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E�cient Computation of Volume of
Hexahedral Cells

Je�rey Grandy

Lawrence Livermore National Laboratory

We describe an e�cient method to compute the volume of hexahedral cells
used in three-dimensional hydrodynamics simulations. We consider two com-
mon methods for treating the hexahedron using triangular boundaries.

Motivation

In Lagrangian and ALE hydrodynamics

simulations, a crucial step in the physics

calculation is to compute the volume of a zone,

which is used to determine the density and

thermodynamics properties of the material from

the mass in the physical Lagrangian cycle, and also

to �nd the volume of zones after remapping the

mesh in ALE codes. Since the volume of every

zone must be computed at least once per time step

this represents a signi�cant part of the problem

computation time and it therefore behooves us to

accomplish the volume calculation in as few as

possible 
oating point operations (Flops). We

focus on simulations using hexahedral zones, which

are speci�ed by the locations of eight nodes

logically connected as a cube.

Cell De�nition

The de�nition of the volume of the hexahedron

(hex) depends on the method used to construct

surfaces between the twelve edges of the logical

cube. Since the nodes are allowed to move

independently of each other in the physics

simulation the four edges surrounding a face of the

logical cube are not in general coplanar, and we

construct planar boundaries for the hex cell by

dividing the cube face into triangles. There are

several methods for developing a set of triangles,

and we consider two of these methods. One

method is to use the long diagonal (LD) method

for splitting the hex into six tetrahedra (tets), thus

de�ning a twelve-faceted triangular polyhedron to

represent the hex, a polyhedron that is isomorphic

to a hexagonal dipyramid. This method introduces

directional preferences along the diagonals selected

for triangulation, a broken symmetry which is

undesirable from a physics standpoint. Another

method, preserving the diagonal symmetry, is to

de�ne an additional vertex at the barycenter of

each face, and construct triangles containing the

barycenter and each surrounding edge. These

additional vertices are

~xe = (~x1 + ~x3 + ~x5 + ~x7)=4

~xw = (~x0 + ~x2 + ~x4 + ~x6)=4

~xn = (~x2 + ~x3 + ~x6 + ~x7)=4

~xs = (~x0 + ~x1 + ~x4 + ~x5)=4

~xt = (~x4 + ~x5 + ~x6 + ~x7)=4

~xb = (~x0 + ~x1 + ~x2 + ~x3)=4 (1)

Each face is divided into four triangles, and the

hex is de�ned by a 24-faceted triangular

polyhedron known as a tetrakis hexahedron (TH)

(Weisstein, 1997). These two de�nitions of a hex

are illustrated in Figure 1.

Volume Calculation

We now discuss the relative e�ciency of

volume algorithms for a TH zone, which is

commonly used in physics simulations. We number

the eight original nodes as in Figure 1. A

straightforward method for computing the volume

is

6v =

24X

1

(zp + zq + zr)((xq � xp)(yr � yp)�

(xr � xp)(yq � yp)) (2)

where the sum is over the 24 triangles and the

vertices p; q; r are oriented with the triangle

normal pointing outward from a simple hex. By

inspection this formula takes 264 Flops: 10 for

each term, 23 to add the terms, and one overall

multiplication. By reusing the di�erences in x and

y coordinates we can reduce the operation count to

an average of 8 per term, for a total of 216 Flops.

This method is prone to numerical cancellations
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Figure 1: De�nitions of hexahedral cells from a)long diagonal triangulation, and b)tetrakis hexahedron with

face-centered vertices (subdivision of front and back faces not drawn). Logical numbering of nodes is given.

because the z coordinates are entered into

multiplication without �rst subtracting an o�set.

Another common algorithm is to select a

central point of the TH (the barycenter xc, or
average of the eight nodes, is a convenient choice)

and to construct tetragonal dipyramids

(octahedra) containing the central point, the four

nodes surrounding the face, and the vertex at the

barycenter of the face (Figure 2). The volume of

each octahedron is computed using the standard

formula:

voct = 1=12[~xc � ~xb; ~x0 � ~x1 + ~x2 � ~x3;

~x0 + ~x1 � ~x2 � ~x3] (3)

where
h
~A; ~B; ~C

i
is the triple product a

h
~A; ~B; ~C

i
=

Ax Bx Cx
Ay By Cy
Az Bz Cz

: (4)

By reusing the edge di�erences, we can use this

method to compute the volume of a TH in 199

aThe author prefers the bracket notation rather than

the commonly used ~A � ( ~B�
~C) since the latter does not

explicitly suggest equal roles for the three vectors.

Flops. This algorithm uses the formula for a

general octahedron and therefore does not use the

fact that xb is known to be located at the average

of the four face nodes.

We now develop a di�erent method to �nd the

volume of a TH zone, which does take advantage

of this fact. We write the volume of the zone by

constructing tets, one of whose vertices is ~x0. The
volume associated with the logical face de�ned by

nodes 1; 3; 7; 5, which is opposite to node 0, is

6v1375 = [(~x1 � ~x0); (~x3 � ~x0); (~xe � ~x0)] +

[(~x3 � ~x0); (~x7 � ~x0); (~xe � ~x0)] +

[(~x7 � ~x0); (~x5 � ~x0); (~xe � ~x0)] +

[(~x5 � ~x0); (~x1 � ~x0); (~xe � ~x0)] (5)

and substitute (1) into (5) to obtain

12v1375 = [(~x1 � ~x0); (~x3 � ~x0); (~x5 � ~x0)] +

[(~x5 � ~x0); (~x1 � ~x0); (~x7 � ~x0)] +

[(~x1 � ~x0); (~x3 � ~x0); (~x7 � ~x0)] +

[(~x3 � ~x0); (~x7 � ~x0); (~x5 � ~x0)] (6)

For the face 0231, which contains node 0, the

volume is simply

12v0231 = [(~x1 � ~x0); (~x2 � ~x0); (~x3 � ~x0)] (7)



10

2

7

5

6

4

3

Figure 2: Two of the six octahedra in the decompo-

sition of a 24-sided hex cell.

and the volume for the entire TH, vTH , is

obtained by adding (6), (7), and corresponding

expressions for the other four faces:

vTH = v1375 + v4576 + v2673 +

v0231 + v0154 + v0462 (8)

We de�ne the quantity v1 as the Jacobian of the

transformation from logical space to physical space

at the point xc,

v1 = [(~xt � ~xb); (~xe � ~xw); (~xn � ~xs)] (9)

which reduces to

16v1 = [(~x7 � ~x1 + ~x6 � ~x0);

(~x7 � ~x2 + ~x5 � ~x0);

(~x7 � ~x4 + ~x3 � ~x0)] (10)

We write the columns of (10) as

(~x7 � ~x0)� (~x1 � ~x0) + (~x6 � ~x0)

etc., expand (10), and compare with (8), to obtain

12vTH = 16v1 �

([(~x6 � ~x0); (~x5 � ~x0); (~x3 � ~x0)] +

[(~x7 � ~x1); (~x7 � ~x2); (~x7 � ~x4)]) (11)

where the triple products in (11) are positive for a

unit cube, and therefore this formula subjects the

volume to a slight subtractive cancellation. This

subtraction is easily removed by substituting (10)
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Figure 3: Graphical representation of the �rst term

in (12). The three vectors in the triple product are

the logical-plane diagonals 03 and 27, and the av-

erage of 06 and 17. The other two terms are cyclic

permutations of these logical-plane diagonals.

into (11), and the result is

12vTH = [(~x7 � ~x1) + (~x6 � ~x0);

(~x7 � ~x2); (~x3 � ~x0)] +

[(~x6 � ~x0); (~x7 � ~x2) + (~x5 � ~x0);

(~x7 � ~x4)] +

[(~x7 � ~x1); (~x5 � ~x0);

(~x7 � ~x4) + (~x3 � ~x0)] : (12)

All of the di�erences in parentheses in (12) are

plane diagonals, and one of the terms is illustrated

in Figure 3. This algorithm for computing vTH
requires 27 Flops to �nd sums and di�erences of

node coordinates, three (3� 3) determinants with

14 Flops each, and three additional Flops for

adding and normalizing the volume, for a total of

72 Flops to compute vTH . The formula (12) has

been applied in a mesh generation code.

Volume of LD Hexahedron

The LD hexahedron (Figure 1a) comprises 12

triangular facets and eight vertices whose

coordinates are in general unrelated to each other.

A generic method for computing the volume is to

treat this LD hex as a hexagonal dipyramid,

decomposing it into two octahedra and using the

formula for an octahedron volume described above.
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Figure 4: Graphical representation of the �rst term

in (14). The triple product contains the body diago-

nal connecting the two apex nodes 0 and 7, a logical

plane diagonal opposite to the triangulation, and an

edge. The other two terms are cyclic permutations

of the edge and plane vectors.

The following expression for the volume vLD
represents one such decomposition:

12vLD = [(~x7 � ~x0);

(~x1 + ~x6)� (~x4 + ~x5);

�(~x1 � ~x6) + (~x4 � ~x5)] +

[(~x7 � ~x0);

(~x1 + ~x6)� (~x3 + ~x2);

(~x1 � ~x6) + (~x3 � ~x2)] (13)

Since nodes 0 and 7 are the apex points of the LD

triangulation, they enter vLD di�erently from the

other six nodes. In equation (13) nodes 1 and 6 are

the joints of the decomposition into octahedra; one

could have selected 2 and 5, or 3 and 4. This

expression requires 33 Flops to precompute the

sums and di�erences of vectors, 28 Flops for two

determinants, and two 
ops at the end to combine

and normalize, for a total of 63 Flops.

Alternatively one may compute vLD using three

(3� 3) determinants with simpler constituents:

6vLD = [(~x7 � ~x0); (~x1 � ~x0); (~x3 � ~x5)] +

[(~x7 � ~x0); (~x4 � ~x0); (~x5 � ~x6)] +

[(~x7 � ~x0); (~x2 � ~x0); (~x6 � ~x3)] (14)

Algorithm (14) requires seven vector subtractions

(21 Flops), and three determinants. However, since

the �rst column is the same for all three terms, we

can combine the (2� 2) minors and compute the

sum of determinants in 38 Flops. Including the

overall normalization brings the total for (14) to 60

Flops. We therefore obtain an advantage by using

three determinants since less precomputations of

vector sums and di�erences are needed than for

(13). An illustration of the �rst term of (14) is

shown in Figure 4.

Summary

We have studied algorithms for computing two

di�erent commonly used de�nitions of the volume

of hexahedral cells, such as are used in

hydrodynamics simulations. For the face-centered

(24-faceted) type of hexahedron, we have shown

that the volume can be computed in 72 Flops. For

the 12-faceted hexahedron derived from a long

diagonal decomposition, the volume can be

computed with 60 Flops. We plan to present a

detailed comparison of roundo� properties of the

various volume algorithms in a followup paper.
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