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ABSTRACT

The minimum discarded fill (MDF) ordering strategy for incomplete factorization iterative solvers is
developed. MDF ordering is demonstrated for several model son-symmetric problems, as well as a water-
flooding simulation which uses an unstructured grid. The model problems show a three to five fold decrease in
the number of iterations compared to natural orderings. Greater than twofold improvement was observed
the waterflooding simulation.
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ABSTRACT

The minimum discarded fill (MDF') ordering strategy for incomplete
factorization iterative solvers is developed. MDF ordering is demon-
strated for several model non-symmetric problems, as well as a water-
flooding simulation which uses an unstructured grid. The model prob-
lems show a three to five fold decrease in the number of iterations com-

pared to natural orderings. Greater than twofold improvement was
observed for the waterflooding simulation.



Introducticn

In petroleum reservoirs, the absolute permeabilities are often highly anisotropic
and discontinuous. Consequently, the matrices generated in reservoir simulation typi-
cally have coefficients which vary by several orders of magnitude. Several authors
have noted [1-11] that this has the effect of making the convergence rate of incomplete
factorization methods (ILU) sensitive to the node ordering. Various heuristic methods
have been suggested for alleviating this problem [1-11]. Probably the most successful
technique has been a red-black reduced system method [3-6].

There has been a recent trend tawards using highly unstructured grids in reservoir
simulation. These types of grids arise in modelling of faults and pinchouts [12], use of
local mesh refinement [13], finite volume type grids [14,15], and multiple porosity, mul-
tiple permeability systems [16]. It is pnssible to use a generalized red-black [12] order-
ing method in these situations, but if the average node connectivity is large, the
reduced system will not bé much smaller than the original system.

The combination of an unstructured grid with a highly hetrogeneous absolute per-
meabilities makes ILU methods very sensitive to the node numbering. In many cases,

there is no obvious ‘‘natural’” way to order the unknowns.
[t is not possible to determine an ordering for an ILU method based solely on the

non-zero structure of the matrix. For example, consider the equation
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Suppose that this equation is discretized using the usual five point operator. If
K, > K,, an [LU methoq (for any level > 0) converges faster if y—z ordering is
used, than if z —y ordering is specified [11]. This can be explained by noting that the
fill terms decay more rapidly for y —z ordering than for £ —y numbering [4]. In other
words, the error in the ILU decomposition for any given level (greater than level 0) is
smaller for y—z ordering than for z—y ordering. Of course, both orderings give rise
to matrices with identical structures. Clearly, it is necessary to take into account the

actual values of matrix entries, not just the non-zero structure.

In this article, we will describe an automatic ordering technique for arbitrary
sparse matrices. This method is based on the idea of selecting an ordering which
minimizes (locally) the discarded fill in an ILU factcrization. This Lechnique‘will be
demonstrated on some model non-symmetric problems, as well as a waterflooding reser-

voir simulation problem.



It is interesting to note that MDF(1) automatically produces a generalized red-
black ordering [11]. [f the original matrix is two-cyclic, then this is equivalent to the
usual red-black reduced system approach with an MDF(0) reordering of the reduced

system. This technique also correctly orders an anisotropic system (equation (1)) [11].

In a previous article [11], MDF ordering was tested on a wide variety of sym‘metric
matrices, with discontinuous and anisotropic coefficients, similar to an IMPES pressure
equation. It was found that the MDF ordering was never worse than ‘‘natural’ order-
ing, and in some instances reduced the number of iterations required for convergence
by a factor of four to five [11].

Some model non-symmetric examples are given in the following. As well, we will
also demonstrate the efficient use of MDF ordering for adaptive implicit reservoir simu-
lation.

3. Convection Diffusion Equation With Upstream Weighting

The first test problem is the convection diffusion equation
Py +P,, —BP,—YP,= —q (3)
which is discretized on the unit square with mesh size 2 in the following way:
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A second problem was also tested using a more complex velocity field. All param-
eters used were the same as previously, except that

B= +50 | (7)
v=+100 i=2nz/3,...,nz
j=ny/2, . , nY
B= —100
= +100 i=1,...,nz/3
=1, , Ny /3
B= 4100
= —100 ' for all remaining nodes.

The results for this problem are shown in Table 2. Again, the MDF ordering shows a
dramatic reduction in the number of iterations. The MDF(0) ordering is shown in Fig-
vre 3. While it might be possible to guess the correct ordering for the simple constant
velocity ca.ée, the complex velocity profile results is a very complicated ordering pat-
tern. Figure 4 shows the ordering for MDF(1). Note the checkerboard red-black type
‘initial ordering.

These examples show that the MDF technique produces an intuitively correct ord-
ering in simple cases, and also gives good results in terms of a decrease in the number
of iterations, for more complex situations.

4. Convection Diffusion Equation with Central Weighting

For this example, equation (3) was discretized with central weighting on the con-

vective term:

(P1,1+Pi,j) (Pt j-1 P1])
hi’ hQ
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original grid was post-processed using a Delauney type edge swap [20-22] to minimize
the number of negative transmissibilities. After edge swapping, the fraction of nega-
tive transmissibilities was < 0.5%. The resulting grid shown in Figure 5 consists of
2301 nodes. Adaptive implicit timestepping [23-26] was also employed.

After the edge swapping was performed, the resulting grid was then imported
back into the grid generation package, and the numbering was “optimized’. This ord-
ering was designed to minimize the bandwidth for a direct solver. Since this would be
fairly typical of the node numbering normally used for a grid of the type shown in Fig-
ure 5, this orlering was designated as the natural ordering.

In general, there are two unknowns per node (pressure P and saturation S, ), and
consequently the Jacobian is a block matrix. Rather than apply MDF ordering to the
entire matrix, we adopt a simpler strategy.

The prossure can be considered to be an elliptic or parabolic-like variable, while
the saturation is hyperbolic-like. As a result, it is expected that the convergence rate
of the iterative solver will be dominated by the pressure variables. This behaviour has

been confirmed by the performance of the combinative iterative method [4].

Figure 6a shows a typical block line of the Jacobian. After multiplying by the
inverse of the diagonal (the usual first step in an adaptive implicit method), we can
regard the entries marked ‘‘¢'" in Figure 6b as insignificant as regards ordering. A
pressure equation is formed by taking € to be small, and hence & completely decoupled
pressure equation results (Figure 6c) for each node. This process is repeated for all
block lines. The MDF ordering is then applied to this reduced pressure matrix. Once
the ordering has been determined, the original block matrix is reordered, using this
new node numbering. A block reordering is used, so that unknowns associated with
each node remain tightly coupled together.

The waterflooding problem was run to a simulated timne of 15 years, and the water

saturation map at that time is shown in Figure 7. Several major well changes occurred

“during course of this run (i.e. producers converted to injectors) in order to provide a

severe test for the iterative solver.

Two complete runs were carried out. The first run used a generalized red-black
reduced system ILU. All black to red connections were eliminated exactly, while all
black-black connections were eliminated to level 1. The generalized red-black ordering
was determined using the original natural ordering (as defined by the igrid generation
software) as a starting point.
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The convection diffusion equation was used to generate a difficult matrix problem
by using central weighting on the convective term combined with a non-trivial velocity
field. Iterative techniques that failed to converge using natural ordering did converge
using MDF ordering.

The use of MDF ordering improved convergence for both Orthomin and CGS

acceleration. Clearly, a good ordering is beneficial regardiess of the acceleration method
used. |

MDF ordering was also demonstrated on a waterflooding problem which used an
unstructured grid. The ordering was determined by using a reduced pressure matrix,
which is a simple and effective strategy. MDF ordering reduced the total number of
iterations by more than a factor of two. The total reordering cost was less than 1.5%
of the total CPU cost. ‘

‘The MDF ordering method provides an effective technique to reduce a matrix
solution cost for incomplete factorization iterative methods. This technique can be
applied to IMPES, fully implicit, or adaptive implicit simulators.

The largest reduction in solution cost will be observed in problems having highly
anisotropic and heterogerieous permeabilities, or in simulations carried out using highly
unstructured grids.
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TAILE 1

Results for convection diffusion problem, upstream weighting, constant velocity field.

Number of Iterations

CGS

Level of ILU

ILU(0)
RS/ILU(0)

Orthomin
MDF | Natural Ordering
3 28
2 7

MDF
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TABLE 3

Results for convection diffusion problem, central weighting, complex velocity field.

Number of Iterations

CGS Orthomin
Level of ILU | Natrral Ordering | MDF | Natural Ordering | MDF
RS/ILU(0) xoxx 36 o x 60 |

***did not converge in 200 iterations
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FIGURE 2

Ordering for MDF(0), upstream convection diffusion problem, complex velo-
city field. Darkest-first; lightest-last.
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