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Efficient Computation of Volume of
Hexahedral Cells

Jeffrey Grandy
Lawrence Livermore National Laboratory

We describe an efficient method to compute the volume of hexahedral cells
used in three-dimensional hydrodynamics simulations. We consider two com-
mon methods for treating the hexahedron using triangular boundaries.

Motivation

In Lagrangian and ALE hydrodynamics
simulations, a crucial step in the physics
calculation is to compute the volume of a zone,
which is used to determine the density and
thermodynamics properties of the material from
the mass in the physical Lagrangian cycle, and also
to find the volume of zones after remapping the
mesh in ALE codes. Since the volume of every
zone must be computed at least once per time step
this represents a significant part of the problem
computation time and it therefore behooves us to
accomplish the volume calculation in as few as
possible floating point operations (Flops). We
focus on simulations using hexahedral zones, which
are specified by the locations of eight nodes
logically connected as a cube.

Cell Definition

The definition of the volume of the hexahedron
(hex) depends on the method used to construct
surfaces between the twelve edges of the logical
cube. Since the nodes are allowed to move
independently of each other in the physics
simulation the four edges surrounding a face of the
logical cube are not in general coplanar, and we
construct planar boundaries for the hex cell by
dividing the cube face into triangles. There are
several methods for developing a set of triangles,
and we consider two of these methods. One
method is to use the long diagonal (LD) method
for splitting the hex into six tetrahedra (tets), thus
defining a twelve-faceted triangular polyhedron to
represent the hex, a polyhedron that is isomorphic
to a hexagonal dipyramid. This method introduces
directional preferences along the diagonals selected
for triangulation, a broken symmetry which is
undesirable from a physics standpoint. Another
method, preserving the diagonal symmetry, is to

define an additional vertex at the barycenter of
each face, and construct triangles containing the
barycenter and each surrounding edge. These
additional vertices are

Te = (T + T3 + T + 77) /4
Tw = (Fg + T9 + T4 + Tg) /4
7n = (&9 + #3 + 2 +f7)/4
Ts = (By + &1 + T4 + Tr) /4
Ty = (Zy + Ty + Tg + T7) /4
Ty = (Zg+ 21 +Z9 +23)/4 (1)

Each face is divided into four triangles, and the
hex is defined by a 24-faceted triangular
polyhedron known as a tetrakis hexahedron (TH)
(Weisstein, 1997). These two definitions of a hex
are illustrated in Figure 1.

Volume Calculation

We now discuss the relative efficiency of
volume algorithms for a TH zone, which is
commonly used in physics simulations. We number
the eight original nodes as in Figure 1. A
straightforward method for computing the volume
is

24
6v = Z(zp +2q + 2r) (g — zp)(Yr — yp) —
1
(xr —2p)(yq — yp)) (2)

where the sum is over the 24 triangles and the
vertices p, q,r are oriented with the triangle
normal pointing outward from a simple hex. By
inspection this formula takes 264 Flops: 10 for
each term, 23 to add the terms, and one overall
multiplication. By reusing the differences in z and
y coordinates we can reduce the operation count to
an average of 8 per term, for a total of 216 Flops.
This method is prone to numerical cancellations
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Figure 1: Definitions of hexahedral cells from a)long diagonal triangulation, and b)tetrakis hexahedron with
face-centered vertices (subdivision of front and back faces not drawn). Logical numbering of nodes is given.

because the z coordinates are entered into
multiplication without first subtracting an offset.
Another common algorithm is to select a
central point of the TH (the barycenter z., or
average of the eight nodes, is a convenient choice)
and to construct tetragonal dipyramids
(octahedra) containing the central point, the four
nodes surrounding the face, and the vertex at the
barycenter of the face (Figure 2). The volume of

each octahedron is computed using the standard
formula:

1/12[Z; — Ty, Ty — T + o — T3,
Ty + T — Ty — 73] (3)

Voct =

- =

where [A, B, C_"] is the triple product ¢

IR A$ Bl’ CZL'
A, B, C;

By reusing the edge differences, we can use this
method to compute the volume of a TH in 199

@The author prefers the bracket notation rather than
the commonly used A- (B x C') since the latter does not
explicitly suggest equal roles for the three vectors.

Flops. This algorithm uses the formula for a
general octahedron and therefore does not use the
fact that x; is known to be located at the average
of the four face nodes.

We now develop a different method to find the
volume of a TH zone, which does take advantage
of this fact. We write the volume of the zone by
constructing tets, one of whose vertices is Zy. The
volume associated with the logical face defined by
nodes 1, 3, 7, 5, which is opposite to node 0, is

= -

bvigrs =

and substitute

12v1375 =

[(#1 — %), (F3 — Tp), (T5 — To)] +
[(Z5 — %), (F1 — Tp), (T7 — To)] +
[(Z1 — %), (F3 — Tp), (T7 — To)] +
(&3 — Z0), (@7 — Z), (&5 — Z)] (6)

For the face 0231, which contains node 0, the
volume is simply

12v0231 = [(F1 — ), (T2 — p), (T3 — Tp)]  (7)



Figure 2: Two of the six octahedra in the decompo-
sition of a 24-sided hex cell.

and the volume for the entire TH, vy gy, is
obtained by adding (6), (7), and corresponding
expressions for the other four faces:

UTH = V1375 T V4576 T V2673 +
V0231 + V0154 + V0462 (8)
We define the quantity v; as the Jacobian of the

transformation from logical space to physical space
at the point z,

16v1 = [(Z7 — 71 + Tg — T),
(T7 — %9 + 5 — 7)),
(T7 — T4 + @3 — 7)] (10)

We write the columns of (10) as
(7 — @) — (F1 — Tp) + (F6 — Tp)
etc., expand (10), and compare with (8), to obtain
120y = 16v] —
([(Z6 — 7o), (F5 — Tp), (F3 — Tp)] +
[(Z7 — 21), (F7 — T), (7 — T)]) (

where the triple products in (11) are positive for a
unit cube, and therefore this formula subjects the
volume to a slight subtractive cancellation. This
subtraction is easily removed by substituting (10)

11)

Figure 3: Graphical representation of the first term
in (12). The three vectors in the triple product are
the logical-plane diagonals 03 and 27, and the av-
erage of 06 and 17. The other two terms are cyclic
permutations of these logical-plane diagonals.

into (11), and the result is

2vpg = [(@7 — 1) + (T — Tp),
(Z7 — T9), (3 — o)) +
[(Zs — Zp), (F7 — T2) + (T5 — o),
(T7 — T4)] +
[(#7 — #1), (F5 — To),
(T7 — T4) + (T3 — Ty)] - (12)

All of the differences in parentheses in (12) are
plane diagonals, and one of the terms is illustrated
in Figure 3. This algorithm for computing vy g
requires 27 Flops to find sums and differences of
node coordinates, three (3 x 3) determinants with
14 Flops each, and three additional Flops for
adding and normalizing the volume, for a total of
72 Flops to compute vpgr. The formula (12) has
been applied in a mesh generation code.

Volume of LD Hexahedron

The LD hexahedron (Figure 1a) comprises 12
triangular facets and eight vertices whose
coordinates are in general unrelated to each other.
A generic method for computing the volume is to
treat this LD hex as a hexagonal dipyramid,
decomposing it into two octahedra and using the
formula for an octahedron volume described above.



Figure 4: Graphical representation of the first term
n (14). The triple product contains the body diago-
nal connecting the two apex nodes 0 and 7, a logical
plane diagonal opposite to the triangulation, and an
edge. The other two terms are cyclic permutations
of the edge and plane vectors.

The following expression for the volume vy,p
represents one such decomposition:

[(Z7 — Zp),

(Z1 + T6) — (¥4 + T5),

—(#1 — Z6) + (T4 — T5)] +

12’ULD =

[(F7 — o),
(T1 + %) — (I3 + 7o),
(Z1 — T6) + (T3 — T2)] (13)

Since nodes 0 and 7 are the apex points of the LD
triangulation, they enter vy differently from the
other six nodes. In equation (13) nodes 1 and 6 are
the joints of the decomposition into octahedra; one
could have selected 2 and 5, or 3 and 4. This
expression requires 33 Flops to precompute the
sums and differences of vectors, 28 Flops for two
determinants, and two flops at the end to combine
and normalize, for a total of 63 Flops.
Alternatively one may compute vy, p using three
(3 x 3) determinants with simpler constituents:

[(F7 — &), (F1 — ), (F3 — 75)] +
[(F7 — ), (F4 — L), (T5 — T6)] +
[(F7 — T0), (Fo — ), (Fe — T3)] (14)

Algorithm (14) requires seven vector subtractions
(21 Flops), and three determinants. However, since

6’ULD =

the first column is the same for all three terms, we
can combine the (2 x 2) minors and compute the
sum of determinants in 38 Flops. Including the
overall normalization brings the total for (14) to 60
Flops. We therefore obtain an advantage by using
three determinants since less precomputations of
vector sums and differences are needed than for
(13). An illustration of the first term of (14) is
shown in Figure 4.

Summary

We have studied algorithms for computing two
different commonly used definitions of the volume
of hexahedral cells, such as are used in
hydrodynamics simulations. For the face-centered
(24-faceted) type of hexahedron, we have shown
that the volume can be computed in 72 Flops. For
the 12-faceted hexahedron derived from a long
diagonal decomposition, the volume can be
computed with 60 Flops. We plan to present a
detailed comparison of roundoff properties of the
various volume algorithms in a followup paper.
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