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ABSTRACT 

Th i s  broad-base m a t e r i a l s  engineer ing  program, begun 
i n  1974, i nc ludes  s t u d i e s  on ceramic ( r e f r a c t o r y )  and m e t a l l i c  
m a t e r i a l s  p r e s e n t l y  being used o r  intended f o r  u s e  i n  coal-  
conversion processes .  The program en ta i l ' s  s t u d i e s  of e r o s i v e  
wear, nondes t ruc t ive  t e s t i n g ,  cor ros ion ,  r e f r a c t o r y  degrada t ion ,  
and f a i l u r e  ana lys i s .  Appropr ia te  l a b o r a t o r y  and f i e l d  experi-  
ments are i n t e g r a t e d  such t h a t  t h e  r e s u l t s  have impact on 
p re sen t  p i l o t -  and demonstrat ion-plant  .and proposed f u l l -  
s c a l e  designs.  Th i s  q u a r t e r l y  r e p o r t ,  f o r  t h e  per iod  Ju ly-  
September 1978, p r e s e n t s  t h e  t e c h n i c a l  accomplishments of t h e  
program. 

, INTRODUCTION 

The economical conversion of c o a l  i n t o  c l e a n  and u s a b l e  f u e l s  w i l l  
be  advanced through t h e  u s e  of du rab le  m a t e r i a l s  systems. The t e c h n i c a l  
in format ion  base r equ i r ed  f o r  m a t e r i a l s  s e l e c t i o n  i n  p l a n t  des ign  f o r  t h e  
ope ra t ing  environments of va r ious  coal-conversion processes  is extremely 
l imi t ed .  Hence, r e l i a b l e  s e l e c t i o n  and l i f e t i m e - p r e d i c t i o n  methods f o r  
m a t e r i a l s  under t h e s e  cond i t i ons  a r e  n o t  a v a i l a b l e .  Th i s  p r o j e c t  is  de- 
s igned t o  provide  p a r t  of t h e  m a t e r i a l s  in format ion  necessary  f o r  s u c c e s s f u l  
ope ra t ion  of coal-conversion systems. The p re sen t  r e p o r t  is  t h e  f i f t e e n t h  
q u a r t e r l y  p rog res s  r e p o r t  submit ted by ANL t o  t h e  Div is ion  of System Engi- 
neer ing ,  O f f i c e  of F o s s i l  Energy under p r o j e c t  Number 7106, "Mater ials  
Technology f o r  Coal Conversion Proccoses". 

The p r o j e c t  i nc ludes  s i x  t a sks :  (A) eva lua t ion  of commercial re- 
f r a c t o r i e s  exposed t o  c o a l  s l a g  under cond i t i ons  t y p i c a l  of t hose  encountered 
i n  s lagging  g a s i f i c a t i o n  processes ;  (B) eva lua t ion  of e ros ion/cor ros ion-  
r e s i s t a n t  coa t ings  when exposed t o  p ro to type  ope ra t ing  environments (tem- 
p o r a r i l y  d iscont inued  i n  FY 78);  (C) development, eva lua t ion ,  and 
a p p l i c a t i o n  of i i ~ i l d ~ s L ~ u c L l v r  evaluaclon methocis a p p l i c a b l e  t o  coal-  
conversion systems; (D) eva lua t ion  of t h e  co r ros ion  behavior  of com- 
merc i a l  a l l o y s  3 (E) development ol: alialy ~ i c a l  models 'wlrh ' experimental  
v e r i f i c a t i o n  f o r  t h e  p r e d i c t i o n  of erosive-wear behavior  of materials used 
i n  coal-conversion p l a n t s ;  and (F) a n a l y s i s  of f a i l e d  coal-conversion 
p l a n t  components. 



Task A -- Evalua t ion  of Ceramic R e f r a c t o r i e s  101 Slagging G a s i f i c r c  
( C .  R. ~ e n n e d y ,  D .  J .  Jones, R. J .  Fousek, ard R. B .  Poeppel) 

The r e s u l t s  from t e s t  run  9 have been compiled and analyzed. 
Inc luded  i n  t h i s  t e s t  were a  chrome-spinel (number 22) ,  a  chrome-alumina 
(number 38) ,  a n  a lumina - s i l i ca  (number 1 4 ) ,  and t h r e e  s i l i c o n  c a r b i d e  
(numbers 37, 91, and 93) r e f r a c t o r i e s .  The compositions of t h e s e  b r i c k s  
a r e  shown i n  Table  I. Water-cooled 112-length and f u l l - l e n g t h  [229-mm 
(9-in.)]  samples of numbers 22, 38, 91, 93, and 14, a  water-cooled 112- 
1ength .sample  of number 37, and a n  uncooled 112-length sample of r e f r a c t o r y  
number 22 w e r e  exposed t o  a  s imulated North Dakota L i g n i t e  s l a g  wi th  a n  
i n i t i a l  b a s e - t o - a c i d . r a t i o  of 1.7 (Table 11) .  Also included i n  t h e  c e n t e r  
of t h e  s l a g  b a t h  was an  uncooled s tandard  specimen (115 x 64 x 54 mm) of 
r e f r a c t o r y  number 2 ( a  fused-cast  alumina).  

S l ag  was added t o  a depth  of Q50 uuu (s2 11.1.) and t h c  furnoab  
plenum tempera ture  was he ld  a t  1540-1590°C f o r  455 h. An a d d i t i o n a l  Q25 urn 
(%l in .)  of s l a g  was then  put  i n  and t h e  fu rnace  plenum temperature was 
maintained a t  %1480-1530°C f o r  474 more hours.  The complete tempera ture  
h i s t o r y  is shown i n  Fig. 1. Note t h a t  i n  a d d i t i o n  t o  t h e  plenum temperature 
and t h e  tempera tures  38 mm from t h e  ho t  f ace ,  t h e  hot-face temperature 
of t h e  f1.1l.l.-size number 14 b r i c k  was measured. The theqna l  g r a d i e n t s  t h a t  
e x i s t e d  w i t h i n  t h e  b r i c k s  a t  120 h i n t o  t h e  test are s own i n  Fig. 2. The -9 
p a r t i a l  p r e s s u r e  of oxygen was maintained a t  about 10 Pa throughout t h e  
t e s t .  

The s l a g  composition as a f u n c t i o n  of t ime i s  shown i n  Table 11. 
Although t h e  s l a g  was b a s i c  (B/A = 1.7) as formulated,  a  chemical a n a l y s i s  
of a  sample taken j u s t  seven hours  a f t e r  t h e  i n i t i a l  charge showed t h a t  
t h e  s l a g  was a c i d i c  (B/A = 0.8), l i k e  t h e  s imulated Montana Rosebud i n  . 

r u n s  4-8. A s  shown i n  Table  11, t h e  s l a g  chemistry w a s  a c t u a l l y  a c i d i c  
f o r  &98.% of t h e  t e s t .    his i s  probably t h e  r e s u l t  of c r y s t a l l i z a t i o n  t h a t  
occurred  on t h e  bottom of t h e  s l a g  bathsand i s  c u r r e n t l y  being i n v e s t i -  
ga ted .  From v i s u a l  obse rva t ions ,  t h e  r o t a t i o n a l  v e l o c i t y  of t h e  s l a g  ba th  
(induced by t h e  t a n g e n t i a l  f i r i n g . o f  t h e  burners )  w a s  r s thua ted  t o  be  
Q8-12 mmls ('~113-112 i n . 1 ~ )  a t  a  plenum temperature of 1580°C. 

The r e l a t i v e  co r ros ion  r e s i s t a n c e  of t h e  r e f r a c t o r i e s  exposed t o  
s l a g  a t t a c k  i n  t e s t  run 9 is  shown i n  Table I. A s  e a r l y  a s  94 h i n t o  t h e  
test, deep c u t s  a t  t h e  s l a g  l i n e  were ev iden t  i n  r e f r a c t o r i e s  number 14 
and 91, a s  w e l l  a s  t h e  s tandard  specimen i n  t h e  cerieer of ch r  tat11 ( a o t t  
t h a t  t h e s e  w e r e  t h e  only t h r e e  r e f r a c t o r i e s  t h a t  could be  seen  through t h e  
v iewpor t ) .  A t  some t ime between 94 and 142 h, t h e  s tandard  specinlen was 
completely e a t e n  through a t  t h e  s l a g  l i n e .  Two lines of slag a t t a c k  are 
c l e a r l y  v i s i b l e  on c u t  s e c t i o n s  of c e r t a i n  r e f r a c t o r i e s  (Fig. 3 ) .  Com- 
p a r i s o n  of t h e  c o r r o s i o n  r a t e  f o r  t h e  a1;mina-silica r e f r a c t o r y  (number 14)  
i n  t e s t  run 9 wi th  t h e  r a t e s  obta ined  f o r  t h i s  same r e f r a c t o r y  i n  o t h e r  
a c i d i c  s l a g  t e s t s  ( s e e  Table 111) c o n f i r m s . t h a t  t h i s  was a . s e v e r e  
t e s t .  Never the less ,  t h e  chrome-spinel and alumina-chrome r e f r a c t o r i e s  
exh ib i t ed  l i t t l e  cor ros ion .  Even without  water  cool ing ,  t h e  112-length 
chrome-spinel b r i c k  (number 22) s u f f e r e d  only 2 mm of a t t a c k  a f t e r  475 h 
a t  %1550°C. Thermal-shock cracking  was ev ident  i n  t h e  water-cooled 
chrome-spinel and alumina-chrome r e f r a c t o r i e s ,  , b u t  n o t  i n  t h e  uncooled 



1/2-length chrome-spinel br ick .  

A l l  t h r e e  types  of B i l i c o n  c a r b i d e  performed poorly,  i n  c o n t r a s t  
t o  t h e  r e s u l t s  ob ta ined  a t  a s l i g h t l y  lower temperature i n  t e s t  run  4. 
This  i n d i c a t e s  t h a t  a t  hot-face temperatures  of &142S°C, co r ros ion  occurs  
very quickly.  Although t h e  exac t  mechanism i s  n o t  c l e a r  a t  t h i s  t ime,  
l a r g e  q u a n t i t i e s  of m e t a l  were found a t  t h e  s l ag - r e f r ac to ry  i n t e r f a c e .  
This  observa t ion ,  a long  wi th  t h e  occurrence of many vo ids  i n  t h e  s l a g  
emanating from t h e  r e a c t i o n  zone ( c l e a r l y  v i s i b l e  n e a r  t h e  bottom a t t a c k  
l i n e  i n  Figs.  3e-3g), sugges t s  t h a t  i r o n  oxides  r eac t ed  wi th  t h e  s i l i c o n  
ca rb ide  g r a i n  t o  form a f e r r o s i l i c o n  a l l o y  and a CO/C02 gas  (which was 
t rapped a f t e r  t h e  second a d d i t i o n  of s l a g ) .  



TABLE I. R e l a t i v e  Corrosion Res is tance  o f  Water-cooled R e f r a c t o r i e s  'Exposed t o  S l ag  At tack  i n  Tes t  Run 9 

Ref rac tory  
Number Compcsition 

Maximum Depth of  
R e r n ~ v a l , ~  mm 

A t  t a ck  Ful l -  112- 
T Y F ~  Line  l e n g t h  l e n g t h  

38 A1203(60)-Cr203(27)-MgO(6)-Fef 3(4) -Si02(2) Fused- cas  t TOP 4 2 
Bottom 3 2 

2 2 Cr,03(80)-~gO(8) -Fe203(6)-A12C3 (5)-Si02(1) Fused-'cas t TOP 
Bottom 

~ o p ~  
Bottom b 

S i n t e r e d  TOP 
Bottom 

-9 3 SiC(73) -A1203 ( 1 4 ) - ~ i 0 ~ ( 1 1 )  S i n t e r e d  TOP 
Bottom 

S i n t e r e d  TOP 
Bottom 

14  A1203(91. 6)-Si02(8. 0)-Fe20j (0.15)-Alkali(O.15) S i n  t e r e d  TOP 
Bottom 

a Measured from t h e  o r i g i n a l  h o t  ' f ace .  

b ~ i t h o u t  water  Cooling. 



TABLE 11. Composition of Slag (wt %) dur ing  Corrosipn Test  Run 9 

Exposure Time, 11 

Component 0 7 9 5 345 4 30 4 70 676 920 

S i02  (S) 24.3 35.2 40.0 40.1 39.7 35.0 39.6 41.0 

Fe ' (F3) 0 0.5 0.4 0.4 0.4 0.4 . 0.3 0.4 

CaO (C) 33.8 27.3 28.0 27.3 30.0 31.1 28.6. 27.4 

Ti02 (T) 0.6 0.6 0.6 0.7 0.7 0.6 0.7 0.7 

0 t h e r  0 0 0 0.3 0 0 0.2 0.2 

F e r r  i t i c  
 ont tent,^ % 100 15  26 2 7 3 1 24 3 0 3 1 

a Base-to-acid t a t i o  B / A  = (F1 + F2 + F3 + C + M + N + K) / ( s  + A + T) .  

w t  % Fe 0 
2 3 

b ~ e r r i t i c  con ten t  = w t  X Fe 0 + 1.11 w t  % FeO + 1 .43  w t  % ~e ' 
2 3 



TABLE 111. Corrosion Rate c!f an Alumina-Silica Ref rac tory  (Nmber 14) i n  Con- 
t a c t  w i th  an dc;dic S lag  a s  a Functzon of "mperatture . 

Average 
Tes t  Plenum Hot Face At tack  
Run Temperature, Temperature, Rate ,  
No. O C Water . . Cooling " C mm/h 

7 1480-1520 Yes 1380-1420 1.9 x 

ga 
- 

. L480-1530 Yes 1400-1440 4.7 x 

gb P540-1590 . . Y e s  1460-1510 10 .1  x 

a Top a t t a c k  l i n e .  

b ~ o  t tom a t t a c k  l i n e .  
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A FURNACE PLENUM TEMPERATURE 
BRICK NUMBER ~ ~ - W O T  FACE TEMPERATURE 

BRICK TEMPERATURES 35 mm FROM HOT FACE 
NUMBER 3 8  NUMBER -91 NUMBER 14 TC FAILED 

II " 93 + " 91 II I1 o 14 A. 

I rSLAG ADDED r-SLAG ADDED 

DATE- IN MAY DATE IN JUNE 
Fig. 1. Furnace  Plenum Temperatures and ~ i d h e i ~ h t  Brick Temperatures 38 mm 5 i n . )  from t h e  Hot .Face of 

' Ful l - s i ze  Bricks of Each Composition During Test  Run 9. ANL 'Neg. No. 306-78-923. 
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Fig .  2 .  Brick Temperature a t  Midheight ~ e r s i s  Dis tance  from Hot Face. 
(a)  Number 22, (b) number 14, ( c )  number 38, (d) number 91, 
( e )  number 93, and ( f )  number 37. ANL Neg. Nos. 306-78-925, 924. 
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Fig. 3, Cut Sections of Refractories Exposed t o  Slag Attack i n  T e s t  Run 9. 

(a) Pull-size chrome-spinel (number 22), (b) half-size chrome- 
spinel (number 22) without water cooling, (c) fu l l - s ize  chrme- 
alumina (number 38), (d) fu l l - s ize  alumina-silica (number 14), 
(e) fu l l - s ize  nitride-bonded s i l i cdn  carbide (number 91), 
( f )  fu l l - s ize  sflicate-bonded s i l i con  carbide (number 93), and 
(g) half-size oxynitride-bonded s i l i con  carbide (number 37). The 
right-hand v e r t i c a l  faces  of (a-d) and ' the left-hand v e r t i c a l  face  
of (e) . and ( f )  w e r e  exposed t o  two leve ls  of slag attack.  
ANL Neg. Nos. 306-78-921, 922. 



Fig. 3 .  (Contd.) 



Task C -- Application and Development of Nondestructive Evaluation Methods 
f o r  Coal-conversion Processes (W.A. ElZingsm, K. J. Rsimmwr, 
W. J. Shack, and C.A. Young&Zl 

1. Eros&ve-wear Detect ion and Monitoring 

a. Metallic Transfer Lines 

(1 UZtrasonic Studies - PiZot PZan.t:%. Field testing of 
automatic-scanning erosive-wear surveillance instrumentation f o r  metall ic 
t ransfer  l i n e s  and f i t t i n g s  of coal-conversion systems was continued t h i s  
quarter,  using the  ul t rasonic  equipment previously ins ta l led  by ANL a t  the 
EsL-Gas P i l o t  ~ 1 a n t . l  The instrumentation operated unattwded f o r  a 154ay  
period which encompassed an experimental % '8-h p i lo  t-plant run conducted 
by B i - Q a s  personnel. Twelve waveguide s i t e s  tha t  were compatible w i t h  
scannine; a t  a f b e d  gain se t t ing  (120 dB) were monitored. Each of the  four 
arrays of waveguides a t  the plant was represented i n  t h e  set surveyed, 
The capaM1ity f o r  automatic, accurate wall-thickness data r e t r i eva l  from 
the  plant operating environment w a s  demonstrated. I n  separate t e s t s  with 
recently improved measurement techniques, sat isfactory agreement was 
demonstrated between values of w a l l  thickness derived from meqsurements 
khrough acoustic waveguides and values obtained by direct-contact ul t rasonic  
techniques . 

The following problems, a l l  of which can be overcome, were nated 
during t h i s  test: (1) A 1% d r i f t  i n  recorder cal ibrat ion with respect 
to tha t  of the  time-analog gate  of the pulser-receiver over the 15-day 
in terva l  between plant  v i s i t s  ( t h i s  e r ror  was eliminated during data 
reduction); (2) s h i f t s  of A/2 i n  the  measured Sh-BW distances (see 
Table IV), probably associated with signal-amplitude variat ions (ideally,  
tr iggering on half-waves with amplitudes near the threshold se t t ing  ahodd- 
be av~i-ded)! and (3) e l e c t r i c a l  i n t e r f a r e u ~ u  ILL Llw Lrmyrrature tracip. far 
t he  s ta in lqss  s t e e l  array. ( In addition, the  time-analog gate  was subject 
t o  zero d r ik t  , which would have affected the  recorded values i f  the 
temperature of the instrument console had not remained re la t ive ly  constant 
during the test . )  

The cayatl1lL.y f o r  consistent data r e t r i eva l  is i l l u s t r a t ed  in  
Table IB, Errors of l e s s  than + 0.13 mm (+ 5 mils) a r e  desired, and t h i s  
precision was  achieved fo r  the  carbon steel samples when h/2 s h i f t s  were 
absent. The e f fec t  of the  X/2 s h i f t  [ theoretically,  0.58 mm (23 mils)]  
is a l so  shown i n  Table IV.  For these sites the presence of initial h/2 
o f f se t s  and nonoptimized gain se t t ings  should be considered i n  comparing 
the  r e su l t s  with those reported previously.2 It is the consistency af 
the  temperature-corrected values and t h e i r  independence from interfekenre 
generated by t h e  plant that a r e  of present interest .  For the stainkess 
s t e e l  waveguide array on the ou t l e t  of the gas i f ie r ,  the measured values 
differed by as much a s  1.3 nan (50 mils) from the expected values, except 
during one period of constant temperature when er rors  were typical ly  0 t o  
0.25 man (0 t o  10 mils). Improved temperature data from t h i s  site may 
hprove  the agreement between measured and predicted values. That no 
mea~urable w e a r  occurred during the plant run was demonstrated independently 



of t h e  foregoing, by manually adjus'ted u l t r a s o n i c  measurements made 
p r e t e s t  and p o s t t e s t  with t h e  p lan t  a t  ambient temperature. 

For Table I V  the.compensation f o r  changes i n  acous t i c  v e l o c i t y  
with temperature f o r  A-106B carbon s t e e l  was ca lcu la ted  t h e o r e t i c a l l y 3  
from t h e  moduli da ta  of  ate^, and d e n s i t i e s  w e r e  ca lcu la ted  from a va lue  
of 1.5 x ~ o - ~ / " c  f o r  t h e  c o e f f i c i e n t  of l i n e a r  thermal expansion. For . 

Type 304 s t a i n l e s s  s t e e l ,  t h e  same da ta  source and procedure were used, 
except t h a t  t h e  d e n s i t i e s  and expansivi ty da ta  were from Ref. 5 .  Since 
t h e  ca lcu la ted  v e l o c i t i e s  a t  room temperature d i f f e r  s l i g h t l y  from handbook 
values ,  t h e  r a t i o  of t h e  ca lcula ted  v e l o c i t i e s  was used. The t h i c k n e s s .  
indica ted  a t  t h e  elevated temperature i s  expected t o  be t h e  thermally ex- 
panded th ickness  times t h e  r a t i o  of t h e  acous t i c  v e l o c i t y  a t  room temper- 
a t u r e  ( t h e  c a l i b r a t i o n  temperature) t o  t h a t  a t  t h e  e levated  temperature. 

The immunity of high-frequency u l t r a s o n i c  th ickness  measurements 
t o  s tructure-borne acous t i c  i n t e r f e r e n c e  was dramat ica l ly  demonstrated 
a t  t h e  Bi-Gas p lan t  recent ly .  The measurement f o r  waveguide #2, located  on 
t h e  instrumented s t a i n l e s s  s t e e l  blocked tee and l e s s  than 300 mm (2, 1 f t ) .  
from t h e  clean-out por t  of t h e  t e e ,  was monitored remotely a s  p lan t  per- 
sonnel replaced t h e  por t  cover and t ightened the  n u t s  of t h e  sea l ing  clamp 
with a pneumatic impact-wrench. The 7.5-MHz measurement of d i s t a n c e  a t  a  
r e so lu t ion  of 0.03 mm was unchanged during t h e  process. 

An i l l u s t r a t i o n  of measurement accuracy is  given i n  Table V. . 
values obtained from t h e  waveguides of an a c c e s s i b l e  t e e  a t  t h e  Bi-Gas 
p lan t  w e r e  compared with. d i r e c t  wall-contact measurements taken adjacent  
t o  the  waveguide s i t e s .  The agreement was genera l ly  s a t i s f a c t o r y ;  an e r r o r  
of 2, 0.17 mm (6-7 mils)  may have been caused i n  p a r t ' b y  e r r o r  i n  t h e  

. assumed shoulder-to-oiter-wall d i s t a n c e  .of 6.35 mm (250 mi l s ) .  : .Half- 
wavelength (A/2) o f f s e t  e r r o r s  were pains takingly  avoided during c a l i -  
b ra t ion  and measurement i n  order  t o  achieve t h i s . l e v e 1  of accuracy.. ,The 
o f f s e t s ' w e r e  el iminated from the  waveguide da ta  a s  described i n  Ref. 2, 
where t h e  r e s u l t i n g  values  were previously published. The more ' recent  
wall-contact d a t a  w e r e  taken with a 3.5-MHz Aerotech.alpha transducer,  
which does 'not produce o f f s e t  e r r o r s  i n  ordinafy  use. The p l a n t  was not  
operated i n  t h e  i n t e r v a l  between t h e  two s e t s  of measurements. 

Note: X/2 o f f s e t  e r r o r s  w e r e  discussed i n  Ref. 2. A c l a r i -  
f i c a t i o n  of one point  appears t o  be i n  order .  Although i t  may seem t h a t  
a  full-wave increment i s  produced by each half-wave r e c t i f i e d  a l t e r n a t i o n  
i n  t h e  pulser-receiver ,  t h e  double time-scale of t h e  pulse-echo technique 
produces an indica ted  d is tance ,  f o r  each a l t e r n a t i o n ,  of an acous t i c  X/2 
i n  t h e  sample mater ia l .  Thus, o f f s e t  co r rec t ions  i n  increments of A12 
a r e  appropriate.  

6 
A paper descr ib ing the  development of automatic instrumentat ion 

f o r  remote measurement of e ros ive  wear was completed during t h e  present  ' 

quar te r  and contr ibuted  t o  t h e  IEEE 1978 Ul t rasonics  Symposium i n  Cherry 
H i l l ,  New Jersey .  



TABLE I V .  Examples of Sh-BW Distancesa Measured a t  Elevated Temperatures by t h e  Erosive-wear Scanning 
System, Compared wi th  Predic ted  Values 

1 

1 Sh-BW D ~ s t a n c e  
3 Waveguide /I11 Waveguide //1ge 

b k  c Date and Temp , 
" C 3s Time 

ambient 1 .a1000 

7/28/78 
l i n e  pre- i 6: 00 
heated;  8:06 
p l a n t  no t  in  10: 08 
opera t  i o n  12:09 

14: 09 

1.047 
1.047 
1.048 
I.. 049 
1.048 
I!. 048 
1.047 
1.046 
1.047 
1.048 

P red ic t ed ,  Measured, E r r x  , 
i n .  i n .  . m i l s  

l i n e  a t  
ope ra t ing  
temp.; 4 

p l a n t  i n  
ope ra t  i on  

8/7/78 
9: 00 ambient 1.0000 1 '  - 1,021 - 

Legend f o r  Table I V  on fol lowing page (15). 

Predic ted  , Measured, E r ro r ,  

? . i n .  : in .  . m i l s  

16: 09 
18 : 09 
20: 00 
22:OO 
24:OO 

7/29/78 
0: 10 
0: 20 
0:30 

cool-down; t 0:40 
p l a n t  no t  i n  1:00 
opera t  ion  1:30 



TABLE I V .  Examples of Sh-BW ~ i s t a n c e s ~  Measured a t  Elevated Temperatures 
by t h e  Erosive-wear Scanning System, Compared with Predicted 
Values 

LEGEND 

a 
Distance from waveguide shoulder t o  back wal l  ( inner  surface)  of feed- 
l i n e  wa l l  without co r rec t ion  f o r  poss ib le  X/2 o f f s e t  ( 1  in.  = 1000 m i l s  = 
25.4 mm). . The e f f e c t  of a  1% d r t f t  i n  recorder  c a l i b r a t i o n  during t h e  
period was el iminated from t h e  measured values. 

b ~ o a l  feed- l ine  temperature a s  reported by P h i l l i p s  Petroleum personnel 
a t  t h e  Bi-Gas p i l o t  p lant .  

C 
Factor  t o  compensate f o r  acoust ic-veloci ty  change and thermal expansion 
of A-106B s t e e l  a t  elevated temperature, ca lcu la ted  a s  described i n  
t e x t ;  t h e  d i s t a n c e  measured a t  room temperature, mul t ip l i ed  by t h i s  
f a c t o r ,  y i e l d s  t h e  measurement expected a t  t h e  s t a t e d  temperature. 

dI.ocated on t h e  main coa l  feed l i n e  a t  a  bend near  t h e  6 th  f l o o r  of t h e  
p lant .  Both waveguide and l i n e  a r e  of A-106B steel. 

%ocated on t h e  same l i n e  a t  a  bend near  t h e  10 th  f l o o r  of t h e  p lan t .  

f ~ t t r i b u t e d  t o  A12 s h i f t  e r r o r  ( see  t e x t ) :  t h e  A12 va lue  a t  5 MHz f o r  
carbon steel is  23 m i l s .  I 



TABLE V. Comparison of Wall Thicknesses,  Measured U l t r a s o n i c a l l y  by Means of Waveguides, w i t h  Direc t -  
con tac t  Thickness Measurements a t  A-106B Carbon S t e e l  Tee i n  B i - G a s  Main Coal Feed Line 

W a l l  Thickness,  Tw, W ~ 1 1  Thickness, Tc, 
Calcu la ted  from from Direct-contact  

a b c 
Waveguide Sh-BW Dis tance ,  . Sh-BW Dis tance ,  Measurements, Tw - Tc, 

Number in .  in.  ' i n .  m i l s  

- 1 
31 .1.625 - 1.37.5 

a Dis tance  from waveguide shoulder  t o  inner_ s u r f a c e  of t e e  ( 1  in. = 11100 m i l s  = 25.4 mm). Ul t r a son ic  
measurements of 3/78. 

b ~ o m i n a l  d i s t a n c e  ( e . ,  0.250 in . )  from waveguide shoulder  t o  o u t e r  s u r f a c e  of t e e  was sub t r ac t ed  
from Sh-BW d i s t ance .  - .  

C- . ec t -contac t  t h i ckness  measurements nad2 7./22/78 a t  s i t e s  midway between waveguides. 



(2) UZtrasonic Studies - scatter& of Acoustic Waves from 
Rough Surfaces. During t h e  p re sen t  q u a r t e r  a computer program w a s  w r i t t e n  

. f o r  a n a l y s i s  of s c a t t e r i n g  d a t a  from t h e  test se tup  desc r ibed  i n  t h e  
previous  rgpdr t  . l Thi s  program c a l c u l a t e s  and g r a p h i c a l l y  d i s p l a y s  ' t h e  
averaged RF waveform and i t s  power spectrum. A s p e c i a l  subprogram has  t h e  
c a p a b i l i t y  t o  c a l c u l a t e  and g r a p h i c a l l y  d i s p l a y  t h e  r a t i o  between t h e  power 
s p e c t r a  from a rough and a smooth sur face .  The r e s u l t i n g  d a t a  c o n t a i n  
only informat ion  p e r t a i n i n g  t o  t h e  s u r f a c e  roughness; e f f e c t s  caused by 
m a t e r i a l  o r  t ransducer  v a r i a t i o n  a r e  el iminated.  

The program was f i r s t  t e s t e d  by feeding  waveforms wi th  known power 
s p e c t r a  i n t o  t h e  computer (Fig. 4 ) .  Subsequently a scan  w a s  made over one 
roughened a r e a  of a ' t e s t  b lock  i n  increments of 1.25 mm (0.05 i n ) .  The 
l e f t  s i d e  of Fig. 5 shows t h e  RF waveform of t h e  u l t r a s o n i c  echo from t h e  
f r o n t  s u r f a c e ,  and t h e  r i g h t  s i d e  d i s p l a y s  t h e  corresponding power spec t r a .  
I n  Fig. 6 t h e  average of t h e  RE waveform and t h e  corresponding power 
spectrum a r e  displayed.  

, 

Two f e a t u r e s  become immediately apparent .  When t h e  t r ansduce r  
progresses  from a smooth t o  a rough p o r t i o n  of t h e  s u r f a c e  a r a t h e r  l a r g e  
amount of energy is  l o s t  by s c a t t e r i n g ,  and t h e  r e s u l t i n g  power s p e c t r a  a r e  
low i n  amplitude. Gain adjustments  w i l l  have t o  be implemented i f  d i v i s i o n  
of power s p e c t r a  i s  contemplated. The RF waveform a l s o  i n d i c a t e s  r e f l e c t i o n  
from t h e  s u r f a c e  and t h e  bottom edge of t h e  grooves. The corresponding 
power s p e c t r a  show i n t e r f e r e n c e  p a t t e r n s  and t h e  p e r i o d i c i t y  of t h i s  
i n t e r f e r e n c e  i s  most n o t i c e a b l e  i n  t h e  spectrum of t h e  averaged wave- 
forms. During t h e  next  q u a r t e r ,  d a t a  from d i f f e r e n t  roughened t e s t  b locks  
w i l l  be  gathered and eva lua ted .  
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Fig. 4 .  Waveforms and A s s m i a t e d  Power S p e c t r a  of T e s t  S i g n a l s .  Neg. No. MSD-65940. 
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Fig.  5. E l t r a s o n i c  R e f l e c t i o n  S i g n a l s  and Assoc ia ted  Power S p e c t r a  from a Rough-surface Scan. 
Keg. No. MSD-65939. 
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Fig .  6 .  Averaged RF Waveforin a l d  Assoc ia ted  Power Spectrwn. Neg. No. MSD-65941. 



2. Refrac tory  I n s t a l l a t i o n  P r a c t i c e s  

a. Detec t ion  of Thermally Induced Acoust ics  from Refrac tory  
'Concrete  Ma te r i a l s  

Work has cont inued t h i s  q u a r t e r  o n ' e v a l u a t i o n  of a c o u s t i c  emission 
as a means t o  c o n t r o l  t h e  f i r i n g  schedule  of t h i c k ,  c a s t a b l e - r e f r a c t o r y  
conc re t e  l i n i n g s  of t h e  type  envisioned f o r  u s e  i n  t h e  main process  v e s s e l s  
i n  coal-conversion ( g a s i f i c a t i o n ,  l i q u e f a c t i o n )  and f luidized-bed (atmos- 
phe r i c  and p re s su r i zed )  p l a n t s .  

During t h e  p r e s e n t  q u a r t e r  a high-density Castolast-G panel  
(25 x 30 x 15.cm) was r a p i d l y  heated and cooled by means of a  glowbar ' 

fu rnace  and a i r  quench, r e s p e c t i v e l y .  Two "Y"-type hangers were mounted 
as noted i n  Fig. 7. Seven t y p e  K thermocouples were mounted on t h e  top  
hanger and t h r e e  on t h e  bottom hanger (Fig. 8) .  

Acoustic-emission d a t a  were obta ined  us ing  2.5-cm-OD x 23-cm-long 
qua r t z  waveguides, a s  d i scussed  p rev ious ly  .1*2*7 A 175-KHz resonant  t rans-  
ducer and a broadband t ransducer  were aga in  used throughout t h e  t e s t .  An 
automatic  da t a -acqu i s i t i on  system was employed dur ing  t h i s  t e s t  i n  an  
a t tempt  t o  o b t a i n  real- t ime c h a r a c t e r i s t i c  s l o p e  da ta .  This  system is  
shown schemat ica l ly  i n  Fig. 9. The output  of t h e  ampl i tude -d i s t r i bu t ion  
ana lyzer  was f e d  t o  t h e  minicomputer, which was .programmed f o r  rea l - t ime 
c h a r a c t e r i s t i c  s l o p e  determinat ion.  

The hot-face tempera ture  ve r sus  t ime d a t a  a r e  shown i n  Fig. 10. 
The maximum hea t ing  r a t e  was about 225"CIhr. The remainder of t h e  d a t a  
w i l l  be presented next  q u a r t e r .  
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Fig. 7 .  Front View of Refractory Panel Showing  anger. Locations and 
Overall'Dimensions. Neg. No. MSD-65885. 
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Fig. 8 .  Schematic Diagram Showing Thermocouple Locations on Hangers. 
Neg. No. MSD-65888. 



Fig. 9. Schematic Diagram of Automatic Data-acquisition System. 
Neg. No. MSD-65887. 
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Fig. 10. Hot-face Temperature of Panel as Function of Time. 
Neg. No. MSD-65886. 
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3 .  Component Inspect ion  

a. Acoustic Monitoring of Valves 

The two a c o u s t i c  instruments f o r  valve-leak t e s t i n g ,  described 
i n  t h e  previous q u a r t e r l y  report1, were received by ANL during t h i s  quar ter .  
Because the  u n i t  provided by t h e  Naval Ship Research and Development 
Laboratory had been designed f o r  i n t e r m i t t e n t  u s e  and a continuous capa- 
b i l i t y  was needed, an  a u x i l i a r y  power supply was constructed and i n s t a l l e d  
i n  t h e  un i t .  Af te r  prel iminary t e s t s  a t  ANL, t h e  instruments were taken 
t o  t h e  Morgantown Energy Technology Center (West Virgin ia)  during August 
and given i n i t i a l  tests on a high-pressure, 6-in. b a l l  va lve  i n  the  valve- 
l e a k  test f a c i l i t y  there .  Addit ional  t e s t s  of t h e  performance of t h e  
a c o u s t i c  d e t e c t o r s  a r e  t o  be conducted a t  Morgantown, and r e s u l t s  w i l l  be 
presented i n  t h e  n M e  qZIrte~ly repurL. 



Task D -- Corrosion Behavior of Ma te r i a l s  

1. co r ros ion  i n  G a s i f i c a t i o n  Environments 

(K. Natesan) 

The o b j e c t i v e s  of t h i s  program a r e  t o  (1)  develop u n i a x i a l  t e n s i l e  
d a t a  on f o u r  commercial a l l o y s  upon exposure t o  multicomponent gas  environ- 
ments, (2) experimental ly  eva lua t e  t h e  high-temperature co r ros ion  behavior  
of i ron-  and nickel-base a l l o y s  i n  gas  environments w i th  a wide range  of 
oxygen, s u l f u r ,  and carbon p o t e n t i a l s ,  and ( 3 )  develop a systems approach 
based upon a v a i l a b l e  thermodynamic and k i n e t i c  in format ion  s o  t h a t  p o s s i b l e  
co r ros ion  problems i n  d i f f e r e n t  coal-conversion processes  can be  eva lua ted .  

The experimental  program used t o  gene ra t e  u n i a x i a l  t e n s i l e  d a t a  
on f o u r  i ron-  and nickel-base a l l o y s  upon exposure t o  multicomponent gas  
environments was d iscussed  i n  d e t a i l  i n  an  e a r l i e r  r epo r t . 8  A d e s c r i p t i o n  
of t h e  experimental  system and t h e  chemical composition of t h e  a l l o y s  and 
gas  mixtures  used i n  t h e  program were g iven  i n  another  r epo r t . 2  The 
c a l c u l a t e d  v a l u e s  f o r  t h e  oxygen and s u l f u r  p a r t i a x  p r e s s u r e s  e s t a b l i s h e d  
by t h e  f a s  mixtures  i n  d i f f e r e n t  runs  were given i n  t h e  previous  q u a r t e r l y  
r epo r t .  

I 

During t h e  p re sen t  q u a r t e r ,  3.6-Ms (1000-h) exposures of c o r r o s i o n  
specimens and u n i a x i a l  t e n s i l e  specimens t o  gas  m i x t u r e r l B  a t  871°C and 
1 A  and 2A a t  982OC were completed. The co r ros ion  specimens from d i f f e r e n t  
experimental  runs  were analyzed us ing  scanning-electron microscopy (SEM) 
and t h e  energy-dispersive x-ray (EDAX) analyzer .  The type  and th i ckness  
of corrosion-product s c a l e  and t h e  depth  of i n t e r g r a n u l a r  p e n e t r a t i o n  i n  
d i f f e r e n t  specimens were eva lua ted .  The r e s u l t s  a r e  l i s t e d  i n  Tables  V I -  
V I I I  f o r  exposure tempera tures  of 750, 871, and 982"C, r e spec t ive ly .  
Postexposure t e n s i l e  tests of t h e  specimens were conducted i n  vacuum a t  an  
i n i t i a l  s t r a i n  r a t e  of 4.1 x 10-4 s-l. The load-elongat ion d a t a  from t h e  
t e n s i l e  t e s t s  were converted t o  t r u e  s t r e s s - t r u e  s t r a i n  curves  f o r  t h e  
a l l o y s  i n  t h e  as-received cond i t i on  and a f t e r  exposure t o  t h e  mul t i -  
component g a s  environments. I n  gene ra l ,  t h e  flow s t r e s s  of t h e  m a t e r i a l  
dec reases  a f t e r  exposure t o  complex gas  mixtures  when compared w i t h  t h a t  
of t h e  m a t e r i a l  i n  t h e  as-received condi t ion .  The engineer ing  t e n s i l e  
p r o p e r t i e s ,  such a s  0.2% y i e l d  s t r e s s ,  u l t i m a t e  t e n s i l e  s t r e n g t h  (UTS), 
uniform s t r a i n ,  and t o t a l  e longat ion  were a l s o  eva lua ted  from t h e  load- 
e longa t ion  da t a .  Tables  I X  through X I  show l i s t i n g s  of t h e s e  p r o p e r t i e s  
f o r  t h e  a l l o y s  i n  t h e  as-received cond i t i on  and a f t e r  3.6-Ms (1000-h) 
exposures t o  complex gas  mixtures  a t  test temperatures  of 750, 871, and 
982OC, r e s p e c t i v e l y .  The r e s u l t s  show t h a t  preexposure of t h e  m a t e r i a l s  
t o  multicomponent gas  mixtures  l e a d s  t o  a dec rease  i n  0.2% y i e l d  stress and 
UTS wi th  only minimal changes i n  t h e  uniform s t r a i n  over t h e  range of Q4 
t o  13%. The r e s u l t s  a t  750°C a l s o  show t h a t  t h e  m a t e r i a l s  exposed t o  
t h e  "IB" mix tu re  exh ib i t ed  a much l a r g e r  degrada t ion  i n  t h e  s t r e n g t h  
p r o p e r t i e s  than  t h o s e  exposed t o  "At1-series mixtures .  This  d i f f e r e n c e  i n  , 

behavior  can  be a t t r i b u t e d  t o  t h e  lower oxygen p a r t i a l  p r e s s u r e  e s t a b l i s h e d  
by t h e  1 B  mixture,  as ind ica t ed  i n  Table V I .  



A f t e r  t h e  mechanical t e s t s  were completed, t h e  c r o s s  s e c t i o n s  and 
f r a c t u r e  s u r f a c e s  of t h e  t e n s i l e  specimens were examined by SEM and t h e  
x-ray ana lyzer .  F igu res  11-14 show SEM photographs of t h e  c r o s s  s e c t i o n s  
of Incoloy 800, Type 310 s t a i n l e s s  s t e e l ,  Inconel  671, and U. S. S t e e l  
Alloy 18-18-2, r e s p e c t i v e l y ,  a f t e r  a 3.6-Ms exposure t o  a complex gas  
mix tu re  a t  982OC ( run  AOlA982). Also shown i n  t h e s e  f i g u r e s  a r e  t h e  
meta l l ic -e lement  (chromium, i r o n ,  n i c k e l ,  s i l i c o n ,  and t i t an ium)  and s u l f u r  
d i s t r i b u t i o n s  i n  t h e  s c a l e / a l l o y  i n t e r f a c e  r eg ions  of t h e  samples. The 
photographs show t h a t  t h e  s c a l e s  developed on Incoloy 800 and Type 310 
s t a i n l e s s  s t e e l  i n  run AOlA982 a r e  a mixture  of Cr-rich oxide  and C r  
s u l f i d e .  Incone l  671 a l l o y  developed a Cr-rich oxide  s c a l e  wi th  a smal l  
amount of s u l f u r  i n  t h e  s c a l e  region.  U. S. S t e e l  Alloy 18-18-2 developed 
a Cr-oxide/Si-oxide duplex s c a l e  which seems t o  i n h i b i t  p e n e t r a t i o n  of 
s u l f u r  i n t o  t h e  a l l o y .  The specimens from o t h e r  experiments a r e  p r e s e n t l y  
being examined. 

Add i t iona l  experiments a r e  being conducted ro  evaluace t h e  e f f e c t  
of v a r i a t i o n s  i n  t h e  exposure environment on t h e  u n i a x i a l  t e n s i l e  behavior  
of t h e  s e l e c t e d  a l l o y s .  



TABLE V I .  corrosion-product  Analysis  of Specimens Af t e r  3.6-Ms Exposure t o  Complex Gas Mixtures  
a t  750°C 

Sca le  Depth of 
Run a Thickness,  Pene t r a t i on ,  
No. c . ~ 1 1 0 ~  Vm Type of S c a l e  

A01A750 .1.7 x  10 -20 3.8 x 0.056 lncoloy  800 6.0 
' Type 310 SS 6.3 

Inconel  671 3.1 
U.S. S t e e l  
Alloy 18-18-2 63.8 

E12A750 5.9 x 2.7 x 0.125 Incoloy 800 
Type 310 SS 
Inconel  671 
U.S. S t e e l  
Alloy 18-18-2 

B03A750 2.2 x 2.9 x  0.325 lncoloy  800 
Typ,e 310 SS 

. . Inconel.  671 

U.S. S t e e l  
Alloy 18-18-2 

C01B750 6 . 7  x . 9.9 x  0~ .487Inco loy  800 
Type 310 SS 
Inconel  671 
U.S. S t e e l  
Alloy 18-18-2 

Cr-rich ox ide  
Cr--rich ox ide  
C r  ox ide  

Cr/Fe s u l f i d e  

Cr-r ich ox ide '  
C r  o x i d e / s u l f i d e  
C r  oxide 

Cr-r ich ox ide  
Cr-rich ox ide  
C r  su l f i de / (Cr ,N i )  
s u l f i d e  

F e / ' ( F e , ~ i )  s u l f i d e  

(Cr , Fe) s u l f i d e  
(Cr , Ni) s u l f i d e  
C r  s u l f i d e  

Fe s u l f i d e  



TABLE YII. Corrosicn-product Analys i s  of Specimens a f t e r  3.6-Hs Exposure t c  Complex Gas Mixtures  
a t  871°C. 

-- 

S c a l e  Depth of 
Run 

atm 
Thickness,  Pene t r a t i on ,  a 

No. . .  c - Alloy Pm Pm Type of S c a l e  

A01A871 1.1 x 10 -I7 4.0 0.010 Incoloy 800 S u l f i d e  
Type 310 SS 34.0 68.6 (Cr,Mn) ox ide  
Inconel  671 22.8 57.1 ( C r , ~ i )  s u l f i d e  
U.S. S t e e l  
Alloy 18-18-2 - - S u l f i d e  

2 . 7 ~  - 0.023 Incoloy 800 694.0 
Type 310 SS 
Inconel  671 25.6 
U.S. S t e e l  Alloy 
18-18-2 

2.8 x 10  -7 . 0.056 Incoloy 800 16.7 
9 Type 310 SS - 

' . Inconel  671 , 4.5 
.U.S. S t e e l  

' Alloy 18-18-2 - 
-8 - .  

' 8 .7  x 10  0.096 Incoloy 800 50 . 
Type 310 SS 586 
Inconel  671 - 
U.S. S t e e l  
Alloy 18-18-2 - 

(Fe,Ni) s u l f i d e  

C r  s u l f i d e  

C r  s u l f i d e  

Cr-rich ox ide  

Fe s u l f i d e  
(Fe,Cr) s u l f i d e  

C r  s u l f i d e  



TABLE VIII. Corrosion-product Analysis  of specimens Af t e r  3.6-Ms Exposure t o  Complex Gas Mixtures  
a t  982°C 

Sca l e  Depth of 
Run , atm Thickness,  P e n e t r a t i o n ,  a 
NO. Ps2' atm- c Alloy - Pm Pm Type of Sca l e  

-15 
A01A9 82 1.3 x 10  2.4 x 0.003 . lncoloy ' 800 20.0 114.3 C r  oxide/sul£i.de 

Type. 310 SS 18.5 98.5 C r  oxide/sul£i.de 
rQ 
\O Inconel  671 6.2 100.2 C r  oxi'de . 

U.S. S t e e l  
Alloy 18-18-2 12.3 73.8 C r  ox ide /S i  ox ide  

1 .5  x '0.006 Incoloy 800 416.7 
Type 310 SS 301.9 
Inconel  671 7.1 
U.S. S t e e l  
Alloy 18-18-2 710.2 

335.1 C r /  (Cr , Fe) s u l f i d e  
532.7 C r  s u l f i d e  
113.6 C r  ox ide  . 

580.6 C r  oxide,  
Fe s u l f i d e  



TABLE IX.  Uniaxial  Tens i l e  P rope r t i e s  of Four Alloys i n  t h e  As-received Condition and Af te r  3 . 6 4 s .  
Exposures to  Multicornponent Gas Environments a t  750°C 

Alloy 

Uniform To ta l  
0.22 Yield Ult imate Tens i l e  S t r a i n ,  Elongat i on ,  

Treatment S t r e s s ,  MPa Strength ,  ME'a % Z 

Incoloy 800 As-received 91.0 
A01A750 53.3 
E12A750 40.5 
B03A750 69.9 
C01BT5.0 64.6 

Type 310 
w S t a i n l e s s  
0 

S t e e 1  

U.S. S t e e l  
Alloy 18-18-2 

Inconel  671 



TABLE.X. U n i a x i a l  T e n s i l e  P r o p e r t i e s  of Four A l l o y s  i n  t h e  As-received Condi t ion  and A f t e r  3.6-Ms 
Exposures t o  Multicomponent Gas Environments a t  871°C 

-- 

Uniform T o t a l  
0.2% Y i e l d  U l t i m a t e  T e n s i l e  S t r a i n ,  E l o n g a t i o n ,  

- Alloy  Treatment  S t r e s s ,  MPa S t r e n g t h ,  MPa % % 

I n c o l o y  800 As-received 
A01A871 . 
E12A871 
B03A871 
C01B871 

Type 310 
S t ab l e s s  

. S t e e 1  :. 

U.S. S t e e l  As-received 
A l l o y  18-18-.2 A01A871 

E12A871 
B03A871 
C01B871 

' I n c o n e l  671 As-received 
A01A871 
E12A871 
B03A871 
C01B871 

138.5 
106.5 

Sample E m b r i t t l e d  
Sample E m b r i t t l e d  

97.9 

94.5 
.Sample Corroded 
Sample ' E m b r i t t l e d  
Sample ~ m b r i t t l e d  
sample Corroded 

141.1 
105.9 

88.9 
118.0 

Sample Corroded 



TABLE X I .  U n i a x i a l  T e n s i l e  P r o p e r t i e s  of Four A l l o y s  i n  t h e  As-recei -~ed Condi t ion  and A f t e r  3.6-Ms 
Exposures t o  Multicomponent -Gas Environments a t  982OC 

Uniform T o t a l  
0.2% Y i e l d  . U l t i m a t e  T e n ~ i l e  S t r a i n ,  E l o n g a t i o n ,  

A l l o y .  Treatment  S t r e s s ,  MF'a S t r e n g t h ,  MEa % % .  
. .  . 

I n c o l o y  800 As-received . 29.7 . . 59.7 11.1 120.1 
XOlA982 27.1 47.9 8.6 52.9 
E12A982 s impled  Embri t t l e d  

. ...* 

Type 310 As-received 25.4 . 55 .O 14.7 78.1 
S t a i n l e s s  A01A982 - 25.7 45.8 13.5 75.1 
S tee1 E12A982 Sampled Embri t t l e d  

U.S. S t e e l  As-received 33.4 
_ Alloy  18-18-2 A01A982 26.7- 

E12A982 

I n c o n e l  671  As-received 
a01A982 
E12A982 

52.0 2.0 67.9 
41.7 16.0 86.1 

Sample Corroded 



Fig. 11. X-ray Phntngraph and Cr, Fe, N i ,  and S Distribution i n  Incoloy 800 
Specimen After a 3.6-Ms Exposure to  a Complex Gas Mixture a t  982°C 
(Run AO111982). In the distribution pictures, l ight  regions 
indicate high concentrations of the respective elements. 
ANL Neg. No. 306-78-81111 



Fig. 12. X-ray Photograph and Cr, Fe, N i ,  and S Distribution in  Type 310 
Stainless Steel  Specimen After a 3.6-Ms Exposure t o  a Complex Gas 
Mixture a t  982OC (Run AOlA982.). In the distribution pictures, 
l ight  regions indicate high concentrations of the respective 
elements. ANL Neg. No. 306-78-805. 



Fig. 13. X-ray Photograph and Cr, N i ,  T i ,  and S Distribution in  Inconel 671 
Specimen After a 3.6-Ms Exposure to  a Complex Gas Mixture at  982OC 
(Run A01A982). In the distribution pictures, l ight  regions 
indicate high concentrations of the respective elements. 
ANL Neg. No. 306-78-814. 



Fig. 14. X-ray Photograph and Cr, Fe, N i ,  S i ,  and S Distribution i n  
U.S. Steel  Alloy 18-18-2 Specimen After a 3.6-Ms Exposure to  a 
Complex Gas Mixture a t  982OC (Run A01A982). In the distribution 
pictures, l ight  regions indicate high concentrations of the 
respective elements. ANL Neg . No. 306-78-800. 



2. Corrosion i n  Atmospheric Fluidized-bed Environments (0. K. Chopra) 

The e f f e c t s  of NaCl and C a C 1 2  on t h e  co r ros ion  behavior  of m a t e r i a l s  
i n  a  f luidized-bed combustion environment have been eva lua ted  f o r  v a r i o u s  
s a l t  add i t i ons .  The r e s u l t s  of a  meta l lographic  examination of t h e  cor- 
ro s ion  coupons exposed i n  t h e  presence  and absence of s a l t  are presented  i n  
t h i s  r e p o r t .  The composition of t h e  m a t e r i a l s  i s  g iven  i n  Table X I I .  
Corrosion coupons were exposed i n s i d e  and above a  f l u i d i z e d  bed a t  1123 K 
f o r  100 h. The bed m a t e r i a l  and t h e  f l u i d i z i n g  gas  composition f o r  t h e  
va r ious  t e s t s  are g iven  i n  Table X I I I .  I n  runs  3,  4, and 5, salt was 
i . n t~oduced  i n  p r e t r e a t e d  dolomite  prepared by soaking i n  s a l t  s o l u t i o n  and 
drying. Small p o r t i o n s  of t h e  t r e a t e d  s t o n e  were p e r i o d i c a l l y  in t roduced  
i n t o  t h e  f l u i d i z e d  bed. The f  luidized-bed v e s s e l  was equipped wi th  an  over- 
flow tube  which maintained a  cons t an t  bed l e v e l .  For t h e s e  runs ,  t h e  
f l u i d i z i n g  gas  contained 3200 ppm S02. A f t e r  r e a c t i n g  wi th  l imestone,  t h e  
gas  had an SO2 content  of 200-500 ppm. 

a .  Metal lographic Examination 

The c o r r o s i v e  a t t a c k  i n  a l l  t h e  specimens was p r imar i ly  ox ida t ion  
wi th  some s u l f i d a t i o n  of t h e  ma te r i a l .  I n  gene ra l ,  t h e  a d d i t i o n  of s a l t  
Lo t h e  f l u i d i z e d  bed increased  the co r ros ion  r a t e s .  The average  th i ckness  
of t h e  s u r f a c e  s c a l e s  and t h e  depth  of corrosion-product p e n e t r a t i o n  f o r  
t h e  specimens. exposed i n s i d e  and above t h e  f l u i d i z e d  bed a r e  shown i n  
Figs.  1 5  and 16,  r e spec t ive ly .  I n  t h e  absence of s a l t ,  a l l  m a t e r i a l s ,  w i t h  
t h e  except ion  of Inconel  601, developed 2- t o  3-pm-thick s u r f a c e  s c a l e s  
when exposed e i t h e r  above o r  i n  t h e  f l u i d i z e d  bed t h a t  contained s u l f a t e d  
dolomite.  The c o r r o s i v e  a t t a c k  under t h e  s u r f a c e  s c a l e  i n  t h e s e  specimens 

' was minimal. For t h e  same environmental cond i t i ons ,  Inconel  601 specimens 
s u f f e r e d  cons ide rab le  i n t e r n a l  a t t a c k  because t h e  exposure tempera ture  was 
%50 K h igher ,  i.e., %I173 K. 

A s  'shown i n  Figs.  15  and 16,  t h e  a d d i t i o n  of s a l t  t o  t h e  f l u i d i z e d  
bed increased  t h e  c o r r o s i v e  a t t a c k  i n  a l l  t h e  m a t e r i a l s ,  The iron-base 
a l l o y s ,  namely Types 304, 316, and .310  s t a i n l e s s  s t e e l ,  f a r e d  b e t t e r  t han  
t h e  high-nickel  a l l o y s .  For t h e s e  s t a i n l e s s  s t e e l s ,  a  v a r i a t i o n  i n  t h e  
amount of N a C l  I n  the bed had l i t t l e  o r  no e f f e c t  on t h e i r  co r ros ion  be- 
havior;  I n  t h e  presence of NaC1, t h e  average v a l u e  of t h e  t o t a l  c o r r o s i v e  
a t t a c k ,  i .e. ,  t h e  s c a l e  t h i c k n e s s  p l u s  t h e  depth  of p e n e t r a t i o n ,  observed 
i n  Types 304, 316, and 310 s t a i n l e s s  s t e e l  was %20 pm a s  compared t o  %4 pm 
i n  t h e  absence of s a l t  and %8 pm i n  t h e  presence  of 0.1 mole % CaC12. 

The co r ros ion  behavior  of t h e  nickel-base a l l o y s ,  i .e. ,  Inconel  600, 
Inconel  601, and RA333, showed a dependence on t h e  amount of salt  i n  t h e  
f l u i d i z e d  bed. The a d d i t i o n  of s o l i d  NaCl ( run  2) increased  t h e  c o r r o s i v e  
a t t a c k  d r a s t i c a l l y ,  i.r., t h i c k  s u r f a c c  ~ c a l e s  and ex tens ive  i n t e r n a l  a t t a c k  
occurred.  The specimens exposed above t h e  bed g e n e r a l l y  showed g r e a t e r  
c o r r o s i v e  p e n e t r a t i o n  than  t h o s e  exposed i n s i d e  t h e  bed. However, i n  t h e  
presence  of 1.0 mole % N a C l  o r  0.1 mole % CaC12, t h e  average  t o t a l  co r ros ion  
a t t a c k  f o r  t h e s e  a l l o y s  was %20 urn. 



D e t a i l e d  meta l lographic  examination w a s  made of a l l  t h e  specimens 
t o  de te rmine  t h e  d i s t r i b u t i o n  of co r ros ion  products .  F igures  1 7  t o  22 
show.scanning-electron micrographs of t h e  c r o s s  s e c t i o n s  of specimens of . 
Types 304 and 310 s t a i n l e s s ' s t e e l ,  Incoloy 800 ,  Incoilel  600, Inconel  601, 
and RA333 exposed under d i f f e r e n t  t e s t  condi t ions .  The specimens exposed 
t o  t h e  environment w i t h  NaCl o r  CaC12 exh ib i t ed  l a r g e  c a v i t i e s  a long  t h e  
g r a i n  boundaries.  Micrographs of t h e  specimens i n d i c a t e  t h a t  i n  t h e  
presence  of s a l t ,  t h e  i n t e r n a l  c o r r o s i v e  a t t a c k  i s  p r imar i ly  caused by t h e  
p r e f e r e n t i a l  o x i d a t i o n  of t h e  c a r b i d e  phases.  Carbon from t h e  c a r b i d e s  
d i f f u s e s  i n t o  t h e  m a t e r i a l  and r e p r e c i p i t a t e s  ahead of t h e  ox ida t  i on  f r o n t  , 
as shown i n  Figs.  1 9  and 22b. These specimens showed a d e p l e t i o n  of 
chromium i n  t h e  s u r f a c e  reg ion ,  The x-ray microprobe l i n e  ana lyses  f o r  
n i c k e l ,  i r o n ,  and chromium on Incoloy 800 specimens, which w e r e  exposed 
above t h e  bed without  and wi th  N a C 1 ,  a r e  showi~ i n  Figs.  23a and 23b, 
r e s p e c t i v e l y .  I n  t h e  absence of NaCI, [:he d i s t r i b u t i o n  of nickel, Iru14, 
and chromium i l l  the specimen i s  r e l a t i v e l y  uniform. However, i n  t h e  
presence  of NaC1, t h e  s u r f a c e  r eg ion  i s  dep le t ed  i n  chromium and i r o n  t o  
a d e p t h  of Q60 pm. The specimen ma t r ix  i n  t h i s  r eg ion  consists primarily 
ul: ulcke l .  

Scanning-electron micrographs and EDAX ana lyses  of t h e  s u r f a c e  
of t h e  ~ c n l e s  formed on Incoloy 800  specimen^ t h a t  were exposed above t h e  
bed a r e  shown i n  Fig.  24. I n  t h e  absence of NaCl ( F i g .  24a),  a  cont inuous 
ox ide  s c a l e  formed on t h e  specimen su r f ace .  The major elements i n  t h e  
s c a l e  a r e  chromium, manganese, and i ron .  Minor amounts of calcium, mag- 
nesium, s i l i c o n ,  s u l f u r ,  aluminum, and t i t a n i u m  a r e  a l s o  observed. S u l f u r  
is probably p re sen t  i n  calcium s u l f a t e  p a r t i c l e s  t h a t  depos i t  on t h e  s c a l e .  
When NaCl i s  p re sen t  i n  t h e  bed (Fig,  24b), t h e  specimen s u r f a c e  i s  q u i t e  
corroded and t h e  meta l  g r a i n s  underneath t h e  s c a l e  a r e  exposed. The EDAX 
a n a l y s i s  of t h e  s u r f a c e  shows t h e  presence of n i c k e l ,  i r o n ,  and s i l i c o n .  

These r e s u l t s  i n d i c a t e  that NaC1, cai.lses t ,he d e ~ t r u c t i o n  of the 
normally. p r o t e c t i v e  ox ide  s c a l e s .  This  process  l e a d s  t o  a cont inuous de- 
p l e t i o n  of chromium and i r o n  i n  t h e  specimen matr ix.  . The absence of a 
s t a b l e  and adherent  ox ide  s c a l e  causes  i n t e r n a l  ox ida t ion  and s u l f i d a t i o n  
of t h e  a l l o y s .  The s u l f i d e s  a r e  always observed ahead of t h e  o x i d a t i o n  
f r o n t  . 

For most of t h e  a l l o y s ,  t h e  i n t e r n a l  c o r r o s i v e  a t t a c k  c o n s i s t s  of 
t h r e e  d i s t i n c t  zones. The zone nea r  t h e  s u r f a c e  c o n s i s t s  of i n t e r n a l  
ox ida t ion .  The ma t r ix  is  dep le t ed  of chromium and shows i ron - s i l i con  
oxides  along the g r a i n  boundaries.  The second zone c o n s i s t s  of pa tches  of 
chromium and manganese sill f i r l ~ e .  I n  t h i o  reg ion ,  t h e  p a ~ L i a l  pressure of 
oxygen i s  low and chromium r e a c t s  p r e f e r e n t i a l l y  w i th  s u l f u r  t o  form 
s u l f i d e s .  The i n t e r n a l  o x i d a t i o n  and s u l f i d a t i o n  zones a r e  f r e e  of c a r b i d e  
' p a r t i c l e s .  The c a r b i d e s  i n  t h e s e  zones are e i t h e r  ox id ized  o r  t hey  d i s s o l v e ,  

, 

and t h e  carbon d i f f u s e s  i n t o  t h e  m a t e r i a l  and r e p r e c i p i t a t e s  as chromium- 
r i c h  c a r b i d e s  ahead of t h e  s u l f i d a t i o n  zone. The t h i r d  zone c o n s i s t s  
of t h e s e  r e p r e c i p i t a t e d  c a r b i d e  p a r t i c l e s .  



b. . E f f e c t  of Temperature 

To e v a l u a t e  t h e  e f f e c t  of tempera ture  on t h e  co r ros ion  behavior  
of m a t e r i a l s  i n  t he  presence of salt ,  co r ros ion  specimcns were placed a t  
d i f f e r e n t  h e i g h t s  above t h e  f l u i d i z e d  bed. The temperature of t h e  specimens 
va r i ed  from 1123 t o  723 K. For t h e s e  t e s t s ,  t h e  f l u i d i z e d  bed contained 
3.0 mole % N a C 1 .  Micrographs of Types 304 and 310 s t a i n l e s s  s t e e l  specimens 
exposed i n s i d e  and above t h e  bed a t  d i f f e r e n t  tempera tures  a r e  shown i n  
Figs.  25 and 26, r e s p e c t i v e l y .  

The co r ros ion  behavior  of t h e  specimens t h a t  were exposed i n s i d e  
and above t h e  bed a t  1123 K was s i m i l a r  t o  t h a t  descr ibed  i n  t h e  previous  
sec t ion .  However, t h e  specimens exposed above t h e  bed a t  lower tempera tures  
showed cons ide rab le  c o r r o s i v e  a t t a c k .  The t o t a l  co r ros ion  depth  i n  Types 
304 and 310 s t a i n l e s s  s t e e l  specimens a t  923 K is 80 and 50 Mm, re- 
spec t ive ly ,  and a t  823 K t h e  va lues  a r e  600 and 100 pm, r e s p e c t i v e l y .  A t  
t h e s e  temperatures ,  t h e  s u r f a c e  s c a l e s  c o n s i s t  of an  o u t e r  l a y e r  of i r o n  
oxide  wi th  an  inne r  l a y e r  of mixed oxides  of i r o n  and chromium. The a l l o y  
ma t r ix  shows ex tens ive  i n t e r n a l  s u l f i d a t i o n  and oxida t ion .  

The x-ray microprobe l i n e  ana lyses  f o r  i r o n ,  chromium, n i c k e l ,  
oxygen, and s u l f u r  on Types 304 s t a i n l e s s  s t e e l  specimens exposed a t  923 K 
above t h e  bed con ta in ing  NaCl are shown i n  Fig. 27. The r e l a t i v e  concen- 
t r a t i o n  of t h e s e  elements shows t h a t  t h e  o u t e r  s u r f a c e  s c a l e  c o n s i s t s  mainly 
of i r o n  and oxygen. The inne r  s c a l e  con ta ins  i r o n ,  chromium, and oxygen. 
The reg ion  below t h e  oxides  c o n s i s t s  of n i c k e l ,  i r o n ,  and s u l f u r .  The 
x-ray images f o r  t h e  above elements  and c h l o r i n e  a r e  shown i n  Fig. 28 along 
wi th  a  micrograph of t h e  s u r f a c e  s c a l e  on t h e  same specimen. The d i s t r i -  
bu t ion  of t h e  v a r i o u s  elements  shows t h e  two oxide  l a y e r s  and t h e  reg ion  
of i n t e r n a l  s u l f i d a t i o n  and oxida t ion .  ,The x-ray image f o r  c h l o r i n e  shows 
t h a t  t h i s  element i s  p re sen t  i n  r eg ions  which show a h igher  concen t r a t ion  
of s u l f u r .  Th i s  behavior  was observed i n  a l l  t h e  specimens exposed a t  
923 and 823 K. Chlor ine  was observed i n  t h e  r eg ion  between t h e  oxide  l a y e r  
and t h e  a r e a  of i n t e r n a l  s u l f i d a t i o n .  The sulf idelmixed-oxide and t h e  
mixed-oxide/iron-oxide i n t e r f a c e s  observed i n  Type 304 s t a i n l e s s  s t e e l  
specimens exposed a t  823 K a r e  shown i n  Figs.  29a and 29b, r e s p e c t i v e l y .  
Cubes of N a C l  can be c l e a r l y  seen i n  t h e  s u l f i d e  region.  

c. Conclusions 

1. The a d d i t i o n  of NaCl o r  CaC12 t o  t h e  f l u i d i z e d  bed i n c r e a s e s  
t h e  co r ros ion  r a t e s .  

2. I n  t h e  presence  of salt ,  Types 304, 316, and 310 s t a i n l e s s  
s t e e l  perform b e t t e r  t han  t h e  high-nickel a l l o y s .  

3. The co r ros ion  behavior  of s t a i n l e s s  s t e e l s  i s  r e l a t i v e l y  
i n s e n s i t i v e  t o  t h e  amount of NaCl i n  t h e  bed. 

4. The t o t a l  c o r r o s i v e  a t t a c k  i n  l ncone l  600, Inconel  601, alld 
RA333 i n  t h e  presence  of 1.0 mole % NaCl o r  0.1 mole % CaC12 
i s  comparable t o  t h a t  of t h e  s t a i n l e s s  s t e e l s .  

5. The i n t e r n a l  c o r r o s i v e  a t t a c k  c o n s i s t s  of t h r e e  d i s t i n c t  
zones: i n t e r n a l  ox ida t ion ,  i n t e r n a l  s u l f i d a t i o n ,  and a car -  
bur ized  zone where t h e  carbon from t h e  o u t e r  zone re- 
p r e c i p i t a t e s  as chromium-rich ca rb ides .  



6. Specimens exposed above t h e  f lu id ized  bed a t  923 and 823 K 
show extens ive  cor ros ive  a t t ack .  

TABLE X I I .  compositionaof Alloys 

F'e N . i  C.r Mo M n  S.i C Others 

Inconel 600 8.0 Bal. 15.5 - 0.5 0.25 0.08 

Inconel 601 14.1 Bal. 23.0 - 0.5 0.25 0.05 ' 1.35 A l ,  0.25 Cu 

Type 304 SS Bal. 9.5. 19.0 - 2.0 0.50 0.08 

Type 3 i 6  ss ~ a i .  i2.0 i7 .o  2.5 2.0 0.50 0.10 

Type 310 SS BaE. 20.5 25.0 - . 2.0 i.50 0.25 

Type321SS Bal. 10.5 18.0 - 2.0 1.00 0.08, 0.40 T i  
I 

Incoloy 800 Bal. 32.5 21.0 - 1.5 1.00 0.10 0.38 A l ,  0.38 T i  
I 

9.5 2.1 0.9 0.33 0.09' 9Cr72Mo Bal. - 
' 1 

I 



TABLE X I I I .  Experimental Condi t ions 

Run No. . Bed Condition F l u i d i z i n g  Gas 

1 .  Fu l ly  Su l f a t ed  Dolomite 5% 02, 200 ppm SO2, Balance N 
2 

~ u l l y  Su l f a t ed  Dolomite, '1.5 g .  
So l id  NaCl Introduced every 4h 

Dolomite Treated wi th  NaCl 
(3.0 mole % NaC1) 

Limestone Treated w i th  CaCl 
(0.1 mole % CaC12) 

2 

Dolomite Treated w i th  NaCl 
(1.0 mole % NaC1) 

5% 02, 200 ppm SO Balance N 
2 ' 2 

5% 02, 3200 ppm SO2, Balance N 
2 

5% 02, 3200 ppm SO2, Balance N 2 

5% 02, 3200 ppm SO2, Balance.N2 



. . 

Fig. Average Thickness of s u r f a c e  Sca le  and Corrosive Penet ra t ion  f o r  Corrosion coupons I n s i d e  
t h e  Bed f o r  100 h a t  1123 K. A X .  Neg. No. '306-78-785. 



Fig. 16. Average Thickness of Surface Scale and Corrosive Penetration for Corrosion Coupons Exposed 
Above the Bed for 108 h at 1123 K. ANL leg. No. 306-78-786. 



F3.g. 17. SEM Micrographs of  Type 304 S t a i n l e s s  S t e e l  After a 100-h Exposure 
at 1123 K. (A) Exposed in bed, (B) exposed above bed, (a) without 
salt,  (b) solid MaC1, (c)  1 .0  mole % NaC1, and (d) 0 .1  m o l e  
% CaC12. AM, Neg, No. 306-78-795. 



F i g .  18 .  SEM Micrographs o f  Type 310 S t a i n l e s s  S t e e l  a f t e r  a 100-h Exposure 
at 1123 K.  (A) Exposed in  bed, (B)  exposed above bed, (a)  without  
salt,  (b) s o l i d  NaC1, ( c )  1 . 0  mole % NaC1, and (d) 0 . 1  mole  % 
CaC12. ANL Neg. No. 306-78-797. 



Fig.  19. SEM Micrographs of Incoloy 800 a f t e r  a 100-h Exposure a t  1123 K. 
(A) Exposed i n  bed, (B) exposed above bed, (a) without s a l t ,  
(b) s o l i d  NaC1, (c)  1 .0  mole X NaC1, and (d) 0 . 1  mole X CaC12. 
ANL Neg. No. 306-78-798. 



Fig. 20. SEM Micrographs of Inconel 600 after  a 100-h Exposure a t  1123 K. 
(A) Exposed in bed, (B) exposed above bed, (a) without s a l t ,  
(b) sol id NaC1, (c) 1.0 mole X NaC1, and (d) 0.1 mole X CaC12. 
ANL Neg. No. 306-78-796. 
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Fig.  21. SEM Micrographs of  Inconel 601 a f t e r  a 100-h Exposure a t  1123 K. 
(A) Exposed i n  bed, (B) exposed above bed, (a) without s a l t ,  
(b) s o l i d  NaC1, (c) 1 . 0  mole X NaC1, and (d) 0 .1  mole X CaC12. 
ANL Neg. No. 306-78-794. 



Fig. 22. SEM Micrographs of RA333 After a 100-h Exposure at 1123 K. 
(A) Exposed 5n bed, (B) exposed above bed, (a) without salt, 
(b) s o l i d  NaC1, ( c )  1.0 mole % NaC1, and (d) 0 .1  mole % CaC12. 
ANL Neg . No. 306-78-793. 



F i g .  23. X-ray Microprobe Line Analyses for  N i ,  Fe, and Cr on Incoloy 800 
Specimens Exposed above the Bed f o r  100 h a t  1123 K. 
(a)  Exposure without s a l t  and (b) with s o l i d  NaC1. 
ANL Neg. No. 306-78-787. 



Fig. 24. SEM Micrographs and EDAX Analysis of the  Surface Scales  Developed on Incoloy 800 Exposed above 
t h e  Bed for 100 h a t  1123 K. (a) Exposure without s a l t  and (b) with s o l i d  NaC1. 

" .  
ANL Neg. No. 306-78-458. 



F i g .  25.  SEM Micrographs o f  Type 304 S t a i n l e s s  S t e e l  after a 100-h Exposure. 
(a)  Exposed in  bed at 1123 K, (b-f) exposed above bed at  (b) 
1123 K, ( c )  1073 K, (d) 923 K, ( e )  823 K, and ( f )  723 K. 
ANL Neg. No. 306-78-791. 



F i g .  26. SEM Micrograpns or Type 310 S t a i n l e s s  S t e e l  after a 100-h Exposure. 
(a) Exposed i n  bed at 1123 K, (b-e) exposed above bed at (b) 
1123 K, ( c )  1073 K, (d) 923 K, and (e )  823 K. 
ANL Neg. No. 306-78-792. 



F i g .  27 .  X-ray Microprobe L i n e  Analyses  f o r  Fe, Cr, N i ,  0 ,  and S on  Type 304 
S t a i n l e s s  S t e e l  Specimen Exposed above t h e  Bed f o r  100  h a t  
923 K. ANL Neg. No. 306-78-788. 



, , - ,  

Fig. 28. SEM Micrograph and X-ray Images f o r  Fe, C r ,  0 ,  S, arid C1 o f  
Type 304 S t a i n l e s s  S t e e l  Specimen Exposed above t h e  Bed f o r  
100 h a t  923 K. ANL Neg. No. 306-78-789. 
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F i g .  29.  SEM Micrograph o f  (a)  ~ u l f i d e j ~ i x e d - o x i d e  I n t e r f a c e  and (b) 
Mixed-oxide/~ron-oxide I n t e r f a c e  Observed i n  Type 304 S t a i n l e s s  
S t e e l  Specimen Exposed above t h e  Bed f o r  1 0 0  h at  823 K. 
ANL Neg. No. 306-78-790. 



Task E -- Erosion Behavior of MateriaLs i n  Coal-conversion Processes 
(J.Y. Park, S. DanyZuk, and W. J. Shmk) 

During t h i s  quarter, work has continued on t h e  refurbishing and 
ca l ib ra t ion  of t h e  high-temperature erosion-test apparatus. The par t ic le-  
feeding, environmental-control and heating systems have been ins ta l led .  
High-temperature corrosion ca l ib ra t ion  tests w i l l  begin next quarter. 

Heating and temperature control  systems w e r e  checked out, and a 
24-channel temperature recorder was insta l led.  Stable  temperatures up t o  
970°C were a t ta ined  i n  the  test chamber of the  apparatus f o r  times of over 
10 hours. Calibration of flow meters f o r  t h e  component gas mixtures w a s  
completed. A variable-speed dc motor with speed cont ro l le r  was delivered 
and is being ins ta l led .  

The test apparatus is  being prepared f o r  corrosion ca l ib ra t ion  and 
screening t e s t s .  The tests w i l l  be performed i n  an MPC-selected corrosion 
test atmosphere (24 H2, 18 CO, 12 CO2, 5 CHq, 39 H20, 1 H2S, 1 NH13 i n  
volume X )  a t  atmospheric pressure and 816OC. Three separate gas mixtures 
(51.4 CO, 34.3 C02, 14.3 CH3; 96 H2, 4 H2S; NH ) and water w i l l  be fed i n t o  
the t e s t  chamber a t  a t o t a l  flow r a t e  of 16 m l f s  (2 cfh). Twelve corrosion 
test specimens have been prepared from Type 304 s t a in l e s s  steel, SAE 10191 
carbon s t e e l ,  Incoloy 800 and S t e l l i t e  6B f o r  t h e  i n i t i a l  ca l ib ra t ion  tests. 
The r e s u l t s  of these ca l ib ra t ion  t e s t s  w i l l  be compared with data obtained 
i n  Task D and from other sources. 



Task F -- Component Performance and Fa i lu re  Analysis (S. DanyZuk, 
G. M. DrageZ, C. A. PoungdahZ and L. Pahis) 

The a c t i v i t y  during t h i s  quar te r  involved examination of com- 
ponents from t h e  HYGAS Ash Agglomerating Gasif ier  (AAG) and Liquid 
Phase Methanation (LPM) Plant. Follow-up analyses w e r e  a l s o  conducted on 
t h e  f a i l u r e s  described i n  the  previous quar te r ly  report .  A summary of t he  
work accomplished i n  t h e  present quar ter  is given below. 

(1) The LPM plan t  a t  HYGAS was damaged by f i r e  i n  June, Two 
block valves t h a t  w e r e  suspected t o  have contributed t o  t h e  cause of t he  
f i r e  were pressure  t e s t ed  i n  our laboratory. It was found t h a t  the  valves 
could not su s t a in  t h e  specif ied 4.1 MPa (600 psi ) .  These r e s u l t s  were 
reported t o  M r .  C. Nicholson (DOE) and w i l l  be included i n  h i s  f i n a l  report .  
Since t h e  f i r e  a l s o  a f fec ted  HYGAS piping, severa l  pipe sect ions  were -- - - -- 

examined metallographically t o  make ce r t a in  t h a t  t h e  microstructure of 
t he  piping w a s  not  adversely affected.  The microstructure of t he  tubing 
t h a t  had been exposed t o  t h e  f i r e  was no d i f f e r en t  from t h a t  of unexposed- 
piping * 

(2) A v i s i t  w a s  made t o  HYGAS t o  examine cracks i n  t h e  reac tor  
cover pla te .  The cracks a r e  shallow and shavings t h a t  include these  cracks 
a r e  present ly  being analyzed. 

(3) HYGAS of fgas  piping has been analyzed. Leaking cracks were 
found near welds. A weld-neck f lange  and a 4-in.-OD pipe have been 
examined t o  date ,  and t h e  r e s u l t s  a r e  as follows: The leaking cracks were 
in tergranular ,  and occurred Q 1 cm from t h e  weld fusion l i ne .  Trans- 
granular cracks w e r e  a l s o  found near t h e  welds; these  were not throughwall 
and occurred a t  random posi t ions  r e l a t i v e  t o  t h e  weld fusion l ine .  Both 
types of cracks i n i t i a t e d  a t  t h e  ID.  Figure 30 shows t h e  morphology of 
t yp i ca l  cracks found i n  t he  weld-neck flange. The weld-prep a reas  were 
most l i k e l y  t he  i n i t i a t i o n  sites f o r  t he  in tergranular  cracks. 

(4) Work has s t a r t e d  on preparing thermowells of Haynes Alloy 188 
f o r  exposure t o  t h e  AAG environment. Corrosion and erosion w i l l  be moni- 
tored a f t e r  control led exposures. 
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Fig. 30. Micrograph of t h e  I D  Surface of the  Weld-neck Flange. The intergranular crack shown is 
0.64 cm from the  weld fusion l ine ,  ANL Neg. No. 306-28-928. 
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