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Abstract

A new scheme for the calculation of the collision integral of the nonlinear 
Boltzmann kinetic equation is presented, based on a piecewise constant discrete 
approximation of the distribution function in phase space and corresponding 
precalculated collision rate coefficients. The computing effort required for evaluation 
of the fivefold collision integral is significantly reduced by the use of precalculated rate 
coefficients. The method was combined with the conservative splitting method to solve 
the Boltzmann equation for a number of test cases to examine the performance of this 
method and demonstrate its efficiency.

L Introduction

The Boltzmann equation, the basic equation of kinetic theory, is required for 
detailed characterization of gas flows that are far from local thermal equilibrium. 
Direct numerical solution of the Boltzmann equation presents several computational 
difficulties. These difficulties arise from the nonlinearity and complexity of the 
collisional integral, together with the multidimensionality of the equation.

Groups led by Yen and Cheremisin have spearheaded the development of direct 
numerical solutions of the Boltzmann equation.1*5 The basic approaches of the two 
groups are similar and consist of two steps: 1) evaluation of the collision integral by 
conducting Monte Carlo simulations (random quadrature), and 2) approximation of the 
differential operators by the finite-difference method. For the second step, Aristov and 
Cheremisin’s conservative splitting method4 is the best currently available because it 
guarantees conservation of mass, momentum, and energy at every iteration. The Monte 
Carlo method for computing the collision integral developed by Nordsieck6 has been 
systematically tested and refined for several years. The calculations are time- 
consuming because a large number of multifold integrations must be performed at every 
position, velocity, and time grid. The discrete velocity approach has also been studied/ 
but it does not provide quantitative predictions. Because the collision integral cannot 
be calculated efficiently, difficult problems involving high Mach numbers, small 
Knudsen numbers, large derivatives in the flow parameters, and multidimensional 
physical space cannot be solved within a reasonably short period of time, even on the 
fastest supercomputer.

In this paper, a new method for evaluating the nonlinear collision integral of the 
Boltzmann equation is presented. In Sec. 2, the formulation and corresponding 
numerical method for evaluating the integral are given. It is shown that some basic 
constants can be computed and stored in advance to reduce total computing time. The 
important properties of these constants are also discussed. In Sec. 3, the present 
method, combined with the conservative splitting method,4 is applied to one- and two- 
dimensional cases to examine the method's performance.
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Z-Q. TAN, ETAL. NEW METHOD FOR THE BOLTZMANN EQUATION

n. Formulation

Consider the Boltzmann equation without external forces:
4tc 00

![ + $•§ = jda J(ffl I ^ I ,n)dC = I (1)

The position vector x has the Cartesian components (x.y.z), the velocity vector ^ (or Q 
has corresponding components (^xAyAz)> f is the velocity distribution function of the gas 
molecules normalized to the local gas density, Q is the solid angle, and n = (nx,ny,nz) is 
the unit direction vector along the apse line in the plane of the collision. The function 
G(g,n) = gcr(g,n), where g = I £-£, I is the relative speed of the collision pair and a the 
differential collision cross section, is determined by the form of the intermolecular 
potential. Subscript 1 indicates quantities for the collision partner, primed quantities 
indicate values sifter a collision, and the functional dependence of the distribution 
functions has been suppressed for compactness, i.e., f = f(t,x,^), fi = f(t,x,Q, etc. The 
velocities of the collision partners after a collision that results in a particular 
scattering can be determined from

$-nn.fc-Q (2a)

C’=C-nn.(C-U (2b)
The collision integral I in the Boltzmann equation can be separated into two parts:

I =A-Bf
where

A
4n 00

Jf'fl G(g,n)dC

and

B
4jc 00

jdnjfi G(g,n)dC

In order to solve the equation numerically, we may approximate the infinite 
velocity space by a finite cube 1^1 < V (where V is a given constant, i = x, y, z) and then 
divide this cube into smaller cubic elements ej (i = 1,..., Ne, where Ne is the total number 
of elements) of the same side length AV. Each velocity axis is divided into an odd 
number of elements so that the origin is at the center of one of the elements.

The velocity distribution function is discretized by setting
Nv

flt,x,y = £ (3)
i=l

where fj = fit.x.^i), are the discretized points in q space, Nv is the total number of £1, and 
<)>i is an interpolating function. For simplicity, ((>1 is chosen as a piecewise constant 
function in this paper, so that the number of elements Ne is equal to the number of 
discrete velocity points Nv:

Ne = Nv = N
Substituting Eq. (3) into (1) and letting ^ = ^-yields

dfk , dfk
^ + %k * - Ak _ Bk^k (4)
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where
N N N

Ak = ^ ay fifj - Bk=^
i=l j=l i=l

k kwith collisional rate coefficients ocjj and Pj defined by 
4tc °°

aj = JdQ J <t>i(^nn.(^k-g)<t»,^-nn-(^k))G( I C-^k I .n)dC (6a)

^=^0 J<t)i(g G(IC^kl.n) dC (6b)

k k
Because the collisional rate coefficients and pj are independent of x, t, f, and 

initial and boundary conditions, they can be computed and stored in advance for later 
use on a variety of problems with different geometries or conditions. The collision rate 
coefficients depend on the collision cross section and hence vary for different gases. For 
hard-sphere or inverse-power gases, the coefficients are merely rescaled and need not be 
recalculated. k

The limitation of the technique ig the large number (0(N3)) of ocjj and p( to be 
evaluated and stored. Even when the cty are computed, the N2 + N multiplications to 
compute Ak and Bk are extremely tigie consuming. The key to practical implementation 
is to exploit sgme properties of otjj ghat reduce the computing time required. The 
evaluation of Pj is much easier than (Xjj ; the properties of Pj are not discussed in detail 
but are mentioned where appropriate.

The first property of ay is that the coefficient remains unchanged when g, !y. and 
£k are shifted (but not rotated) to new positions (say, ^ ^mi ^n) in velocity space, keeping 
the relative positions the same. The relation

k 1 
«ij =°mn

follows directly from Eqs. (4) and (6a) because only the relative vejocity affects the 
solution of the Boltzmann equation. Hence, one need only compute ay with ^k=0. and 
the collision r^te coefficients for all other k are obtaine<gby shifting. Thus, there are N2 
independent^ay; hereafter, only the computation of ayl^.Q = ay will be considered. 
Similarly, p j I e, _q s Pi, and only N coefficients need be computed and stored.

Second, n the angular integral in 4n space is approximated by an M-point 
numerical integration formula

4n M
(F(n) dQ = ^TwtFfot) (7)

B t=l
where wt are the integration weights and nt the integration points, then the number of 
nonzero ay is at most 9MN. The proof for this property can be outlined as follows. If ay * 
0 for some i and j, then, with ^k = 0. Eq. (6a) gives vector inequalities

ig-nn<l < (AV/2)i

l(I-nnK-^)l < (AV/2)1 (8)
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where I is the unit matrix, i is the unit vector, and the vector magnitude of a vector Ivl = 
(I vx I, I Vy I, I vz I). To satify these two inequalities, the following must hold:

K^xn^rl <(St- InJ-l )4p

1=1....N, t=l.....M, r = x, y, z (9a)

I 1 < j = 1....N, t = 1.... M (9b)

where St = In^l + Ir^l + In3l,ard subscript r on the left side of Eq. (9a) denotes the rth 
component of a vector. Inequality (9a) represents a hexagon in velocity space. The 
maximum number of in the hexagon is less than 3N1/3 and this occurs when I n^.1 =

I riyl = Ir^l = l/-\/3. Inequality (9b) represents a plate of thickness StAV. The i^aximupi 
number that lie in this plate is less than 3N2/3, and this is obtained when I r^l = I ry I 
= Ir^l /V2 =1/2 (or any permutation of subscriptsx, y, z). Therefore, the total number of
pairs (^i, Ej) (i, j = 1.....N) that satisfy Eqs. (9a) and (9b) does not exceed 9N for any n1.
Because there are M vectors n*. the maximum number of nonzero a ^ is 9MN. Numerical 
experiments were conducted to verify this for N ranging from 33 to 113, and the number 
of nonzero was found to be between 0.9MN and 2.1MN. The exact number depended on 
the discretization of velocity space and the choice of numerical scheme for angular 
integration. Because M « N typically, this property greatly reduces the number of 
nonzero ay.

Combining Eqs. (6a) and (7), the five-dimensional integrals ay may be written 
explicitly as

M 00
aij=£wt J ^(C-ntn^Q G( I £ I .n1) d£ (10)

t=l

It is convenient to transform variables to permit evaluation of the integral by Gaussian 
quadrature. The following transformation was used:

<1^

■ny
^\zj

f nx ny 1 
. 2-nxny l-ny -nynz

\(**\
*

^-nxnz -nynz l-nz J\^

For convenience, it is assumed that the M points chosen for the angular integration are 
such that all nr are nonzero in Eq. (7). (If any one of Hie components nr is zero, the inte­
gration points can be rotated to new sets so that all nr are nonzero. This does not change 
the order of accuracy of numerical integration because of the spherical symmetry of the 
domain of the integral.) It is easy to show that IRI = nx (I I denotes the determinant) and 
that the inverse of R exists. Substituting in Eq. (10)

M bs b2 bl d
<*»= Iwt fdqz fdqy f G( I Rr^ I .n^ —^ 

t=1 a3 aJ2 al In*!
(ID

where
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ai = max 
s

^i)s AV \

2liil
, , . Y(ys . AV ^D| — ml n J + + j. 

s ^ ns 211131

s = x, y. z
AV AV

32 - (£j)y " 2 ’ ^ + 2

iV ^-yiy
a3 = max l(^j)z —5-,  ---------f----------------r—J

nz 21112 1

r4^j)x + nUy
( AV

b3 = min U^j)z +~2~♦---------- 1--------+
nz 2,nzl

and the integral is set to zero if br ^ ar for any r (r = 1,2, and 3). Here (^j)s denotes the sth 
component of ^j.

Thus, the total number of independent nonzero collisional rate coefficients ay is 
of the order of MN instead of N^. This reduction is very important because it determines 
the computation time and memory size required for data storage. The coefficients can 
be stored efficiently using one array to store the values of the nonzero elements and 
another to store the indices of these elements. When a flow is computed, the collision 
integral may be evaluated rapidly and efficiently using the stored collision rate 
coefficients a and p. In contrast, the Monte Carlo technique is relatively inefficient 
because it requires repeated random number generations, location of £' and £, and 
evaluation of G.

Ii^IAV

m. Numerical Examples

The technique was applied to solve the Boltzmann equation for three cases to 
demonstrate its capabilities. In these calculations, velocity space was approximated by 
a cube of side 4^3vq, where vq = (kTo/m)1/2 is a characteristic molecular velocity in the 
unperturbed gas. Each side of this domain was divided into 5, giving 125 small cubic 
elements in velocity space. The shifting property of the collision rate coefficient was 
utilized to consider collisions between molecules near the edges of the cube with 
partners outside this region, so that depleting collisions were computed on an enlarged 
domain (9 x 9 x 9). An M = 18 point formula for the angular integral was used in the 
numerical integrations. For simplicity, the gas molecules were modeled as hard 
spheres. The computed a and p were stored and used for all three problems. The 
discretized Boltzmann equation was solved using the conservative splitting method.4 
Steady-state problems were solved by an explicit transient approach.

Stationary Shock Wave
Figure 1 presents a comparison between the results obtained using the present 

method (solid line) and those of Aristov and Cheremisin4 (symbols) for the structure of 
a stationary one-dimensional shock wave in a hard-sphere gas flow at Mach 2.5. The 
reduced density N, velocity U, and temperature T are plotted vs nondimensional 
distance X. Reduced quantities are defined by
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„ Nx-No tt Ux-Uo „ Tx -T0 
N-Ni-N0- U-Ui-U0’ ATi-Tq

where subscripts 0 and 1 denote upstream and downstream values, respectively. 
Distances have been scaled by the mean free path X (= l/V27td2No) in the unshocked gas. 
The predictions of the two techniques are in very good agreement.
Piston Problem

The technique was then applied to a transient problem presented by Aristov and 
Cheremisin.4 The half-space, x > 0, is filled with gas at uniform temperature and 
density Tq and Nq, respectively, moving with uniform mean velocity 2vq in the 
negative x direction. The molecular velocity distribution is Maxwellian when t < 0. At 
the instant t = 0, an infinite wall perpendicular to the x axis is placed at x = 0. The 
reflection of gas molecules on the wall is assumed to be specular.

The semi-infinite physical space was replaced by the finite segment [0, L]. The 
following characteristic parameters are used for nondimensionalization:

x
L
30 ’ t* L

3a/2vq ’
Np

(2x)3/2vJ
s V2vq , Kn = -4- x

The only characteristic length in the problem is the shock-wave thickness, which 
is not known a priori, so that the choice of x* and t* is rather arbitraiy. In Fig. 2, the 
dimensionless density and temperature profiles at various dimensionle ss times are 
presented for Kn = 0.02. Corresponding results for Kn = 0.2 are presented in Fig. 3. The 
results show that a sharp gradient propagates in the positive x direction corresponding 
to the formation of a shock because of collisions between the reflected and incident 
molecules. Comparing the results of the two cases, the shock thickness is seen to be 
inversely related to the Knuden number (as expected) and is approximately 4x* at Kn = 
0.02 and 12x* at Kn = 0.2. At the lower Knudsen number, the shockwave profile rapidly 
approaches steady state and moves at constant speed thereafter. Steady-state propaga­
tion is delayed at the higher Knudsen number. Local departures from equilibrium are 
most clearly seen in the temperature profile because it is the highest moment of the 
distribution function. The maximum in the temperature profiles at early times, which 
is very pronounced at the higher Knudsen number, corresponds to the fact that reflected 
molecules traveling at 2vq penetrate some distance into the incoming gas before being 
thermalized by collisions. Similar trends are seen in the results of Aristov and 
Cheremisin4 obtained by Monte Carlo evaluation of the collision integral. It should 
also be noted that these solutions were obtained in collision-dominated flows (low 
Knudsen numbers) where Boltzmann equation solutions have traditionally been 
difficult because of computational difficulty in evaluating the collision term to 
satisfactory precision.

Figure 4 shows the effect of Kn on the flowfleld at nondimensional time t = 10. For 
negligible collision rates (Kn -> °o), the reflected molecules propagate freely without 
interacting with incoming molecules to thermalize the kinetic energy. This leads to a 
lower temperature in the vicinity of the wall and a wide transition region between the 
zone of unperturbed gas and gas that has been brought to rest by the wall. Note that 
when collisions are relatively unimportant (Kn = 2), the profiles appear slightly dis­
torted. The distortion arises because the division of velocity space into 125 elements is 
insufficient to describe the convection term in the Boltzmann equation. For 
collisionless flow (Kn -» °°), the distortions were somewhat larger for the same 
discretization. These distorted results are not shown in Fig. 4, and the results for 
collisionless flows were calculated using a denser grid of 13 x 13 x 13 for the convective 
and unsteady terms with the collision integral set to zero. As Kn decreases, the 
distortions disappear, indicating that the division into 125 elements is sufficient for 
accurate calculation of the collision integral.
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A remedy for the distortion problem at large Kn may be to use a different number 
of velocity space divisions for the left- and right-hand sides of the Boltzmann equation. 
A small number of Ak (say, 125, as in this example) may be calculated and then 
interpolated to denser velocity nodes for the convective term of the Boltzmann 
equation.

Comparisons were also made between conservative and nonconservative 
solutions to this problem. The computations indicated that the present method 
required the conservative scheme for satisfactory solutions using the fairly coarse grid 
chosen in velocity space. The nonconservative results obtained were considerably 
better than those obtained by Monte Carlo evaluation of the collision integral.4
Two-Dimensional Flow

The steady flow of a rarefied gas over a finite flat plate was also solved using the 
new technique. Similar problems have been studied by Cheremisin using Monte Carlo 
evaluation of the collision integral.8’9 In this test case, the wall accomodation 
coefficient was taken to be 0.5 and the wall temperature was set to the temperature of 
the unperturbed flow. The Mach number of the incident flow was set at 2, and the length 
of the plate was twice the mean free path in the unperturbed flow, giving a Knudsen 
number of 0.5. The physical space was divided into 260 unequal cells. Figure 5 presents 
the density contours in the flowfleld. The locus of points of maximum density may be 
identified with an oblique shock, which appears to intersect the plate about 0.3X behind 
the leading edge and extends at an angle of approximately 65 degree to the plate. (It 
should be noted that the scale in the figure has been stretched in the y direction for 
clarity.) These steady-state results are in qualitative agreement with Cheremisin’s 
result8 for a higher-speed flow (M = 4). The present calculations were run at conditions 
that matched his earlier paper,9 but the results do not agree.

Figure 6 is a plot of density, mean x velocity, and temperature along the plane y = 
0; the plate extends from 0 to 2. The density and temperature are increased just 
upstream (one or two mean free paths) of the plate and decline steadily over the length 
of the plate. The velocity drops sharply just upstream of the plate, declines slowly over 
the leading edge, and is almost constant over the trailing edge. In the wake, the velocity 
recovers rapidly to the freestream value, but there is a persistent density decrease and 
corresponding temperature increase relative to the freestream. The trends in density 
and temperature obtained in these results are similar to those obtained by Cheremisin 
for Mach 4 flow over heated and cooled plates.9 The same trends are also obtained from 
direct simulation Monte Carlo calculations of higher-speed flows.10

The present solution technique could not be extended immediately to higher speed 
flows (M > 3) with good accuracy, because the present division of velocity space into five 
elements in each direction with piecewise constant interpolation cannot represent 
bimodal distribution functions satisfactorily. A higher-order interpolating function 
and a finer mesh for the left-hand side terms would produce more accurate results 
without increasing computing time significantly. Work on these areas is in progress.

IV. Conclusions

A new numerical method to evaluate the collision integral of the Boltzmann 
equation was presented. The technique was successfully applied to obtain solutions of 
the Boltzmann equation for some example problems. The following conclusions may be 
drawn:
1) The present method can generate collision integrals efficiently since most of the 
work needed for numerical integration is done by precalculation. Because the precal­
culated collision rate coefficients are independent of physical space, the method is 
readily extended to multidimensional problems. The examples show its ability to deal
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with problems with strong collision effects. Good agreement was obtained with results 
obtained by the Monte Carlo method for the stationary shock-wave problem.
2) The efficiency and accuracy of the present technique may be improved by: using 
different velocity meshes for convection and collision terms; applying higher order 
interpolating functions: and using a better quadrature scheme for angular integrations.
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Fig. 1 Structure of a stationaiy shock wave h i a hard-sphere gas at Mach 2.5. The solid 
lines are the results of this work; the symbols were taken from Aristov and 
Cheremisin.4 N, U. and T denote reduced density, velocity, and temperature, 
respectively. X has beei i scaled by the mean free path in the unshocked gas.
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Fig. 2 Nondimensional density and temperature at various times for the reflecting
piston problem when Kn = 0.02.
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Fig. 3 Nondimensional density and temperature at various times for the reflecting
piston problem when Kn = 0.2.



Fig. 4 Effect of Kn on the density and temperature profiles at nondimensional time t = 
10 for the reflecting piston problem. The collisionless flow (Kn = oo) was 
computed with a 13x13x13 grid in velocity space. All other cases were computed 
with a 5x5x5 grid. The distortion of the Kn = 2 case resulting from the coarse
velocity grid may be noted. -------------- Kn = oo;--------------Kn = 2; - - - - Kn
= 0.2; — — —Kn = 0.02.
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Fig. 5 Density contours calculated for supersonic flow of a monatomic gas over a flat 
plate. The incident Mach number is 2, and the plate length is 2X. where X is the 
mean free path in the freestream. Gas/surface interactions are modeled by a 
combination of specular reflection and diffusion, with a wall accommodation 
coefficient of 0.5; the wall temperature is specified to be the same as the 
freestream temperature. Distances have been scaled by 0.4X so that the plate is 5 
units long. Note that the y scale has been stretched for clarity. The density has 
been normalized by the freestream value.
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Fig. 6 Variation of density, mean velocity, and temperature along y = 0. for flow over a 
flat plate shown in Fig. 5. The plate extends from x = 0 to x = 2. All fluid 
properties have been normalized by the corresponding freestream values.


