|s12 su sz -0 022

ess | | %12 s12 su -B 033 (56)
- -8 -8 -8B v -ps

The constants appearing in the matrix on the right hand side will be defined in the following two
paragraphs. It is important to write the equations this way rather than using the inverse relation
in terms of the stiffnesses, because the compliances s;; appearing in (56) are simply related to
the drained constants A4, and g4 in the same way they are related in normal elasticity, whereas
the individual stiffnesses obtained by inverting the equation in (56) must contain coupling terms
through the parameters § and v that depend on the pore and fluid compliances. Thus, I find
that

_ _l_ _ Adr +
1= Edr N ﬂ(3’\dr + 2#) (57)
and
V,
812 = —E'ir ) (58)
T

where the drained Young’s modulus Ey, is defined by the second equality of (57) and the drained
Poisson’s ratio is determined by

Adr

Var = = 5
= oar + ) (59)
When the external stress is hydrostatic so ¢ = 011 = 022 = 033, the equation (56) telescopes
down to
( e ) - ( 1/Kqa, -a/Kd,.) ( o ) (60)
- -afKs ofBKi) \-ps/’

where € = €1 + €22 + €33, Kar = Adr + 34 is the drained bulk modulus, a = 1 ~ K4, /K i8
the Biot-Willis parameter [Biot and Willis, 1957] with Ky, being the bulk modulus of the solid
minerals present, and Skempton’s pore-pressure buildup parameter B [Skempton, 1954] is given
by

1

B= .
1+ KP(I/KI - 1/I{m)

(61)

New parameters appearing in (61) are the bulk modulus of the pore fluid Ky and the pore
modulus K, = a/¢K4, where ¢ is the porosity. The expressions for a and B can be generalized
slightly by supposing that the solid frame is composed of more than one constituent, in which
case the K, appearing in the definition of a is replaced by K, and the K, appearing explicitly
in (61) is replaced by K [see Brown and Korringa, 1975; Rice and Cleary, 1976; Berryman and
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Milton, 1991; Berryman and Wang, 1995]. This is an important additional complication [Berge
and Berryman, 1995], but one that I will not pursue here.
Comparing (56) and (60), I find that

a
'3 - 3I{dr ’ (62)
and
- Q
7= BKg (63)

With all the constants defined now in terms of measureable quantities, I can continue with
the analysis that generalizes the Backus [1962] approach to computing the layer averages. It
should be clear at this point that the appropriate Legendre transformed equations are

711
022 —
—ea3
¢
E/(1-v?) vE/(1-1?) v/(1-v) BE/(1-v)
vE/(1-v?*) E/(1-v?) v/(1-v) BE/(1-v)

v/(l1-v) v/1-v) —-(1-v=-2Y)/1-v)E B1+2v)/(1-v)
BE[/(1-v) BE/(1-v) A1+ 2v)/(1-v) —[y-28E/(1-v)]

€11
€22

X o33 , (64)
-Pf

with the fast variables on the left and the slow variables (actually constant) in the vector on
the right. Signs have been chosen so the matrix is symmetric. I have also dropped the subscript
dr from the drained constants v and E in (64) as there should be no confusion. Note that the
3 x 3 submatrix in the upper left is identical to that in (26) after the change in notation from
A4 to E v is taken into account. :

Once I have this equation, the averaging is trivial. If the assumed form of the resulting
equations is taken — in analogy to (6) and consistent with the general structure of the matrix

in (64) — to be

o1 a b f g €11
o2 | _|b a f g||exn 65
o |Z|f f e h)|es) (65)
-ps/  \g g h K/ \-(
then the resulting rearrangement of these equations is
<oy > a-z b-z y =z e
<o:> | _ b—z a-z y =z €22 ’ (66)
- < e3> y y uw v 033
<{> z z v ow —-ps
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where

_ [k —2fgh + cg® fk—gh cg— fh
PE g YR GoR Tl (67)
and
k h c

B R Ty M (68)

It is not difficult to check that these equations reduce correctly to the earlier ones if I first set
g =h =0 and then let k£ — 0.

Now all the matrix elements appearing in (66) are obtained directly by averaging (64) and
therefore are assumed known. I do not list all of these relations as they should be clear from
the expressions already given, but to provide two examples note that

_ B*E BE
w—2<1_u ~{vy) and z—<1_y>. (69)
Given all these equations, it is then straightforward to invert for the desired final expressions:
_ E
a= 1- 12 + -'F, (70)
b= vE
= -i—_—y—z- + z, (71)
6= m— 2
T uw —v?’ (72)
f=cy+he (73)
g = hy + kz, : (74)
v
h= —s (78)
and
u
= —— (76)

The order in which the computations are done in practice is this: first compute ¢, h, and k;
next compute f and g; then compute z using (67); finally compute & and b.

The results show that, whereas transverse isotropy due to layering in elastic materials pro-
duces five independent constants (recall that @ = b + 2m in general for transverse isotropy),
transverse isotropy due to layering in poroelastic materials results in eight independent con-
stants (a = b + 2m still holds for poroelasticity as is easily shown from our formulas). When
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performing the averaging based on (64), we see that all the new terms in the matrix depend on
averages of the poroelastic constant 3 which is proportional to the Biot-Willis parameter and
therefore related to effective stress [the relative importance of external and internal loading —
see (60)]. However, only the new diagonal term w depends directly on the bulk modulus Ky of
the pore fluid through 4. It follows that, when I solve for the effective constants, I find that w
influences all these effective constants. So the presence of pore fluid can significantly affect the
pressure dependence of such materials, while having little or no effect on the shear response.

This completes the analysis of the constants for transverse isotropy in poroelasticity arising
from thin layering of isotropic elastic and porous materials. Next I check that these results are
consistent with known general results for anisotropic poroelasticity [Gassmann, 1951: Brown
and Korringa, 1975].

8 Relations for Anisotropy in Poroelastic Materials

Gassmann [1951] and Brown and Korringa [1975] have considered the problem of obtaining
effective constants for anisotropic poroelastic materials when the pore fluid is confined within
the pores. The confinement condition amounts to the constraint that the increment of fluid
content { = 0, while the external loading o is changed and the pore-fluid pressure p; is allowed
to respond as necessary and equilibrate.

To provide a simple derivation of the Gassmann equation for anisotropic materials, I consider
the anisotropic generalization of (56)

en s %12 s —-H on

en | _| 812 s s -A 022 (77)
€33 813 823 s13 —Ps o33 |

—¢ -B1 =Pz —Bs v —ps

The shear terms are excluded as before since they do not interact mechanically with the fluid
effects. This form is again not completely general in that it includes orthorhombic, cubic,
hexagonal, and all isotropic systems, but excludes triclinic, monoclinic, trigonal, and some
tetragonal systems that would have some nonzero off-diagonal terms in the full elastic matrix.
Also, I have assumed that the material axes are aligned with the spatial axes. But this latter
assumption is not significant for the derivation that follows. Such an assumption is important
when properties of laminated materials having arbitrary orientation relative to the spatial axes
need to be considered, but I do not treat this more general problem here.

Before proceeding, I want to discuss the significance of the matrix elements appearing in (77)
briefly. In the so-called “jacketed test,” a porous sample is enclosed in a thin jacketing material
with a tube into the pore space to permit the fluid to flow freely in or out while maintaining
constant fluid pressure. Then it is sufficient to consider the case with py = 0. It is possible under
these circumstances, at least in principle, to make 12 independent measurements by varying o;;’s
and measuring e;;’s and ¢. In fact measurements of drained elastic compliances are commonly
made in such a manner, but it is less common for the 3;’s to be measured this way. To complete
the measurements, a second commeon test — the so-called “unjacketed test” — is performed in
which a uniform pressure field is applied to the sample so that 011 = 022 = 033 = —py. Then,
by making measurements of the e;;'s again as py varies, a set of solid material compliances k;
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is measured, given essentially by row sums of the matrix in (77)

. _
Ki=y sij—fBi, for i=1,2,3 (78)

i=1

These three constants are expected to be directly related to the compliances of the mineral grains
composing the porous frame; if the frame is microhomogeneous (i.e., containing a single solid
constitutent), the compliances x; will be the compliances of the mineral composing the frame
such that }; k; = 1/K,,, where K, is the bulk modulus of the mineral. If the measurement
apparatus is inadequate so that the 3;’s could not be determined directly in the jacketed test,
then we see from (78) that they can be determined by combining results from the jacketed and
unjacketed measurements on the solid compliances. The remaining constant ¥ can again be
measured (at least in principle) directly in the unjacketed test by making measurements on the
changes in fluid content {. An alternative to these rather difficult measurements is the confined
test which I describe next.

If the fluid is confined, then { = 0 in (77) and p; becomes a linear function of o1y, 022,
033. Eliminating ps from the resulting equations, I obtain the general expression for the strain
dependence on external stress under confined conditions:

e11 811 S12 13 b1 on
ez | = || 812 822 23 ) e (ﬁa ) (B B2 Bs )} (022)
€33 813 823 833 B3 : o33

»
i1 S12 913 o1
— *® *
=|si; 832 S33) o). (79)
» »
si3 833 333 o33

The s;;’s are fluid-drained constants, while the s};’s are the fluid-confined constants.
The fundamental result (79) was obtained earlier by both Gassmann [1951] and Brown and
Korringa [1975], and may be written as

85 = 8ij — E‘Tﬂi’ for i,5=1,2,3. (80)

This expression is just the anisotropic generalization of the well-known Gassmann equation for
isotropic, microhomogeneous porous media. Equation (80) has often been written in a slightly
different way, by making use of the formulas (78) to eliminate the 3’s in favor of the solid
"and drained compliances. The principal advantage of such an alternative formula is that all
constants appearing explicitly can be obtained by measurements of porous frame strain, without
resorting to the more difficult measurements of changes in pore-fiuid content.

Now it is not difficult to see that the lamination formulas derived earlier in the paper
satisfy these general conditions. This simple test provides one means of checking that I did the
lamination analysis correctly and also provides a convenient means of summarizing the results.

9 Conclusions

In the present paper, I have discussed isotropic and anisotropic poroelastic media and estab-
lished general formulas for the behavior of transversely isotropic elasticity and poroelasticity
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arising from laminations of isotropic components. The Backus [1962] averaging method is shown
to provide elementary means of constructing general formulas. The results for confined fluids
are then compared with the more general Gassmann {1951] formulas that must be satisfied by
any anisotropic poroelastic medium and found to be in complete agreement. The transition
from analysis of laminations of elastic materials to laminations of poroelastic materials in the
presence of saturating pore fluids follows easily from the simple observation that certain vari-
ables are quasistatically constant across a layered medium and provides a very intuitive and
mathematically transparent approach to obtaining formulas of current interest. Choosing to
do the analysis in terms of compliances rather than stiffnesses also proved to be an important
simplification for the poroelastic case.

Such results are especially important for applications to oil exploration using AVO (ampli-
tude versus offset) since the presence or absence of the fluid component, as well as the precise
nature of the fluid, is one of the most critical issues. For this reason, the ways in which the
fluid can influence seismic reflection data need to be understood in more detail than has been
possible in the past [Thomsen, 1993; Mukerji and Mavko, 1994).
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