ANL/MCS-TM-129
Received by 05Tl

APR 2 41989

ELEFUNT Test Results Using Titan Fortran
under Ardent UNIX® 2.0 on the Titan

by

W. J. Cody

March 1989
40 %07 WICROFILM
COVER

MATHEMATICS AND

g W ‘4‘,}?%\
2 /AN COMPUTER SCIENCE
2 ¢ DIVISION =~

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.

Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is
owned by the United States government, and operated by The University of Chicago
under the provisions of a contract with the Department of Energy.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Govermment nor
any agency thereof, nor any of their employees, makes any warranty, express
or implied, or assumes any legal lability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or pro-
cess disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not nec-
essarily constitute or imply iis endorsement, recommendation, or favoring by
the United States Government or any agency thereof, The views and opinions
of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue MM
Argonne, Tllinois 60439-4801 ANL/MCS-TM--129

DE89 010233

ELEFUNT Test Results Using Titan Fortran
under Ardent UNIX® 2.0 on the Titan

by

W.J. Cody

Mathematics and Computer Science Division

Technical Memorandum No. 129

March 1989

This work was supported by the Applied Mathematical Sciences subprogram of the Office of Energy

Research, U.S. Department of Energy under Contracte. W-31-109-Eng-38. N AS T E R

DISTRIBUTION OF THIS DOCUMENT IS “WIMITED

rpo/

Contents

ADSITACE co.siveeeaiessiesseonesissssosssrassssontsssnsssssssssssmessssstsssesnesassssessssessasessssssessssssesssessasenssseseasasess sasssassssnsssssssnanss 1
L. INETOQUCHION....ccuiuieienitrissncsesnsessssscssassnsnesssessnnssssnsssessesasssssonssessssssessss sasssssanssassseensssessssensssens st sussssnssssnaraanns 1
2. THE ATTHNINELCccovriresisisisesssisssacsssnssssesasssssstsansssssnssssessssarosssesssssasssssasssestsnsssasnssessrens st snasssnsssansasanns 1
3. ELEFUNT/INTFUNT RESUILS....ccoccruieerrenmresareancsnssasessssersasssssasesarsrsessssesssesssssesssessnsssenssasnsessssssnsssssssnnss 5
4. SUIMMATY ..cucoveneeereerereesessenssesseressasessssessssssessssnssssssssnsessssssesessssssassesssensosessssnssserssssssessessossassnesse 13
RELEIEICES. couuuieirisiisesunissssaisisiniissststsencnsatssssssessestassessssassssssasssssssassasessssasassssesssasssssssnssssssesesessrenssssssssossnes 13

ELEFUNT Test Results Using Titan Fortran
under Ardent UNIXT 2.0 on the Titan

by

W.J. Cody

Abstract

This report discusses testing of the regular and “fast” elementary function libraries supplied with
Titan Fortran on the Ardent Titan computer in the Mathematics and Computer Science Division’s
Advanced Computing Research Facility. Performance tests were conducted using the ELEFUNT suite of
programs from the book Software Manual for the Elementary Functions by Cody and Waite. The quality
of Titan arithmetic was checked with the MACHAR and PARANOIA programs.

1. Introduction

In August 1988 a two-processor Ardent Titan vector-register graphics computer was installed in the
Mathematics and Computer Science Division’s Advanced Computing Research Facility. The machine
has since been upgraded to four processors sharing 32 megabytes of memory. Floating-point arithmetic is
performed with proprietary chips implementing IEEE arithmetic [IEEE 1985].

This report summarizes and analyzes the results of running various programs designed to test the
arithmetic and the Fortran elementary and intrinsic function packages on that machine. The programs run
include MACHAR [Cody 1988a] and the ELEFUNT suite of transportable Fortran test programs from the
Software Manual for the Elementary Functions by Cody and Waite [1980], the Fortran version of the
arithmetic test program PARANOIA [Karpinski 1985], and prototype programs from the nascent
INTFUNT test suite for intrinsic functions. The tests were run with two different libraries: the default
library and the “fast” library invoked with the *“-fast” compiler option. All tests were run using Titan
Fortran under the Ardent UNIX 2.0 operating system.

The next section discusses the computer arithmetic as analyzed by MACHAR and PARANOIA.
Section 3 discusses test results for the elementary and intrinsic functions. Section 4 summarizes our
findings.

This report is one of a continuing series of reports on the quality of the arithmetic and Fortran
libraries available on machines in the Mathematics and Computer Science Division [Cody 1986a, 1986b,
1986¢, 19864, and 1988b}.

2. The Arithmetic

MACHAR is an evolving subroutine to dynamically determine fundamental parameters for the
floating-point arithmetic system. Table 1 contains the parameter values determined by MACHAR for
both single- and double-precision arithmetic on the Ardent Titan. Results with the fast library were ident-
ical to those for the default library, which is not surprising because MACHAR does not make extensive

+ UNIX is a trademark of AT&T Bell Laboratories.

2-

Table 1. Machine Parameters Determined by MACHAR

Parameter Single Precision Double Precision

B 2 2
t 24 53
rnd 2 2
ngrd 0 0
machep -23 -52
negep -24 -53
iexp 8 11
minexp -126 -1022
maxexp 128 1024
eps 0.1192092895508E-06 0.2220446049250D-15
epsneg 0.5960464477539E-07 0.1110223024625D-15
xmin 0.1175494350822E-37 0.2225073858507D-307
xmax 0.3402823466385E+39 0.1797693134862D+309

use of library functions. The tabulated results reveal that Titan arithmetic is not a full implementation of
the IEEE standard; it does include the IEEE representation scheme with its reserved exponents, but it
lacks graceful underflow.

Definitions of the parameters are as follows:
1) B, the radix for the representation scheme;
2) t, the number of base-f digits in the floating-point significand;

3) rnd, a parameter indicating the method of rounding in addition and the type of underflow (full or
partial):
a value of 0 indicates truncation with full underflow;
a value of 1 indicates some non-IEEE form of rounding with full underflow;
a value of 2 indicates IEEE-style of rounding with full underflow;
a value of 3 indicates truncation with partial underflow;
a value of 4 indicates some non-IEEE form of rounding with partial underflow; and
a value of 5 indicates IEEE-style rounding with partial underflow;

4)
5)

6)

7

8)
9
10)
11)
12)
13)

3-

Table 2. Results from PARANOIA

Test Single-Precision Result Double-Precision Result
Integer Arithmetic Okay Okay
B 2 2
epsneg 5.96046448E-08 1.11022302E-16
t 24 53
Extra-Precise Subexpressions No No
Subtraction Normalized Yes Yes
Guard Digits in X, +, — Yes Yes
Rounding in +/-, X, + Yes Yes
Sticky Bit Yes Yes
Multiplication Commutative Yes Yes

ngrd, 0 for rnd # 0; otherwise, the number of base-f guard digits used in multiplication;

machep, the exponent for the smallest power of f§ (but bounded below by #—3) whose sum with 1.0
is greater than 1.0;

negep, the exponent for the smallest power of f (but bounded below by ¢t-3) whose difference with
1.0 is less than 1.0;

iexp, the number of bits dedicated to the representation of the exponent (including bias or sign) of a
floating-point number;

minexp, the smallest permissible exponent;

maxexp, the largest permissible exponent;

eps, on a binary machine, the floating-point number 247,

epsneg, on a binary machine, the floating-point number "¢47;

xmin, the floating-point number B™"¢*; and

xmax, an approximation of the floating-point number p"*¢%

Because MACHAR is intended to be used by other programs, it must avoid exceptions that will ter-

minate execution, severely limiting what it can attempt to determine about an arithmetic system.
PARANOIA (see Table 2), a second and more probing program for examining computer arithmetic, does
not have that handicap. It is a self-contained program that periodically marks its progress by writing
recovery information to file. Thus, if execution is terminated for any of a number of anticipated reasons,

-4-

Table 2. Results from PARANOIA (Continued)

} denotes results with the fast library

Test Single-Precision Result Double-Precision Result
\/(Txi_) =i Yes Yes
% Error Yes
Sqrt Monotone Yes Yes
Sqrt Correctly Rounded or Chopped Correctly Rounded Neither
i Neither Neither
Error Bounds for Sqrt -0.5 and +0.5 ULP -0.5and 1.0 ULP
i -1.5 and +0.6E-5 ULP -0.5and 1.0 ULP
z ¢ for Small Positive i Okay Okay
xmin 1.17549435E-38 2.22507386E-308
(xmin +xmin)/xmin 20 2.0
1.375 X xmin — xmin 0.0 w/o Underflow Signal 0.0 w/o Underflow Signal
B =2 X minezp Okay Okay
x VG- 45 oxp (2), x—1 Okay Okay
27 for Nearly Extremal Values Okay Okay
Overflow INF INF
xmax 3.40282347E+38 1.79769313E+308
z =xmax X 1, xmax /1 Okay Okay
1/0 INF INF
0/0 NaN NaN

the program can be restarted with the expectation that saved data will permit it to properly report the rea-
son for its termination and to resume execution beyond the troublesome point. In this way, with possible
restarts from time to time, the program is able to run tests on arithmetic characteristics that are not

-5.

possible with MACHAR.

PARANOIA was originally written in BASIC by W. Kahan at the University of Califomnia, Berke-
ley, and then translated to Fortran by T. Quarles and G. Taylor. It was made available to the general pub-
lic by R. Karpinski at the University of California, San Francisco [Karpinski 1985]. The particular ver-
sion used here was further refined at AT&T Bell Laboratories and transmitted privately by David Gay.

The results from single- and double-precision runs of PARANOIA that are reported in Table 2 are
self-explanatory (except that ULP refers to Units in the Last Place of the significand). In most cases the
results obtained with the fast library were identical to those obtained with the default library. Here and in
subsequent tables, whenever the results for the two libraries disagree, the results for the fast library are
tabulated immediately after the corresponding results for the default library, and they are marked with a
double dagger (1).

All runs were completed without restarting. Operations that have led to interrupts on other
machines were handled here by returning the IEEE defaults of infinity and NaN (Not a Number) and con-
tinuing execution. PARANOIA reaffirms that Titan arithmetic is IEEE-style except for graceful
underflow and the optional extended-precision arithmetic.

PARANOIA did uncover a number of problems, however, most of them associated with the sqrt
function. Except for the single-precision routine in the default library, PARANOIA reports that the sqrt
function retumns neither correctly rounded nor correctly truncated results, despite the machine’s using
IEEE round-to-nearest even arithmetic. Indeed, ad hoc tests show that the failure in the V(i xi) =itest for
the fast library, which PARANOIA declares to be a ‘“defect,” is incorrect rounding of the result for
i =33.

All PARANOIA runs reported a “flaw” because 1.375 X xmin tested as not equal to xmin, but
1.375 X xmin — xmin underflowed to zero. The lack of a trap in this case elevated the interpretation to
“serious defect.” The significance of this behavior is that testing for equality of x and y before division by
x—y can lead to division by zero.

PARANOIA summarizes its tests by declaring the arithmetic to be “satisfactory though flawed” in
all cases except the single-precision fast case where the judgment is “may be acceptable despite incon-
venient defects.”

3. ELEFUNT/INTFUNT Results

ELEFUNT is the suite of transportable Fortran test programs from the Software Manual for the Ele-
mentary Functions by Cody and Waite [1980), and INTFUNT is an emerging suite of test programs
extending the ELEFUNT concepts to tests of intrinsic functions. Each of the test programs exercises one
or more of the elementary or intrinsic functions to estimate accuracy, check simple mathematical proper-
ties, and assess the response to improper or unusual arguments. The requirement that the test programs be
portable has limited the approach in accuracy checking to determining how well the function program
tested satisfies certain well-behaved identities.

The INTFUNT tests interpret results without reporting specific statistics. Table 3 summarizes
single- and double-precision results for INTFUNT tests of AINT, ANINT, INT, and MOD. As with
PARANOIA, the fast and default libraries gave identical results most of the time; the only disagreements
between the two libraries were in the double-precision results for ANINT. The major problem uncovered
is that the single-precision and fast double-precision versions of AINT, ANINT, and MOD cannot return
values exceeding 23! in magnitude. This strongly suggests that the algorithms used in these programs

convert some intermediate quantity to an integer format, even though the value returned is to be in float-
ing point.

-6-

Table 3. INTFUNT Test Results

1 denotes results with the fast library

Test

Single-Precision Result

Double-Precision Result

AINT

aint(x) vs 0, x =2, i =—1,minexp
aint(l+4x) vs 1, x = 2% i= —1,minexp

aint (x+1/2) vs x, x =2',i = 1,max(35,t+3)
Parity check

2'-1.0

aint (txmax)

ANINT

anint (x), x =2, i = -1,minexp
anint(x+1/2) vs 1, x =2',i =—1,minexp

anint (x+1/2) vs x+1, x =2, i = 1,max(1+3,35)

Parity check
anint (2' - 1.0)

anint (xmax)

anint (~xmax)

INT

int(x) vs 0, x=2"%,i=1,126
int(l4x) vs 1, x=2",i=1,126
int(x+1/2) vs x, x =2,i =130
Parity check

2% _ 1.0, n = min(t, 31)

int (xmax)

int (~xmax)

MOD

mod (nxx+half ,x),
x and n random in (0,1000)
mod (x+%,1.0), x =2, i = 1,max(t+3,35)
Parity check
mod (1.0,0.0)

Okay
Okay
Bad fori>31
Okay
Okay
Returns 23!

Okay

Okay

Okay
Bad for i>31
Bad for i>31

Okay
Okay
Okay
Okay
Okay
Returns 231-1
Returns —23!

All bits correct
Bad for i>31
Okay
1.0

Okay
Okay
Okay
Okay
753_p32

Okay

Okay
Okay
All in error
Okay
All in error
Okay
253
231
Okay
Returns 2%~ 1
Okay
Returns 23!

Okay
Okay

All bits correct
Okay
Okay
NaN

7.

We look at results for each of the programs tested in more detail. The single-precision versions of
AINT seem to perform correctly for small arguments, but return exactly 231 for arguments greater than
231 Results for the default double-precision AINT look good except for the curious return of 2%2-2%2 for
the argument 253_1. Further investigation shows that this function returns only the most significant 31
bits whenever the argument x satisfies 252 < x <253, Results seem to be correct for arguments greater
than 2% in magnitude or less than 2°2 in magnitude.

Tests of the ANINT routines uncovered more problems. The single-precision routines have inher-
ited all of the problems of AINT, and have introduced an additional error. Note that ANINT(22-1)
incorrectly returns 2%, We speculate that the algorithm used does a floating-point add of 1/2 to the argu-
ment and then invokes AINT. If this is the case, then (2%*~1) + 1/2 returns a result halfway between two
floating-point numbers, and the IEEE round-to-even rule causes the result to be rounded up to 2% Thus
an incorrect argument is generated for AINT. This hypothesis has been tested with additional arguments
without contradicting the hypothesis.

The analogous algorithm appears to have been used for the default double-precision version of
ANINT. All of the problems uncovered in the double-precision AINT are found here: the rounding bug
shows up with the argument 253-1, and ad hoc tests motivated by the findings with AINT reveal the same
problems as before with arguments between 252 and 23,

The results for the fast double-precision ANINT are even more disturbing. The program appears to
return AINT instead of ANINT, except that it returns 231—1 (where did the -1 come from?) for large argu-
ments.

The INT routines appear to perform properly. We prefer an error indicator of some sort when the
floating-point argument exceeds the largest representable integer, but that is a minor quibble compared
with the problems in AINT and ANINT.,

Results for the MOD functions are again curious. We did not detect a difference between the
libraries, but did uncover a major difference between the single- and double-precision versions. The
double-precision routines look to be perfect; the single-precision ones retumn bad results for large argu-
ments and, unbelievably, retumn 1.0 for MOD(1.0,0.0). The double-precision programs return the IEEE
NaN in this latter case, which is the preferred result.

In contrast with the INTFUNT tests, ELEFUNT tests report statistics without interpretation. A typi-
cal accuracy test from the ELEFUNT suite evaluates an identity using 2000 random arguments uniformly
distributed across an interval, and reports the number of times the identity was exactly satisfied, the
number of times it was not satisfied on the high side and on the low side, the maximum relative error
(MRE) encountered, and the root-mean-square (RMS) relative error. To normalize results, the MRE and
RMS errors are reported as an estimated number of erroneous trailing base-p digits in the significand. In
general, MRE values between 1.0 and 2.0 are common with ELEFUNT on binary machines; values over
2.5 are rare and often indicate trouble.

Table 4 summarizes results for the ELEFUNT tests. We would not expect the MRE (measured in
our way) for a single-precision program to exceed that for the corresponding double-precision program,
and it rarely does on the Ardent Titan. Indeed, because most elementary function programs are written in
C on UNIX systems and C normally does all floating-point computation in at least double precision, we
would expect many of the single-precision functions to be accurate to within rounding error.

Most of the test programs also check for preservation of parity, for small argument approximations,
for behavior near the boundaries of the function domain, and for response to illegal or ill-advised argu-
ments. In all cases, proper parity was preserved, and the small argument approximations held. The fol-
lowing detailed discussion for each function includes appropriate comments on behavior near the boun-
daries and on error responses.

Table 4. ELEFUNT Test Results

} denotes results with the fast library

Test Interval Precision Exact MRE RMS
ASIN

asin (x) vs Taylor Series (-1/8,1/8) Single Prec. 1998 0.10 0.00
Double Prec. 1243 1.71 0.00
(34,1 Single Prec. 1668 1.00 0.00
Single Prec. 1133 1.23 0.00
Double Prec. 1370 123 0.00

ACOS
acos (x) vs Taylor Series (-1/8, 1/8) Single Prec. 1963 046 0.00
Double Prec. 1349 133 0.00
(3/4,1) Single Prec. 1531 099 0.00
Single Prec. 606 198 0.63
Double Prec. 1040 198 0.17
(-1, -3/4) Single Prec. 1818 0.73 0.00
(-1,-3/4) Single Prec. 1679 0.73 0.00
Double Prec. 1586 073 0.00

ATAN
atan (x) vs Taylor Series (-1/16, 1/16) Single Prec. 2000 000 0.00
Double Prec. 1859 094 0.00
atan (x) vs atan(1/16)+atan [%i:%g)l] (1/16,2-V3) SinglePrec. 1393 100 0.00
Double Prec. 1364 1.00 0.00
2 atan (x) vs atan| (12"2)] @2-¥3,¥2-1) Single Prec. 1455 093 0.00

—x

Double Prec. 1443 1.61 0.00
(2-1,1) Single Prec. 1752 1.00 0.00
Double Prec. 1707 1.00 0.00

The single-precision ASIN/ACOS functions are accurate almost to within rounding error. In all
cases except the final test for ACOS, the reported MRE for the double-precision version of these functions
is larger than we normally see on binary machines, although not so large as to be alarming. These rou-
tines return a NaN for arguments greater than 1.0 in magnitude.

9.

Table 4. ELEFUNT Test Results (Continued)

1 denotes results with the fast library

Test Interval Precision Exact MRE RMS

EXP
exp (x—1/16) vs % (116~In ()12, In (2)12) Single Prec. 1486 1.00 0.00
Double Prec. 1445 100 0.00
$ DoublePrec. 802 206 049
exp (x—45/16) vs —ef’—‘(‘}é’%g)- (-5 In(2), In 2% xmin]) Single Prec. 1514 100 0.00
P Double Prec. 1441 100 0.00
t DoublePrec. 656 901 521
(10 In (2), In [.9 xmax]) Single Prec. 1509 1.00 0.00
Double Prec. 1451 1.00 0.00
t DoublePrec. 642 901 5.15

LOG
In(x) vs Taylor Series (1-¢,14€) Single Prec. 2000 000 0.00
Double Prec. 2000 0.00 0.00
1 DoublePrec. 1445 100 0.00
In(x) vs In(17x/16)~In (17/16) (N2, 15/16) Single Prec. 1434 1.00 0.00
Double Prec. 1512 1.00 0.00
f DoublePrec. 551 367 156
In(x % x)vs 2 In (x) (16, 240) Single Prec. 1959 096 0.00
Double Prec. 1930 0.94 0.00
t DoublePrec. 1088 196 0.16

LOG10

log (x) vs log (11x/10)-log (11/10) (1N10, .9) SinglePrec. 922 213 0.38
¥ Single Prec. 911 2.13 0.39
Double Prec. 781 257 0.53
f DoublePrec. 635 344 108

Our results indicate that the ATAN functions are good. The only fault we could find was that
ATAN(0.0,0.0) retumns 0.0 for all of the various versions. To our mind this should return NaN.

-10-

Table 4. ELEFUNT Test Results (Continued)

1 denotes results with the fast library

Test Interval Precision Exact MRE RMS
POWER

xvsx! 12,1 Single Prec. 2000 0.00 0.00
Double Prec. 2000 0.00 0.00
1 Double Prec. 1070 1.99 0.02
(xxx)S vs (xxx)xx 1/2,1) SinglePrec. 2000 0.00 0.00
¥ Single Prec. 1986 0.98 0.00
Double Prec. 1815 0.90 0.00
1 Double Prec. 622 3.23 1.08
1, xmax?) SinglePrec. 2000 0.00 0.00
t Single Prec. 1985 0.95 0.00
Double Prec. 1783 0.96 0.00
1 Double Prec. 1 o0 o0

x? vs (x X x)'"? X: (1/10, 10),

In[xmin] ,—In[xmin] .
: Single Prec. 2 0.00 0.00
Y G001 In100) ingle Prec. 2000

Double Prec. 1438 2.19 0.00
¥ Double Prec. 1178 10.58 7.41

Both default EXP functions and the fast single-precision EXP function are also good, but the accu-
racy of the fast double-precision program is unacceptable. The MRE and RMS statistics are much too
large. All of these functions return 0.0 for large negative arguments and INF (the IEEE infinity) for large
positive arguments. Supplemental testing reveals that the fast double-precision function returns INF too
soon, however, i.e., for arguments greater than 1023.5 * [n (2) instead of 1024 * In (2) (this is the source
of the unusual values for MRE and RMS in the third test).

The default and fast single-precision LOG functions look very good, although the errors in LOG10
are larger than expected. Test results for the fast double-precision routine are poor, especially those for
the second test. These functions return -INF for a zero argument, and NaN (-NaN in the case of the
default double-precision routine) for negative arguments.

Results for the default POWER and the fast single-precision POWER functions (the Fortran **
operator) look good, but those for the fast double-precision routine are not acceptable. Because
X **Y = INF whenever Y In(X) > 1023.5 In (2), we suspect that this latter routine explicitly uses the fast
EXP and LOG routines. The magnitude of the MRE figures is consistent with this conjecture. Error
returns for the default power functions are designed to permit continued computation whenever possible.

11-

Table 4. ELEFUNT Test Results (Continued)

1 denotes results with the fast library

Test Interval Precision Exact MRE RMS
SIN
sin (x) vs 3sin (x/3)—4sin (x/3)* ©, n/2) Single Prec. 1243 1.32 0.00
Single Prec. 1250 132 0.00
Double Prec. 1268 1.03 0.00
Double Prec. 1120 1.82 0.00
(6x, 6.57) Single Prec. 1221 1.17 0.00
Single Prec. 1215 125 0.00
Double Prec. 1214 1.40 0.00
Double Prec. 1103 1.95 0.00
COS
cos (x) vs 4cos(x/3)¥*—3cos (x/3) (Im, 7.51) Single Prec. 1250 1.32 0.00
Single Prec. 1243 1.15 0.00
Double Prec. 1269 1.42 0.00
Double Prec. 1086 1.73 0.00
SINH
sinh (x) vs Taylor Series ©,172) Single Prec. 1979 098 0.00
Double Prec. 1323 1.15 0.00
sin (x) vs 152 (";clo);s’(’l‘;’ E=D] | (3, 1n (omax)-1/2) SinglePrec. 956 157 0.15
Double Prec. 943 198 0.17
COSH
cosh (x) vs Taylor Series ©, 1/2) Single Prec. 1967 096 0.00
Double Prec. 1918 0.99 0.00
Double Prec. 1873 099 0.00
cosh(x) vs 1625 (";Clo);f(ols)h €=D] | (3, n (xmax)-1/2) SinglePrec. 960 161 0.15
Double Prec. 998 163 0.14
Double Prec. 798 883 431

For example, a negative argument raised to a floating-point integer value is evaluated instead of returning
an error of some sort. Thus, (-2.0)>° = 4.0 (but the fast routines inexplicably return 0.0 for this). In

-12-

Table 4. ELEFUNT Test Results (Continued)

1 denotes results with the fast library

Test Interval Precision Exact MRE RMS

SQRT
x vs Vexx (N2, 1) SinglePrec. 2000 0.00 0.00
Single Prec. 849 1.50 0.08
Double Prec. 1712 0.50 0.00
Double Prec. 1707 0.50 0.00
(1, V2) SinglePrec. 2000 0.00 0.00
Single Prec. 452 200 0.00
Double Prec. 1869 1.00 0.00
Double Prec. 1853 1.00 0.00

TAN
tan (x) vs Tl—zit‘l"—%’/—?);]— (0, 7/4) SinglePrec. 1075 174 0.02
—fan{x

Double Prec. 1071 2.02 0.06
(Tn/8, 97/8) Single Prec. 1309 1.50 0.00
Double Prec. 1077 1.87 0.03
(6w, 6.25T) Single Prec. 1076 1.84 0.03
Double Prec. 1066 1.90 0.05

TANH
tanh (x) vs [[l’j:’:n %&z?g;:;?h((ll/?g)]] A58, In[31/2) SinglePrec. 1076 1.50 0.00
Double Prec. 776 2.22 0.44
(1/8+In[3)/2, 59 In [2)/2) Single Prec. 924 1.13 0.00
Double Prec. 947 1.68 0.00

addition, 0.0%° = 1.0 (the fast routines again return 0.0), a response popular with many numerical analysts
but not with us; we prefer that a NaN be returned. In any case, the responses from the fast routines are

misleading and unacceptable.

Results for the SIN, COS, SINH, and COSH routines are generally quite good. Only the reported
errors for the second test of the fast double-precision COSH are unacceptably large. The magnitude of the
MRE in this case is consistent with the large errors reported for the fast double-precision EXP routine, but
then why is the fast double-precision SINH routine so accurate over the same range of arguments?

13-

The SIN and COS routines attempted to compute function values for arguments in which at least
half of the precision is necessarily lost during argument reduction. We personally prefer that a waming or
error return be given in such situations. The SINH and COSH routines return INF for sufficiently large
arguments. we did not attempt to determine the thresholds for this result.

The rounding problem detected by PARANOIA for some versions of the SQRT function is reflected
by the corresponding values of MRE in Table 4. Note in particular the superb figures for the default
single-precision version of SQRT. All of the SQRT functions returned zero for the argument -0.0, and
returned NaNs for true negative arguments.

The tabulated results for TAN and TANH all look good. A standard auxiliary test disclosed that the
default double-precision TAN function lost 10 significant bits for the argument 11.0. This would suggest
a problem with the argument reduction scheme, but that problem is not apparent in other test results. As
with the SIN and COS routines, TAN retums a computed value with no waming for arguments that
should lose half their significance during argument reduction. There is no cotangent function, but
cotangent is not one of the functions required by the Fortran standard.

4. Summary

With the exception of the double-precision MOD function, we are dismayed by the quality of the
intrinsic functions AINT, ANINT, and MOD. These programs must be corrected.

In contrast, the overall quality of the default library of elementary functions is quite good. Some of
the responses for unusual arguments should be cleaned up, or at least reexamined. We believe the value
of ATAN(0.0,0.0) should be NaN, for example, and that the SIN, COS, and TAN routines ought to give a
warning when arguments become so large that computed results are meaningless. There is also a problem
with the accuracy of the double-precision SQRT, and possibly a rounding problem in LOG10. Correcting
these relatively minor things would improve the library.

The fast libraries, especially the double-precision library, are bad. The motivation for having such a
library is clear, but speed at the expense of accuracy and of consistency with the default library in
responses for special arguments seems foolish to us. The main accuracy problem here seems to be in the
double-precision EXP function. We suspect that improving the accuracy of that one function will
improve many of the others to the point where the overall accuracy of the library will be acceptable. We
also urge that the responses for special arguments be made consistent with those for the default library.

References

ANSI [1978]. American National Standard Programming Language FORTRAN. ANSI X3.9-1978. New
York: American National Standards Institute, Inc.

W. J. Cody [1986a). An Alternative Library under 4.2 BSD UNIX on a VAX 11/780. Argonne National
Laboratory Report ANL-86-10.

W. J. Cody [1986b]. ELEFUNT Test Results under X1.4 on the Encore Multimax. Technical Memoran-
dum ANL/MCS-TM-68, Argonne National Laboratory.

W. J. Cody [1986¢]. ELEFUNT Test Results under FXIFORTRAN Version 1.0 on the Alliant FX/8.
Technical Memorandum ANL/MCS-TM-78, Argonne National Laboratory.

-14-
W. J. Cody [1986d]. ELEFUNT Test Results under NS32000 Fortran V2.5.3 on the Sequent Balance.
Technical Memorandum ANL/MCS-TM-80, Argonne National Laboratory.

W. J. Cody [1988a]. "Algorithm 665. MACHAR: A subroutine to dynamically determine machine
parameters." ACM Trans. on Math. Soft. 14, pp. 303-311.

W. J. Cody [1988b]). ELEFUNT Test Results under FORTRAN-PLUS on the Active Memory Technology
DAP 510-8. Technical Memorandum ANL/MCS-TM-125, Argonne National Laboratory.

W. J. Cody and W, Waite [1980]. Software Manual for the Elementary Functions. Englewood Cliffs,
N.J.: Prentice-Hall.

IEEE [1985]. IEEE Standard for Binary Floating-Point Numbers. ANSI/IEEE Std 754-198S. New York,
IEEE.

R. Karpinski [1985]. "PARANOIA: A floating-point benchmark." BYTE 10, no. 2.

