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Executive Summary

Norman M. Edelstein and Alfred S. Schlachter
Lawrence Berkeley Laboratory
Berkeley, CA 94720

Introduction

The Advanced Light Source (ALS), a national synchrotron radiation facility, is
nearing completion at the Lawrence Berkeley Laboratory (LBL). Beginning in spring
1993, when it opens its doors to researchers, the ALS will produce the world’s brightest
light for experiments utilizing the vacuum ultraviolet (VUV) ana soft x-ray regions of
the spectrum.

For the first time, a synchrotron radiation source will be located at a laboratory that
has an ongoing and active program in actinide research—in fact, at the very place where
the first transuranium elements were discovered. As a result, the infrastructure is
available for the safe handling of actinide materials. A beamline dedicated to research
on actinides and other radioactive materials has been proposed for the ALS. Planned as
a branchline of ALS Beamline 9.0, it will deliver photons in the energy range 20-300 eV
from an 8.0-cm-period undulator (U8) into an isolated enclosure housing the actinide
end stations. The U8 photon beam will be characterized by tunability, brightness, high
flux, narrow bandwidth, and very small spot size. Photons up to 1000 eV also may be
deflected from an adjacent bending-magnet beamline into the actinide end stations.

This proposed actinide facility will have numerous applications that would help
solve difficult problems of national concern. Taking advantage of the high photon flux,
tunability, and small spot size, researchers can map radioactive elements on surfaces
while distinguishing their oxidation states; elucidate elemental diffusion profiles;
evaluate radiation damage in activated reactor materials; and investigate and
characterize radionuclide materials used in medical applications. Environmental
applications include the examination of container materials used for storing nuclear fuel
rods, surface-interface investigations of materials (e.g., glasses) used for encapsulating
nuclear waste, depth-profiling of such materials for various radionuclides before and
after leaching tests, the study of corrosion effects on spent nuclear fuel rod cladding and
materials, and the demonstration of surface passivation of actinide materials and their
containers for long-term storage. In the area of nonproliferation of nuclear materials,
the actinide facility will provide a capability for the trace analysis of the ratios of
uranium and plutonium.

Overview

A workshop on "Synchrotron Radiation in Transactinium Research" was held at LBL
on October 1-2,1992. Its purpose was twofold: (1) to evaluate the community interest
in the use of synchrotron radiation in the energy range from 20 eV to approximately
1000 eV for the study of the electronic, magnetic, and structural properties of the



transactinium elements and their compounds; and (2) to define the scientific
opportunities that will be made available by the proposed actinide facility.

An earlier international workshop, "Perspectives on the Use of Synchrotron
Radiation in Transuranium Research,” was held at Karlsruhe, Germany, in 1985. One
major conclusion of this workshop was that the use of synchrotron radiation in
transuranium research is highly desirable, in both the VUV and the hard x-ray range,
because of important scientific results that would be obtained. Nevertheless, to date, no
VUV facility that can utilize radioactive materials has been built at any synchrotron.

At LBL, sixteen invited speakers described the types of basic and applied scientific
research that could be conducted at the proposed actinide facility. The topics
encompassed a broad range of physics and chemistry. A number of speakers described
high-resolution and resonant photoemission experiments on heavy Fermion systems
and emphasized that the electronic-structure information obtained from transuranium
systems would greatly enhance the understanding of electron correlation effects, not
only in the actinides but also in other parts of the Periodic Table. To this end, the
theories used to describe these phenomena must also undergo continuing development.
The high flux and tunability of the photon beam allow the surface of materials to be
investigated and depth profiling measurements to be made. Measurements of this type
are important for determining surface structures, interface phenomena, catalytic
behavior, and corrosion properties. Surface-structure electronic calculations must be
correlated with the experiments. Applications of magnetic circular dichroism (MCD)
experiments with synchrotron radiation were also discussed.

Many speakers noted that the characteristics of the photon beams from an ALS
actinide beamline—tunability, brightness, narrow bandwith, and very small spot size—
are paramount in transuranium research because they allow the use of very small
samples, which greatly reduces radioactivity safety concerns. These characteristics also
are essential for vapor-phase studies of the actinides because of the inherently small
number density in such systems. Vapor-phase measurements traditionally have
provided fundamental information, such as the binding energies and ionization
probabilities of the outermost electron shells, as well as information on higher-order
effects, such as relativistic and quantum-electrodynamic interactions. Again, theoretical
advances in these areas must go hand-in-hand with the experimental measurements.

One means of studying actinide materials in the VUV and soft x-ray regions is to
build a laboratory laser plasma light source (coupled with a monochromator) that can
be placed in an existing facility. Such a project is under way at Los Alamos National
Laboratory and will make valuable contributions to the understanding of actinide
materials. However, this facility cannot compete with the proposed 8.0-cm-period
undulator beamline at the ALS because the brightness of the plasma light source will be
at least 100 times less and its resolution will be at least a factor of 10 less with a limited
photon range.

The workshop critically addressed the safety aspects of handling actinide materials
at a synchrotron dedicated to a large user community. Speakers described their
experiments with radioactive materials utilizing in-house, fixed-energy, laboratory
x-ray and UV sources. Their experiences led them to conclude that, with careful design,
a branchline and end stations used to study radioactive materials are feasible and can be
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reliably operated with extremely low risk at a synchrotron radiation facility. A
feasibility study of an actinide facility at a synchrotron, commissioned by the European
Institute for Transuranium Elements, was conducted by Savoia and Perfetti. This study
discusses in great detail the proposed safety systems necessary to protect the beamline,
monochromator, and storage ring.

Experiments utilizing harder x rays with actinide materials, such as near-edge
absorption studies (NEXAFS) and x-ray magnetic scattering investigations, also were
described. In this energy range, the actinide samples can be encapsulated to greatly
reduce the safety hazards. In addition, the synchrotron ring vacuum is isolated from
the sample by a Be window. Details about two beamlines under construction at the
Photon Factory in Japan were given—one producing soft x rays in the region 1.6-6 keV
and the other producing x rays in the region 617 keV. These beamlines will be used to
study the properties of materials irradiated with high-energy particle beams, uranium
aind thorium materials, and radioisotopes used as tracers.

Conclusion

The speakers at the workshop and the discussions that followed the talks indicated
the very great interest in the construction of an actinide (radioactive materials) facility at
the ALS. The willingness of the workshop participants to become actively involved in
the programs at the proposed facility was clearly expressed. There is no doubt that very
strong basic and applied scientific research programs relevant to the DOE mission
would develop at the proposed facility.
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ALS Overview

A. S. Schlachter
Advanced Light Source
Lawrence Berkeley Laboratory
Berkeley, CA 94720

The Advanced Light Source (ALS) will begin operations in spring 1993-——generating the world's brightest
synchrotron radiation in the extreme ultraviolet and soft x-ray regions of the spectrum (<10 eV to ~10 keV). This
$99.5 million facility, funded by the U.S. Department of Energy, is available to qualified researchers from
industry, universities, and government laboratories.

Light from the ALS possesses special characteristics that make it a research tool of great versatility:

* Very high brightness ¢ Linear or circular polarization
* Tunability ¢ Pulsed nature
* High degree of coherence.

Of these, the unique characteristic is the light’s high brightness, a measure of its spatial and spectral

concentration (see Fig. 1). That is, the light has a high photon flux per unit source area and per unit solid angle
into which the source radiates. (Flux is the number of photons delivered per second.)
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As a consequence of high brightness, very high spatial resolution becomes possible because many photons
can be focused on an extremely small spot. With help from beamline optics, the ALS is expected to achieve spot
sizes as small as 200 A.

Another effect of high brightness is high spectral resolution. By narrowing the slits of a monochromator, one
can select a very narrow range of wavelengths from a beam of synchrotron radiation and still have a sufficient
number of photons to use for imaging or measuring the properties of a sample. Many experiments that were
previously impractical because of insufficient resolution or long measurement times become feasible using light
from the ALS. Figure 2 illustrates the improvement in spectral detail possible with high spectral resolution.

Apart from the issue of spectral resolution, the tunability of light from the ALS is important in itself. From the

range available in a beam, one can select specific photon energies, for example, to probe the 5f, 6d, 7s, and inner
electron shells of the actinides.
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Figure 2. Synchrotron radiation of certain photon
energies absorbed by helium atoms leads to the
simultaneous excitation of two electrons into a series of
distinct quantum states. A 1992 measurement of this
=—— Wavelength phenomenon, made at the Stanford Synchrotron
Radiation Laboratory, had the advantage of a tenfold
improvement in resolution and considerably higher flux
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Light from the ALS is naturally pulsed because the electrons producing the radiation travel in bunches (see
Fig. 3). Standard pulses are 35 ps wide (FWHM) and occur at intervals of 2 ns. This time structure can be varied
by injecting one or a few electron bunches into the storage ring. In the few-bunch mode, the ALS delivers pulses
at intervals up to 656 ns. The pulsed nature of the light, the high flux, and the ability to vary the interval between
pulses make it possible to perform time-resolved studies, for example, on the kinetics of a chemical reaction or the
lifetime of excited states of atoms or molecules.

Figure 3. Schematic illustration of the bunched structure
of the electron beam circling the ALS storage ring and
the corresponding pulsed nature of the synchrotron
radiation. Up to 250 electron bunches circle the ring.
Each has a duration of about 35 ps. The time interval
between bunches, dictated by the rf frequency, is 2 ns.

The ALS storage ring consists of 12 arc sectors alternating with 12 straight sections. The arcs are embedded in
a lattice of bending and focusing magnets that force the beam into a curved trajectory and constrain it to a tight
ellipse, 40 um x 200 um (o). The three bending magnets in each arc cause the electron orbit to curve and thus
generate synchrotron radiation. The straight sections can accommodate insertion devices—undulators and
wigglers—that also generate synchrotron radiation, but with enhanced characteristics. Undulators and wigglers
consist of two arrays of permanent magnets that create a magnetic field of alternating polarity perpendicular to
the electron beam. One array is installed above and the other below the vacuum chamber. The alternating
magnetic field causes the beam to curve horizontally from side to side as it passes between the rows of magnets.
As the electrons curve back and forth, they emit synchrotron radiation.

Undulators and wigglers differ in the amount of angular deflection their magnets produce. The angle at
which a wiggler’s magnets deflect the electron beam is large compared with the natural emission angle of
synchrotron radiation. As a result, a wiggler produces a continuous spectrum of radiation, similar to that
produced by a bending magnet that has the same magnetic field strength—but more intense. The angle at which
an undulator’s magnets deflect the electron beam is close to the natural emission angle of the radiation.
Consequently, the waves of light emitted at each pole in the array reinforce or cancel one another to enhance the



emission of certain wavelengths. For this reason, undulator radiation at the enhanced wavelengths is extremely
bright—brighter than either bending-magnet or wiggler radiation. Furthermore, because it emerges in a narrow
cone (see Fig. 4) and is partially coherent, it is similar to the light from a laser. Also, it is linearly polarized.
Circularly polarized radiation can be produced by using specialized undulators or wigglers, or by a bending
magnet.

Bending
Magnet

Undulator

Wiggler

Figure 4. Bending magnets and wigglers generate fan-shaped heams of
synchrotron radiation, whereas undulators emit pencil-thin beams.

The ALS will support an extensive research program in the many scientific disciplines that use x-ray and
ultraviolet radiation to study and manipulate matter: atomic and molecular physics, chemistry, the life sciences,
materials science, and actinide science (see Fig. 5). When the facility begins operations in 1993, five beamlines will
deliver photons to experimental stations: three with undulator sources and two with bending-magnet sources.

By 1995, an additional five beamlines will be in operation.
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vas|f Atomic and The proposed actinide program will
Materials Science(SGM) use Beamline 9.0 .
\ Materials Science

\
Diagnostic
Beamline

X-Ray
Lithography

The initial complement of five beamlines includes Beamline 9.0, which will deliver 20-300-eV photons
produced by an 8-cm-period undulator. The proposed actinide program, for which an experimental station
dedicated to the study of the transactinium elements and their compounds is planned, will use this undulator and
beamline. Preliminary safety system requirements for this station have been considered.

Lawrence Berkeley Laboratory and ALS management have a commitment to making access to the beamlines
as convenient as possible. We are developing efficient systems for user registration and training in order to
minimize the time it takes users to meet institutional requirements and maximize the time for productive work.
Construction of essential laboratory facilities for users is under way, and space has been made available for

offices, a library, and a shop dedicated to users. Our goal is to see high-quality research conducted at the ALS,
starting on the first day of operations.
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THE ADVANCED LIGHT SOURCE U8 BEAM LINE, 20 - 300 EV
P.A. Heimann

Advanced Light Source
Lawrence Berkeley Laboratory
Berkeley, CA 94720

The U8 is a beam line under construction at the Advanced Light
Source, which will be completed in the spring, 1993. This beam line will
be described along with its performance, emphasizing aspects relating to
experiments. The radiation from an 8 cm period undulator is collected by
two spherical mirrors. Next, the monochromator consists of an entrance
slit, three interchangeable gratings having a 15° deviation angle and a
moveable exit slit. At the end, a bendable refocusing mirror and branching
mirrors provide a focus in one of several possible experimental chambers.
Three horizontal reflections at 5° incidence angle were chosen to deflect
the beam toward an actinide hutch in order to have sufficient space.
Calculations have been made of both the resolution and output flux over
the photon energy range of 20 - 300 e¢V. The design goal is to achieve high
intensity, 1012 photons/s, at a high resolving power, E/AE, of 10,000. The
predicted resolution and photon flux are shown in the figures below.
Preliminary plans for harmonic rejection use thin filters, such as Al.

Fig. 2. The calculated photon flux
for 10,000 resolving power (slit
width limit) and 400 mA. Three

gratings span the energy range 20

Fig. 1. The calculated resolution,
where the solid lines show the slit
width limit (10 um) and the
dashed lines show the worst

aberration coma. - 300 eV.
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The Advanced Light Source
U8 Beam Line, 20 - 300 eV

Philip Heimann
ALS Experimental Systems Group

1. Layout of the Beam Line: 8 cm period Undulator and
Spherical Grating Monochromator.

2. Activities in the U8 Construction: Schedule and Show and
Tell.

3. Expected Performance: Flux at High Resolution, Resolution,
Focus at the Sample, Layout of Space for Experimental Chambers
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Layout
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Comparison

100 400
Photon energy (eV)

XBL927-5326

from 10 pm slits

_ _ from coma aberration

SX-700 II (BESSY): Resolving Power 11,000 at 65 eV, 1991.

X1B (NSLS):

Resolving Power 8,000 at 400 eV, 1991.
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Photon/s

Resolved Flux
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XBL927-5327

Variable Slit Openings Set for 10,000 Resolving Power

Comparison:
6 m TGM (SRC): 2 x 101! photon/s at 2,000 RP, 60 eV

Laser Plasma Source (CXRO): 102 photon/s at 100 RP, 100 eV
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Refocusing and Deflecting Mirrors

¥ Actinide Chamber
Beamline 9.0

Distances shown
from source,
along optical axes.
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Focus at the Sample: 900 pm (horizontal) x 50 - 500 um (vertical)
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Engineers and Designers Technicians
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Undulator Beam Lines
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Summary

1. Description:
Beamline is an 8 cm period Undulator and a Spherical Grating

Monochromator

2. Constuction:
The Undulator will be ready next March. The Beamline will be

completed during the following summer, 1993.

3. Expected Performance:
The Photon energy range is from 20 - 300 eV.
The Resolving Power will be 10,000 AE/E.
At high resolution the flux will be 1012 photon/s.
The spot size will be 900 pm x < 500 pm.
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GAS-PHASE ACTINIDE STUDIES WITH SYNCHROTRON RADIATION
M. O. Krause

Oak Ridge National Laboratory
Oak Ridge, TN 37831-6201

Gas-phase studies of actinides at ALS will primarily involve atomic metal vapors
and molecules of high volatility. Photoelectron spectrometry will be the technique of
preference with the photons supplied by the U-8 undulator line in the range from 20 to
300 eV and, additionally, by a bending-magnet line for energies up to 1100 eV. A special
spectrometer located in a unique Actinide Station will be used for the measurements.

Photoelectron spectrometry has proven to be a powerful probe of the electronic
structure and dynamics of atoms and molecules. Ever since the tunable synchrotron
radiation source has been at our disposal, we have gained a much improved
understanding of electronic properties for free atoms and molecules through much of the
periodic table. However, there has remained an absolute void toward the end of the
periodic table: in particular, the nature of the 5f and 6d electrons has not been elucidated
for any of the transuranic elements. To illustrate this point, Table 1 presents the
knowledge we have at present on such a basic property as the electron binding energy.
As exemplified in the case of Am and Cm, no experimental data exist for the 5f and 6d
levels, while the theoretical predictions based on a single-particle model are suspect to
be considerably off the mark. In fact, the comparison between theory and experiment for
the binding energy of the 7s level, the only level energy that was experimentally
determined, reveals a discrepancy of about 1 eV, which on a "chemical scale" gives an
uncomfortably large uncertainty of more than 20 kcal.

Table 1 Comparison of Theoretical and Experimental
Binding Energies (in ¢V) for Am and Cm

Am
Theory Experiment

Level Atom Atom Solid
45 450.8 —_ 448.5
6p3p, 233 —_— 18
Sfhn 2.99 — 4.9
7s 4.88 5.99 ——

%Cm
4f5p 480.9 - 472.4
6p3p 26.1 - 18
6dan 4.97 - -
Sfcn 10.64 . 5.6
Stap 7.48 5.6
7s 5.470 6.02 ---
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Evidently, we are uncertain about the binding energies of the chemically important
5f and 6d electrons throughout the actinide series, and we face a theory that is inadequate
for the outer electronic region of the 5f elements. Interestingly, experimental data exist
for the innermost levels, K and L levels, for several actinide elements, and the accord
with theory is quite satisfactory at a level of accuracy of 10 in that instance. Higher-
order processes, as for example, the Breit interaction and quantum electrodynamic effects
(Lambshift), are sufficiently well understood to lead to this impressive agreement in the
innermost region. Although the higher-order processes, which become strong for the
heavy elements, exert an effect even in the outer electronic regime, as summarized in
Table 2, it is the electron correlation effects that we implicate for causing a strong shift
in the binding energies. In viewing Table 2, one notes in particular that the relative
contributions of the various effects (given below the absolute energies as 2(-3) = 2x10%)
remain fairly constant through the shell structure for a particular ¢ value, except in the
case of the f electrons. In the latter case, the magnetic and QED effects are more
pronounced for the 5f electrons than the 4f electrons according to theory.

Table 2 Various Contributions to the Binding Energy
for Am (From Huang et al (1976))

E(total) | Breit | Vacuum Pol Self

Level (eV) (meV) (meV) Energy Corr
1sp 124976 -552eV +103eV 378eV ~leV

4(-3) 8(-4) 3(-3) 1(-5)
4fsp 465.3 +31 42

7(-5) 9(-5) ? ?
5854 5.58 +72.5 -8.9

1(-2) 2(-3) ? ?
58 2.99 +111 -8.4

4(-2) 3(-3) ? ?
7810 4.89 -12.1 +4.1 ~15meV

2(-3) 8(-4 3(-3) ?

With ALS coming on line as a photon source of high brightness, we will be in the
unique position to embark for the first studies of the 5f electrons in the isolated atom
and, by determining the binding energies, gain an understanding of the presumably strong
correlations present in the outer many-electron cortege of the actinides. Americium and
curium are suitable first candidates, but other actinides will doubtless be added as
experimentation improves and theory advances in interplay with experiment.

Although the fundamental nature of these first studies of atomic level energies
cannot be overemphasized, investigations of other electronic properties, and the extension
of the work to molecules, will assume great importance and enter into entirely uncharted
territory. Utilizing the wide range of the singular photon source, this novel research will
include the elucidation of the dynamic properties as contained in the photoionization
cross section, the photoelectron angular distribution, the natural level width, and the
electron correlation satellites. Studies of volatile molecular species, such as the
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hexafluorides, amides, cyclopentadienides, etc, will allow us to classify the role of the 5f
and 6d electrons, and their hybridization, across the actinide series. Work of this type
would be in part complementary to laser-based research and would, in addition, provide
access to structure and phenomena occurring at higher energies, as for example, the inner
valence levels and autoionization resonances.

Research sponsored by the Division of Chemical Sciences, Office of Basic Energy

Sciences, U.S. Department of Energy under contract DE-AC05-850R21400 with Martin
Marietta Energy Systems, Inc.

69



ooy 7oy
~p 2 043K 2 2yt Kt/ \m

mww\gﬁw\m\\ )2
2/ SD\\QM\M

%Nt&%x\% ot A VRN o

NLL ‘@3prd ¥eO
£103R10QRT TRUONEN 93pTY 'O
asnery] 'O poIjue]y

NOLLVIAVY NOYLOYHONAS HLIM
SHIAN.LS HAINLLOV ASVHd SVD

70



Table 1 Comparison of Theoretical and Experimental
Binding Energies (in eV) for Am and Cm

95 Am
Theory Experiment
| Level Atom Atom Solid |

4t 450.8 - 448.5
6ps, 233 --- 18
5sp 5.58 --- 49
5tin 2.99 --- 4.9
Ts 4.88 5.99 ---

%Cm
4f1 480.9 --- 472.4
6p3/ 26.1 --- 18
6ds,) 4.97 --- .- i
5fs,) 10.64 5.6 |
5651, 7.48 5.6
Ts 5.470 6.02 -
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Table 2 Various Contributions to the Binding Energy
for Am (From Huang et al (1976))

E(total) | Breit | Vacuum Pol Self
Level (eV) (meV) (meV) Energy Corr
Isy 124976 | -552eV | +103eV 378eV ~leV
4(-3) 8(-4) 3(-3) 1(-5)
4t 465.3 +31 42
7(-5) 9(-5) ? ?
Sts 558 | +725 | -89 |
1(-2) 2(-3) ? ?
5tin 2.99 +111 -8.4
4(-2) 3(-3) ? ?
Ts1p 4.89 -12.1 +4.1 ~15meV
2(-3) 8(-4) 3(-3) ?
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Table 3 Temperatures Required for Photoelectron
Spectrometry of the Higher Actinides

Element T(°C) for ~10° Torr | Isotope/half-life
| Am 900 (solid) 243 7K a
Cm 1400 (liquid) 248 300K a
Bk 1100 (liquid) 249  320d
Cf 600 (solid) 249 351 a
Es 360 (solid) 253 20d
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ATOMIC STRUCTURE CALCULATIONS FOR HEAVY ATOMS
Yong-Ki Kiia

National Institute of Standards and Technology
Gaithersburg, Maryland 20899

Atomic structure calculations for heavy atoms require sophisticated descriptions of both
relativistic and electron correlation effects. For heavy atoms (Z > 55), these effects cannot be
separated easily. Purely ab initio calculations for heavy atoms will be difficult even if the theory
is based on a relativistic formalism, such as the Dirac-Fock method, due to a strong coupling
between relativistic and correlation effects.

Although relativistic effects alter mostly deep core orbitals, valence orbitals are affected
as well because valence orbitals must be orthogonal to core orbitals of the same angular
symmetry and see a more screened effective nuclear charge than a nonrelativistic theory would
predict. This is known as an indirect relativistic effect. For instance, outer d and f orbitals may
expand in orbital size, rather than contract as the hydrogenic Dirac theory predicts, due to the
indirect relativistic effect. However, this orbital expansion is a subtle effect of the order of a
few percent, and competes with changes due to correlation effects. This is one of the underlying
reasons for the theoretical difficulties in predicting the behavior of 5f, 6d, 7s and 7p electrons
in actinides.

Relativistic Hartree-Fock theory with options to include correlation orbitals, commonly
referred to as the Multiconfiguration Dirac-Fock (MCDF) method, is one of the most powerful
and versatile methods to calculate atomic wavefunctions and expectation values. In its most
advanced form, it can predict atomic energy levels--including intermediate coupling, correlation
and QED corrections--for highly charged ions to a high degree of accuracy, often 0.1% or
better, without resorting to any empirical or adjustable parameters.'! This remarkable
performance is often repeated in atoms and ions for which relativistic effects dominate.

However, the MCDF method is ineffective when correlation effects are more important
than relativistic effects. Typical examples are neutral carbon (competition among the 2s2p°,
2p3d and 2p4s configurations) and neutral calcium. For this reason, a straightforward
application of the MCDF method to actinides, for which correlation and relativistic effects are
equally important, is unlikely to succeed in predicting energy levels with high precision unless
a large number of correlation orbitals are introduced.

There are, however, some qualitative aspects of the MCDF method that may still provide
useful information without an overwhelming amount of computational effort. For instance, even
the simplest form of the Dirac-Fock (DF) method, which does not include any correlation
orbitals, correctly predicts inversion of fine-structure splittings, such as that between the 4f;,,
and 4f;, levels of neutral copper. Predictions by the DF method on fine-structure splittings in
alkali-like atoms--i.e., one electron outside a closed shell core--have invariably agreed with
known experimental results, while predictions of such inversions using nonrelativistic theories
required a great deal of sophistication to emulate the core polarization.
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A Dirac-Fock calculation without any additional correlation orbital--known as the single-
configuration Dirac-Fock (SCDF) calculation--for neutral Fr (Z = 87) indicates that the 62D,
72D and 5°F levels are all inverted. The magnitudes of these inversions predicted by the SCDF
method may not be reliable, but the fact that they are inverted is aimost certainly correct.

Table 1. Dirac-Fock expectation values, <r>, of valence orbitals in Fr-like ions (in a.u.).

Orbitals Fr Ra* Actt Th3+
5fs/ 17.951 7.922 1.982 1.543
£,/ 17.946 7.899 2.055 1.578
6ds/, 8.172 3.767 2.967 2.575
6ds, 8.095 3.873 3.057 2.651
78112 5.923 4.516 3.849 3.420
Pin 8.108 5.588 4.553 3.940
P32 8.763 6.056 4.925 4.255

When a d or f orbital is about to be occupied in a ground-state configuration, their orbital
sizes undergo drastic changes as the atomic number increases, as witnessed around Sc (Z = 21)
and La (Z = 58). This rapid change in orbital sizes manifests itself in a variety of ways, but
most notably as delayed onset of photoabsorption (or ionization) cross sections involving 4f
electrons.? A similar change in orbital sizes also occurs in actinides. In Table 1, we have listed
the expectation value <r> of the valence orbitals of ions in the Fr isoelectronic sequence. For
Ac** (Z = 89), the 5f orbitals (j=5/2 and 7/2) are already inside other valence orbitals, but
their energy levels are still not the lowest.

Table 2. Low-lying levels of Ac** (excitation energies, E,, in cm'!)

Level E, (experiment)’ E, (theory)*
751/2 0. 0.
6d, 801.0 1 163.7
6ds,, 42039 3 853.1

5fs s 23 454.5 32 665.3
5/, 26 080.2 34 610.4
o1 29 465.9 28 729.7
Toa 18 063.0 36 700.6

Unlike alkali atoms with low atomic numbers, the SCDF method utterly fails to correctly
predict the energy level ordering among valence electrons of Fr-like ions, as can be seen in the
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example of Ac** in Table 2. This is very discouraging, because this implies that it is necessary
to use a large-scale configuration mixing even to predict energy levels of an alkali-like structure.
This is a worthwhile challenge to relativistic atomic structure theorists, who now have a wide
range of experience in lighter atoms and more powerful computers at their disposal.

Similar theoretical difficulties exist for lanthanides,? though relativistic effects are not as
strong as those for actinides. One of the lessons we have learned through numerous studies of
the lanthanide series is that qualitative predictions concerning cross sections based on
wavefunctions of moderate accuracy were very helpful in understanding the behavior of
lanthanide atoms in both gas and solid phases.? To see if this is also the case for actinides,
systematic comparisons between experiment and theory for actinides are desirable. At present,
several theoretical options are available, such as relativistic Hartree-Fock theory for continuum
orbitals, relativistic random phase approximation, and relativistic many-body perturbation theory
to calculate photoionization cross sections using theories that include relativity, .

For example, relativistic Hartree-Fock theory can produce term-dependent continuum
wavefunctions, i.e., different continuum wavefunctions for different total J, which significantly
affect photoabsorption cross sections above ionization thresholds. As in the case of lanthanide
atoms, it may be too optimistic to expect such theoretical methods to produce quantitatively
reliable data, but they are likely to provide qualitatively useful information in interpreting
experimental results. Discussions at this workshop will serve to identify topics for fruitful
collaboration among theorists and experimentalists.

—

. Y.-K. Kim, D.H. Baik, P. Indelicato and J.P. Desclaux, Phys. Rev. A 44, 148 (1991).

2. Many excellent review articles on the role of the 3d and 4f electrons can be found in Giant
Resonances in Atoms, Molecules, and Solids, edited by J.P. Connerade, J.M. Esteva and
R.C. Kamatak (Plenum Press, New York, 1987).

3. J. Blaise and J.-F. Wyart, Energy Levels and Atomic Spectra of Actinides (Tables de
Constantes, Paris, 1992).
4. Present work, results from single-configuration Dirac-Fock wavefunctions.
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ATOMIC STRUCTURE CALCULATIONS

FOR HEAVY ATOMS

Yong-Ki Kim

Atomic Physics Div., NIST
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® Experiment
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Hydrogenic Energy Levels

2ps3p

2p3p 7

2s, 2p /’ 2512
2p11s 28112
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Schrédinger Dirac QED
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Major Effects on Atomic Energy Levels

Z.5<20  Z<60  Z>60

Correlation Dominant Important Needed
Relativity Needed Important Dominant
QED Marginal Needed Important

Z% N Nt — # OF CORE ELE CTRONS
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Major Computational Methods

A. Multiconfiguration Dirac-Fock (MCDF) Theory

® Extension of nonrelativistic, multiconfiguration Hartree-

Fock (MCHF) theory

® Radial functions (large and small components) can be

numerical, or expanded in terms of basis functions

(STO’s, GTO’s, splines).

® Radial functions can be derived using:

* An average-config. potential (CI=config. interaction);

* A potential optimized for each level (OL=optimized
level); or

e A simplified exchange potential (HS =Herman Skilman)
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Advantages

General-purpose codes available (Grant, Desclaux)
Can be applied to configurations with many open shells
Produces compact wavefunctions for other applications

Can quickly incorporate major part of correlation

Disadvantages

Convergence problems for numerical MCDF solutions
Dependence on basis functions used

May be affected by the Brown-Ravenhall disease
Difficult to incorporate core-valence correlation

"Clean" interface with QED is difficult because MCDF is
a nonperturbative theory while the current form of QED

is a perturbation theory
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B. Relativistic Many-Body Perturbation Theory (RMBPT)

® Extension of nonrelativistic many-body perturbation

theory (MBPT)

® As in the MCDF theory, radial functions can be

numerical, or expanded in terms of basis functions

® All radial functions must be derived using a common

potential (A complete set needed!)

® Usually, unperturbed wave functions are derived from a
closed-shell configuration (i.e., single-determinant ground

state)

® Some start from a multi-determinant ground state
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Advantages

Provides a clear "physical" picture (Brueckner-Goldstone
diagrams) of what’s included and what’s not

Can be extended to QED using the same basis functions
and similar diagrammatic technique

Easy to avoid the Brown-Ravenhall disease

Similar diagrammatic techniques can be developed for

other atomic properties

Disadvantages

Can handle only a limited number of open-shell
configurations (closed shell, alkali-like)

Many orders of perturbation may be needed for neutral
and lightly-charged atoms

Difficult to write a general-purpose code

Resulting wavefunctions are cumbersome
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Major Theoretical Issues for Heavy Atoms

@ Correlation and relativity cannot be separated

Relativity affects core orbitals; but

Valence orbitals must be orthogonal to the core orbitals!

® Competing valence orbitals

7s, Tp, 6d, and 5f orbitals all compete with each other

A correlation "nightmare" for theorists

@ Hydrogenic ordering only when ionized many times!

® No ab initio theory can handle heavy (Z > 86) atoms
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® Some qualitative aspects of MCDF may still be useful:

® Level inversion
Magnitude may be bad, but sign is usually right

Fr (Z=87): 6°D, 7°D, 5°F are inverted according to DF

e Orbital size

Affects f values

* Delayed photoionization peak for 5f orbitals
Similar to lanthanides (delayed peak for 4f)

Predictions from MCDF will probably be useful

o Biubine ENeErRGIES

103



Table 1. Dirac-Fock expectation values, <r>, of valence
orbitals in Fr-like ions (in a.u.).

——————
———————

Orbitals Fr Ra* Ac’t  Tht
5., 17.951  7.922 1.982  1.543
55, 17.946  7.899 2.055 1.578
6d,, 8.172  3.767 2.967 2.575
6d. , 8.095 3.873 3.057 2.651
78112 5023 4.516 3.849  3.420
oy 8.108 5.588 4.553  3.940

TPy 8.763  6.056 4.925  4.255

104



Table 2. Low-lying levels of Ac?** (excitation energies, E,,
in cm!)

Level E, (experiment) E, (theory)
7811 0.0 0.0
6d,;,, 801.0 1 163.7
6ds 4 203.9 3 853.1
5f5p 23 454.5 32 665.3
5, 26 080.2 34 610.4
P11 29 465.9 28 729.7

Tpsn 38 063.0 36 700.6
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f values for Au (Z = 79)

62S = 6%P,,, 6°S - 6°P;),
Nonrelat. HF 0.63 1.26
Dirac-Fock 0.39 0.79
MCDF 0.30 0.62
Bates-Damgaad 1.03 1.21
Core polarization 0.16 0.36

Experiments 0.06 — 0.19 0.08 — 0.41
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QED corrections

® Needed to supplement the original Dirac theory

® Self energy

Dominant QED correction

Exact values known for point nucleus, hydrogenic levels
Must be corrected for nuclear size, screening by other
bound electrons

"Phenomenological methods" available for the screening
correction

Rigorous QED-based methods being developed

Vaccum polarization

The second most important correction, opposite in sign
from the self energy

Becomes equally important for very high-Z ions

Screening provided by the Uehling potential
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® Importance of QED corrections (in eV)

U8+, 25 — 2p,, transition

i

Dirac-Fock, without Breit

286.54

DF, Breit interaction 36.44
Correlation (RMBPT - DF) -0.73
QED corrections, hydrogenic self energy -43.96
Screening of the self energy (charge 2.38
density ratio)

Screened QED corrections -41.57
Total, DF + RMBPT 280.68
Experiment (Schweppe et al.) 280.59+0.10
Blundell ("honest" QED theory) 280.83

—_—_———m—
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CONCLUSION

® Much to be done in theory

e Try basis-set expansion of radial functions to control
numerical convergence

e f-value calculations for valence levels

e Photoionization cross sections, using term-dependent
continuum orbitals

® To assess the reliability of theory, we need experimental
data on:

e Energy levels of simple configurations, e.g., Fr-like ions

¢ f{ values involving valence electrons

® Photoabsorption cross sections, up to ~ 100 eV above
threshold

* BINDING ENERGIES
® If theory cannot handle Fr-like ions, no hope for others!
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FLUX GROWTH OF SINGLE CRYSTAL URANIUM IgTERHETALLICS:
EXTENSION TO TRANSURANICS.

P. C. Canfield

Los Alamos National Laboratory
Los Alamos, NM 87545

The importance of single crystal samples for photoelectron
spectroscopy can not be over emphasized, specifically in the case
of oxygen sensitive f-electron materials. The use of single
crystals can allow for the minimization of grain boundary effects,
help insure clean surfaces upon cleaving, avoid concern of second
phase contamination due to paratectic decompositions, and, of
course, allow for angle resoclved measurements. In the past, the
availability of high quality, adequately sized single crystals has
been the limiting step in the use of single crystals, but by using
low melting metallic fluxes a wide variety of intermetallic
compounds can be grown in s%ygle crystal form. In many instances,
crystals of roughly 2-4 mm® can be grown over 100 hour cooling
cycles.

The details of this flux growth method have beenreviewedin
Fisk and Remeikal and canfield and Fisk“. The basics of this
method involve the proper choice of flux, dilution of solute in the
flux, temperature schedule used for growth and removal of grown
crystals from remaining flux at the end of the growth cycle. Each
of these steps is non-trivial and can usually only be solved by a
combination of experience and trial and error experimentation. For
the growth of materials out of binary melts, much of the guess work
is removed by reference to one of several collections of binary
phase diagranms.

600

1400

1200

1000

800

temperature (C)

0 40 60 80 100

—~
-4
2 1
2

atomic percent U

Al-U binary phase diagram from reference 3.
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The figure is a reproduction of the s%llent features of the U-
Al binary phase diagram taken from Hansen”. The primary features
are the liquid-solid line, the three intermediate, line compounds:
UAl,, UAl, and UAl,, and the paratectic decomposition lines of UAl
and UAl, at 730 C and 1350 C respectively. The two compounds tha%
we will focus on are UAl, and UAl These are both members of
isostructural families thk% 1nc1ude%u)and Pu analogues, with UAlL,
NpAl3 and PuAl, having the primitive cubic AuCu, structure and
ual, NpAl, and PuAl, having the face-centered cubic Cu,Mg
structure.

Since UAl decomposes paratectically at 1350 C, it can not be
grown in a pure form from a stoichiometric melt. If U and Al are
mixed in a ratio of 1:3, heated to 1600 C and cooled UAl, will
initially form, and only below 1350, the UAl paratectic
temperature, will UAl, form. On the other hand, the growth of UAl
can easily be accomplished by growing the material out of excess
Al. A starting concentration of 93 atomic percent Al will allow
for crystal growth of UAl, below 1200 C. The U-Al mixture can be
heated to above 1200 C to ensure thorough mixing and then slowly
cooled to just above 730 C, the UAl, paratectic temperature, and
then rapidly cooled. The crystals can then be removed from the
excess Al by a NaOH etch, or by a second melting of the remaining
Al and removing the molten flux from the crystal via centrifugal
force. Since the binary phase diagrams for Np-Al and Pu-Al are
similar, this is a likely method for the growth of NpAl, and PuAl,.

The more difficult growth of the UAl family of materials, as
well as the use of this method to grow ternary intermetallics will
also be discussed as time allows.

* This work was performed under the auspices of the United States

Department of Energqgy.

1. Z. Fisk, J. P. Remeika, in Handbook on the Physics and
Chemistry of Rare Earths, edited by K. A. Gschneidner, Jr. and L.
Eyring, Vol. 12 (Elsevier Science Publishers B. V., 1989), p. 53.
2. P. C. canfield, Z. Fisk, Phil. Mag. B 65, p. 1117 (1992).

3. M. Hansen, Constitution of Binary Alloys, (McGraw-Hill, 1958),
p. 143.
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Flux Growth of single crystal
Uranium intermetallics:
Extension to Transuranics.

Los Alamos National Laboratory

Paul C. Canfield
Zach Fisk

Synchrotron Radiation in

Transactinium Research Workshop

Lawrence Berkeley Laboratory
October 1-2, 1992
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Bulk Materials:

Polycrystalline
Solid state reaction
Arc melt

On-line growth

Single crystal
A Flux growth
A Chemical transport
$$ Zone refining

$ Czochralski
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Intermetallic Single Crystals

-Well defined structures and
ligands.

-Can "tune" An-An distance
and hybridization.

-The possibility of easy
sample cleavage and
relatively stable surfaces.
(Structure dependent)

-Well defined samples 3mm
on a side for average,
several day growth.
(Highly sample dependent:

1-10mm on a side.)
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Sugar and water:

Sugar: XxX.xx g 20;—?‘5—)90 —3—“5_"—-)90
Water:yy.yy g A3hey, 20 =320

Lower melting point:

Sucrose: 185 C
NaCl: 800 C

Easy removal (while flux is still molten).

Possible inclusion and / or incorporation
of flux into sample.
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Binary Phase
Diagrams.

Several compilations
of binary phase
diagrams. Data set
relatively complete.

Ternary phase
diagram data is
very incomplete.

YbAI, melts

congruently, i.e. it can
be grown from the
pure melt.

YbAl3 melts

incongruently, i.e.

it can not be grown in
a pure form from a
stoichiometric melt.

Both YbAl, andYbAl; can be grown
out of excess Al and YbAl, can be
grown out of excess Yb.
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-Idea for Growth
-Check binary
phase diagrams
-Pack tube
-Growth cycle
-Remove Flux
-Examine crystals
i) Is it expected
crystal?
ii) What is it?
-*Linus Pauling"

1§00 ° C CeENTRIFLGCE
FURVACE

—3 . §::1

NOTE:

—Very quick. (Over night growths/10 tubes
in a furnace)
—Very simple equipment

--Uncommon technique
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CeSb: Melts 1800 C.

WEIGHT %, &b
Grow out of excess Sb a2 wvonorewwe
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of third elementas ¢ S e
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g
Sn: 1200 g

NOTE:
Sn melts at 250 C, but spin off above 700 C to
avoid second phase of CeSnj.
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Ce-Sn and Sn-Sb Binaries:
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Transactinium Intermetallics:

Grow isostructural compounds
and look for systematics across
the early actinides.

AnSn3 and similar binaries.
AnAl3; and other Al flux growths

AnSb/Sn and ternary compounds

Glove box requirements.
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AnSnz—CuzAu Structure
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AnAl3—CuzAu Structure

Problem with Al as flux:

Al attacks the quartz tube,
causing a loss of protective
atmosphere.

Requires a vertical tube (V. T.)
furnace and gas handling system.
V. T. will become contaminated
and can be awkward to use in a
glove box.

Advantages of Al as flux:

Easy to etch with NaOH. No
spin is required if sample is
stable, samples can be handled
only at room temperature

Can grow a number of

Borides and Berylides out of
dilute Al melts.
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AnSb/Sn and Ternaries

Sn and In are good for the growth

of ThCr,Si; compounds.

AIlCUzSiz AnNi28i2

AnClQGez
Known for An=U and Np
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Glove box requirements:

A LARGE hot glove box
that can accommodate:

Sample preparation space
--balance
--cutting tools

—microscope

Sample growth space

—-hydrogen/oxygen torch
--high temperature furnace

(1200 or 1500C)
(Box or Vertical Tube)
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A FANILY TREE
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Basic Growth Philosophy:
Have a basic agenda(s)

BUT

Kesp your eyes opsen for interssting
nsw phasss.

To do this there must be a sorting
mechanism to determine what is

interesting.
p(M
Rough Sorting
x(T)
C (T
S(T) Second Phase Physical
Hall Effect Measurements

X-ray diffraction
Structural Refinements
Elemental Analysis
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X-RAY ABSORPTION NEAR-EDGE STRUCTURE STUDIES OF ACTINIDE
COMPOUNDS

G. Kaindl

Institut fir Experimentalphysik, Freie Universitat Berlin,
Arnimallee 14, W-1000 Berlin 33, Germany

The present status in the use of x-ray absorption (XA) with synchrotron
radiation in the study of the electronic structure of compounds of the light
actinide elements is reviewed. The useful XA thresholds cover the range from
the VUV (Oyy,v), via soft x-rays (Npy, v My 11i Mjy,v) to the hard x-ray region
(L) 1 Due to the lack of an actinide beamline at present synchrotron radiation
facilities, most studies of the more radioactive materials (Np, Pu, Am) have been
performed at the L thresholds, where due to the hard x-ray energies of = 20
keV, the absorber material can be safely encapsulated.2 4 In this photon-energy
range, the XA method is also readily applicable to high-pressure studies.5.6 The
talk will therefore emphasize work at the L absorption thresholds, but will also
try to glance at the perspectives of future work in the soft x-ray region.

In the authors group, L-edge XA studies were performed up to now for a
variety of metallic and nonmetallic compounds of Th, U, Np, Pu, and Am using
synchrotron radiation from the ROEMO beamlines of HASYLAB at DESY in
Hamburg.1‘6 The information on the correlated electronic structure of these
materials is contained in those studies in the threshold energies and in the x-ray
absorption near-edge structure (XANES). The XANEL spectra at the Ly and Ly
thresholds exhibit intense white lines (WL) due to optical excitation of a 2p core
electron to unoccupied 6d final states with a high density of states close to Ef.
These white lines are found to shift with the valence state of each actinide
element 2-4 and often exhibit fine structures due to core-excited final states
with different 5f occupancies, which are populated due to the interaction of the
localized 5f electrons with the valence states.3 Figure 1 gives as an example a
graphical plot of Ljj-WL shifts relative to the respective dioxides as reference
compounds for a series of chalcogenides and pnictides of U, Np, Pu, and
Am.2.4 The observed chemical shifts are essentially caused by the Coulomb
interactions between the 5f electrons with the 2p core hole as well as the
excited 6d electron. The magnitude of these shifts is found to increase
systematically from U to Np, Pu, and Am, which reflects the increasing
localization of the 5f states.

The most extensive study of Ljj|-XANES spectra has been carried out so far for
compounds of Np with formal valencies ranging from Ill to VII.3 In this case, the
Li-WL of NpV, NpV!, and NpVll compounds exhibit fine structures due to
different core-ionized many-body final states, which reflect the correlated
groundstates of these systems. The weighted mean positions of the Lj))-XANES
WL structures shift to higher energies with decreasing 5f occupancy and, for
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non-metallic compounds, depend monotonically on the respective Mdssbauer
isomer shifts of the 59-keV nuclear gamma transition of 237Np. This correlation
is given in Fig. 2. Systematic deviations from this correlation are observed for
metallic Np compounds caused by the contributions of the conduction electrons
to the Mdssbauer isomer shift, which - due to their itinerant nature - have little
influence on the L;-WL energies.

XANES measurements at the L-XA thresholds of actinide elements are also
readily applicable to studies of the effects of high external pressure on the
electronic structure of actinide compounds. Using a diamond-anvil high-pressure
cell, such investigations have only been performed up to now for compounds of
Th and U.5.6 In all cases studied, the Lin white lines were found to shift to
higher energies with increasing pressure due to increasing 5f delocalization, i.e.
decraasing 5f occupancy. In addition, structural phase transitions were found to
lead to discontinuities in the pressure derivatives of the WL energies.

This work was supported by the Bundesminister fir Forschung und
Technologie, project No. 05-5KEAXI-3/TPO1.
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Surface as a New Stage for Studying Actinides:
Theoretical Study of the Surface Electronic Structure of Uranium

E. Tamura
Department of Chemistry and Material Science, L-268
Lawrence Livermore National Laboratory, P.O. Box 808
Livermore, CA 94550

Apart from traditional interests in surfaces—for example, studies of the physical
properties of an interface between the vacuum and the bulk—the surface has been
recognized as a new stage for constructing materials. They may be completely new
materials or already known (but well controlled like defect-free single crystals). The
advantage of this technique is that one can very easily control the lattice constants of
crystals or even their structures by choosing suitable substrates for crystal growth.
Although the crystals may grow only several layers, keeping the substrate lattice
constant, they can normally be good representatives for studying the bulk properties
of metals, and one can, of course, investigate a variety of interesting surface
properties by varying the layer thickness.

As a prototype, we study theorcetically the system in which U grows epitaxially
on Pt(111) surfaces. Because relativistic etfects play an important role in this system
(generally for elements Z > 501w tirst construct the fully relativistic, spin-
polarized, surface Green functivni by the layer-KKR method. Once the Green
function is obtained, one can essentially calculate any type of physical quantity:
(spin-polarized) angle-resolved photoelectron current in UPS experiments,
scattering intensities (also polarization) of electrons in LEED techniques, etc.
Furthermore, the momentum-resolved, layer-projected density of states (DOS) can
be easily calculated from the Green function itself, which is also helpful in analysis
of experimental surface-spectroscopy data. Since our formalism is fairly general, we
also discuss magnetically polarized systems and related surface-spectroscopy
techniques.
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Surface as a New Stage for Studying Actinides: |
Theoretical Study on Surface Electronic Structure of Uranium

E. Tamura

Department of Chemistry and Material Science, L-268,
Lawrence Livermore National Laboratory, P.O.Box 808,
Livermore CA 94550.

Discussion
I) Surface Spectroscopies and Sample Preparation
II) Theories of Surface Spectroscopies

III) Theoreticai Study on U/Pt(111)
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I) Surface Spectroscopies and Sample Preparation
Surface Spectroscopies
1. Strongly Interacting Probe
Low energy electrons: LEED
Vacuum Ultraviolet: UPS
etc.
2. Weakly Interacting Probe

High energy electron: RHEED

X-ray: XPS and Related Techniques
(The excited electrons are low-energetic or
the signals are well-separated from the bulk signals.)

etc.

Sample Preparation

Choice of substrate plays an important role!
1. Lattice Constant

2. Reactivity

Celebrated Epitaxial Growth
(Layer-by-layer growth)
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II) Theories of Surface Spectroscopies

The surface Green function plays a powerful role! G‘( E k“)

Layer KkR
0. Layer-projected Density of States

(Spectral Function of the quasiparticles)

NER) = = Im tr G (r.x’; g pb)

1. LEED nk“
LEEY = 1Grp, rs 5 00 2
|— |2 )
2.UPS  pll
I(E’ ” ey __—L *
(E.EY) w Im <P 14G4" | Brgsd

2 . .
IM{ l 4 : wateraction o-Acw)
3. XPS and Related Techniques

Ttw) = JdE dk" dk’’ ¢ G(Erws k") 4 G (E,p%) 4
4. ....and any

Write any ﬁm,Ph
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) Theoretical Studly on U/Pt(m)
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Group Theorstical Consideratisn

D:pole selection rule
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Conclusion

Do it on the SURFACE !!!!

Spin analysis is highly recommended!

Thanks to ]. van Ek
who provided self-consistent uranium potentials for various
lattice constants.
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Magnetic X-ray scattering experiments at resonant energies

G.H. Lander

Commission of the European Communities, Joint Research Centre,
Institute for Transuranium Elements,
Postfach 23 40, D-7500 Karlsruhe, Fed. Republic of Germany

The cross sections for magnetic scattering of electromagnetic radiation
were derived many years ago but are in general ~ 10-6 of the familiar crosssections
for charge scattering. The brilliance of present and projected synchrotron sources
now make this technique one of considerable promise.1.2 The X-ray technique is
complementary to the more usual technique of neutron scattering, and gives the
possibility to separate spin and orbital moments, and to use the high instrinsic
wavevector resolution to observe subtle effects in both the magnetic and crystal
structures.3

An important discovery of resonant magnetic scattering was made by Gibbs
et al.4,5 in holmium. This occurs when the incident photon energy is tuned to
certain absorption edges. A consequence is an enormous (> 105 in the case of
actinides) enhancement6 of the intensity, making the technique of particular
importance in the study of f element magnetism. Resonance occurs when the an
electron is excited into a shell in which there are already spin-polarized electrons.
The relevant edges are shown in the Table.

We are examining the resonance itself to learn more about whether the
predominant 'atomic' physics description7 contains information on the condensed-
matter properties of the material. In Fig. 1 we show the intensities of the magnetic
reflections as a function of energy as the latter is varied through the My and My
absorption edges for the antiferromagnets USb and NpAs. The ratio of the
intensities at the two edges can be calculated from first principles,8 and has been
shown to be a sensitive measure of the 5f-occupancy and degree of crystal-field
mixing in the electronic ground-state wavefunctions.

Table I
Representative elements of the different possible magnetic series, together
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with the possible strong (E1) dipole transitions for resonant magnetic scattering,
and the relevant X-ray energies and wavelengths (E =12.398/}).

transition edge E A edge E A
(keV) (A) (keV) (&)
3d Fe p LI 0.72 17.22 0.707 17.54
4d Rh p Li 3.146 3.94 3.004 4.3
5d Pt p Li 13.27 0.93 11.56 1.07
4f Gd d MIV 1.22 10.16 MV 1.19 10.42
5f d Miv 3.73 3.32 MV 3.55 3.49
Usb () & Npas (O)
5 | T |
Integrated intensities
as a function of
— energy for the
& . .
g antiferromagnetic
E reflections of USb
\g (top curve) and NpAs
(bottom curve)
3500 /3600 3700 3800 3900
ENERGY (eV)

The resonant scattering can be used also to examine the magnetic

structures. Because the wavevector resolution of X-ray from the synchrotron is
intrinsically so good, the technique is extremely powerful and has already given
valuable information on the spatial correlations in systems such as the heavy
fermion URugSig, in which the moments are < 0.1 4B and the magnetism is not
truly 'long range' in the same sense as the crystal structure.9 A similar situation
has been found by us in examining the complex magnetism in the solid solution
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Ugg5Tho.155b with both neutrons and X-rays at resonant energies.10 More
recently we have been examining the correlations that develop above TN in
antiferromagnetic NpAs and find that they are different as viewed by X-rays and
neutrons. This raises the question of the surface sensitivity of the X-ray technique
(the neutrons are a bulk probe). There are already indications that the near-
surface volume (the penetration depth here is 2000 - 3000 A) behaves differently
from the bulk,11 and we anticipate more studies of this sort.

The prospects for resonant scattering are bright. By chance, the largest
effects occur in the actinides, so that we should be expoiting them aggressively,
particularly at the new 3rd generation sources. New areas one can envision are
surface and multilayer magnetism, examination of transcurium samples at the
microgram level, and inelastic magnetic scattering within the range of ~100 to
1000 meV.
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Magnetic Scattering of X-rays

The strongest interaction between photons
and matter is through the charge (Thomson)
term.

However the relativistic nature of
electromagnetic radiation means that
interactions between between space and spin
wave functions cannot be distinguished - so
that there is a term sensitive to the electron
spin state.

This 'magnetic' interaction is weaker by the
term
ho/mc2 ~ 0.016 for 8 keV photons.

This was recognised by Gell-Mann &
Goldberger in 1954

First experiments by de Bergevin & Brunel
(CNRS, Grenoble) in 1981 with standard x-ray
tubes.

But - synchrotrons have . 8 orders of
magnitude more intensity than sealed x-ray
tubes.
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(3) Polarisation of the photons.

Magnetic scattering results in o to @

rotation of the plane of polarisation. This
means that it may be isolated by polarisation
analysis.

Beams from a bending magnet line are
highly linearly polarised (o). The magnetic
cross section contains terms that allow the
separation of the spin S and orbital L
components of the magnetisation. This
separation can be done only in certain cases
with neutrons, e.g. our own work on UFe>

(4) Tunability.

We have a constant, or nearly so, flux of
photons over a wide range of energies.

This allows us to bring the energy near an
absorption edge and observe
RESONANT MAGNETIC SCATTERING.

We should emphasize that a complete
theory for resonant scattering is not yet
available.
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There are 4 features of synchrotron radiation
that are of particular interest.

(1) Intensity

This may allow us to see magnetic
scattering from samples that are of nanogram
size.

It may also allow the observation of the
arrangements of spins on the surface by using
grazing incidence techniques.

(2) Wavevector resolution

This can be up to 10 times better than
possible with neutrons (because of the
naturally high collimation of the photon
beams). This allows the study of phase
transitions (e.g. Ho, Er etc) to be performed
with high precision. Lattice effects can also be
studied.

For both of these effects good crystals are
needed !

Re, St — €
(Ve W0ty E Iaqqco) B. Falim <t al.
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The determination of magnetic structures
appears possible, but the intensities are very
small. These experiments are difficult.

Magnetic structures are much easier done
with neutrons.

Neutrons can easily determine magnetic
structures from powders, none yet with X-rays.

X-rays are and will be used to study in
more detail systems already known, and

special examples, e.g. surfaces and very small
samples.

Antiferromagnets already examined:

MnF) Ho UAs
(Cr) Dy U0
Tm USb
Er URu»Siy
Sm Ug.g5Thp,155b
Gd-Y NpAs

Ho-Y
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Future Pros S

Intensity

Surface magnetism

Critical scattering (helped also by resolution)

Nanogram quantities of actinides (using

resonance
) T mz\cq\\‘c )ac.o.\\e anng 7

Resolution

New details of magnetic structures and
coupling to the lattice. Correlation lengths.

Polarization

Separation of L and S

Tunability

We need a co.nplete theory to be able to
relate moments to the signal measured.

Branching ratio - new information on the
e\ eckeomte A*NQ.*\QQ._

Orbital moment
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BEAMLINE INSTRUMENTS FOR RADIOACTIVE MATERIALS

Hideo OHNO, Hiroyuki KONISHI, Katsumi KOBAYASHI*
and

Shigemi SASAKI

Office of Synchrotron Radiation Facility Project
Japan Atomic Energy Research Institute (JAERI)
Tokai-mura, Naka-gun, Ibaraki 319-11, Japan

*Photon Factory (PF)
National Laboratory for High Energy Physics (KEK)
Oho 1-1, Tsukuba, Ibaraki 305, Japan

Objective

Physics and chemistry of actinides are increasing their interest. Many
successful experiments have been performed on the so-called “heavy
fermion", or narrow band system particularly on wuranium by using
synchrotron radiation. It would be of great interest to extend photoemission
studies beyond uranium and to study localization of the S5f electrons
quantitatively with a certain experimental method to separate the spin and
orbital components.

Recently, we constructed a new beamline at the Photon Factory, KEK.
The aim of construction is to study unsealed radioactive materials, to obtain
the know-how on design and installation of a beamline and to investigate
necessary optics and instrumental specifications of the SPring-8 beamline for
radioactive material research.

Outlines

The beamline is designed to accept radiations emitted from a bending
magnet. Outline of the beamline is schematically shown in Figs. 1 and 2. The
basic design of the front end is similar to those of the conventional type in
the KEK-PF. The beamline is divided into two branch beamlines by means of
a fixed mask. One is a soft x-ray [1.6-6 keV] beamline, BL-27A, which
adopts a focusing optical system with a bent-cylindrical CVD-SiC mirror--and
an InSb (111) flat double-crystal monochromator. All the optical
components are installed in ultra-high vacuum. The first crystal of the
monochromator is cooled using a heat pipe. The BL-27A has two tandem
experimental stations. The upstream station is located at halfway to the
focusing point in order to get a large beam size (>20 mm x 5 mm) for the
irradiation of biological samples. The downstream station is located at the

203



focus point to be used for photoelectron spectroscopy. The estimated photon
flux is 5x10!0cps for 3 keV x-rays with a energy resolution of 4x10-4 for 200
mA beam current. The other is an x-ray [4-17 keV] beamline, BL-27B. The
BL-27B is designed for XAFS and XRD. Horizontal focusing is achieved by a
Si(111) sagittally focusing double-crystal monochromator and vertical
focusing is achieved by a downstream bent mirror. The flux of 10 keV x-
rays is estimated to be 1x10!lcps with a energy resolution of 2x10-4 for 200
mA beam current.

There are some new design concepts for this beamline different from
those of the conventional beamlines. Firstly, two monitor chambers (RI
ports) for an eventual radioactive contamination are installed. The
radioactivity of those monitors will be checked at regular intervals.
Secondly, two additional fast closing valves and a buffer chamber are
installed as shown in Fig.2 in the soft x-ray beamline. These are against an
eventual accident of scattering of the radioactive samples as well as an event
of the vacuum failure. Thirdly, a capton foil mounted on SUS wires of 200
meshes is inserted in front of the experimental area of the soft x-ray
beamline. Although the radiations of the VUV region of the energy less than
300 eV are cut by the foil, more than 80% transparency is guaranteed for
soft x-rays of the energy above 1 keV.

monochromator - BL-278 (HX]

mirror
{mirror) o 200 mm
1.2 {50
{00
" 50
BL-2T7A (SX) 0

[Ra)
monochromator

Il 1 1 1 { | 1 o | ) 1 } 1 1 1 1 ] 1 Il
20 30m
Distance from source point

O+
o

Figure 1. Layout of optical components for BL-27A&B.
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BL-27 CHMTA2BH/IMHERFIRITIOTHL. R, Mic>uwT
(E]e,men.’f's g Compounds which cun be uged oA BL—Z?)
1. 72574 FERWHA
E#HE UL Th
TR E
ittt UO2CO03,. UO2C204, UO2S 04, CulUI0O. CucCOH
CuU30ol10, Ux Oy
Th (CO03) 2, Th (S04) 2. Th (C204) 2. ThxOy%H
Rt Ux Cy. ThxCy
YW UxNy, ThxNy
robo&BMILaY ( Metdiie compounds )

2, RISHEMHE ( Malrers va?ucl“nj -{.ﬂlow,‘n} rsdi‘o-is'otape. >
BRI R0

2T Na-22. S 1-32, C a-45. T i-44, V -49, M n -54,
. Co-56, Co-51, Co-58, Co-60 N i-63,2Zn-65,
Ge-68., As-73, S r-85 S r-89, Y-88, Y-91, Z r -88,
Z r -95, NbDL-93, NbL-95, T c~-95. T c¢c-97, A g-105,
A g-110, Sn-113, Sn-119. S b-123, S b-12i, C 5 -134,
Cs-137, Ba-133, Ce-139, C e -141, C e-144, H [ -172,
Hf-175, M { -181, T a=-179, T a -182, W-181, W-185,
W-188. P t -193, A u-195 . T 1 -204,
3 ¥ -32, P-33,S-35 V-48, Cr-48, Mn-5Z, C a-47,

p
Fe-52, Fe-55 Fe-59,Ni-57, Ni-66, Cu-64,
Cu--67, Zn-62, Zn-68%m, Zn-72, Ge-69, Ge-1T7,
As-71, As-72, As-14, As-76, As-117, S r -82,
Sr-91, Y-87, Y-90, Y-93, Z r -89, Zr -97, N b -90,
o-99, Tc-95 T<c-96, T c-99m, P d-100, P d-103,
d-109., Ag-111, S n-~-121, S n-125 S b-119, S b-120,
b-122, S b-126, S b-127, S b-128, C s-129, C s =131,
s -132, C s -136, N d-147, T a-183, W--178, W-187,

t -188, P t~-191, P t 193m, P t -195m, P t-197,

u-196, A u-198, A u-199

4 F H-3, C-14

> = 0 »u 39 =

3. K, MFEw
21 4t
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Abstract for the ALS Workshop on "Synchrotron Radiation in Transactinium Research,"
October 1-2, 1992, Berkeley, California

“The Search for X-Ray Absorption Magnetic Circular Dichroism in Actinide .
Materials: Preliminary Experiments using UFe; and U-S"

LG. Tobin, G.D. Waddil!, T. Gouder, and C. Colmenares, Department of Chemistry and
Materials Science, Lawrence Livermore National Laboratory, Livermore, California

Recently we began a series of experiments using near-edge-x-ray-absorption-fine structure
(NEXAFS) looking for magnetic-circular-dichroism (MCD) in the magnetic actinide
materials UFep and U-S. These experiments were performed at SSRL using the University
of California/National Laboratories PRT Beataline 8-2(12). This SGM beamline permits us
to access the 2p — 3d transition of Fe (BF = 707, 720 eV) and the 4d — 5f transition of U
(BF =736, 778 eV). Absorption experiments with circularly-polarized x-rays(2) should allow
direct, elementally-specific interrogation of the magnetic and related electronic structure of
these materials, in analogy with the results from magnetic x-ray scattering(®). OQur initial
experiments utilized NEXAFS(®), but in the future they will also be expanded to include
core-levei photoemission(5) as well. The preliminary results for these systems will be
presented, as well as a simplified, single-electron theoretical framework for approximate spin
analysis of NEXAFS-MCD®.6.7). The limitations of this approach will be discussed in light
of results from many-body calculations(®).

Finally, we will describe how the orders-of-magnitude improvement in brightness at the
ALS, plus the establishment of a dedicated transactinium facility will open the door for an
urprecedented opportunity for both basic science using 5f elements, as well as improving the
overall understanding of the phvsical and chemical properties of actinide materials.
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The Laser Plasma Laboratory Light Source: A Source of Preliminary
Transuranic Data

A.J. Arko, 1.J. Joyce and R.J. Bartlett
Los Alamos National Laboratory, Los Alamos, NM 87545

The 5f electron series of elements is unique in the periodic table with its richness of narrow
band phenomena. Electron spectroscopy, particularly photoemission using tunable light, offers. the
best means of exploring the electronic structure of the 5f's. While it has indeed been employed
extensively in the study of uranium and its compounds, it is the elements beyond uranium which
seem to offer the best potential for understanding the localization-delocalization mechanism.
However, the inherent dangers of working with highly radioactive materials at a soft X-ray
synchrotron source (sample encapsulation is not possible in the soft X-ray regime) have prevented,
at least up to now, the utilization of this technique for transuranics. X-Ray Photoemission
Spectroscopy in the laboratory has proven to be a valuable resource, but it cannot address many of
the unique properties of the 5f's which can only be probed with tunable light. In particular, it is
resonant photoemission which is the most powerful tool for separating the orbital character of of
the photoelectron features.

The proposed transuranic beamline will solve most of the above problems provided that the
performance in the 80 eV to 200 eV range, the region of the 5f resonances, is adequate, and
provided that sufficient beam time is available for users. To a large extent, however, many of the
measurements can be accomplished on a rather inexpensive poor man's light source, sometimes
called the laser plasma light source. The integrated output intensity of this source is related to the
power of the laser light impinging on the target, combined with the collection solid angle of the
first mirror. With the right set of parameters it can equal the intensity of a bending magnet beamline
over a limited range of photon energies. Thus, much of the work can be done in one's own
laboratory without the need to transport radioactive samples in an era when the public is overly
sensitized to the dangers of radioactivity. Only crucial experiments can be reserved for the
undulator beamline which is likely to be over-subscribed in any case.

A schematic diagram of the Laser plasma source is given below (see Fig. 1). A high

Rotsting
Target Focusing
Lens
/ KrF
\/ Excimer
Laser
Coflecting Experimental
Mirror f—Sins Chamber
/ Sample
m
Grating P To Glovebox
#onochromator
Fig. 1 Schematic of the Laser Plasma Light Source.
mien "~ ~imer laser light (700 ml/pulse, 30 nsec/pulse, 200 Hz) is focused on to a metal target
tor high temperature plasma in a =100 micron area of the target. Some metals such as
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gold will re-radiate a continuum of light, essentially black body radiation, which can be collected
and focused on a monochromator, and subsequently focused on & sample for purposes of
photoelectron spectroscopy. Because the entire light source, together with the monochromator and
the spectrometer, must fit within the confines of one's laboratory, one cannot have the luxury of
high-resolution monochromators such as a TGM. Instead, a compact variable-grooved grating
monochromator from Hettrick Scientific, with a resolving power of about 500, and an energy
range from =30 to =200 eV, with fixed entrance and exit slits, will be employed. Thus it should be
possible to obtain about 200 meV resolution in the region of the 5f resonances. This is still only
about a factor of 2 worse than some of the best resolutions presently reported in this energy range
at this time. The data collection system will consist of multi-channel charge integration rather than
pulse counting, since the individual electrons will be too closely bunched during a single pulse to
separate them out.

In order to enable us to work with highly radioactive transuranic materials in our laboratory
it will still be necessary to develop a glove-box and sample transfer system whereby a specimen
surface can be prepared in a "hot" sample preparation chamber (see Fig. 2). After the surface is
prepared, the sample can then be transferred into the spectrometer chamber via a series of right
angle transfers thereby avoiding direct line of sight from the specimen chamber, and further
insuring that only the small sample holder, rather than the entire transfer arm, is the only
contamination introduced into the spectrometer chamber. In this way we feel that contamination can
be kept to a minimum. Once the sample is in the chamber and cooled to some low temperature,
subsequent cleaning can be effected with a light laser pulse on the sample.

Hot Sample

Hot Sample {ntroduction
Preparation Chamber

Interlocks on Valves

Spectromater
Chamber

Glovebox

{ntroduction Preparation Transfer Lines

Cold Samples

Ligﬁt Source

Fig. 2 Schematic diagram of transuranic spectrometer and glove box system, showing the series
of right angle transfers to avoid line of sight into the spectrometer.

A potentially useful side benefit of the laser source is the prospect of doing pump-and-
probe experiments with two lasers to study empty states at high resolution. Because of the high

photon intensity per pulse (=108 photons) at the sample, combined with the slow rep rate, one can
actually do better in the way of usable photon flux than is possible at bending magnet sources by at
least 3 orders of magnitude, primarily because one is only able to use =103 bunches at best at a
synchrotron.

* Work supported by the U.S. Department of Energy
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The Laser Plasma Light
Source: A Source of
Preliminary Data for the
Transuranics

A.J. Arko and J.J. Joyce
4 2. T BartleZ?

Work Supported by the U.S. Department of Energy
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Need For Tunable Light

Resonance -- Separate out f-component
Cross-section variation (Cooper Minima)
Angle-Resolved Studies

Surface vs Bulk Studies

CFS and CIS Spectra

Pump and Probe
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Why the Need for the LPLS?

*  Primary reason is safety!
a) Highly radioactive samples
b) Cannot use windows in the XUV range
c¢) Real risk of contaminating an expensive ring
d) Many suffer in case of contamination
* LPLS is very inexpensive
*  Only a few individuals involved
* No need to transport samples

*  Security at LANL already in place

* Long term Storage of Samples

Undvu /a?lor will 'n any case be over-subser'besd

In no way can this source replace the undulator if the
safety considerations are resolved!

* Intensity 1 to 2 orders of magnitude down
* No polarization
* Cannot reach ultra-high resolution

But it does have a favorable time structure for time
resolved studies!
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bl

I1.

II1.

IV.

Specifications
The Laser (Lambda Physik)

10’ + TR . KrF
Power per pulse.....cccceevercivennann. 620 mJ
Pulse duration.......ccccceveceirennaen. 30 Nsec
Rep Rate.....coccvvvnrennnneennniencene. 200 Hz
Focused spot Size........cccceecreerennn. 30 microns

The Target (Acton Research)

Rotating Metal Drum .................... gold, samarium, yterbium, Al
Spot temp.  .ccceieiiirenriiicenen. = 180,000 K

Pulses per drum ......cccceeeeeenaneee. = 60,000,000

Useful measuring time ..........ccue.... = 80 hrs

The Monochromator (Hettrick Scientific)

TYPE oeeeiiiiciiieenentnnencceacnennenes Grazing incidence, Non-Rowland
Grating.......ccceeeeenicerennececcnisnennes Spherical, Variable Groove Density
Angle of Incidence........cccercruenunnee 4°

Resolving Power........cccueueeeennn... 500 - 1000

Energy Range.....cccccovecirvccrnnennenee 30-200eV

Peak Energy......ccccovrieucrincnncnee. 100 eV

Peak Intensity......ccccccecennenrennanannns 1011 Photons/sec

The Analyzer (VSW Angle Resolved)

50 mm Radius
Multichannel detection
Charge Integration
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AMPLITUOE (arbd. unitsg)
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ELECTRON SPECTROSCOPY OF HEAVY FERMION ACTINIDE MATERIALS *
J.W. Allen
Randall Laboratory, University of Michigan, Ann Arbor, MI 48109-1120

The actinides belong to the general category of materials often called by the term “narrow band,”
by which it is meant that correlations induced by Coulomb interactions play an important role
in determining their properties. The 5f electrons of the actinides are generally regarded as being
more localized than the transition metal 3d electrons, but less localized than the rare earth 4f
electrons. Given that the band model seems to be a good starting point for describing the 3d
electrons of the elemental transition metals, but that the atomic model seems to be the proper
starting point for describing the 4f electrons of the rare earth elements, it is perhaps not surprising
that the full range of bandlike to atomic behavior seems to be found in actinide elements and
compounds. For the elements, the usual understanding is that, as one progresses to the right
across the actinide row, the transition from bandlike to atomic occurs between Pu and Am. As
with the transition metals, atomic behavior can be induced by making compounds. For example,
an atomic model is a better starting point than band theory for describing the 3d and 5f electrons
of NiO and UO,, respectively.

Heavy fermion behavior is a narrow band property, found in both rare earth and actinide materials,
and perhaps even transition metal materials, which highlights the tension between the band and
atomic viewpoints especially well. The defining characteristic is that the T-linear specific heat
coefficient -y, which is proportional to the density of states at the Fermi energy for an electron
gas is found to be 50 to 1000 times larger than for a free electron gas. Phenomenologically, the
large « suggests a very small bandwidth. Band calculations for such materials do find reduced
bandwidths but the predicted y-values are still 20 to 50 times less than the measured values.
A quite different approach which has met with great success for rare earth materials models
the 4f electrons as strongly correlated atomic states, hybridized with bandlike conduction band
states. This approach leads to the Kondo picture in which the rare earth magnetic moment is
quenched by formation of a many-body singlet ground state, but where spin fluctuations occur
on the scale of the Kondo temperature Tk. The evolution of the spin entropy over the energy and
temperature range Ty gives a T-linear specific heat contribution with coefficient v ~ 1/Tk. In
this picture, heavy Fermion behavior is naturally explained by very small Tk values associated
with the quenching of atomic magnetic moments. However, the story comes full circle again
with the realization that low temperature electrical properties display the translational symmetry
of the lattice, and that f-electron Fermi surfaces in fair to excellent agreement with predictions
of band theory have been found for some heavy fermion materials.

Spectroscopic studies of Kondo behavior have centered on Ce and Yb materials. The signature
of Kondo behavior in the single-particle f spectrum, measured by photoemission spectroscopy
(PES) and inverse photoemission spectroscopy (IPES), is the appearance of a peak near the
Fermi energy E called the Kondo resonance. In Ce, for example, the resonance lies between a
4f' 4% atomic ionization peak below Er in the PES spectrum and a 4f'— 42 atomic affinity
peak above Eg in the IPES spectrum. The separation of the affinity and ionization peaks signals
the atomic Coulomb repulsion U. The spectral weight of the Kondo resonance increases with
Tk and for materials with a small number of f-electrons like Ce (or U), most of the weight
lies in the IPES spectrum. Such a three peaked structure is observed in Ce compounds and has
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been interpreted from the view of the impurity Anderson model within its Kondo regime®. The
Hamiitonian parameters found from fitting the 4f spectra, and also the 3d core level spectra of
Ce and Yb materials, lead to Tk values of the right order of magnitude for small Tk materials,
and in good agreement with experiment for moderate to large Tk materials. No other picture at
present offers such a unifed view of spectroscopic and low temperature properties.

A confusing complication, however, is that the PES spectra of small Tx materials display much
more spectral weight near Er than expected for the small-Tx resonance. In fact, the model
predicts spectral weight near Eg due to other mechanisms! than the resonance itself, but there
is currently controversy? as to whether these mechanisms do indeed explain spectra taken with
ever-better resolution®. There is also controversy’ as to whether the temperature dependence?
of the resonance is or is not consistent with theory for Ce and Yb materials.

For actinides, due to the difficulty of obtaining and handling highly radioactive samples, heavy
fermion research, and most etectron spectroscopy, centers on uranium and its compounds. In
general, the 5f spectra of heavy-fermion uranium materials do not 1esemble those of rare earth
materials. There is a very large amount of spectral weight around Eg with a rather bandlike
appearance, and there are not we'l separated ionization and affinity peaks. The only evidence*
of the importance of the Coulomb interaciion U ic that the widths of both the PES and IPES 5f
spectra exceed that predicted in band calculations, and the primary evidence for the applicability
of the impurity Anderson approach has be~.. that dilution of uranium by a non-5f element like
Y causes no change in the 5f PES spectrum measured at modest resolution.

Recently an exception®®7 has been found in the system Y;xUyPds. UPds is not a heavy-
fermion material but it is the only uranium intermetallic with a 5f spectrum which suggets an
Anderson model. The 5f spectrum has a gap around Eg with peaks below and above Ef which
are interpreted, respectively, as a 5f2—5f' ionization peak and a 5f2—5f® affinity peak. In
the alloy system it is found that Eg shifts toward the ionization peak asa x is decreased. This
phenomenon is called “Fermi level tuning” and occurs® because Y3* replaces U**, the ionization
state correpsonding to 5f2. For x < 0.3 the transport properties® develop characteristic Kondo
behavior, with Tk increasing as x decreases. This is qualitatively consistent with the Anderson
impurity model, which predicts that Tk increases as the 5f ionization energy relative to Ep
decreases. For the same range of decreasing x, the 5f IPES spectrum displays a growth of weight
near Er which produces an un-gapped spectrum much like that of concentrated heavy-Fermion
materials, and which has been interpreted as the Kondo resonance’. As with small Tx Ce systems,
there is extra weight near EF which must be rationalized by various additional mechanisms in
the model. Another exciting finding® is that the transport properties display unusual features
consistent with non-Fermi liquid behavior arising from the quadrupolar Kondo effect. Thus this
alloy system both provides the first example of a uranium system for which the Anderson/Kondo

scenario works even qualitatively, and joins the high temperature superconducting cuprates as a
possible example of non-Fermi liquid behavior.

Spectroscopy using synchrotron radiation has been essential in all the work described above,
and v.ill continue to be a driving experimental force. Resonant photoemission®, which utilizes
a 5f PES cross-section enhancement occuring when the photon energy is tuned through an
absorption threshold, provides the means for extracting the 5f PES spectrum in systems with
strong competing emission from other elements or in systems where the 5f element is very dilute.
Related abserption edge and core level studies also provide useful information about the 5f
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electronic states. With the advent of insertion device beamlines and matching monochromators,
these studies can be carried out with increasingly better resolution, and also at higher energy
absorption edges, where the resonance contrast can be higher, or where the higher kinetic energy
of the outgoing electrons permits less surface sensitive spectra to be taken. Angle-resolved
photoemission spectroscopy (ARPES) has had less impact in studies of heavy-Fermion materials
because the low energy scale associated with the large y—values has required resolutions not
normally achievable. Also, in the higher photon energy range where resonant photoemission
is usually performed, adequate k-resolution requires angle resolution better than that allowed
by present signal to noise ratios. This situation too will be improved by the intensity and
resolution of the new generation of beamlines and monochromators, and angle-resolved resonant
photoemission spectroscopy studies should become feasible. For both heavy-Fermion and non-
Fermi liquid behavior it will be very important to study the details of ARPES lineshapes very
near Er. Finally, none of these powerful techniques have been applied to actinides other than Th
or U. A great advance in understanding actinide electronic structure generally can be anticipated
if such studies can be made on the entire actinide sequence.

Much energy has been wasted in debate as to whether the atomic or the band approach is the
better choice. It is obvious that the experimental properties display features of both approaches
and that what is required is a unified explanation. One anticipates, for example, that the
Kondo resonance of the impurity model should have additional spectral structure associated
with dispersing excitations that make up a renormalized band structure which defines the Fermi
surface’. To test such ideas will require ultra high resolution angle resolved photoemission
studies of states very near Ef, as may be possible with future synchrotron-based spectroscopy.

* This work is supported by the U.S. National Science Foundation Low Temperature

Physics Program under Grant No. DMR-91-08015, and by the U.S. Dept. of Energy
under Contract No. DE-FG02-90ER45416.
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INTENSITY (arbitrary units)
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Study of Thin Layers of Actinides.
Present Status and Future Use of Synchrotron Radiation*

T. H. Gouder and C. A. Colmenares
University of California
Lawrence Livermore National Laboratory
Livermore, Califomia 94550

The study of actinide thin layers is a very important but yet unexplored field in the surface
science of these materials. The low coordination environment of the surface should produce
band narrowing!+2 and this could ultimately result in the localization of the 5f-electrons, even for
the light actinides. The wide surface concentration range which can be covered by thin layer
deposition allows chemical and physical properties to be determined as a function of surface
composition. The interaction of a dilute U surface phase with gas molecules is an important
subject in the field of catalysis, where actinide surface atoms could act as promoters and local
reaction centers.3 From a more applied view point, thin layers offer the opportunity to study
non-buried interfaces between actinides and the substrate material, thus allowing surface science
to investigate the behavior of actinide-containment material interfaces under corroding
conditions: interduffusion, oxidation and phase separation can particularly be addressed by this
technique.4

We will present an XPS/UPS study of the U deposition on Pt. We will discuss the mode of
growth of the surface phase, surface compound formation and bulk diffusion of the surface
actinide atoms. U immediately reacts with the Pt substrate to form a surface alloy and this is
shown by the narrowing of the Pt5d lines (Figure. 1), which is attributed to the dilution of Pt
atoms in a U matrix.
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Fig. 1. Hell spectra resulting from the deposition
of uranium onto a platinum surface at
room temperature,

347



For the more concentrated U phase the US5f electrons are delocalized, as shown by the 5f
emission at Eg. It is not possible to investigate a very dilute U system by conventional
laboratory spectroscopy because of the strong Pt signal, thus it is necessary to resort to
synchrotron radiation studies. In addition, we will address the interaction of the surface alloy
with the gas phase, in particular the decomposition of the surface alloy in the presence of Oa.
We will discuss the use of thin layers of U on an inert support (graphite) to study the U surface
reaction with O3 and CO, at high gas dosages, without a bulk to act as a sink for O and C. In
particular we will present a study of the conversion of UO3 into the U oxycarbide, which is a
solid solution of UO and UC (Figure 2).
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Fig. 2. Hell spectra of the formation of UO2
followed by its conversion to oxycarbide by
exposure to CoHy at 573K.

These results may be of importance for the use of U in catalytic applications. Finally we will
discuss the use of synchrotron radiation in the study of diluted actinide systems and thin layers.

1. K.P.Kimper, W. Schmitt, G. Giintherodt and H. Kuhlenbeck, Phys. Rev. B 38 (1988), 9451.
2. J. E. Inglesfield, Rep. Prog. Phys. 45 (1982), 223.

3. R. A. van Santen, “Theoretical Heterogeneous Catalysis,” World Scientific (1991),
Singapore, New Jersey, London, Hong Kong.

4. T. Gouder, C. A. Colmenares, “Thin Layers of Uranium on Polycrystalline Platinum and
Their Interaction of O2,” submitted for publication to Surface Science.
*This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore

National Laboratory under contract No. W-7405-Eng-48.
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Thin Layers of Actinides

Chemical Reactivity and
Electronic Structure

Outline

. Introduction

- Research Interests
- Choice of Substrates

- Sample Preparation

. Status Quo / Outlook

XPS/AES/UPS - Synchrotron

- Electronic Structure U-Pd/ U-Pt

- Chemical Reactivity U - Pt: 02, CO

Conclusion
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Uranium Thin Layers: Research areas

Chemical Reactivity

Electronic Structure
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Strategy

Clean Systems

Characterization

Electronic Structure : 5f localization
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Surface Reactions
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Chemical Applications
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5f Localization in Chemical Systems

* Dilution (Alloys): |increase mean An-An distance
avoid hybridization: [UPt3]

* Partial Oxidation: Zefr !/ U0,,

* Decrease Dimensionality:

* Surface
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* Cluster |
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Solid —p Atomic like

352



Electronic Structure - 5f Localization

S5f - Levels in Pure Elements (Metals)

Th P U Np Pu_f_Am Cm_ |

e

Delocalization Localization

5f - Le/els in Chemical Systems
*5f - 5f overlapping -> An-An distance
-> An-An coordination

* 5f - ligand hybridization
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Surface Reactivity

- Subject >
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TR TN

* An - Adsorbate Bonding
6d7s - 5f
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- Reactivity of An Systems (-> Catalysis - Corrosion)

* Concentrated Bulk An

- 6d7s electrons ->early TM : strong bonding

- 5f electrons -> late TM : weak bonding

=) catalysis

* Difuted Bulk An
- for |U] f reactivity& UNix <> CO

- surface segregation

* Difuted Surface An

- low reactivity molecular chemisorption

- stable surface phase

354



Choice of Substrate

* Interaction Substrate - U (-> 5f localization)

- Strengt

LTI T TiTT1T17011

Low Medium Strong

- Type U 6d 7/ USf hybridization

- localized system
-> Pd

- heavy fermion systems ?
- Pt

* Chemical Reactivity.

group VIII metals : Ni, Pd, Pt

group 1b: Cu

* Containment Materials - Passivation

Ti, Mo, Binary Systems
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Cluster Deposition

* Sputter Deposition
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U deposition on Pd at RT - AES study

* U Overlayer: 30 sec- 10 mA U: 5 A

UoPP
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Electronic Structure of U-surface phase

- Experiment

* U-Pd AES: Deposition/Annealing
XPS/UPS: e~ - Structure

* U-Pt UPS

- Summary/Future work

* Synchrotron
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U - Pd system : Surface Reconstruction

- AES - Study of U-Pd Annealing
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Intensity (arbitrary unite)

U - Pd: Annealing
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U - Pd: Annealing
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x RT deposition
- High BE shift (85%)
- Non shifted (15%)
- Asymmetry

* Annealing 200 C, 400 C
- BE decreases
- Pdget peak disappears

--> U-Pd surface layer
--> Pd-bulk
--> Pd4d DOS at EF

--> U diffusion

~5 Continuous shift <-> Dilution <-> Variable stoichiometry
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U - Pd: Increasing [U]

Pd3d - high resolution
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Intensity (arbitrary units)

U - Pd: Annealing
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RT deposition

- Igr <-=> USf
- BE (Pd4d)
- Pd4d narrows

Annealing 200 C, 400 C

- IEF
-USf2at 1.4 eV

- Pd4d broadens
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U - Pt: Increasing Temperature
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- [U] §
=> U - Pt reaction
=3 High Interaction System

* BE (Pt5d) ¥ : pure Pt
= U responsible for high BE
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Electronic Structure: Summary

* Status Quo

- High Purity surface phase
- Surface U: 5f delocalized <=-=> high [U]

- Bulk diffusion <---> continuous stoichiometry
* Future Work

- Systems
- Low [U]
- s.c. Studies: well defined surfaces
- Heavier Actinides (Np, Pu):

approach localization threshold

- Synchrotron Studies

- Low [U] /high TM d-signal <-> Resonant PE

- High Energy Resolution <-> High Photon Current
- Band Mapping
- Depth Resolution - XPS: vary hn
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Surface-Gas Interaction

- Experiment

* U-Pt/ 02, CO Interaction
x U-Pd 7 U0, Dissolution

- Summary/Future work

* Synchrotron
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* CO 40,1n: molecular chemisorption
Ado-1nfschanged e- structure of CO

=y Modification of Pt by U
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Intensity (arbitrary units)
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Pd - UO2: Annealing

Temperature (C)
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* at 550 C: Dissolution of UO,
Pd + UO2 ->» Pd-U-0
->Pd-U,0

«» AH¢ Pd - U formation : driving force ?
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Surface-Gas Interaction/Summary

* Status Quo

- U-Pt: Molecular adsorption at RT -» Reactivity
- U-Pt 7/ O02: U surface segregation

- U-Pd : UO2 dissolution

* Future Work

- Systems
- Low |U]
- Heavier Actinides (Np, Pu)

- H70, CO2, ... Corrosion

- Synchrotron Studies
- Low [U] 7high TM d-signal <-> Resonant PE

evolution of 5f/ gas adsorption (CO, CO2)
- Depth Resolution - XPS: vary hv
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Conclusion

Chemical Reactivity - Electronic Structure

Identify Role of 5f Electrons in Chemical Bonds

- well characterized systems/experiments
- highly diluted An system
- study of heavier actinides <-> realistic An systems

Actinide Beamline
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HIGH RESOLUTION ELECTRON SPECTROSCOPY OF HIGHLY
RADIOACTIVE ACTINIDES: CONSEQUENCES FOR A
FUTURE TRANSURANIUM BEAMLINE

J.R. Naegele

Commission of the European Communities, Joint Research Centre
Institute for Transuranium Elements, Postfach 2340
D-7500 Karlsruhe, Germany

The intermediate position of the 5f actinide series between the 4f and 3d series is well
established as e.g. nicely exhibited in a so-called "Nearly Periodic Table of Transition
Elements L. The transition from delocalized to localized behaviour of the electrons in the
unsaturated shell occurs at the beginning and end of the 4f and 3d series, respectively,
whereas for the actinides that transition is observed in the middle of the series around Pu
and Am2, This uniqueness of the actinides is strikingly demonstrated by their electronic

roperties resulting in a very rich complexity of physical properties3; Heavy Fermion
gchaviour is mentioned in particular. Thus the actinides offer an ideal opportunity to study
the gradual change in localization of 5f electrons, i.e. correlation effects.

Photoemission spectroscopy using ultraviolet (UPS) and X-ray light (XPS) either from
conventional laboratory light or synchrotron sources is well accepted to determine in a
quite straightforward way the electronic structure of solids. Because of the unique
electronic structure of the actinides with particular emphasis on the influence of the 5f
electrons and of the great importance of actinides with respect to nuclear safety, an
electron spectrometer for XPS, AES, EELS and particular high resolution UPS on highly
radioactive materials has been built up at the Institute for Transuranium Elements. A
commercial Leybold-Heraeus LHS-10 spectrometer has been modified to meet safety and
vacuum requirements under glove box conditions%>. The spectrometer is divided into three
parts: preparation chamber (1), analysis chamber (2) and pumping section (3).

(1) A new preparation chamber was designed for pressures better than 10-8 Pa and
mounted into a closed glove box. An integrated baking system is shielded by water cooling
to allow for baking to 200 C in the closed glove box. All necessary "in-situ" sample surface
preparation, like sputtering or scraping, is performed solely in the preparation chamber.
Thus most of the radioactive waste is kept back in the preparation chamber.

(2) A new p-metal analysis chamber together with the excitation sources (X ray and
UV rare gas dischrirge sources) and the hemispherical electron energy analyzer are
mounted into a generally open glove box frame.

(3) The UHV-pumping systems are also mounted into an open glove box system
underneath the analysis and preparation chamber compartments. The roughing pumps are

laced outside of the glove box system; the vacuum lines are fed through absolute filters
1nto the glove box system to keep back potential radioactive contaminants.

The activity level in the analysis chamber was kept for about two years below the
critical value beyond which one can no longer open the analysis side without closing the
glove box. Afterwards the analysis glove box had to be closed in case of repair. For this
purpose a repair glove box system has been installed. Recently, after extensive
measurements on a very brittle PuSe single crystal, the contamination level was so seriously
enhanced that the noise counting rate induced by radioactivity within the energy analyzer
reached 1500 c/sec which prevented any further successful measurements. In a time
consuming proceduie, the energy analyser was successfully cleaned up in the repair glove
box and transferred back to the analysis chamber.
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Based on the experience collected now for more than 10 years at the Institute for
Transuranium Elements the following statements concerning a future synchrotron beam
line for transuranium elements can be made:

- A contamination of the storage ring can under all circumstances be completely
excluded by e.g. usiré%fast closing valves in connection with a "delay-line" as described
in a feasibility study®6,’.

- The photoemission experiment should not be dependent in particular on laboratory
infrastructure, i.e. atmosphere, water and gas supply, radiation monitors,
decontamination means etc. A possible solution would be to introduce the
experiment into a small test chamber including an entrance lock”.

- Facilities for handling and storage of radioactive samples and contaminated
spectrometer parts, as well as for repair purposes ("repair box"), are desirable 7.

- The radioactivity level within the analysis chamber must be kept for an extended
time ( >3y) as low as possible because of risk of storage ring contamination in case of
unexpected accidents and low background count rate. This can be achieved by placing
a special transfer chamber between the analysis and preparation chamber as
proposed in a feasibility study”.

- The analyzer system should have an entrance lens system to minimize the
background count rate originating from the radioactivity of the sample itself.

- The highly focussed photon-beam of the storage ring will permit the use of very
small samples (diameter<1mm) and thus cause much less radioactive waste produced
by cleaning processes in the preparation chamber.

The performance of the spectrometer at the Transuranium Institute is described.
Particular emphasis is given to high resolution UPS: at T = 80 K, a pass energy of 2 eV, the
Fermi edge of gold showed a width of 45 meV at a maximum counting rate of 1.4 104 ¢/s.
Recently, the spectrometer has been modified to cool the sample with liquid He. The
spectrometer resolution has been measured by UPS on Ar gas showing a width of about 20
meV for the Ar 3p lines. It is pointed out that the high resolution in combination with high
counting rates is essential for the very highly reactive actinide materials because of the fast
oxidation of the surface due to the segregation of bulk oxygen impurities to the surface.
High intensity synchrotron light from the ALS will provide a resolution of 10 meV or even
better provided the sample can be cooled to liquid He temperatures. It is shown that this is
important for measurements on Heavy Fermion materials.

UPS/XPS valence band and XPS core level spectra are presented for the following
materials®3:8-10: UO,, PuO,, PuyO3, Am,03, Th, U, Np, o-Pu, §-Pu, Am, Pu,Am;_,, PuSe,
UNl2 and Uan.

All actinide oxides have localized 5f electrons and should therefore display 5f-1 final
state multiplets!l. The oxygen 2p and the 5f emissions are clearly identified by their
excitation probabilities12 varying specifically with the photon excitation energy. Surprisingly
no 5f multiplets but 1just a single actinide Sf peak are observed. Using the calculated
multiplet intensities!, it is shown that phonon broadening of about 1eV prevents
completely the resolution of the multiplet components and explains the characteristic
variation of the 5f emission intensity along the series.

Phonon broadening is certainly of minor importance for metallic actinide systems, in
contrast to highly ionic semiconducting actinide compounds like the oxides. Thus for
metals, much sharper structures are observed, in particular close to the Fermi level.
Whereas all elemental actinide metals#3.8-10 from U to a-Pu show similar valence band
and 4f core level spectra due to itinerant 5f states pinned at the Fermi level, Am is the first
metal in the actinide series showing a withdraw! of the Sf states from the Fermi level, i.e. a
Sf final state triplet due to localization of the 5f electrons. The S5f multiplets are resolved
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because neither phonon nor the life-time broadening conceil their structures because of the
low 5f density of states at the Fermi level. Discrepancies between the experimentally
observed 5f multiplet components and calculated intensities are discussed.

Of particular interest are those cases for which the 5f electrons are intermediate
between delocalization and localization. With respect to this, examples of §-Pu, Am,Pu;.
and PuSe will be presented and discussed in detail even if the final description of the st
electrons is not yet well established. The 4f core level and valence band spectra show
similar 5f derived features for the three compounds:

- The 4f core levels exhibit, in addition to the metallic a-Pu 4f lines, a satellite at

roughly 4 eV higher binding energy (the intensity of which is obliviously dependent

on the degree of the 5f localization that is relatively small in 6-Pu, increasing in

Am,Pu,_, with x and more pronounced in PuSe).

- Three é]arp structures appear in the vicinity of the Fermi level at 0.9 and 0.6 eV

binding energy and directly at the Fermi level; the width of these structures is of

order of 100 to 150 meV. In§-Pu, the narrowing of the 5f state compared witha-Pu is
quite clearly observed; a similar effect is observed in Am,Pu;,. In PuSe, an
additional broad Sf derived structure is observed at 2 eV binding energy.

In PuSe, unusually strong temperature variations are observed for the 4f core levels
as well as for the triplet structure in the vicinity of the Fermi level that cannot be explained
by the common Fermi edge broadening,.

A final consistent explanation is hard to give on the basis of conventional
photoelectron spectroscopy using classical synchrotron radiation and laboratory UV-
sources. But it is shown how the availability of the ALS will definitely improve the situation
in actinide reasearch. That is further proved by the example of synchrotron!3 and
conventional photoemission experiments on UMn,.

Finally, because of the importance of the actinides for the nuclear industry and
related safety aspects, recent gas adsorption studies on Pul4 and photoelectron studies on
(U/Pu)O, fuel pellets and their dissolution residues# are reported. In this respect the
availability of the ALS will open new possibilities for analytical investigations.
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Electron speciromefer (UPS/XPS/AES) for
highly radicactive materials
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PHOTOELECTRON SPECTRA OF THE CONDOWCTION
JAND OF ACTINIDE HETALS
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Intensity (arb. units)
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Intensity (arb. units)
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Electronic Structure and Correlated-Electron
Theory for Actinide Materials

Bernard R. Cooper
Department of Physics
West Virginia University

The central feature of the electronic and related solid-state
behavior for actinide materials is the f-electron localization that occurs
as the f transition shell is filled. From the point of view of theory this
translates into the development of correlation (fluctuation) effects in
the electronic behavior that cannot be captured by the time-averaged
potentials used in band theory. We have treated several aspects of this
question in recent years and will discuss two of these: (1) the relevance
of surface electronic structure behavior as a probe of the development
of correlation effects as the f electrons begin to have some localized
character, (2) the effects of band-f hybridization and coulumb exchange
in transferring f spectral density into (or out of) the band sea thereby
causing moment washout and driving the approach to the heavy
fermion state. Both these effects can be probed experimentally by
photoemission.
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ELECTRONIC STRUCTURE AND CORRELATED-
ELECTRON THEORY FOR ACTINIDE MATERIALS

Bernard R. Cooper
Department of Physics, West Virginia University

The central feature of the electronic and
related solid-state behavior for actinide
materials is the f-electron localization that
occurs as the f transition shell is filled. This
translates into the development of correlation
(interconfigurational fluctuation) effects in the
electronic behavior that cannot be captured by
the time-averaged potentials used in band
theory. We have treated several aspects of this
question in recent years and will discuss two of
these.

(1) The relevance of surface electronic structure
behavior as a probe of the development of
correlation effects as the f electrons begin to
have some localized character.

(2) The effects of band-f hybridization and

coulomb exchange in transferring f spectral
density into (or out of) the band sea thereby
causing moment washout and driving the
approach to the heavy fermion state.

Both these effects can be probed
experimentally, and I will discuss the ongoing
relationship between theory and experiment in
these developing areas of research.
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As increase atomic number, Coulomb correlation
energy (effects on energy of instantaneous rather
than time-averaged motion of electrons) becomes
large relative to the f-electron bandwidth, and
the itinerant (band) description is no longer
valid for the f electrons.

As the atomic number increases, the added Sf
electrcns are not able to screen completely the
increased nuclear charge, and therefore the
occupation number of the 5f level increases more
rapidly than the increase in atomic number, i.e.,
nonlinear effect— threshold for localization.

Instead the localized description of the ionic 5f
electrons (i.e., large spin-orbit and Hund's rule
coupling of L, S (maximized) and J (minimized)
[really intermediate coupling closer to L-S than
to j-j] interacting with their environment
through the crystalline electric field and the
exchange interactions via the conduction
electrons) becomes more appropriate. The
increased importance of correlation effects
favors magnetic ordering as opposed to solid-
state bonding.
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The known radii of the atomic volumes of the actinide
atoms for the room-temperature phases of the pure
metals. The line shows the assumed actinide
contraction (similar to the lanthanides) based upon the 4_1.

radii of Ac, Am, Cm, and Bk. It is the tri-valent sign CoPr N Pmonts 6 TOy o &r T W Ls
that would occur without f-electron bonding. Curium nh ~ P AmCm Bs CF

above the line is the same as for gadolinium in the
lanthanides, where the tri-valent line is well defined.

The latice parameters for five families of lanthanide
(circles) and actinide (squares) compounds. As in the
pure elements, the presence of the f-band causes a size
depression below the smooth line connecting the
lanthanide compounds, which is the same line (unlike
the pure elements) as for the actinide compounds.
Magnetic behavior is indicated by P-paramagnetic,
AF-antiferromagnetic, and F-ferromagnetic.
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Will discuss two regimes of behavior as go
from fully itinerant toward somewhat localized

f-electron behavior.

(1)

Light actinide elements (uranium,
neptunium, plutonium, americium)---
increased localization on going from bulk to
surface behavior for f-electrons— begin-

nings of importance of correlation effects,
possible increased importance of
polarization effects (possible magnetic
ordering coordinated with surface
reconstruction) compared to bonding

effects.

2)

Development of significant correlation
effects as f-electrons localize further and
hybridization of f-electrons with non-f
band electrons becomes dominant effect on f
state broadening as compared to direct f-f

overlap---approach to the heavy fermion
state, associated magnetic effects,
importance of orbital aspects of coulomb
exchange between f electrons and band

electrons on top of hybridization.
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CHANGE IN f-ELECTRON BEHAVIOR OF LIGHT
ACTINIDES BETWEEN BULK AND SURFACE

Theoretical electronic (band) structure results
(O.Eriksson, Y.G. Hao, B.R. Cooper) on changes in-
surface relative to bulk for Pu compared to U.

plus

L. Cox experimental results on o-Pu photoemission
difference between 85° (almost normal) and 15° to
surface (Mg Ka x-rays, 1253.6 eV).

Raise interesting questions:

(1) of possible structure and magnetic ordermg
changes at surface compared to bulk for Pu,

(2) of surface for U behaving in more Pu-like way
than bulk of Pu, i.e. possibly having complicated
reconstructions,

(3) of how the “conflict” between greater
density/band broadening for increased cohesion
(bonding) versus less density/band narrowing
(localization, minimizing adverse effects of
occupation of antibonding states and increasing
gains of polarization/magnetic ordering energy)
develops as 5f occupation increases---does surface
of uranium contract relative to bulk to increase
bonding while that of plutonium expands to
accommodate occupation of antibonding states, but
decrease anti-bonding effects by developing
magnetic ordering??
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Table 1
Theoretical Iattice constants of the Pu monolayer, and bulk Pu® (a.u.).

paramagnctic spin polarized spin and orbital polarized
bulk (fce) 7.60 . . (
monolayer (5tudre) 7.93(¢.3% 8.10 813(7207
& n dn Slos
TS crpinsien)

* For the experimental a density the lattice constant of fcc Pu is ~ 8.1 a.u. and for
the 6 density it is ~ 8.8 a.u.

( /(3) Table 3

Magnetic moments,m(¢), {=s,p,d, and f, from spin polarized scalar-relativistic Pu at
two densitics, 8=8.1 and a=7.6. S denotes the surfacc-layer, S-1 the subsurface-layer and

C the center- (bulk) layer.

a=8.1 (cxPen‘mmTJ/ °<J€n$if7)
m(s) m(p) m(d) m(f)

C 0.011 -0.006 0.186 4.434
S-1 -0.023 0.002 -0.228 -4.529
S 0.022 0.001 0.244 4.921
=76

m(s) m(p) m(d) m(f) scabs not Thict
C 0.004 -0.010 0.174 3.530€~ enou?h- 8vl 1d
S-1 -0.013 0.001 -0.185 -3.646 momé€nt SAov
S 0.020 0.001 0.225 4.357 be zeto,
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SPHERE PROJECTED DENSITY OF STATES

DOS (1/eVY)
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Heavy Fermion Antiferromagnets

(1) Reduced Néel Temperature
(2) Reduced Ordered Moment
(3) Sensitivity of Tn to Chemical Composition

We have developed theory and ab initio computa-
tional technique allowing us to use the prediction of
reduced ordered moment (and reduced Ty) behavior
as a diagnostic tool defining the approach to (or depar-
ture from) the correlated- electron heavy-fermion state
with changing chemical environment in an isostruc-

tural series of compounds.
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Going from uranium to cerium to heavy rare earth, the peak
positions of the f-wave functions decrease while the peak values of
the f-wave functions increase. This indicates that the f states are

becoming more and more localized

{8

10+

T1lﬁl|ll|1|ll—Tlill||ll1 B

0 { 2 3
r {ctomic unit)
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Reason for f states being more delocalized in uranium than in
rare earths: the existence of the 4f shell in uranium pushes its. 5f
states outward, since ¢5¢ and ¢45 must be orthogonalized.(Having
the same angular part Y3,,, their radius parts must be orthogonal-

ized.)
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o

-1 LN D U B I N N B I B B A T B D B B O |
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Starting from the true Hamiltonian:

H= }jvuv0 (r:) 2——

ri
t#J I

Vo(r;): potential from nuclei and core electrons

1/ri;: Coulomb interaction involving all valence and f- electrons

Second quantization + Hartree-fock approximation

|
H =H,+ H,
U
Hy = ; exbj by + :éemc;"n(R)cm(R) tg ZR: fom (R)nm (R)
' m#m/

=Y [Vime *Bbfcn(R) + he] +
kmR

Y Tuw(kK)e CTKIRpdct (R)byice (R)
kk’ nn’,R

Vim: band-f hybridization
Jan'(k,k'): band-f exchange
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In our present treatment, hybridization(mixing of f-electrons
with non-f band electrons) is treated differently for cerium
and neodymium(slightly delocalized f-electrons) than for ura-
nium(more delocalized f-electrons). Hybridization is negligible
for heavy rare earths.

Coulomb exchange is treated in the same way for the rare
earths and uranium.

The two-ion "exchange” and the magnetic ordering are treated
the same way for rare earths and uranium — behavior is
projected onto a site-centered” iomic basis, and thereby
effects of hybridization giving interconfigurational fluctua-
tions(correlations, not time averaged) are included.

For cerium and uranium materials we have also done calcu-
lations using spin and orbitally polarized band theory (only
effects of hybridization giving correlation included are time
averaged — LDA).
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TECHNIQUE FOR RARE EARTHS
(1) Evaluate the hybridization from the starting point that the f-
states are viewed as resonance states confined to the core.

(a) Perform a warped linear-muffin-tin-orbital (LMTO) band
structure calculation. The f states are treated as local states in
such caiculation.

(b) Extract a characteristic quantity, the resonance width,
from the band structure calculation. Use this quantity to calcu-

late the hybridization V; between f-states and non-f band states.

| $5(s)
] nha(fw) 2

hybridization potential v(k) = [ ]1/2
hybridization Vi, = y(n)(g)lﬁle(k)]t

resonance w1dth

where 1 is the f-state wave function, hs the Hankel function, s
the muffin-tin sphere radius, k2 the fermi energy, Q the unit cell
volume; and T}, (k) is related to KKR structure function.
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(2) Calculate the exchange interaction between the f-states and
non-f band states. The LMTO scheme expands a large number
of band wave functions in terms of a limited number of muffin-tin
orbitals. Therefore J,n/(k, k') can be expanded in terms of the

B tensor given below which is also limited in the number of its

elements:

Jnn’(k,k’) = Z Z Xltr:m(k) Bimnt'{:m’n’t’ Xlt”m'n'(k')

tt/'=1,2 [Ime

Vmle!
1 —nk
lea(k) =CQima
2 — k k
lea(k) = Z al’m’n’SI’m'n’ Ima

I'm' s
Bimat I'm'a't' _ 4 _t= * _!'__ ¢
n n = (lea(r1)¢n(r2) I g |¢ﬂ(r1)Xl'm’a' (1‘2))

where af_, and Sf,., ., are the band eigenvectors and KKR
structure functions. The tensor BI™t Em's't" is the integral be-
tween the f-wave function ¥,(r) and various muffin-tin orbitals
X}, (T), where k,l,m, s stand for momentum, angular momentum,
magnetic quantum number and spin respectively, and ¢ is the type

of muffin-tin orbital.
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HYBRIDIZATION TECHNIQUE FOR URANIUM
Evaluate the hybridization from the starting point that the f-states

are viewed as bands.
Start with the Bloch sum of the f-states:

Ymi(r) = N—b—é- Z ezp(ik - R)¢Ym(r — R)
R

The Hamiltonian matrix is constructed from ¥ x(r) and the Bloch

sum of non-f states ¢ (r):
_(Hy V
=V i)

(Hf)mm: =< $mi(r) | H | Pmee(r) >
(He)ant =< ¢ni(r) | H | fnr(r) >
(V)mn =< ¥mi(r) | H | ¢ne(r) >
The non-f part of the Hamiltonian H, is singled out and diagonal-

where

ized to give the nonhybridized non-f band states ®%(r),
or(r) = ZQfm, Gnrk(r)
nl

where af_, is the eigenvector and n the band index. The hybridiza-

tion matrix elements are obtained by projecting Vin, onto ®x(r):

Vi =< Ymi(r) | H | ®5(r) >= Zafm, Vinn
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EXPRESSION FOR TWO-ION INTERACTION:

H(1,2) Z > E} "=(R2 —Rq) x ¢}, (2)eny (2)ct, (1)ent (1)

ny n' ﬂ.gﬂz

E:: :,: is calculated using perturbation method:

ﬂg nz(Rz _ Rl) —

nln

4th order 1 1
>, Olhg—g g B0

2nd order

where | 0) and Ej are the ground state and its energy. For the
ground state, all the ions are in the f! configuration and the band
electrons form a closed Fermi sea. For the intermediate states,
the ions can either be in f1, f2 or fO configuration. We have to
take into account all the possible virtual excitation processes which

exchange electrons(holes) between the two ions.

There are three types of processes:

Exchange-Induced (RKKY): J O J
Hybridization-Induced: v? Q &
Cross Effect: V? Q J
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"Charge leakage” of f states in rare earths versus uranium:

YbSb 0.18%
ErSb 0.25%
TbSb 0.21% localized

NdSb 0.60% !

CeSb 1.6 % weakly delocalized
USb 4.0 % } !

UTe 31 % begin to show itinerancy

Influence: self banding of the f states in rare earths negligible; self

banding of the f states in uranium substantial.
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Essentially, we have learned how to ezhibit magnetic
ordering properties in the correlated-electron state by
projecting onto a site-centered basis (free-ion states).
This takes the form of having a complicated looking,
highly anisotropic two-ion interaction with consequent
observable properties. Note that the only correlation
effects included are on-site (interconfigurational) cor-
relations.

Since uranium f-electrons are substantially more delo-
calized than cerium f-electrons, we have developed a
scheme for uranium that goes back and forth between
a band and a site-centered picture for the f- electrons.
The site-centered basis is not as adequate for captur-
ing magnetic ordering effects in uranium systems as it
is for cerium systems (i.e. thereis a need for a “richer”
basis, presumably containing band states).

For monopnictides and monochalcogenides, of NaCl-
structure: For Cerium, coulomb exchange > hybridiza-
tion (not a general rule); for uranium, hybridization >
exchange.
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Hybridization drives the system toward the heavy
fermion state by merging the f-spectral density into

the d-p band spectral density in the presence of
interconfigurational correlation effects.

+

Moment Washout

Coulomb exchange counteracts this moment
reduction by acting through the orbital part of the
RKKY interaction (brought about by the strong spin-
orbital coupling).

HEART OF THE PHYSICS
The correlations we include are on-site correlations
(U, configuration fluctuations). As the f-spectral
density is pulled off-site by hybridization, U
becomes ineffective; and ordered moment is lost
because the cooperative hybridization (or really the
cooperative hybridization/orbital exchange) giving
ordered moment becomes ineffective the more the f-
spectral weight is pulled off-site by hybridization
(the larger the fraction of time off-site as reflected
in broadening).
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Hybridization — merges f-spectral density into d-p
band spectral density
l

heavy fermion state

weak hybridization (e.g. CeSb) — f-moment “left be-
hind” on-site very slightly diminished — primary effect
is highly anisotropic magnetic ordering via dense f/d-p
plasma - orbitally-coupled magnetism.

strong hybridization (e.g. CeTe, PuTe) — washes
away on-site f-spectral density to be polarized — or-
dered moment drastically reduced and then destroyed
— moment washout.

Band-f coulomb exchange acts to restore moment via
orbitally corrected RKKY.

(Thus, our calculations for CeTe would predict an or-
dered low-temperature moment of a few hundredths
of a Bohr magneton with hybridization only, but this
increases to a few tenths of a Bohr magneton in close
agreement with experiment when coulomb exchange is

included.)
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RIYIIN

USb (UTo){CeTe)0eBi CeSb NdSb ExSb

Tn(K) (hybridization) 240 20> 02 26 34 06 O
Twn(K) (exchange) ~20 ~20 38 35 60 13
m (up)(low T moment) 3.3%33 03521 2.1 33 89
Tn(K) (expesiment) 178 213 26 18 16 3.6

m (up) (experiment) -»1.55 2.85-»2.25 0.3¢ 2.1 21 3.0 7.0

m (up) (band theory)=$1.52 ~»1.65 0.96¢

o The strong hybridization in itinerant uranium systems is re-
sponsible for the high ordering temperature.

o Polarized band theory is good for US, but UTe is too itiner-
ant for site centered theory and not itinerant enough for band
theory.

o The site centered treatment of magnetic orderin - for uranium:
systems overestimates the way in which increased hybridiza-
tion increases interionic coupling, and therefore this treatment
overestimates the ordering temperature.

o In polarized band theory, the increase of hybridization causes
band broadening, and this gives too low an ordered moment
for UTe.

o Much weaker hybridization in rare earths than in uranium.

o Correlated electron theory works excellently for CeTe. Band
theory fails Lecause it neglects interconfigurational fluctua-
tions.(correlations)

o Decreasing exchange going from light to heavy rare earths;
hybridization is negligible for heavy rare earths.
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LANDER, STIRLING, ROSSAT-MIGNOD, HAGEN, AND VOGT (I‘]?O)
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sponds to the region where we are unable to assign specific peak
positions.
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We extended our previous theory for the
magnetic behavior of hybridizing partially-
delocalized f-electron systems to include
hybridization-induced relaxation effects in the
magnetic response. Each partially delocalized f-
electron ion is coupled by hybridization to the band
sea; and this both leads to a hybridization-mediated
anisotropic two-ion interaction giving magnetic
ordering and also gives a damping mechanism, via the
coupling to the band sea, for the excitations of the
magnetically ordered lattice. This coupling also
provides a strong renormalization of the magnetic
excitation energies obtained for the ionic lattice
coupled by the two-ion interaction. To treat these
effects on the magnetic response we have developed a
formalism for calculating the dynamic susceptibility
based on the projection-operator method developed
by Mori and others.
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We solve the problem by three steps :

(1) Two-ion coubling + mean-field level structure.
Solve the eigenvalue problem with Ho 15 the
mean-field theory to bbtain a 10-energy-level
structure (dispersionless).

(2) Two-ion coupling » RPA excitation dispersion.

T{y Solve the eqatioﬁé of motion for Ho-(Ho)M?

Sh?YF_ sto goet the dispersion of magnetic excitations
in the Random Phase Approximation (RPA).

(3) Bybridization relaxation to band bath » strong

renormalization of excitation energles.

Using the memory function method of Mori et al.
to calculate the magnetic damping caused by H’

(hybridization coupling of each uranium to

band bath). - :
Hy bnd.zﬂ?g)
7(°=Zc,n,_~+28~n,,+%j 2 nh,,. (ab‘ v
| 0° :so‘) - 0°-210" H==3 2 Z it
ew[y(QetS00 . 02-210; L e
[« g2+ a-1a 5| Hybrid ization doubje counted
-SE, 3 . - as§ects dispergion,

MM NN’

In/i'uf: 7;=/O¥K ordered mome N7 2,6//3) 127 jn,‘f‘,'o P«N((fizi;0,0q
UTe ' com) 25,2

425



a0

a1V 4

(%) @y

00]

dn

(000)

10

isnd

1522

[¢od-2dxa - I]/(m‘)”

426



X'(w)/[1-e77“]

UTe, T=4.5K

IN(E ;)= -0.08 — — —
-0.09

G=(0.5, 0.5, 0.5)




E(THz)

.mu_w\\.\% AY2534d yyim 3)g00p Ajysnod FNOM SUIUIPPAG ~

Cu, unoo 9 ao\o\ﬁ Palo2fi® £ ¥olLBE!PIHGAY §O
; id Jud _
i/ 7 MO LOININM /9eq0id | Emw..o.w wolsdad s!p
1 J A
0 20 2o voO 90
\H\ | T ] | T I T T T | T \—n
A —-— - ¢
1/ // [bbb] [obb] oT “HL?
€+ 2 S0 -1 €
o\o\*/od
v | \o\ 1&/4/% 4t
Hil's 5 % 1s
/ m JAL
9 |- 49 —
¥ T
/ )
L Ll AWG=1 -4
\m (Letl//H
sl e peloog pietd At 7| 8
6 4\ 46
ot "bg+"0g "bs+ Dg Jot
| L | 1 2 | 1 | 1 i 1

428



Giant magneto-optic Kerr rotations occur in a
number of cerium and uranium chalcogenides
and pnictides (ETH experiments). Some of these
materials (e.g. CeTe, UTe) show distinct evidence
of correlated-electron behavior including
incipient heavy fermion behavior. This leads us
to ask two questions. What is the origin of the
giant magneto-optic effects? What relationship,
if any, exists between the giant magneto-optic
behavior and the approach to the correlated-
electron, heavy fermion state? We have found
quantitative answers to these questions through
comparison of absolute ab initio spin-and-
orbitally polarized full-potential LMTO LDA
calculations of the optical conductivity tensor in
comparison with experiment. The giant magneto-
optic behavior originates in the coupling of light
to the large partially itinerant orbital
polarization present in these materials. The
approach to the heavy fermion state is
characterized by a washout (broadening away) of
what band theory would predict to be strong
structure in the magneto-optic dispersion; and
magneto-optic behavior appears to be a very
sensitive probe of the approach to the heavy
fermion state, presumably reflecting very
sensitively the broadening that characterizes
this approach.
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Conventional one-electron band theory is inadequate
for an understanding of the giant magneto-optic be-
havior.

To see if one-electron (band) theory is adequate, ex-
tend band theory to include explicit orbital polariza-
tion (Hund’s second rule ala Brooks).

With explicit orbital polarization, does bandsee 2.

theory theory correctly give the experimental 72s fo"
static magnetic moment (magnetization measure- ,\\,)o Sor
ment /neutron diffraction) and dynamic magnetic 7, Gele
moment (magneto-optic experiment)?

in c/Pien_f

Results for US, UTe and CeTe.K— heavy
fermion

more correfafed
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Summary of Key Results

e For static moment, band (i.e. one-electron) The-
ory is inadequate for understanding the diminished
ordered moment associated with the approach to
the highly-correlated electron state as in CeTe (an
incipent heavy fermion - Ott and Hulliger) even when
explicit orbital polarization is included.

US — UTe — CeTe

e The Magneto-optic behavior is a more sensitive mea-
sure of the diminished ordered moment associated
with strong correlation effects presumably because
it provides a dynamic measure of the moment.
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HEAVY FERMION AND KONDO PHENOMENA IN ACTINIDE MATERIALS
M. Brian Maple

Department of Physics and Institute for Pure and Applied Physical Sciences
University of California, San Diego
La Jolla, CA 92093

Heavy fermion and Kondo phenomena in metals containing transition metal, rare earth, and
actinide ions with partially-filled 3d, 4f, and 5f electron shells can be traced to the hybridizaton of
the localized 3d, 4f, and 5f states and the conduction electron states. Since the spatial extent of the
5f wave functions is intermediate between that of the 4f and 3d wave functions, the strength of the
hybridization for systems containing actinide ions is intermediate between that of systems
containing rare eath and transition metal ions. In this intermediate regime, a rich variety of heavy
fermion and Kondo phenomena in actinide systems are found, some of which are briefly
summarized below.

Heavy Fermion Compounds

Heavy fermion compounds are formed from 4f- and 5f-elements (such as Ce, U, and Yb)
which have an unstable f-configuration [1,2]. The "heavy fermion" state, characterized by an
enormous electronic specific heat coefficient v, develops below a characteristic "coherence
temperature.” While the high temperature behavior may be reasonably well accounted for in terms
cof an array of independent paramagnetic Kondo "impurity ions,” the low temperature coherent
Fermi liquid regime is not well understood. Itis unstable against the formation of superconducting
and low moment (~0.01 wp) antiferromagnetic states, which coexist on a microscopic scale in
compounds such as UPt; [3-5] and URu;Si, [6-8]). The superconducting state is particularly
interesting. The power-law temperature dependences of thermodynamic and transport properties
below T, in heavy fermion superconductors indicate the existence of an anisotropic energy gap
similar to that of superfluid 3He. Additional evidence for a nonscalar (1 #0) order parameter is the
observation of two or more distinct superconducting states in UPt3 [3-5], U1.xThxBe13 [9,10],
and, possibly, URu3Siz [11], the origin of which may be due to the coupling of antiferromagnetic
and multicomponent superconducting order parameters. However, it has not yet been definitively
demonstrated that the multiple superconducting transitions in all of these materials are intrinsic
features of unconventional sunerconductivity or associated with two different metallurgical phases.
Antferromagneuc fluctuations have also been proposed as the mechanism leading to Cooper pair
formation in heavy fermion superconductors and have been shown to impede s-wave pairing. The
magnetic and superconducting properties of heavy fermion compounds are also extraordinarily
sensitive to chemical impurities and frequently yield striking results such as the non-monotonic
decrease of Tcin Uj.xThgBe1z [9,10], the transition from small to localized moment
antiferromagnetic ordering in Uj.x\ThyPt3 [12], the transition from SDW to local moment
an‘t"i]ferromagnedc ordering in URu2.xRhxSiz [13] and to ferromagnetic ordering in URu3.xRe,Sin
[14].

Hybridization Gap Semiconductors

Another striking and related phenomenon observed in these unstable f-electron materials is
the formation of an insulating ground state with a small energy gap of the order of several meV
which is apparently associated with hybridization between localized f and conduction electron
states (hence the terminology "hybridization gap semiconductor") or Kondo interactions (hence the
name "Kondo insulator”). Materials which exhibit this behavior include, for example, SmBg [13],
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SmS [16], CeFe4P12 [17], UFe4Py2 (18], Ce3BisPt3 [19], and U3SbaPt3 [20,21]. Apparently,
the physics of such systems can be described by a lattice Hamiltonian consisting of a single half-
filled conduction band which is crossed by an occupied magnetic level.

Multichannel Kondo Effect

While the exotic superconductivity of the heavy fermion materials has attracted the most
attention, it is clear that no fundamental understanding can be achieved without a microscopic
theory of the normal state properties. Recent experiments {22,23] on the Y;_,U,Pd3 system have
led to important and exciting results that provide compelling evidence for a two-channel
quadrupolar Kondo effect [24] with concomitant non Fermi liquid behavior. There may be a
relation between the breakdown of Fermi liquid theory in Y1.xUxPd3 and that which is believed to
occur in the high T¢ oxide superconductors. This work is important from several viewpoints.
First, this is a new aspect of the Kondo problem and it enhances our fundamental understanding of
magnetic moments in metals. Secondly, the behavior of the electrons cannot be described using
Fermi liquid phenomenology which has traditionally been very successful in characterizing normal
state properties of even highly correlated electronic materials. Finally, these results could have
consequences for the concentrated heavy fermion systems which exhibit such anomalous behavior,
and perhaps other highly correlated electronic systems. For the Y;_;U,Pd3 system at low
temperatures T << Tk, where Tx is the Kondo temperature, the electrical resistivity varies nearly
linearly with T, p(T)/p(0) = 1 - T/(aTk), and the electronic specific heat diverges logarithmically,
AC/T = -(1/T)InT with a finite residual T = 0 entropy S(0) = (R/2)In2. Electronic specific heat
AC/T vs InT data for Y 4U,Pd3 samples with x = 0.1 and 0.2 are shown in Fig. 1.

0.3 -
§ 02r .
3 L
o r
g L ]
- L i
=01t .
) I
<

0'04 5 8 2 3 4 56 2 3 4

Temperature (K)

Figure 1. Electronic specific heat AC/T vs InT data for Y,_,U,Pd3 samples with x = 0.1 and 0.2.
The solid lines corespond to fits with Tx = 220 K and 42 K for x = 0.1 and 0.2, respectively [10].
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HEAVY FERMION AND KONDO PHENOMENA IN
ACTINIDE MATERIALS

M. Brian Maple
University of California, San Diego

- Materials containing lanthanide, actinide, and transition
metal ions with partially-filled 4f, 5f, and 3d eiectron shells

= correlated electron phenomena

+ Dilute or concentrated
 Disordered or ordered (sublattice)

 Hybridization between localized 4f, 5f, and 3d states and
conduction electron states

- Radial extent of 5f wavefunctions (~0.7 A) intermediate
between that of 4f and 3d wavefunctions (~0.4 A,~0.9 A)

= Hybridization of actinide ions intermediate between
that of rare earth and transition metal ions

« Delicate balance between loccalized and itinerant
character for actinide ions leads to rich variety ot heavy
fermion and Kondo phenomena

Three examples

« Heavy fermion superconductivity and magnetism

» Hybridization gap semiconductors (Kondo insulators)

« Multichannel Kondo eftect (non-Fermi liquid)
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Multichannel Kondo effect (non-Fermi liquid)

Nozieres and Blandin,'80

» Metallic matrix containing paramagnetic impurity ions
m-channel Kondo effect
m channels of conduction electrons interact via spin
dependent exchange interaction with paramagnetic
impurity ions

= overscreening of paramagnetic impurity spin for T << Tk
= local non-Fermi liquid

Relevant to high T¢ superconductivity in oxides
Normal state properties (e.g., linear p(T) curve)
= marginal or non-Fermi liquid behavior

« Two channel quadrupolar Kondo effect — Cox, '87

Quadrupolar Kondo effect — electric analogue of
magnetic Kondo effect

System — Y1xUxPd3
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Experimental evidence for two-channel quadrupolar

Kondo effect in Y1.xUxPd3

Coworkers:

U. California, San Diego

San Diego State U.

U. Michigan

Ohio State U.

Oak Ridge
National Laboratory
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UPd3 Only actinide intermetallic compound consistent with
localized 5f electrons (low T)
Uss 52 (H) P
INS: CEF levels (Shamir et al.,'78)
(Nonmagnetic ground state)
Small y =5 mJ/mol K2 (Andres et al.,'78)
PES/BIS:  Gapin 5f spectral weight about Ef
Low N(EF) (Baer et al.,'80)
(Reihl et al.,'88)
(Arko et al.,'88)
YPd3 Smally= 3.5 mJ/mol K2 (Besnus et al.,'83)
N(EF) = 1 state/eV cell (Koenig et al.,'83)
£
NE)
-~ £
Y1-xUxPd3 PES (Kang et al.,'89)

Increase in |Est — Er| with X (~1 eV as x =0 — 1)
Interpretation: Fermi-tevel tuning
Substitution of U4+ for Y3+ = increase in n
= increase in Er

443



Expectation: Moderate 5f-conduction electron hybridization (Vi)

= Kondo effect

Hex = -29S-s(0) with <O
f/ —~< V2>

~[Esf - EF] should decrease in magnitude with x

= Tk ~ Tr exp[-1/N(EF)|f))]  should decrease with x

Motivated measurements of p(T), C(T), x(T), R(H)
on polycrystalline Y1.xUxPds
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Y1 -xUxP dsa

40 ‘
Cubic Mhiéed - Hex |
Cahu Pnase w7
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o | | Q
Kondo SG . -
- o L=
s g ]
0 ——— S '

0.0 0.2 0.4 0.6 0.8 1.0
U concentration x

Structural change: Electronically driven

Kondo behavior (x £ 0.2)
T« decreases with x (consistent with FLT and U4+)
Unconventional low-T behavior (non-Fermi liquid)
Comparison to m-channel Kondo model yields remarkable
agreement with m =2, S = 1/2 case
Quadrupolar Kondo effect: Microscopic mechanism
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Kondo Effect

Hex=-299s00); I<0  (AFM)

Moderate hybridization — S well defined (long-lived)
Single ion effect

Tk ~ Trexp [-I/N(ER)I S 1]

T-dependent Kondo resonance
4

ME) \/

G £

T >> Tk: Local moment — y(T) ~ C/(T — ©cw); |©cw| ~ 3 -4 Tk

p(T) ~ =nT

T << Tk: Highly correlated many-body singlet ground state
Local Fermi liquid

x(T), C(TY/T — const =< N(EF) ~ 1/Tk
S(0) -0
p(M = poll = (T2 ey 7A_ U, K /o0&

Ma.P/e cz"a.l., 70
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Two-Channel Kondo Effect (Nozieres & Blandin,'80)
H ox = -29 S.[o1 + 03]

T << Tk: Overscreening = Critical state behavior
Local non-Fermi liquid

$(T), C(TY/T = —-(1/TK)InT

p(T) - po[" '(T/To)n], n=1/72

S(0) = (R/2)In(2) Tsvelik,'85

Sacramento & Schiottmann.'89
Affleck & Ludwig,'91

Quadrupolar Kondo Effect (Cox,'87)

S: Impurity pseudospin 1/2 (quadrupole moment)
51,02: time-reversed (T,1) channels which screen S

stlr=Z .
I Ll 71 m/kmanMMfég
La SF,T=#T, | sartial waves
[s -
I3

non-Kramer's non-magnetic doublet

U4+ (Pr3+) 3H4 groundstate mulitipiet

L — Aquadrupolar
Xmagnetic = vV ~ 1 - T1/2 (Cox, '91)
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ACIT (J/mol U K2)

Electronic Specific Heat AC(T)
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INS — UPda:
I's ~ 5 meV above ground state I's (Furrer et al.,’77)
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No peak

No saturation

(excited level ~ 10 meV)

(not SG)

(not usual Kondo effect)
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AC/T (J/mol U K2)
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w1 (mol U/cm3)
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High T:

500

400

Magnetic Susceptibility x(T)
£(T) = %0 + C/(T - Bcw)
Ueff = 3.4 uB Leff(U4+) = 3.58 up
ef(U3+) = 3.62 us
%o <0 = Low ypauii =< N(EF)

Ocw <0 = AFM correlations

Trend opposite to that for cooperative behavior

Kondo systems: |Ocw| =3 -4 Tk
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Low Temperature Magnetic Susceptibility
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¥(T) does not saturate at low T

Fits to 3 (T) = x(0)[1-a(T/Tk)!/2] (1.6 K< T <5 K) (Cox,'91)

x(0)(10-3 emumol U) o Tk [from C(T)]
0.1 11.7 3.5 220 K
0.2 15.7 1.4 42 K

v = 16 x 10-3 emwmol U for I's 10 meV above I3
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R/R(RT)

R/R(RT)
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—APIAPLY)
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10-4 L N N S SN T
1 10
T(K)
Ap(T)/Ap(0) = 1 — (T/Tp)m
X Ap(0) (uQ-cm) m To(X)
0.1 63.92 0.89 15,000
0.2 176.62 1.36 386
0.3 417.3 1.00 311
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R(T)/R(295 K)

12 |

0.6
0.4 |

0.2 B

H(T)/h(zgm)

i

T h‘| -X Ux P d3

° O ettt XD

¢ 9‘?,7 0. 734 . .ﬂ/""'.- ]
..--”""." =

L /. :
x=0
0.2 A
[ * A 04 ]
3 ."_‘.... : O . 6 :
0.8 ‘

T(K)

0 100 150 200 250

300

12 ————

[
;
1.0 -

Zr U Pd
1-x X 3

0.744 0934

0O s O 9

PR T PRSP R S S

T(K)

460

50 100 150 200 250 300



Conclusions

Fermi-level tuning: Observe decrease in Tk with x
Consistent with PES/BIS
Unprecedented for U system
Single-ion/cooperative effects compete for ground state
SG-like freezing (0.3<x<0.5)
Kondo effect (x<0.2)

Unconventional (non-Fermi liquid) Kondo behavior (T < Tk)

o(M) ~ 1-T
M ~ 1-TR
C(M/T ~ —AnT

S(0) ~ (R2)In(2)
Consistent with two-channel Kondo effect

Quadrupolar Kondo effect = origin of two-channel behavior:
U4+ in cubic CEF = I's3 doublet ground state
x(T)~1-T2
C(H): Crossover to single-channel Kondo

(Andraka & Tsvelik,'91)
INS: No strong, narrow quasielastic peak (I'4,I's)
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Heavy fermion superconductivity and magnetism

« Heavy fermion superconductors

CeCusSiz, UBe13, UPt3, UNi2Al3, UPd2Al3
v~ 1J/mole K2 (m* ~ 102-103 mg, To ~ 1-10K), Tc ~ 1 K

 Anisotropic superconductivity

A(K) vanishes at points or lines on Fermi surface
A(k) = 0 — poles = axial state, equator = polar state

Electron pairing mediated by AFM spin fluctuations
» SC coexists with weak AFM (1 ~ 10-2 ug)

« Multiple superconducting phases =

Coupling of multicomponent superconducting order
parameter and AFM order parameter

Complex superconductmg phase dla rams
UPt3 and, possibly, URu plane
U1 xT’the13 H T and T-P pianes

» Chemical substitution =
Suppresses SC and weak AFM

Induces local moment AFM or FM (1 ~ 1 ug)

UPt3 — Th for U; Pd,Au for Pt = local moment AFM
URu2Si2 — Rh for Ru = local moment AFM
Re,Tc for Ru = local moment FM

+ Konde effect — origin of heavy fermion state
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Hybridization gap semiconductors (Kondo insulators)

CeFeqP12, CeNiSn, CesBisPta
SmBe, "gold" SmS

TmSe, TmTe

YbBq2

UFes4P12, UPtSn, U3SbsPd3

» Hybridization of flat f-band and broad conduction band
with exactly two electrons per unit cell

+ Two electrons fill lower hybridized band = insulator

e A~10-102 meV
low T = semiconductor
high T = metal

Example: MFe4P12

bce — derived from binary skutterudite structure (CoAs3)
M cations — bcc sublattice
Fe cations — sc sublattice
P anions — distorted corner sharing octahedra
centered by Fe cation

Metals: M = La, Pr, Nd, Sm, Eu
Semimetal: M = Th
Semiconductors: M = Ce, U
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