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ABSTRACT

The minimum discarded fill (MDF) ordering strategy for incomplete factorization iterative solvers is
developed. MDF ordering is demonstrated for several model son-symmetric problems, as well as a wat_r-
floodingsimulation which uses an unstructured grid. The model problems show a three to five fold decrease in

- ihe number of iterations compared to natural orderings. Greater than twofold improvement was observed _r
the waterflooding simulation.
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A_BS TRA C T

The minimum discarded fill (MDF) ordering strategy for incomplete

factorization iterative solvers is developed. MDF ordering is demon-

strated for several model non-symmetric problems, as well as a water-

flooding simulation which uses an unstructured grid. The model prob-

lems show a three to five fold decrease in the number of iterations com-

pared to natural orderings. Greater than twofold improvement was

observed for the waterflooding simulation.



Introduction

In petroleum reservoirs, the absolute permeabilities are often highly anisotropic

and discontinuous. Consequently, the matrices generated in reservoir simulation typi-

cally have coefficients which vary by several orders of magnitude. Several authors

have noted [1-11] that this has the effect, of making the convergence rate of incomplete

factorization methods (ii, U) sensitive to the node ordering. Various heuristic methods

have been mlggested for alleviating this problem [1-11]. Probably the most successful

teetinique has been a red-black reduced system method [3-6].

There has been a recent trend towards using highly unstructured grids in reservoir

simulation. These types of grids arise in modelling of faults and pinehouts [12], use of

local mesh refinement [13], finite volume type grids [14,15], and multiple porosity, mul-

tiple permeability systems [16]. It is p_ssible to use a generalized red-black [12] order-

ing method in these situations, but ir the average node connectivity is large, the

reduced system will not be much smaller than the original system.

The combination of an unstructured grid with a highly hetrogeneous absolute per-

meabilities makes ILU methods very sensitive to the node numbering. In many eases,

there is no obvious "natural" way to order the unknowns.

It is not possible to determine an ordering for an ILU method based solely on the

non-zero structure of the matrix. For example, consider the equation

a (K_ aP) a aP+77 77)=0.
Suppose that this equation is diseretized using the usual five point operator. If

/Cz >> K_, an fLU method (for any level > 0) converges faster if g-a: ordering is

used, than if x-!/ ordering is specified [11]. This can be explained by noting that the

fill terms decay more rapidly for y-x ordering than for a:-y numbering [4]. In other

words, the error in the ILU decomposition for any given level (greater than level 0) is

smaller for y-x ordering than for x-y ordering. Of course, both orderings give rise

to matrices with identical structures. Clearly, it is necessary to take into account the

actual values of matrix entries, not just the non-zero structure.

In this article, we will describe an automatic ordering technique t'or arbitrary

sparse matrices. This method is based on the idea of selecting an ordering which

minimizes (locally) the discarded i]ll in an ILU {'aetcrization. This technique will be

demonstrated on some model non-symmetric problems, as well as a waterflooding reser-

voir simulation problem.
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lt is interesting to r,ote'that MDI?(1) automatically produces a generalized red-

black ordering [11]. tr the original matrix is two-cyclic, then this is equivalent to tile

usual red-black reduced system approach with an MDF(0) reordering of the reduced

system. This technique also correctly orders an anisotropic system (equation (1))[11].

[11], IVIDF rdering w tested on wide variety of symmetricIn a previous article o as a

matrices, with discontinuous and anisotropie c'oefficients, similar to an IMPES pressure

equation, lt was round that the MDF ordering was never worse than "natural" order-

ing, and in some instances reduced the number of iterations required for convergence

by a factor of four to rive [11].

Some model non,symmetric examples are given in the following. As weil, we will

also demonstrate the efficient use of MDF ordering for adaptive implicit reservoir simu-

lation.

3. Convection Diffusion Equation With Upstream, Weighting

The first test problem is the convection diffusion equation

Pzx +Pyy-,3ex-qP,/- -q (3)

which is discretized on the unit square with mesh size h in the following way:

(P,.+I,,.- -P,',j)+ (4)
h 2 h _

(P,' j+t-Pi,j) (Pi,j-l--Pi,.,')
4 +

h '2 h"

--rain (15i,j, O) h o-

(P,,,j
' --max(/5i,j,, 0) ha

(P,',j+ t -P,' j)

--min ('_,,,j, O) h 2

(P,',j-Pi,.i-1)

-max ('Tj,j, O) h,a

qi ,j

h,., "



A second problem was also tested using a more complex velocity field. Ali param-

eters used were the same as previously, except that

_= + 50 (7)

y=+lO0 i =2nx//3, . . . , nx

y=nv/2 .... ,ny

#= -Ioo

_/= +100 i=l, . . . ,nx/3

j:l,... ,ny/3

3= +I00

"7: --100 for all remaining nodes.

The results for this problem are shown in Table 2. Again, the MDF ordering shows a

dramatic reduction in the number of iterations. The MDF(0) ordering is shown in Fig-

are 3. While it might be possible to guess the correct ordering for the simple constant

velocity case, the complex velocity profile results is a very complicated ordering pat-

tern. Figure 4 shows the ordering for MDF(1). Note the checkerboard red-black type

initial ordering.

1 These examples show that the MDF technique produces an intuitively correct ord-

ering in simple cases, and also gives good results in terms of a decrease in the number

of iterations, for more complex situations.
J

4. Convection Diffusion Equation with Central Weighting

For this example, equation (3) was discretized with central weighting on the con-

vect!ve term:

(Pi+l.j-Pi.j) (Pi-l,j-Pi,j)+ (8)
h 2 h.2

(P,,j+P,' j) (Pi,j-I--P,',j)
+ +

h '2 h o
!

"/i,j (Pi --Pi )#i : (Pi --Pi ,j) 2h ,j+t t+,,j -, ,j_

"111
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original grid was post, processed using a Delauney type edge swap [20-22] to minimize

the number of negative transmissibilities. After edge swapping, the fraction of nega-

tive transmissibilities was < 0.5%. The resulting grid shown in Figure 5 consists of

f'_'_ o6] also employed.2301 nodes. Adaptive implicit timestepping t--"'-" was

After the edge swapping was performed, the resulting grid was then imported

buck into the grid generation package, and the numbering was "optimized". This ord-

ering was designed to minimize the t_andwidth for a direct solver. Since this would be

fairly typical of the node numbering normally used for a grid of the type shown in Fig-

ure 5, this or, tering was designated as the natural ordering.

In general, there are two unknowns per node (pressure P and saturation S w), and

consequently the Jacobian is a block matrix. Rather than apply MDF ordering to the

entire matrix, we adopt a simpler strategy.

The pressure can be considered to be an elliptic or parabolic-like variable, while

thesaturation is hyperbolic-like. As a result, lt is expected that the convergence rate

of the iterative solver will be dominated by the pressure variables. This behaviour has

been confirmed b'y the performance of the combinative iterative method [4].

Figure 6a shows a typical block line of the Jacobian. After multiplying by the

inverse of the diagonal (the usual first step in an adaptive implicit method), we can

regard the entries marked "e" in Figure 6b as insignificant as regards ordering, A

pressure equation is formed by taking e to be small, and hence a completely decoupled

pressure equation results (Figure 6c) for each node. This process is repeated for ali

' block lines. The MDF ordering is then applied to this reduced pressure matrix. Once

the ordering has been determined, the original block matrix is reordered, using this

new node numbering. A block reordering is used, so that unknowns associated with

each node remain tightly coupled together.

The waterflooding problem was run to a simulated tinge of 15 years, and the water

saturation map at that time is shown in Figure 7. Several major well changes occurred

during course of this run (i.e. producers converted to injectors) in order to provide a

severe test for the iterative solver.

Two complete runs were curried out. The first run used a generalized red-black

reduced system ILU. All black to red connections were eliminated exactly, while ali

black-black connections were eliminated to level 1. The generalized red-black ordering

was determined using the original natural ordering (as defined by the grid generation

software) as a starting point.
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The convection diffusion equation was used to generate a difficult matrix problem

by using central weighting on the convective term combined with a non-trivial velocity

field. Iterative techniques that failed to converge using natural ordering did converge

using NdDF ordering.

The use of MDF ordering improved convergence for both Orthomin and CGS

acceleration. Clearly, a good ordering is beneficial regarai ss of the acceleration method

used. h

MDF ordering was also demonstrated on a waterflooding problem which used an

unstructured grid. The ordering was determined by using a reduced pressure matrix,

which is a simple and effective strategy. MDF ordering reduced the total number of

iterations by more than a factor of two. The total reordering cost was less than 1.5°_

of the total CPU cost.

The M])F ordering method provides an effective technique to reduce a matrix

solution cost for incomplete factorization iterative methods. This technique can be

applied to IMPES, fully implicit, or adaptive implicit simulators.

The largest reduction in solution cost will be observed in problems having highly

anisotropic and heterogelieous permeabilities, or in simulations carried out using highly

unstructured grids.
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TALLE 1

Results for convection diffusion problem, upstream weighting, constant velocity field,

Number of Iterations

CGS Orthomin
.... J " " ,, "" '"' '"'" :l ', ,,,,

Level of ILU Natural Ordering MDF Natural Ordering MDF
, ,,,,,, ,,,, ,,,,,

mU(0) 17 3 28 5

Rs/mu(0) s 2 _ 4
,,_ .... .... ,r _,, . ,. --,, ,., ,,,
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TABLE 3

Results for convection diffusion problem, central weighting, complex velocity field.

Number of Iterations
,, , ,, , ,,, ,,,,,

CGS Orthomin
....... i ,, ,, '," , '"' , "'

Level of ILU Na_:','al Ordering MDF Natural Ordering MDF
.. , ,, , .,-, ,,% .., ; ,

RS/ILU(0) *** 36 *** 60
,, ,, , ,,, ,, ,,, .... _, ,J

***did not converge in 200 iterations
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FIGURE 1
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FIGURE 3

Ordering for MDF(O), upstream convection diffusion problem, complex velo-
city field. Darkest-first; lightest-last.



FIGURE 5
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Grid for waterflooding problem.
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Water saturation values for the waterflooding simulation, time -- 15 years.






