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Abstract

A new scheme for the calculation of the collision integral of the nonlinear
Boltzmann kinetic equation is presented, based on a piecewise constant discrete
approximation of the distribution function in phase space and corresponding
precalculated collision rate coefficients. The computing effort required for evaluation
of the fivefold collision integral is significantly reduced by the use of precalculated rate
coefficients. The method was combined with the conservative splitting method to solve
the Boltzmann equation for a number of test cases to examine the performance of this
method and demonstrate its efficiency.

L Introduction

The Boltzmann equation, the basic equation of kinetic theory, is required for
detailed characterization of gas flows that are far from local thermal equilibrium.
Direct numerical solution of the Boltzmann equation presents several computational
difficulties. These difficulties arise from the nonlinearity and complexity of the
collisional integral, together with the multidimensionality of the equation.

Groups led by Yen and Cheremisin have spearheaded the development of direct
numerical solutions of the Boltzmann equation.1-5 The basic approaches of the two
groups are similar and consist of two steps: 1) evaluation of the collision integral by
conducting Monte Carlo simulations (random quadrature), and 2) approximation of the
differential operators by the finite-difference method. For the second step, Aristov and
Cheremisin's conservative splitting method4 is the best currently available because it
guarantees conservation of mass, momentum, and energy at every iteration. The Monte
Carlo method for computing the collision integral developed by Nordsieck® has been
systematically tested and refined for several years. The calculations are time-
consuming because a large number of multifold integrations must be performed at ever;
position, velocity, and time grid. The discrete velocity approach has also been studied
but it does not provide quantitative predictions. Because the collision integral cannot
be calculated efficiently, difficult problems involving high Mach numbers, small
Knudsen numbers, large derivatives in the flow parameters, and multidimensional
physical space cannot be solved within a reasonably short period of time, even on the
fastest supercomputer.

In this paper, a new method for evaluating the nonlinear collision integral of the
Boltzmann equation is presented. In Sec. 2, the formulation and corresponding
numerical method for evaluating the integral are given. It is shown that some basic
constants can be computed and stored in advance to reduce total computing time. The
important properties of these constants are also discussed. In Sec. 3, the present
method, combined with the conservative splitting method,4 is applied to one- and two-
dimensional cases to examine the method's performance.
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1. Formulation

Consider the Boltzmann equation without external forces:
4 oo
of _ df
5t + g = Jae fef -mGULEmat =1 M

The position vector x has the Cartesian components (x,y,z), the velocity vector § (or {)
has corresponding components (§x,8y,E2), f is the velocity distribution function of the gas
molecules normalized to the local gas density, Q is the solid angle, and n = (ng,ny,ny) is
the unit direction vector along the apse line in the plane of the collision. The function
G(g,n} = go(g,n), where g = 1{-&! is the relative speed of the collision pair and ¢ the
differential collision cross section, 1s determined by the form of the intermolecular
potential. Subscript 1 indicates quantities for the collision partner, primed quantities
indicate values after a collision, and the functional dependence of the distribution
functions has been suppressed for compactness, i.e., f = fit,x,£), f; = fit,x,{), etc. The
velocities of the collision partners after a collision that results in a particular
scattering can be determined from

£'=E-nne§ - (2a)

{'={-nne -8 (2b)
The collision integral I in the Boltzmann equation can be separated into two parts:

I=A-Bf
where
4n @
A= [d0 Jf'f'l Glgn)d¢

and

4 o0

B= AdQ J'fl Glg.n)d

In order to solve the equation numerically, we may approximate the infinite
velocity space by a finite cube 1&;1 <V (where V is a given constant, i = x, y, z) and then
divide this cube into smaller cubic elements ej {i = 1,..., Ne, where Ne is the total number
of elements) of the same side length AV. Each velocity axis is divided into an odd
number of elements so that the origin {s at the center of one of the elements.

The velocity distribution function is discretized by setting

Ny

itz = Y o0 (3)
i=1

where f; = {{t,x.£)), &; are the discretized points in £ space, Ny is the total number of §;, and
¢;j is an interpolating function. For simplicity, ¢; is chosen as a piecewise constant
function in this paper, so that the number of elements Ne is equal to the number of
discrete velocity points Ny:
Ne = NV =N
Substituting Eq. (3) into (1) and letting & = &k -yields

ofk dfk
Wq. ék O—a;— = Ak - kak (4)



Z-Q. TAN, ET AL. NEW METHOD FOR THE BOLTZMANN EQUATION

where
N N N
k k
Aksz Zaij fify , Bksz B i (5)
i=1 j=1 i=1
with collisional rate coefficients alﬁ and Blk defined by
an
a}j = Jdﬂ j ilEnne(Ei-O)y((-nne((-EIG(I {-Ek | m)d( (6a)
K 4n o
Bi'= JAQ i@ G LEklm) o (6b)

Because the collisional rate coefficients ozik and B}{ are independent of x, t, f, and
initial and boundary conditions, they can be coijnputed and stored in advance for later
use on a variety of problems with different geometries or conditions. The collision rate
coeflicients depend on the collision cross section and hence vary for different gases. For
hard-sphere or inverse-power gases, the coefficients are merely rescaled and need not be
recalculated.

The limitation of the technique is the large number (O(N3)) of allj and Blf to be
evaluated and stored. Even when the aj are computed, the N2 + N multiplications to
compute Ax and Bk are extremely time consuming. The key to practical implementation
is to exploit spme properties of oy hat reduce the corﬁputing time required. The
evaluation of By is much easier than ay: the properties of B; are not discussed in detail
but are mentioned where appropriate.

The first property of oy is that the coeflicient remains unchanged when &;, £;. and
Ex are shifted (but not rotated) to new positions (say, &} &m, &) in velocity space, keeping

the relative positions the same. The relation

k 1
04 = Omn

follows directly from Eqs. (4) and (6a) because only the relative velgcity affects the
solution of the Boltzmann equation. Hence, one need only compute ay with €x=0, and
the collision rate coefficients for all other k are obtainecil( by shifting. Thus, there are N2
independen Oy hereafter, only the computation of aijl E=0 = %ij will be considered.

Similarly, By IF, =0 = Bi, and only N coefficients need be computed and stored.
Second, ﬁ' the angular integral in 4n space is approximated by an M-point
nurmerical integration formula

4r M
JF(n) dQ = Zth(nt) (7)
t=1

where wt are the integration weights and nt the integration points, then the number of
nonzero ojj is at most 9MN. The proof for this property can be outlined as follows. If Qjj #
O for some i and j, then, with £k = 0, Eq. (6a) gives vector inequalities

1€ - nnel | < (AV/2)i
|0~ nm)el — &1 < (AV/2)H (8)
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where I is the unit matrix, iis the unit vector, and the vector magnitude of a vector Ivl =
(lvg!, lvyl, vz I}). To satify these two inequalities, the following must hold:

t, AV
(5 xnY | < (St- Ingl )5

i=1,..,N, t=1,,.M, r=xy,z (9a)
\Y%
Ejent <slé2—, j=1..N, t=1,.M (9b)

where St = Intl | + Intgl + Ing I, ard subscript r on the left side of Eq. (9a) denotes the rth
component of a vector. Inequality (9a) represents a hexagon in velocity space. The
maximum number of & in the hexagon is less than 3N1/3 and this occurs when In,| =
Ing |l =1n,l=1 /3. Inequality (9b) represents a plate of thickness StAV. The maximu
nun}bert that lie in this plate is less than 3N2/3, and this is obtained when In, | = In|
= In,1 /N2 = 1/2 (or any permutation of subscripts x, y, z). Therefore, the total number of
pairs (€j, &) (i, j = 1,....N) that satisfy Egs. (9a) and (9b) does not exceed 9N for any nt,
Because there are M vectors n!, the maximum number of nonzero o ; is 9MN. Numerical
experiments were conducted to verify this for N ranging from 33 to 113, and the number
of nonzero was found to be between 0.9MN and 2.1MN. The exact number depended on
the discretization of velocity space and the choice of numerical scheme for angular
integration. Because M << N typically, this property greatly reduces the number of
nonzero oyj.

Combining Eqs. (6a) and (7), the five-dimensional integrals aj may be written
explicitly as

M o0
o= Y wi [ointnlsD ¢j(C-ntated G(ICI Y dC (10)
t=1 -

It is convenient to transform variables to permit evaluation of the integral by Gaussian
quadrature. The following transformation was used:

Tx ng ny 1g
2
n=|ny || PPy 1y TyDe |l &y i=RE
2 g0z Nynz 1-n; flg

For convenience, it is assumed that the M points chosen for the angular integration are
such that all n, are nonzero in Eq. (7). (If any one of the components n; is zero, the inte-
gration points can be rotated to new sets so that all n, are nonzero. This does not change
the order of accuracy of numerical integration because of the spherical symmetry of the
domain of the integral} It is easy to show that IRI =nx (I | denotes the determinant) and
that the inverse of R exists. Substituting in Eq. (10)

M b3 b2 D1 q
= dn, [a GUIR I at) —X 11
o= Y wi |dn, |dny ) GHR minY)— (1)
t=1 as an aj Inxl

where
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aj) =max (éit)s——-{—AV , bij=min (élt)s+——t—AV .
s {ng 2ingl s | ng 2ingl

S=X,Y,2
AV AV
ag =y -5~ ba=Qy+5-

t t

AV
a3 = max ((E,j)z -5 - T - T
n, 2in,|
t(é) +ntn t
( Ay XX hyly Iy 1AV,
b3 = min (ﬁj)z+—2—,— T +

T
n, 2in, |

and the integral is set to zero ff br < ar for any r (r = 1, 2, and 3). Here (j)s denotes the sth
component of §;. K

Thus, the total number of independent nonzero collisional rate coefficients ay is
of the order of MN instead of N3. This reduction is very important because it determines
the computation time and memory size required for data storage. The coefficients can
be stored efficiently using one array to store the values of the nonzero elements and
another to store the indices of these elements. When a flow is computed, the collision
integral may be evaluated rapidly and efficiently using the stored collision rate
coefficients o and B. In contrast, the Monte Carlo technique is relatively inefficient
because it requires repeated random number generations, location of {' and {, and
evaluation of G.

III. Numerical Examples

The technique was applied to solve the Boltzmann equation for three cases to
demonstrate its capabilities. In these calculations, velocity space was approximated by
a cube of side 4Y3vQ, where vg = (kTg/m)!/2 is a characteristic molecular velocity in the
unperturbed gas. Each side of this domain was divided into 5, giving 125 small cubic
elements in velocity space. The shifting property of the collision rate coefficient was
utilized to consider collisions between molecules near the edges of the cube with
partners outside this region, so that depleting collisions were computed on an enlarged
domain (9 x9 x9). An M = 18 point formula for the angular integral was used in the
numerical integrations. For simplicity, the gas molecules were modeled as hard
spheres. The computed a and § were stored and used for all three problems. The
discretized Boltzmann equation was solved using the conservative splitting method.4
Steady-state problems were solved by an explicit transient approach.

Stationary Shock Wave

Figure 1 presents a comparison between the results obtained using the present
method (solid line) and those of Aristov and Cheremisin? (symbols) for the structure of
a stationary one-dimensional shock wave in a hard-sphere gas flow at Mach 2.5. The
reduced density N, velocity U, and temperature T are plotted vs nondimensional
distance X. Reduced quantities are defined by
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Nx - No Ux -Uo Tx -To

N1-No* “Up-Up’ " Ti-To

where subscripts 0 and 1 denote upstream and downstream values, respectlively.
Distances have been scaled by the mean free path A (=1 /\/_éndZNo) in the unshocked gas.
The predictions of the two techniques are in very good agreement.

N =

Piston Problem

The technique was then applied to a transient problem presented by Aristov and
Cheremisin.4 The half-space, x > 0, is filled with gas at uniform temperature and
density Tg and Ng, respectively, moving with uniform mean velocity 2vQ in the
negative x direction. The molecular velocity distribution is Maxwellian when t < 0. At
the instant t = O, an infinite wall perpendicular to the x axis is placed at x = 0. The
reflection of gas molecules on the wall is assumed to be specular.

The semi-infinite physical space was replaced by the finite segment [0, L]. The
following characteristic parameters are used for nondimensionalization:

- L - L NO - l
=g, (= L re—= ' =v2vp, Kn=X
30 3\/§vo (21t)3/2v0 X

The only characteristic length in the problem is the shock-wave thickness, which
is not known a priori, so that the choice of x* and t* is rather arbitrary. In Fig. 2, the
dimensionless density and temperature profiles at various dimensionle ss times are
presented for Kn = 0.02. Corresponding results for Kn = 0.2 are presented in Fig. 3. The
results show that a sharp gradient propagates in the positive x direction corresponding
to the formation of a shock because of collisions between the reflected and incident
molecules. Comparing the results of the two cases, the shock thickness is seen to be
inversely related to the Knuden number (as expected) and is approximately 4x* at Kn =
0.02 and 12x* at Kn = 0.2. At the lower Knudsen number, the shockwave profile rapidly
approaches steady state and moves at constant speed thereafter. Steady-state propaga-
tion is delayed at the higher Knudsen number. Local departures from equilibrium are
most clearly seen in the temperature profile because it is the highest moment of the
distribution function. The maximum in the temperature profiles at early times, which
is very pronounced at the higher Knudsen number, corresponds to the fact that reflected
molecules traveling at 2vp penetrate some distance into the incoming gas before being
thermalized by collisions. Similar trends are seen in the results of Aristov and
Cheremisin? obtained by Monte Carlo evaluation of the collision integral. It should
also be noted that these solutions were obtained in collision-dominated flows (low
Knudsen numbers) where Boltzmann equation solutions have traditionally been
difficult because of computational difficulty in evaluating the collision term to
satisfactory precision.

Figure 4 shows the effect of Kn on the flowfield at nondimensional time t = 10. For
negligible collision rates (Kn — o, the reflected molecules propagate freely without
interacting with incoming molecules to thermalize the kinetic energy. This leads to a
lower temperature in the vicinity of the wall and a wide transition region between the
zone of unperturbed gas and gas that has been brought to rest by the wall. Note that
when collisions are relatively unimportant (Kn = 2), the profiles appear slightly dis-
torted. The distortion arises because the division of velocity space into 125 elements is
insufficient to describe the convection term in the Boltzmann equation. For
collisionless flow (Kn — <), the distortions were somewhat larger for the same
discretization. These distorted results are not shown in Fig. 4, and the results for
collisionless flows were calculated using a denser grid of 13 x 13 x 13 for the convective
and unsteady terms with the collision integral set to zero. As Kn decreases, the
distortions disappear, indicating that the division into 125 elements is sufficient for
accurate calculation of the collision integral.
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A remedy for the distortion problem at large Kn may be to use a different number
of velocity space divisions for the left- and right-hand sides of the Boltzmann equation.
A small number of Ak (say, 125, as in this example} may be calculated and then
interpolated to denser velocity nodes for the convective term of the Boltzmann
equalion.

Comparisons were also made between conservative and nonconservative
solutions to this problem. The computations indicated that the present method
required the conservative scheme for satisfactory solutions using the fairly coarse grid
chosen in velocity space. The nonconservative results obtained were considerably
better than those obtained by Monte Carlo evaluation of the collision integral.4

Two-Dimensional Flow

The steady flow of a rarefied gas over a finite flat plate was also solved using the
new technique. Similar problems have been studied by Cheremisin using Monte Carlo
evaluation of the collision integral.8:9 In this test case, the wall accomodation
coefficient was taken to be 0.5 and the wall temperature was set to the temperature of
the unperturbed flow. The Mach number of the incident flow was set at 2, and the length
of the plate was twice the mean free path in the unperturbed flow, giving a Knudsen
number of 0.5. The physical space was divided into 260 unequal cells. Figure 5 presents
the density contours in the flowfield. The locus of points of maximum density may be
identified with an oblique shock, which appears to intersect the plate about 0.3\ behind
the leading edge and extends at an angle of approximately 65 degree to the plate. (It
should be noted that the scale in the figure has been stretched in the y direction for
clarity.) These steady-state results are in qualitative agreement with Cheremisin's
result8 for a higher-speed flow (M = 4). The present calculations were run at conditions
that matched his earlier paper.® but the results do not agree.

Figure 6 is a plot of density, mean x velocity, and temperature along the plane y =
O: the plate extends from O to 2. The density and temperature are increased just
upstream (one or two mean free paths) of the plate and decline steadily over the length
of the plate. The velocity drops sharply just upstream of the plate, declines slowly over
the leading edge, and is almost constant over the trailing edge. In the wake, the velocity
recovers rapidly to the freestream value, but there is a persistent density decrease and
corresponding temperature increase relative to the freestream. The trends in density
and temperature obtained in these results are similar to those obtained by Cheremisin
for Mach 4 flow over heated and cooled plates.? The same trends are also obtained from
direct simulation Monte Carlo calculations of higher-speed flows. 10

The present solution technique could not be extended immediately to higher speed
flows (M > 3) with good accuracy, because the present division of velocity space into five
elements in each direction with piecewise constant interpolation cannot represent
bimodal distribution functions satisfactorily. A higher-order interpolating function
and a finer mesh for the left-hand side terms would produce more accurate results
without increasing computing time significantly. Work on these areas is in progress.

IV. Conclusions

A new numerical method to evaluate the collision integral of the Boltzmann
equation was presented. The technique was successfully applied to obtain solutions of
the Boltzmann equation for some example problems. The following conclusions may be
drawn:

1)  The present method can generate collision integrals efficiently since most of the
work needed for numerical integration is done by precalculation. Because the precal-
culated collision rate coefficients are independent of physical space, the method is
readily extended to multidimensional problems. The examples show its ability to deal
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with problems with strong collision effects. Good agreement was obtained with results
obtained by the Monte Carlo method for the stationary shock-wave problem.

2) The efficiency and accuracy of the present technique may be improved by: using
different velocity meshes for convection and collision terms; applying higher order
interpolating functions; and using a better quadrature scheme for angular integrations.
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Fig. 1 Structure o! a stationa:y shock wave ir a hard-sphere gas at Mach 2.5. The solid
lines are the results of this work; the symbols were taken from Aristov anc
Cheremisin.4 N, U. ar.d T denote reduced density, velocity, and temperature,
respectively. X has beer: scaled by the mean free path in the unshocked gas.
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Fig. 2 Nondimensional density and temperature at various times for the reflecting
piston problem when Kn = 0.02.



Fig. 3 Nondimensional density and temperature at various times for the reflecting
piston problem when Kn = 0.2.



Fig. 4

20.

Effect of Kn on the density and temperature profiles at nondimensional time t =
10 for the reflecting piston problem. The collisionless flow (Kn = oo) was
computed with a 13x13x13 grid in velocity space. All other cases were computed
with a 5x5x5 grid. The distortion of the Kn = 2 case resulting from the coarse
velocity grid may be noted. —————Kn=00;, —— ——Kn=2; - - - -Kn
=0.2; — — —Kn=002.
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Fig. 5 Density contours calculated for supersonic flow of a monatomic gas over a flat

plate. The incident Mach number is 2, and the plate length is 2\, where A is the
mean free path in the freestream. Gas/surface interactions are modeled by a
combination of specular reflection and diffusion, with a wall accommodation
coefficient of 0.5; the wall temperature is specified to be the same as the
freestream temperature. Distances have been scaled by 0.4 so that the plate is 5

units long. Note that the y scale has been stretched for clarity. The density has
been normalized by the freestream value.



1.

\ 7
\ /
o \ )
c’ k\\. /
-
U
<
-1 -2 0 2. 4 s]
X/

Fig. 6 Variation of density, mean velocity, and temperature along y = 0. for flow over a
flat plate shown in Fig. 5. The plate extends from x = O to x = 2. All fluid
properties have been normalized by the corresponding freestream values.



