

UNCLASSIFIED

CLASSIFICATION LEVEL
(S, C OR U)

A. M. PERRY

ATOMICS INTERNATIONAL
Division of Nuclear Energy Corporation

AI-AEC-MEMO COVER SHEET

REPORT TITLE

STRUCTURAL ANALYSIS OF THE SNAP 8 DEVELOPMENTAL REACTOR
FUEL ELEMENT CLADDING

AUTHOR

A. W. Dalcher

AI-AEC-MEMO 12824

NOTICE
PORTIONS OF THIS REPORT ARE ILLEGIBLE.

It has been reproduced from the best
available copy to permit the broadest
possible availability.

(This Document Contains _____ Pages.
This is Copy _____ of _____ Series)

AI-AEC-Memo--12824

TI85 004476

CLASSIFICATION TYPE
(RD OR DI)

d,
r

LEGAL NOTICE

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

UNCLASSIFIED

CLASSIFICATION LEVEL
(S, C OR U)

DO NOT REMOVE THIS SHEET

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

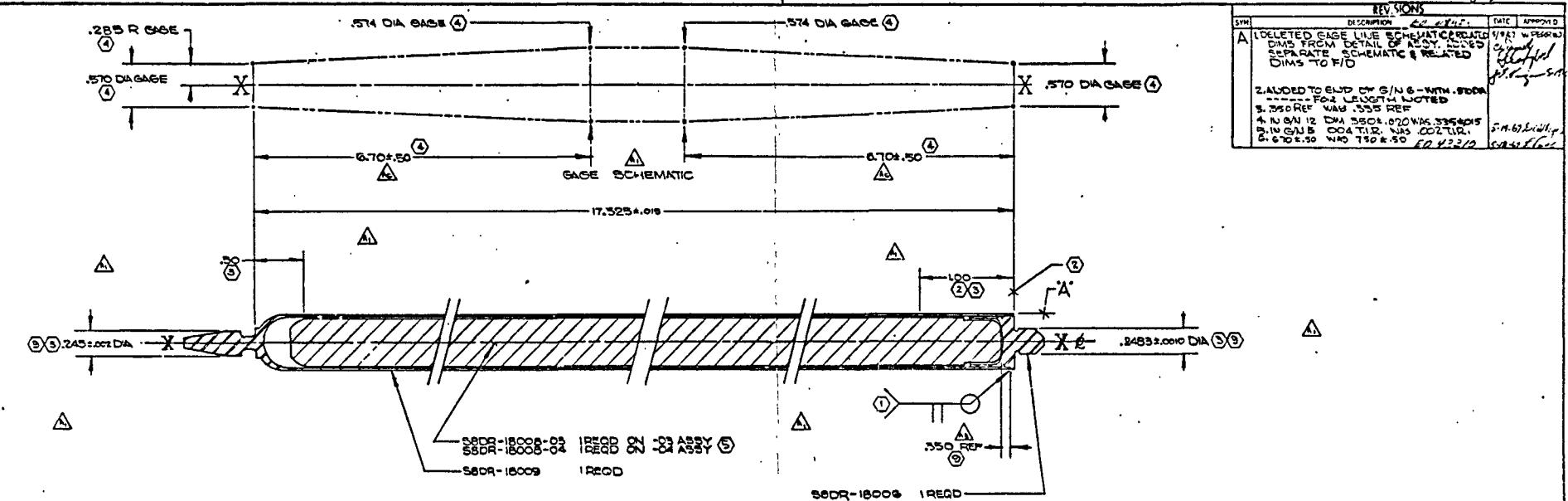
ATOMICS INTERNATIONAL A Division of North American Aviation, Inc. TECHNICAL DATA RECORD		AI-AEC- TDR NO 12821 PAGE 1 OF	APPROVALS	
AUTHOR A. W. Dalcher		DEPT & GROUP NO. 731-131	DATE 4/15/69 GO NO 7759	
TITLE Structural Analysis of the SNAP-8 Developmental Reactor Fuel Element Cladding		S/A NO 13330 SECURITY CLASSIFICATION	TWR (CHECK ONE BOX ONLY)	
PROGRAM SNAP-8		SUBACCOUNT TITLE S8DR Fuel Cladding Stress Analysis	AEC DOD UNCL. <input checked="" type="checkbox"/> <input type="checkbox"/> CONF. <input type="checkbox"/> <input checked="" type="checkbox"/> SECRET <input type="checkbox"/> <input checked="" type="checkbox"/>	RESTRICTED DATA DEFENSE INFO.
DISTRIBUTION		AUTHORIZED CLASSIFIER SIGNATURE DATE <i>R. Jetter</i> 5/19/69		
E. Donovan BB21 R. Jetter BB30 R. Johnson BB02 L. Maki BB03 D. Mason BB02 G. Meyers AB02 D. Nelson BB29 T. Parker AB02 * W. Roberts DAO1 H. Rood BB22 * R. Varnes BB14 * R. Williams BB13 R. Wilson BB01 * Structural Design Unit (11) BB30 A. Dalcher (2)BB30		STATEMENT OF PROBLEM Determine the structural adequacy of the S8DR fuel element cladding for the conditions of fabrication, assembly, steady-state, and transient operation.		
		ABSTRACT. Primary, secondary, and thermal stresses were calculated and evaluated for the SNAP-8 developmental reactor fuel element cladding. The effects of fabrication and assembly stresses, as well as test and operational stresses were included in the analysis. With the assumption that fuel-swelling-induced stresses are nil, the analytical results indicate that the cladding assembly is structurally adequate for the proposed operation.		
15 blank lines for signatures				

TABLE OF CONTENTS

	<u>Page</u>
I. Introduction	3
II. Design Description	4
III. Operating Conditions	6
A. Static Loads	6
B. Static Thermal Conditions	8
C. Transient Thermal Conditions	13
IV. Material Properties.	26
A. Hastelloy-N	26
B. Ceramic Barrier	28
V. Analytical Results	32
A. Fabrication and Assembly Stresses	32
B. Static Load Stresses	36
C. Static Thermal Stresses	40
D. Creep Collapse	44
E. Transient Thermal Stresses	49
1. Lower End Cap	52
2. Upper End Cap	57
VI. Evaluation of Results	63
A. Primary Stresses	63
B. Secondary Stresses	68
C. Peak Stresses	71
D. Special Conditions	83
E. Barrier Stresses	83
F. Cladding Evaluation Summary	84
VII. Conclusions	85
VIII. References	87
IX. Nomenclature	90

I. INTRODUCTION

The SNAP-8 reactor is intended for use as a primary power source on satellites and other space vehicles. The performance objectives of the reactor are: 600 kwt thermal power, 1300°F NaK outlet temperature, 12,000 hour reactor operating period, and greater than 96% reliability.


To demonstrate the accomplishment of these objectives, the SNAP-8 developmental reactor (S8DR) is being constructed as a ground-test prototype of a flight-configured reactor. It is designed for 600 kwt power at 1300°F outlet temperature or, alternately, 1 Mwt at 1100°F outlet. The reactor will be run for a minimum of 12,000 hours.

This report summarizes the results of the analyses and evaluation of mechanical and thermal stresses imposed on the S8DR fuel element cladding during fabrication, assembly, test, and operation. Only the 600 kwt operation has been evaluated, since this power level is more severe from the standpoint of stress evaluation (due to the higher operating temperatures). The conditions considered are consistent with those described in the series of SNAP-8 Program Office briefings: NAA-SR-MEMO-12097, -12122, and -12272 (Ref. I.1, I.2, I.3) and with the detailed core thermal and hydraulic performance report, NAA-SR-12564 (Ref. I.4).

II. DESIGN DESCRIPTION

The reference S8DR fuel element assembly is described by AI Drawing S8DR-18001. The assembly cladding consists of a drawn cylindrical tube with a machined end cap attached at each end. The cladding material is Hastelloy-N, nickel base alloy. A ceramic hydrogen barrier is bonded to the inner surface of the cladding.

REV.	DESCRIPTION	DATE APPROVED
A	1. DELETED GAGE LINE SCHEMATIC CARDED 1/16/71 IN PEGARD	1/16/71
	2. ADDED TO END OF S/N 6 - WITH .570A	
	3. FOR LENGTH NOTED	
	4. IN GAN 12 DIA .550±.020 WAS .535±.015	
	5. IN GAN 12 DIA .550±.020 WAS .535±.015	
	6. IN GAN 12 DIA .550±.020 WAS .535±.015	

FOR INFORMATION
WILL NOT BE REPAVED
MAY BE CHANGED AT ANY TIME
1/16/71
J.F. Kline 1/16/71

- ⑥ 9. FOR EXPERIMENTAL USE ONLY, QUANTITY REQD TO BE DETERMINED BY PROGRAM OFFICE
- ⑦ &CAUTION! DANGEROUS, UNSTABLE OR TOXIC
MATERIAL SPECIAL HANDLING REQD
7. PACKAGE FOR SHIPMENT OR STORAGE PER AI SPEC
NA016-001 UNIT PROTECTION METHOD III
- ⑧ 6. EACH FEATURE OF SURFACE NOTED MUST
LIE WITHIN A BOUNDARY DEFINED BY
GAGE DIAMETERS SHOWN WITH .570 DIA
INCREASING LINEARLY TO .574 DIA FOR
LENGTH NOTED
- ⑨ 5. DIAM TO BE CONCENTRIC
TO CENTER LINE X-X AS ESTABLISHED FROM
OD, AT LOCATIONS SHOWN WITHIN .004 T.I.R.
- ⑩ 4. NORMAL TO SURFACE "A" AS ESTABLISHED
IN INDICATED LENGTH WITHIN .004 TOTAL
AT LOCATION SHOWN
- ⑪ 5. ASSEMBLE PER AI SPEC G 0822 NA 0041
2. CENTER DRILL ON PART NOT PERMISSIBLE
1. FABRICATE PER AI SPEC NA0105-003
NOTES: UNLESS OTHERWISE SPECIFIED
- ⑫ 2. DURING ASSEMBLY OF ELEMENT, AFTER INSERTION
OF FUEL ROD (S6DR-18009) INTO TUBE ASSY
(S6DR-18008), TAKE DEPTH MEASUREMENT TO
ASCERTAIN THAT END OF FUEL ROD IS
.550±.020 BELOW OPEN END OF TUBE
- ⑬ 11. S6DR-18001-4 (ENRICHED & POISONED ASSY) SHALL
BE IN ACCORDANCE WITH AI SPEC NE620R-16-001
TYPE 2
- ⑭ 12. S6DR-18001-5 (ENRICHED & POISONED ASSY) SHALL BE
IN ACCORDANCE WITH AI SPEC NE620R-16-001
TYPE 1

ITEM	QTY	PART OR RECD RECD	IDENTIFYING NO.	NOMENCLATURE OR DESCRIPTION	CODE IDENT	MATERIAL	DATA, SPECIFICATIONS SIZES, NOTES, VENDORS	
							LINE NO	
1	1		S6DR-18009	TUBE ASSY				005
1	1		S6DR-18008-04	FUEL ROD				004
1	1		S6DR-18008-03	FUEL ROD				003
1	1		S6DR-18008	CUP PLUG				002
104-05	1		S6DR-18001	ASSEMBLY				001
QTY QTY (A) (B)		PART OR RECD RECD		IDENTIFYING NO.		NOMENCLATURE OR DESCRIPTION		CODE IDENT

III. OPERATING CONDITIONS

A. Static Loads

1. Operating Pressures

The operating pressures in the fuel element, and in the NaK are given in Table III.A.1.

TABLE III.A.1.
Operating Pressures

Location	Pressure (psia)	
	Beginning-of-Life	End-of-Life
Fuel Element*	15.9 Max.	2.8 - 16.2
NaK System†	35.0	35.0

* Ref. III.A.1.

† S8 Project Management Selected Level

The fuel element pressure is primarily due to hydrogen dissociation from the fuel, and varies with lifetime and element location as shown in Figure III.A.1. The values given in the curve are derived from nominal dissociation and leakage rates. Fission product gas pressure is practically negligible for the design life of the reactor. Values are given in Table III.A.2 which were calculated based on the relationships given in Ref. III.A.2.

FIG. III.A.1.

58DS FUEL ELEMENT HYDROGEN PRESSURE (NOMINAL PREDICTED)

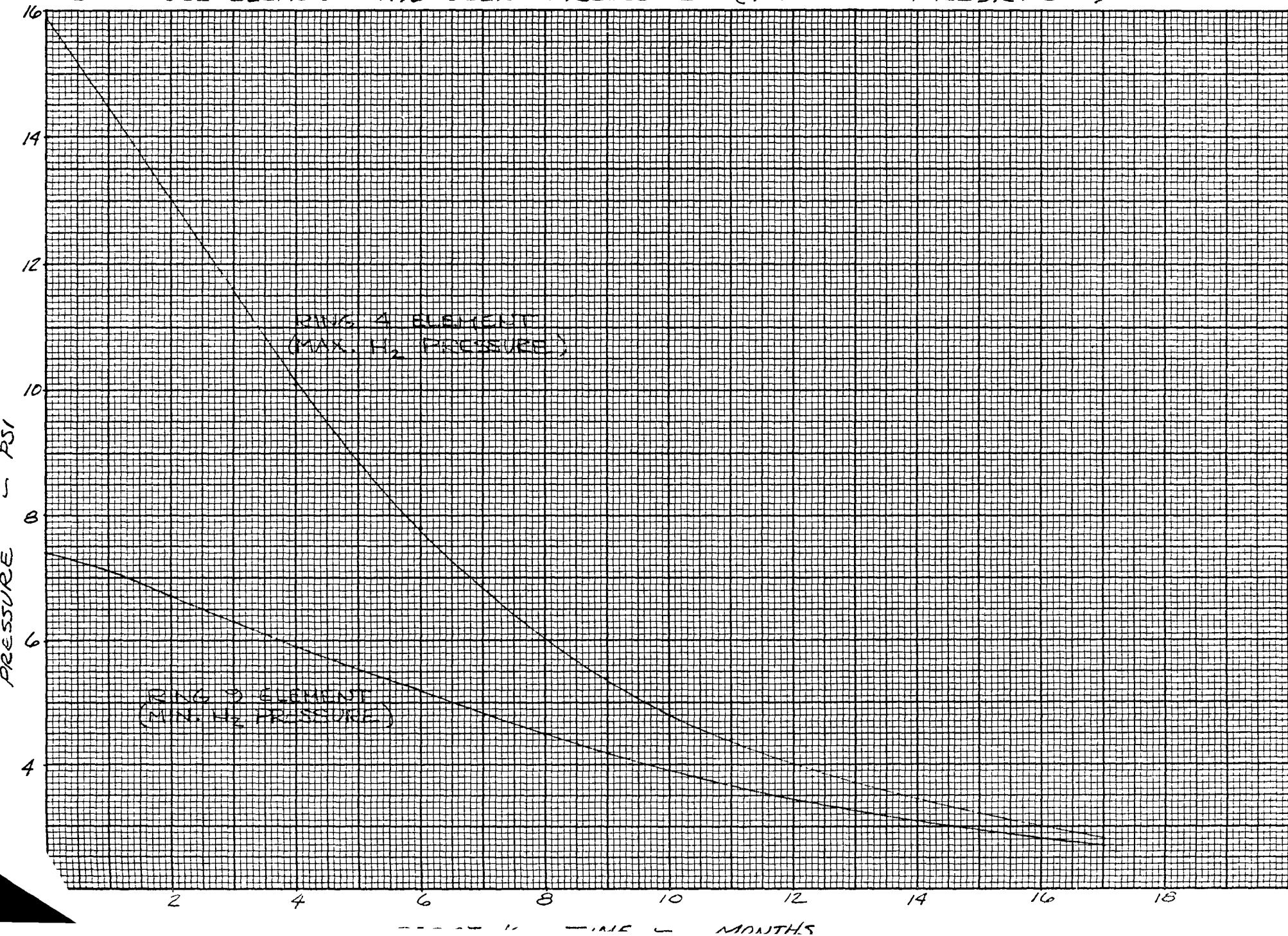


TABLE III.A.2.
Fuel Element Fission Gas Pressure
After 12,000 Hour Operation

	Fission Gas Pressure (psi)		
	Ring 1	Ring 4	Ring 9
Maximum	0.30	0.28	0.21
Nominal	0.25	0.23	0.18
Minimum	0.22	0.21	0.15

It is assumed that the fuel does not exert significant loads or strains on the cladding throughout the reactor operating lifetime. This assumption is based on fuel swelling studies and resulting S8DR axial and diametral gas gap specifications which are expected to preclude fuel-cladding contact (Ref. III.A.3.).

The preceding constitute all of the significant static operating conditions as identified by the core thermal, hydraulic, and nuclear analyses.

B. Static Thermal Conditions

The steady-state temperature and heat flux distributions in the SNAP-8 fuel element are summarized in NAA-SR-MEMO-12384 (Ref. III.B.1.) and NAA-SR-12564 (Ref. III.B.2.). For the purpose of the analysis of static stresses, only the most severe conditions were considered. These are as itemized in Table III.B.1. and defined in Figures III.B.1. through III.B.6.

TABLE III.B.1.
Static Thermal Conditions Considered in Analysis

Case No.	Description	Location		Time of Occurrence	Location of Case Definition
		Z/L	Ring No.		
III-1	Maximum Circumferential Temperature Variation ("60")	0.5	1	BOL	III.B.1.
III-2	Maximum "60" Variation at Point of Minimum Cladding Creep Strength	0.95	7	BOL	III.B.2.
III-3	Average Radial Gradient	Avg.	Avg.	BOL	III.B.3.
III-4	Maximum Radial Thermal Gradient	0.5	1	BOL	III.B.4.
III-5	Maximum Axial Thermal Gradient Change d^2T/dL^2	0.9	4	BOL	III.B.5.
III-6	Maximum Axial Gradient at Upper End Cap	1.0	7	ALL	III.B.6
III-7	Maximum Axial Gradient at Lower End Cap	0.0	ALL	ALL	III.B.7
III-8	Maximum ΔT From Stress -Free Condition	ALL	ALL	Prior to Start-up & at EOL	III.B.8.

1. Circumferential Temperature Variation

At any axial station, the temperature distribution for constant r is given by

$$T = T_0 + \left(\frac{\Delta T}{2} \right) \cos 60$$

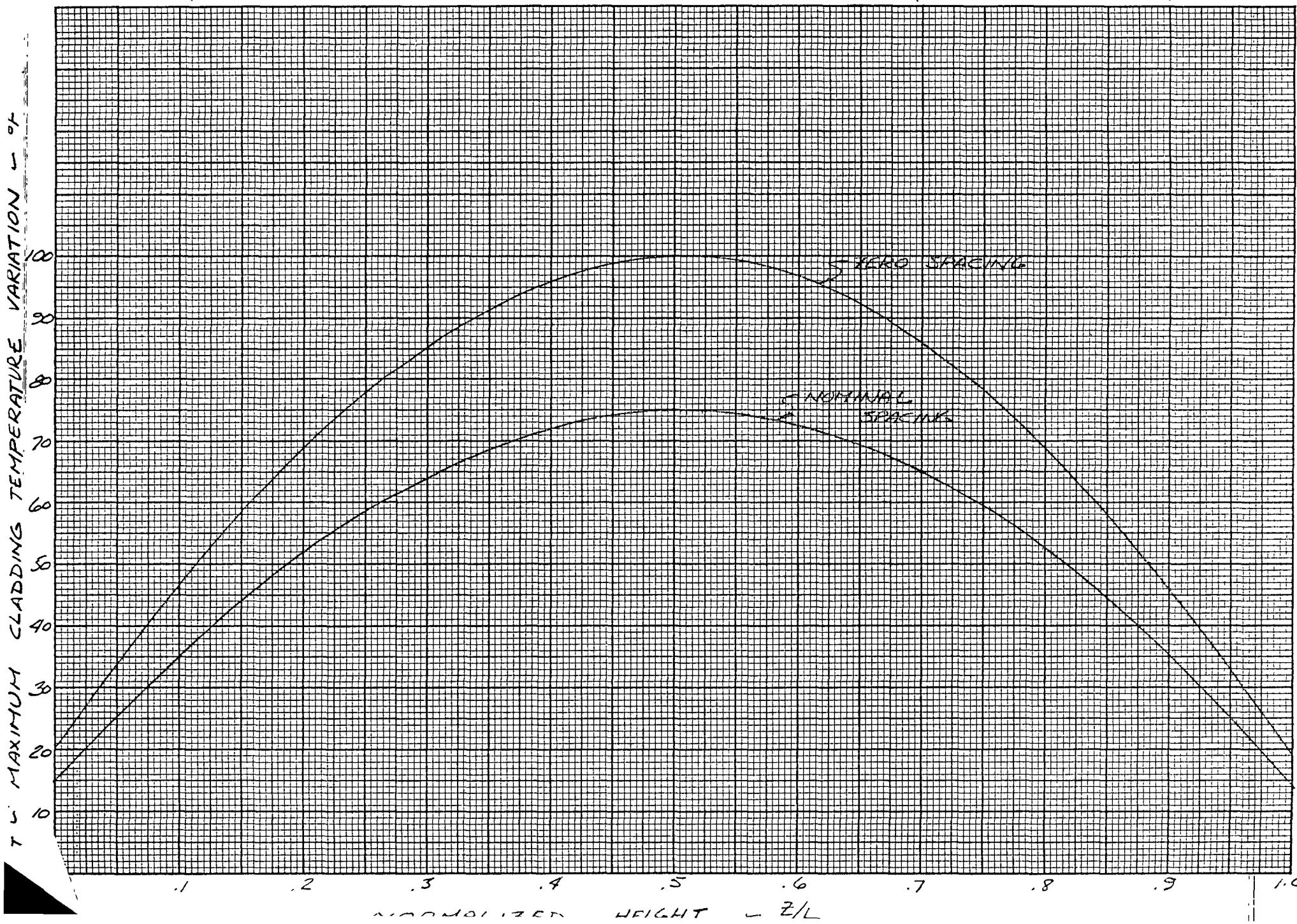
The amplitude (ΔT) of the variation as a function of axial position along the central fuel element is shown in Figure III.B.1. The two curves shown in the figure represent the nominal and zero spacing conditions for the element at beginning of life. As indicated, ΔT is a maximum at the reactor mid-plane. The variations shown are the maximum for the reactor core since ΔT decreases with increasing ring number and with operating time. Although the curves represent a symmetrical fuel assembly, little change is brought about in the ΔT values by asymmetry.

2. The minimum cladding creep strength occurs at the point of maximum cladding temperature. The value of the average cladding outer surface temperature is obtained from Figure III.B.3. At $Z/L = 0.95$, the temperature is 1342°F . The maximum circumferential variation is obtained by applying a radial power factor to the value obtained from Figure III.B.1.

$$T_{60} = 33^{\circ}\text{F} \quad \text{at} \quad Z/L = 0.95$$

$$\text{Radial Power Factor} = \frac{0.993}{1.330} = 0.745 \quad (\text{Ref. III.B.1, Page 42})$$

$$T_{60} = (33) (0.745) = 24.6^{\circ}\text{F}$$


3. The average radial gradient is determined as follows:

$$\Delta_R = \text{radial temperature gradient}$$

$$\Delta_R = 1/3 (T_B - \bar{T}_C + \frac{\Delta_R}{2})$$

FIG. III.B.1.

MAXIMUM CIRCUMFERENTIAL CLADDING TEMP. VARIATION AMPLITUDE (CENTRAL ELEMENT)

where

T_B = Barrier temperature at inner surface

\bar{T}_C = Average cladding temperature from the above

Δ_R = $2/5 (T_B - \bar{T}_C)$

Using values from Reference III.B.1, Page 19:

$$\Delta_R = 2/5 (T_B - \bar{T}_C) = 2/5 \times 30 = 12^{\circ}\text{F} \text{ at } \theta = \pi/6$$

$$\Delta_R = 2/5 \times 18 = 7.2^{\circ}\text{F} \text{ at } \theta = 0$$

$$\Delta_{R \text{ avg}} = 1/2 (12 + 7.2) = 9.6^{\circ}\text{F}$$

4. For zero spacing, the circumferential gradient is increased to 100°F from 75°F (Figure III.B.1.). Applying this factor to Δ_R :

$$\Delta_{R \text{ avg}} = 9.6 \times 100/75 = 12.8^{\circ}\text{F} \text{ for zero spacing.}$$

For the asymmetric case,

$$\Delta_{R \text{ max}} = 2/5 (T_B - \bar{T}_C) = 2/5 \times 48 = 19.2^{\circ}\text{F} \text{ (Ref. III.B.1, Pg. 30)}$$

Applying the factor for zero spacing

$$\Delta_{R \text{ max}} = 19.2 \times 100/75 = 25.6^{\circ}\text{F} \text{ (zero spacing, asymmetric)}$$

5. The maximum axial thermal gradient change is produced in the upper end of the Ring 4 elements. This is shown in Figure III.B.2.

6. The maximum axial gradient in the region of the upper end caps is in the Ring 7 elements, and is approximately constant throughout reactor operation as shown in Figures III.B.3. and III.B.5.

7. The axial gradient in the lower end cap region is approximately constant for all elements, and throughout reactor lifetime. The typical gradient is shown in Figure III.B.2.

8. Maximum ΔT

The maximum isothermal temperature differential from the stress-free state being at 1400°F , the ΔT is thus 1330°F .

The stress-free condition is established during 1400°F hydrogen permeation testing. Complete stress-relaxation of barrier and metal stresses is expected to occur during this operation. Subsequent rapid cooling to lower temperatures produces cladding and barrier stresses due to differential thermal contraction.

C. Transient Thermal Conditions

Thermal transients, as described in the body and appendix of Reference III.C.1., were considered for the upper and lower end caps. The transients include hot and cold coolant "slugs" during the reactor shakedown phase, loss of primary heat rejection capability, high power scram, and low flow scram during the PCS startup and endurance phases.

Sketches of the end cap designs are shown in Figure III.C.1. Representative temperature distributions (as a function of time) for the transients considered are plotted in Figures III.C.2 through III.C.6. The number designations used in the figures refer to specific locations in the end cap regions as identified in Figure III.C.1. For the stress analysis, detailed, two dimensional, temperature distributions, obtained directly from the TAP (Thermal Analyzer Computer Program) were utilized. Transient thermal stress analyses were necessary only for the end cap regions, because the cladding response time is very low and significant gradients are, therefore, not realized. The latter conclusion assumes that there are no localized hot spots on the element cladding. This assumption is consistent with the analyses of References III.C.1, III.B.1 and I.4.

Since the cold slug transient temperature distributions are "mirror images" of the hot slug cases, the cold slug results have not been included

FIG. III.B.2. FUEL ELEMENT TEMPERATURES - RING 4, BOL

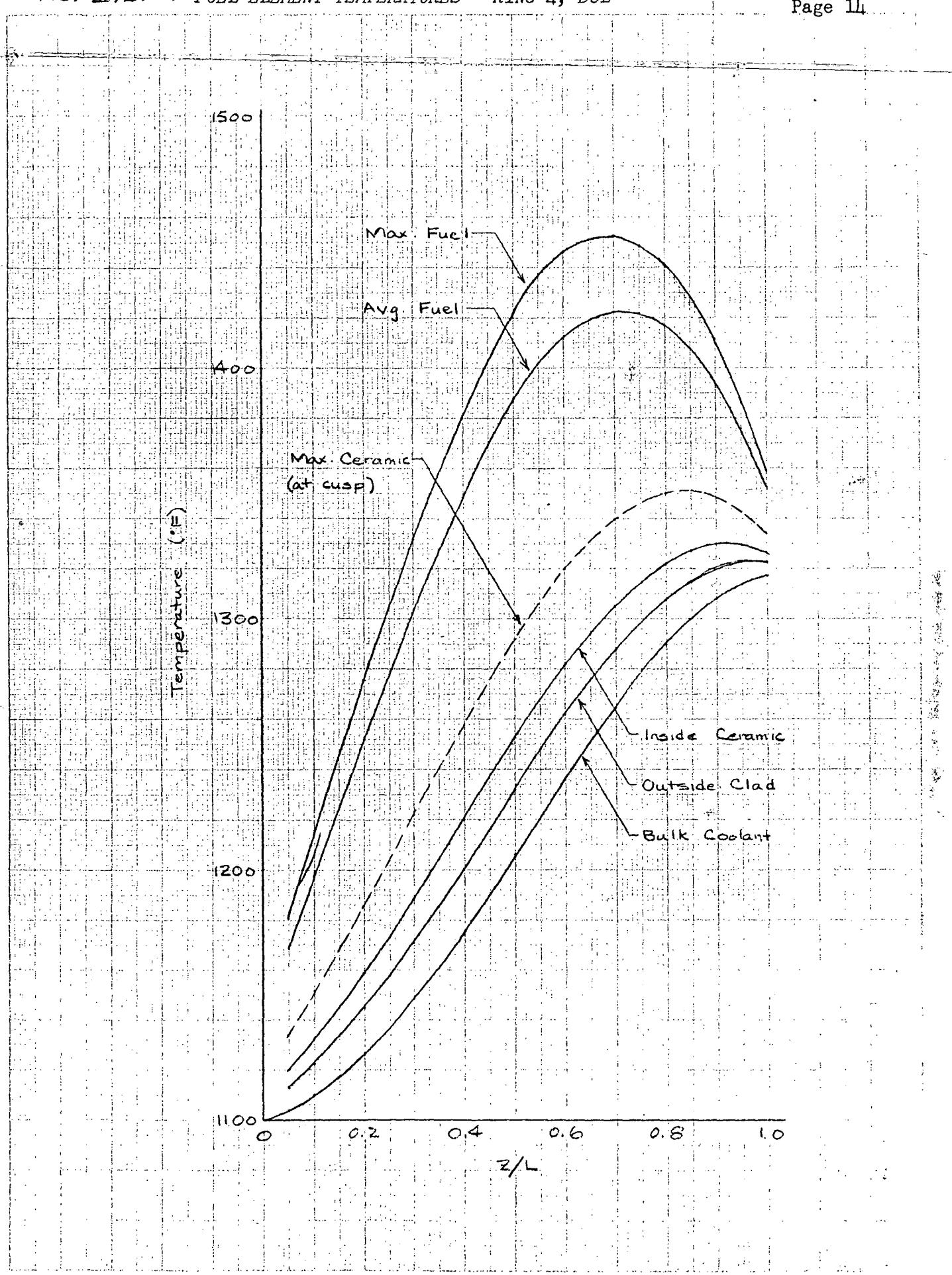


FIG. III.B.3. FUEL ELEMENT TEMPERATURES - RING 7, BOL

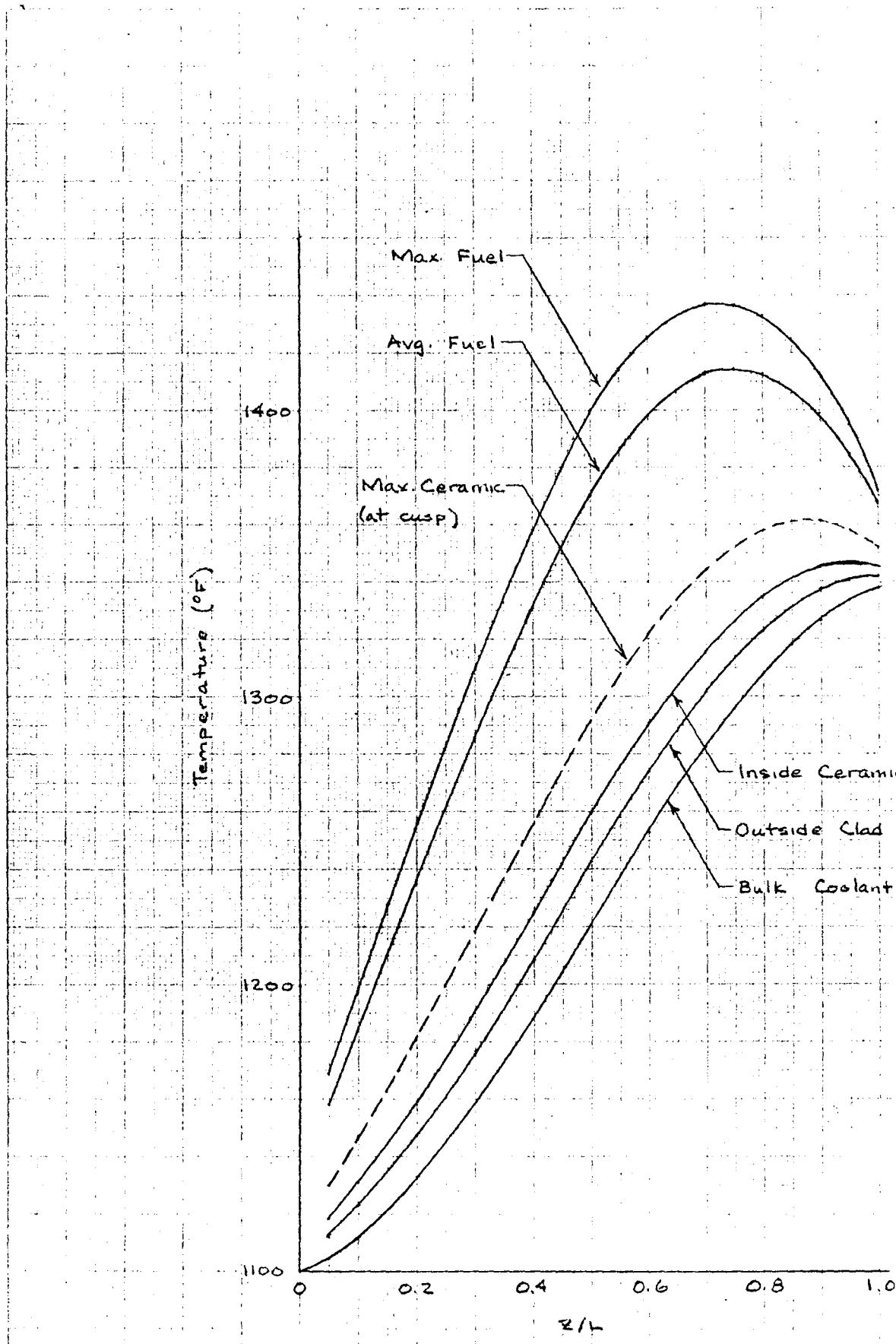


FIG. III.B.4. FUEL ELEMENT TEMPERATURES - RING 4, EOL

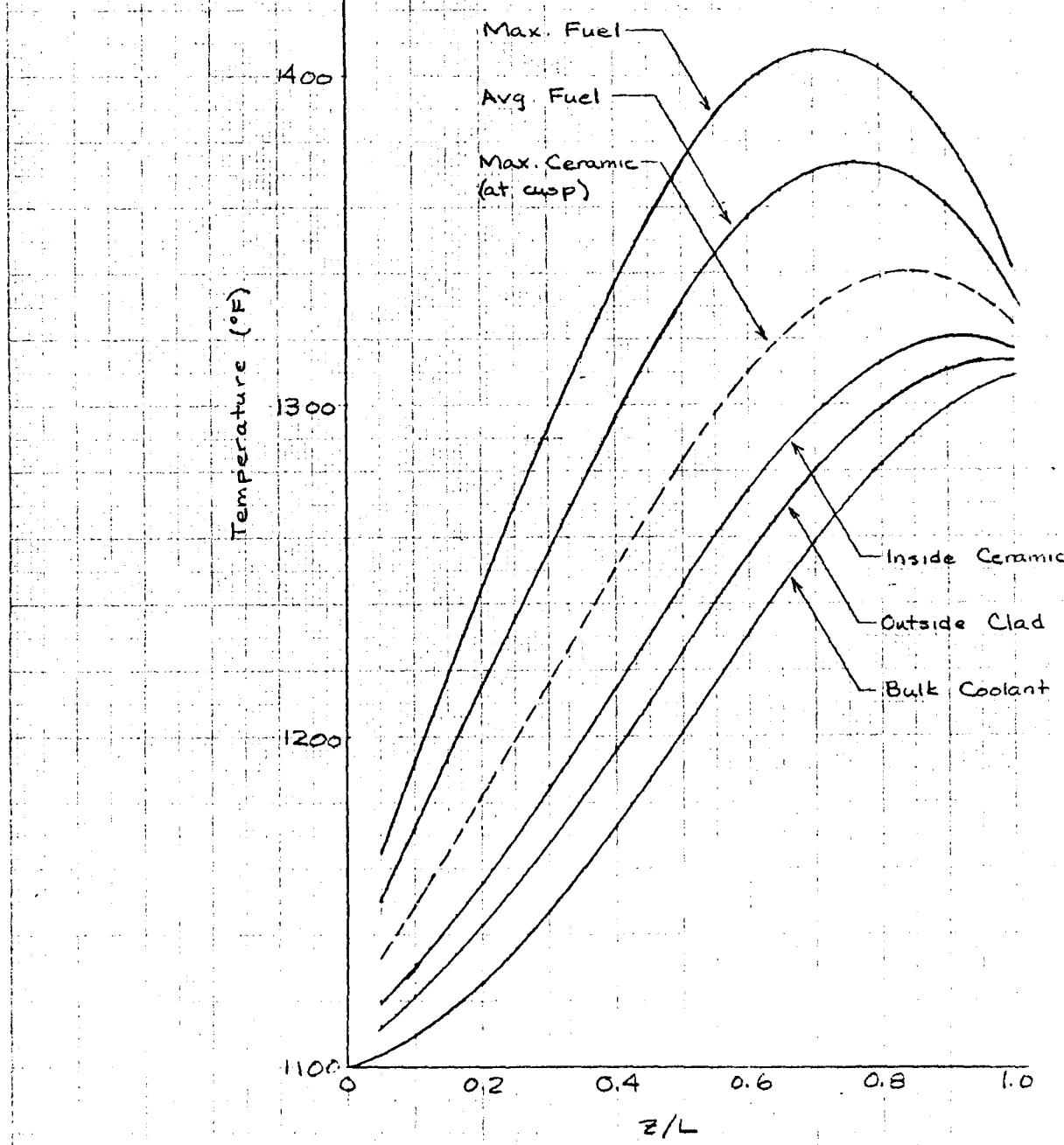
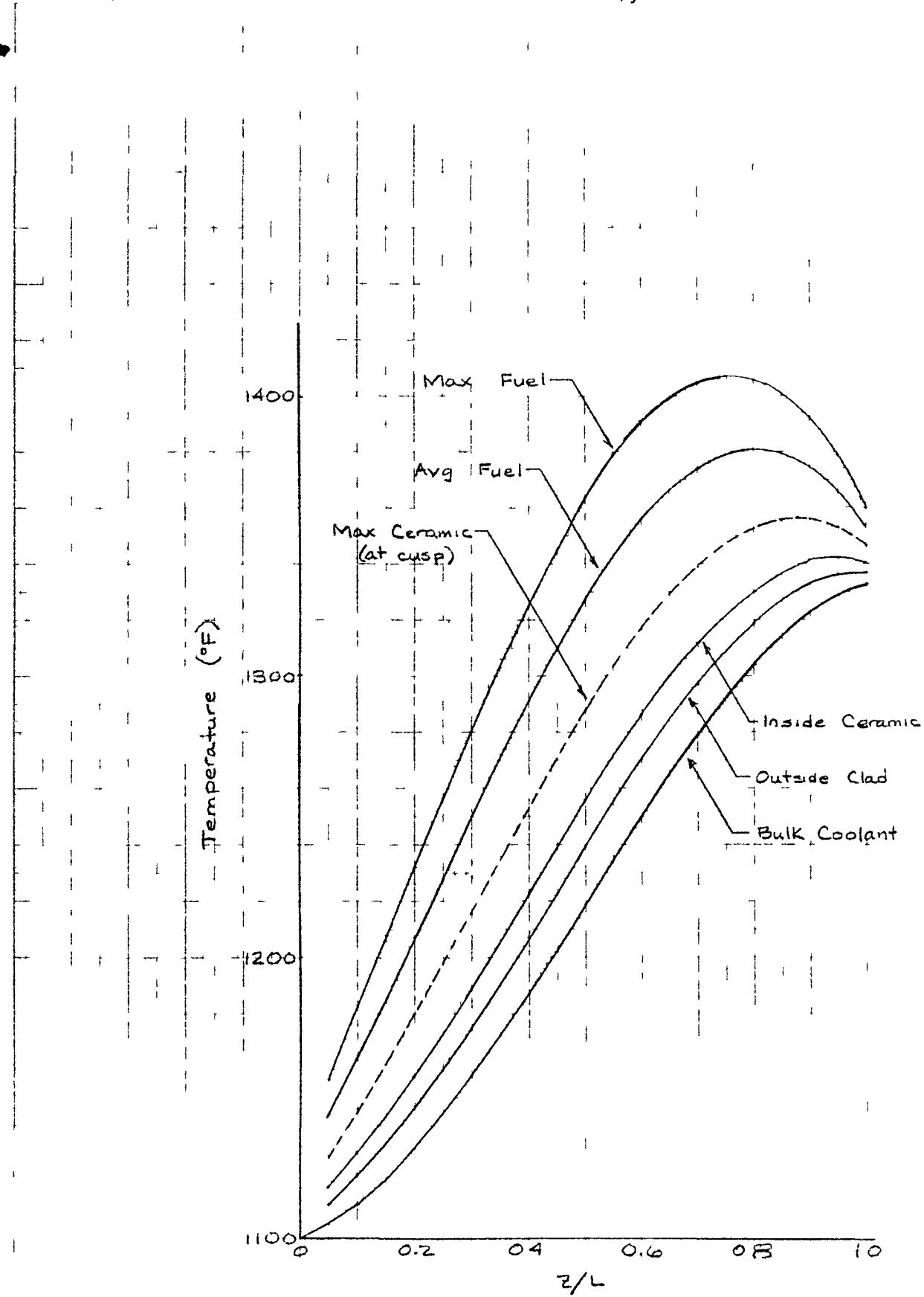



FIG. III.B.S. FUEL ELEMENT TEMPERATURES - RING 7, EOL

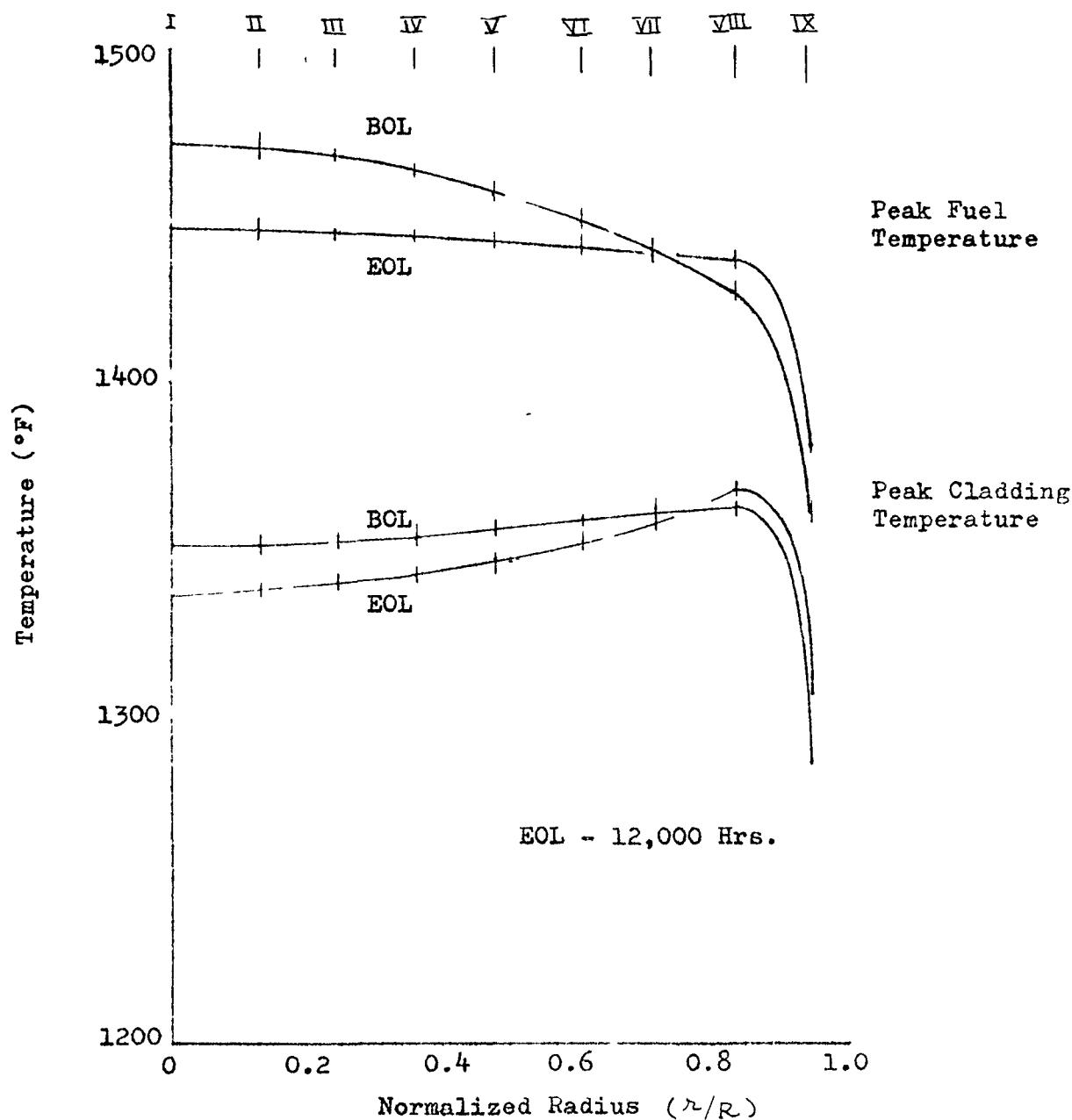


FIGURE III.B.6. S8DR Peak Fuel and Cladding Temperatures

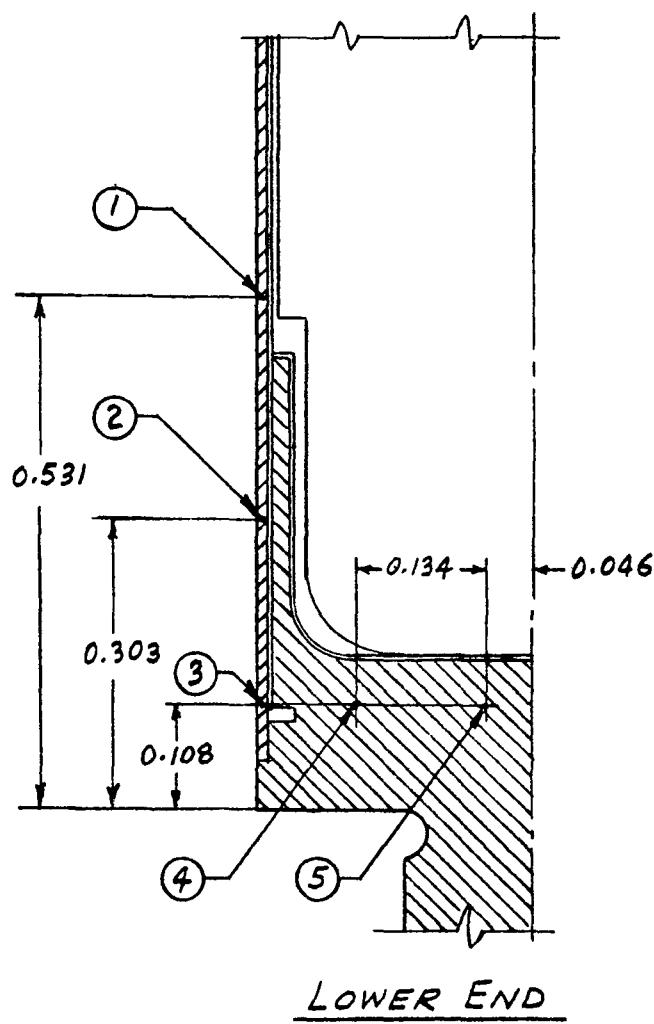
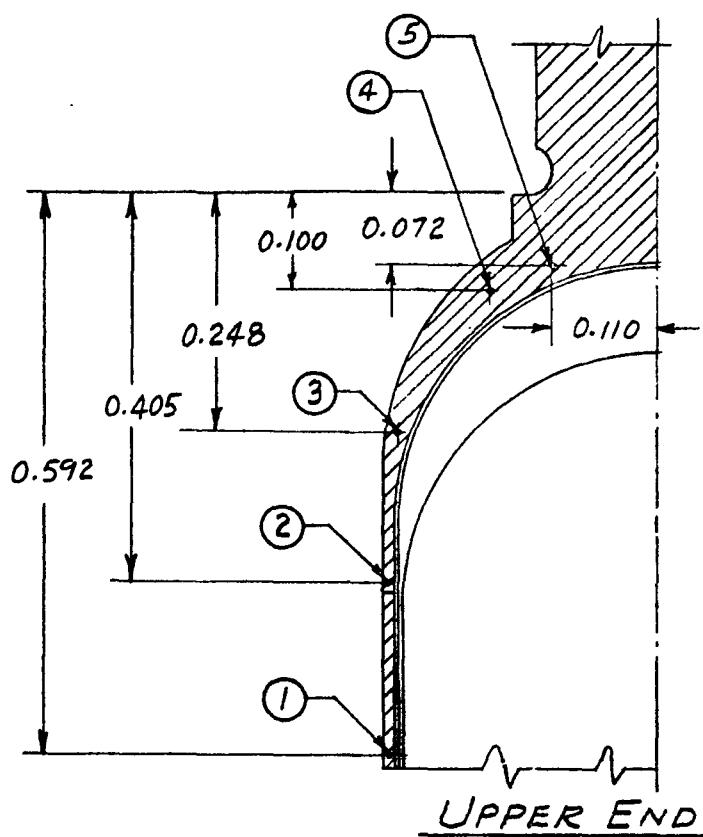



FIGURE III.C.1.

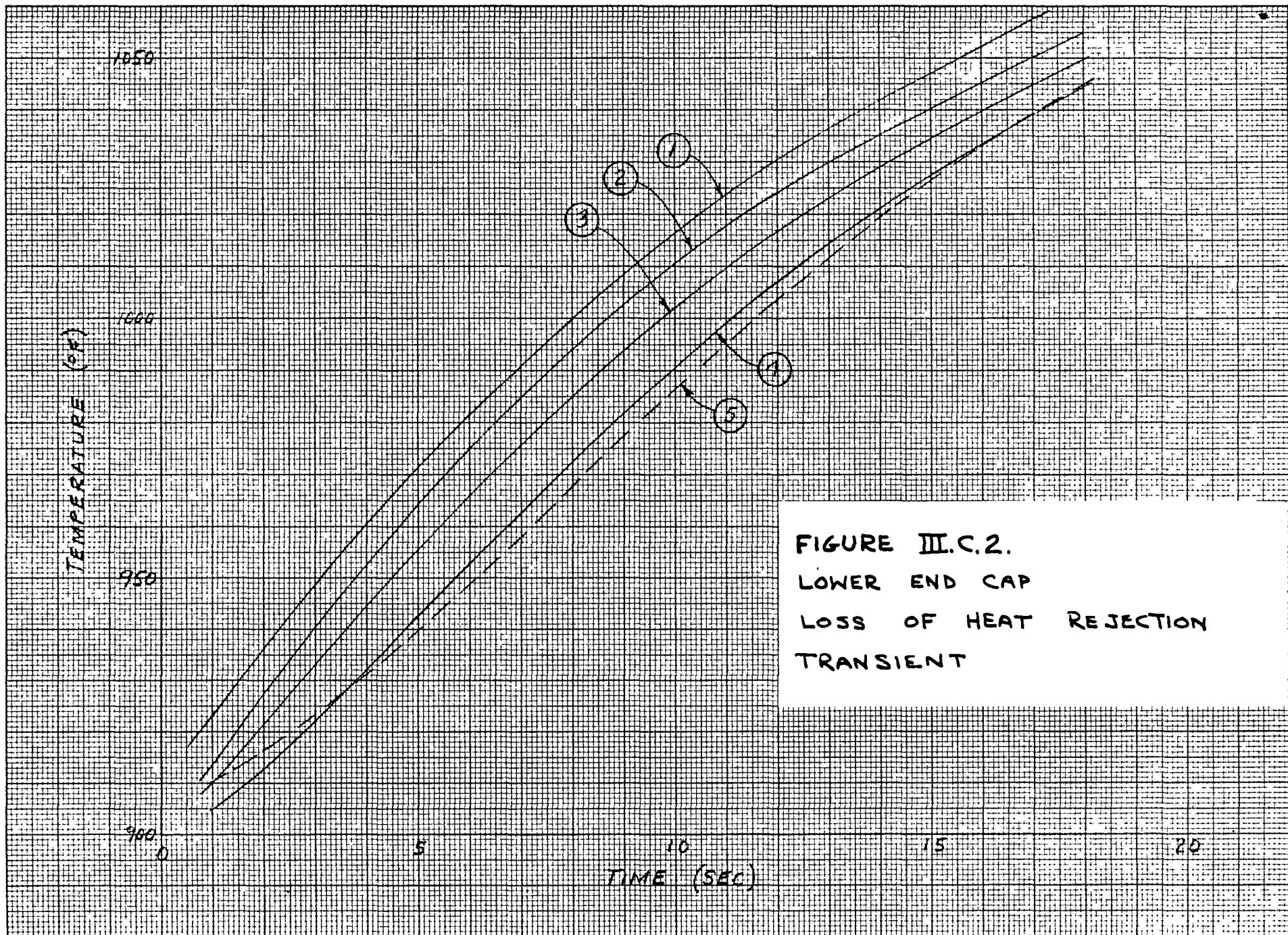
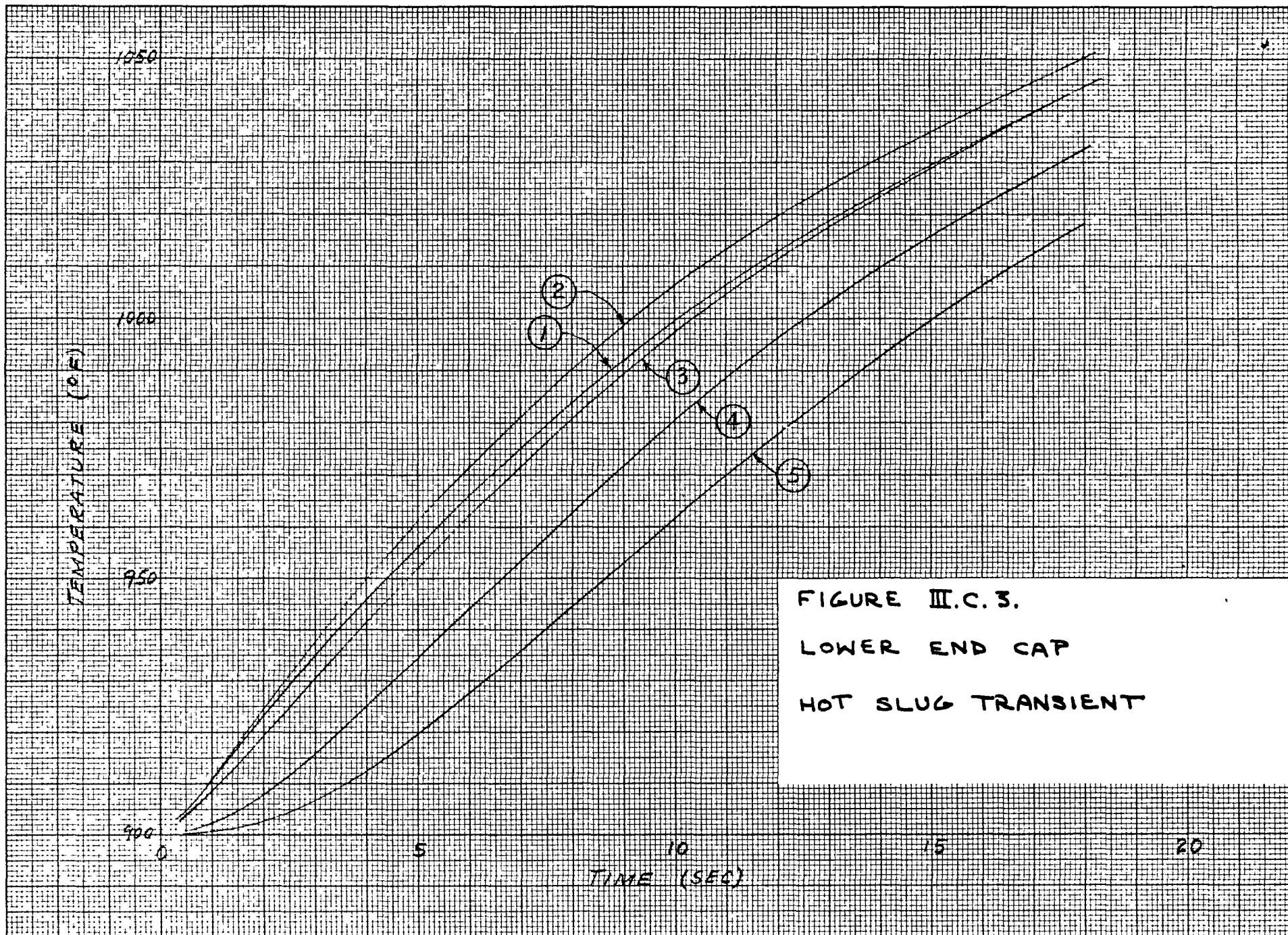



FIGURE III.C.2.
LOWER END CAP
LOSS OF HEAT REJECTION
TRANSIENT

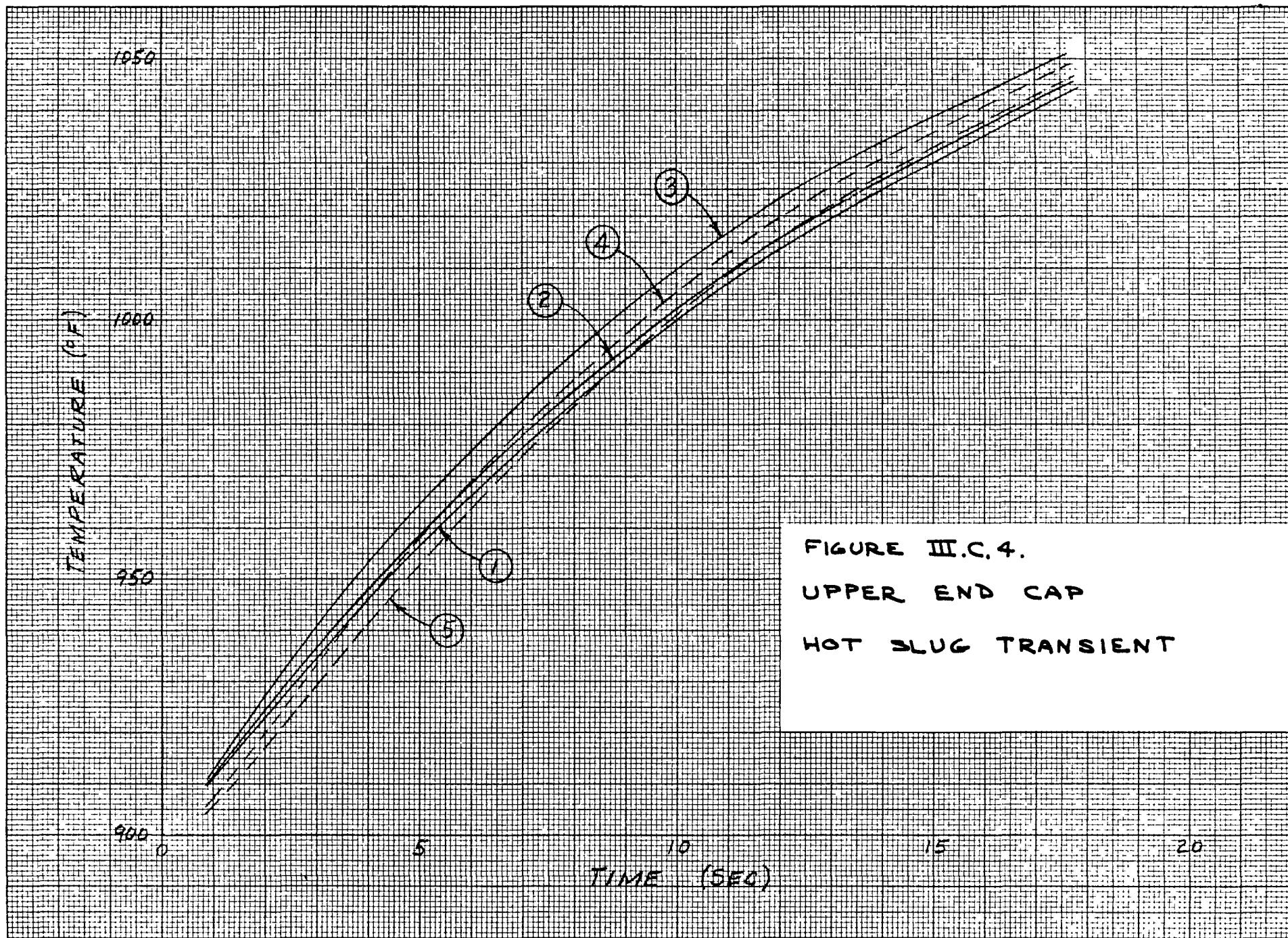


FIGURE III.C.4.
UPPER END CAP
HOT SLUG TRANSIENT

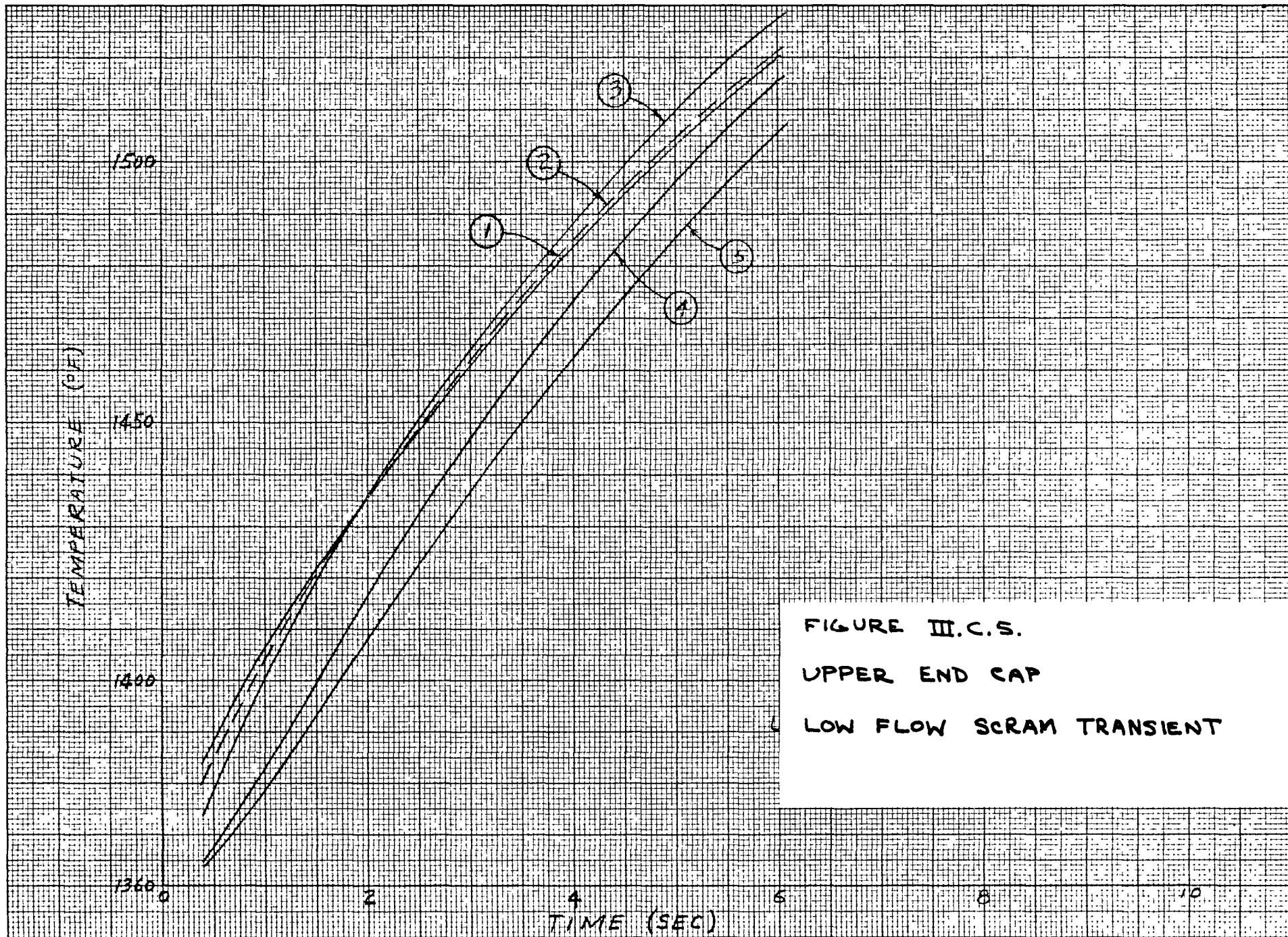
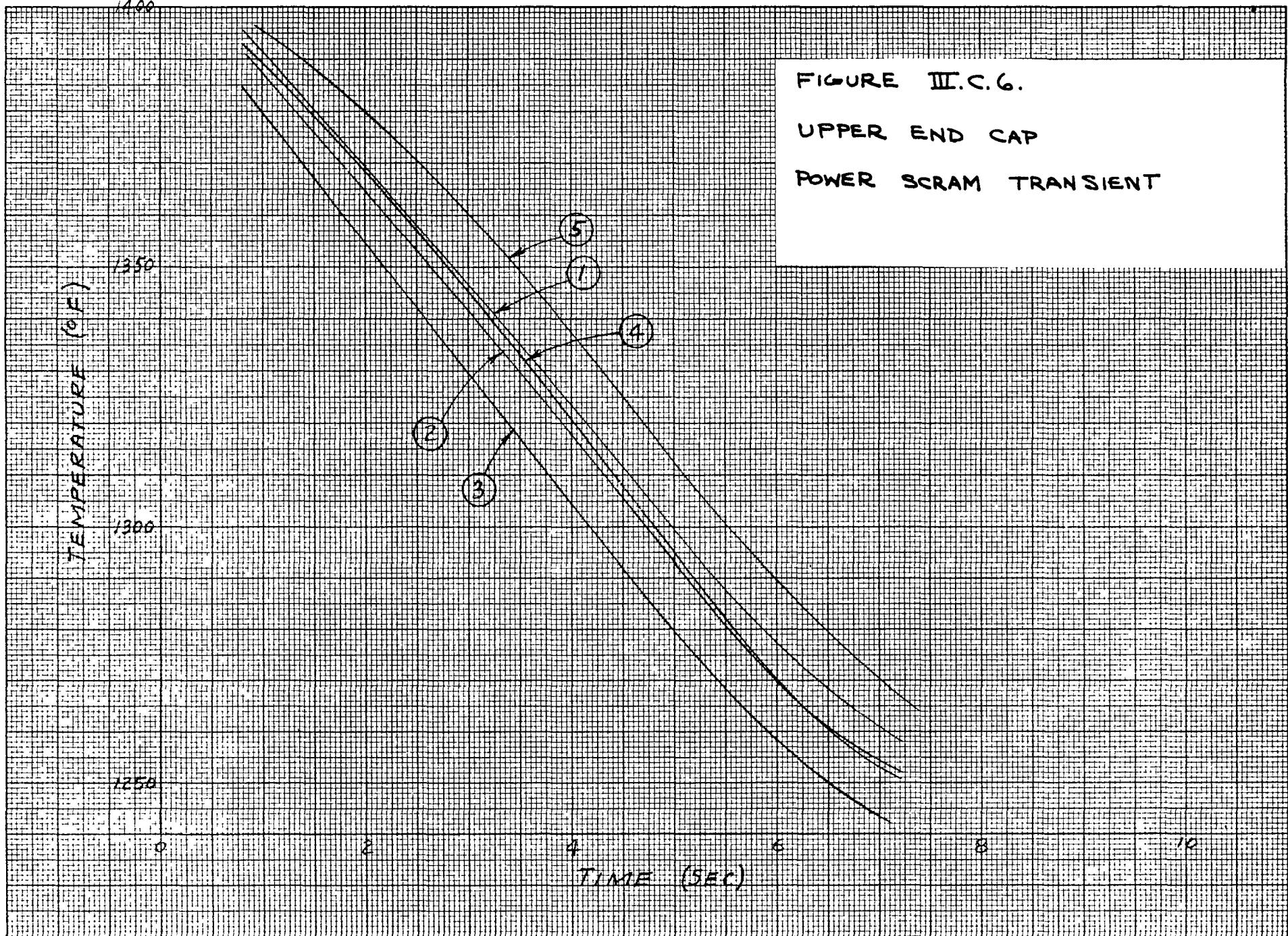



FIGURE III.C.5.
UPPER END CAP
LOW FLOW SCRAM TRANSIENT

in this section. The thermal stresses produced by cold slugs were, however, considered, and these are included in Section V.

Loss of primary heat rejection capability only affects the lower end cap region significantly. For this reason, there is no detailed temperature distribution presented for the upper end cap region for this transient. Similarly, the high power scram and the low flow scram affect only the upper end cap region, and no information is given, therefore, for the lower end cap region for these transients.

IV. MATERIAL PROPERTIES

A. Hastelloy-N

The cladding material properties used for this analysis were primarily obtained from Reference IV.A.1 and IV.A.2. The exceptions are discussed below.

To establish the allowable stress values for Hastelloy-N material, the procedure recommended in Appendix Q of Section VIII of the ASME Boiler and Pressure Vessel Code was used. During operation, the maximum credible temperature to be experienced by the fuel cladding is 1400°F. This value was used for determining the S_m allowable for the evaluation of primary and secondary stresses.

At the noted temperature, the controlling parameter is secondary creep rate limit of 1.0×10^{-7} in./in./hr. From this consideration, the value of S_m was set at 3000 psi. The creep data used were from ORNL-TM-1017.

At the time of this analysis, the fatigue properties of Hastelloy-N material had not been investigated experimentally at the temperatures of interest. Since quantitative fatigue information is necessary for calculation of service damage fractions, this was predicted based on the empirical relationships proposed by Manson and Halford (Ref. IV.A.3). The data used to generate the strain range vs cycles to failure curves are presented in Table IV.A.1 and IV.A.2.

TABLE IV.A.1

Unirradiated Hastelloy-N Tensile Data - ORNL Test
Matrix: ORR S-1 Controls (0.002 in./in./min)

Heat	Specimen No.	Test Temperature (°F)	F _{TU} (psi)	RA (%)
5911	3121	1400	50,900	27.3
5911	3109	1400	47,700	14.4
5911	3115	1400	51,100	13.1
5911	2854	1400	46,700	12.5
5911	2953	1400	45,800	22.1
5911	3091	1400	47,800	13.9

TABLE IV.A.2

Irradiated Hastelloy-N - ORNL Test Matrix

Heat	Specimen No.	Test Temperature (°F)	F _{TU} (psi)	RA (%)
5911	2837	1400	32,650	3.55
5911	2839	1400	33,670	1.90

With the use of the noted data, Figures IV.A.1 and IV.A.2 were constructed. These show predicted service life for unirradiated and irradiated material. The adjusted curve plotted in each represents the estimated lower bound on lifetime reflecting the estimate of creep effects for relatively high cycle rates ($f > 0.017$ Hz). Included in the figures are the results of recent AI fatigue data of irradiated and unirradiated Hastelloy-N material reported in Reference IV.A.4. All data, to date, for 10 mil cladding, indicate that use of the adjusted curve of Figures IV.A.1 and IV.A.2 is conservative for strain cycles without long hold times at maximum stress. These reduced curves are used exclusively in Section VI to evaluate calculated cyclic stresses.

Stress relaxation curves were generated analytically for use in this effort and other SNAP 8 analyses. These curves and their derivation are given in NAA-SR-TDR-12590 (Ref. IV.A.5).

B. Ceramic Barrier

The mechanical properties of the ceramic hydrogen barrier are not well known because there has been no test program, to date, implemented to establish quantitative values for the material. Therefore, for the most part, values were assumed or estimated from typical published values for high density ceramics.

The coefficient of expansion and the modulus of elasticity of the barrier were assumed to be invariant with temperature. The values used in the analysis are given below.

$$E = 10 \times 10^6 \text{ psi}$$

$$\bar{\alpha} = \alpha_i = 3.5 \times 10^{-6} \text{ in./in.}^{\circ}\text{F} \quad (\text{Ref. IV.B.1})$$

The ceramic is assumed to creep very rapidly at temperatures above 1400°F . In addition, it is assumed that displacement type stresses relax to nil in the material in less than 100 hours at temperatures above 900°F .

FIG. IV. A1.

PREDICTED STRAIN RANGE VS CYCLES TO FAILURE - NOMINAL & REDUCED VALUES
 UNIRRADIATED HASTELLOY-N - 1400°F - HEAT 5911

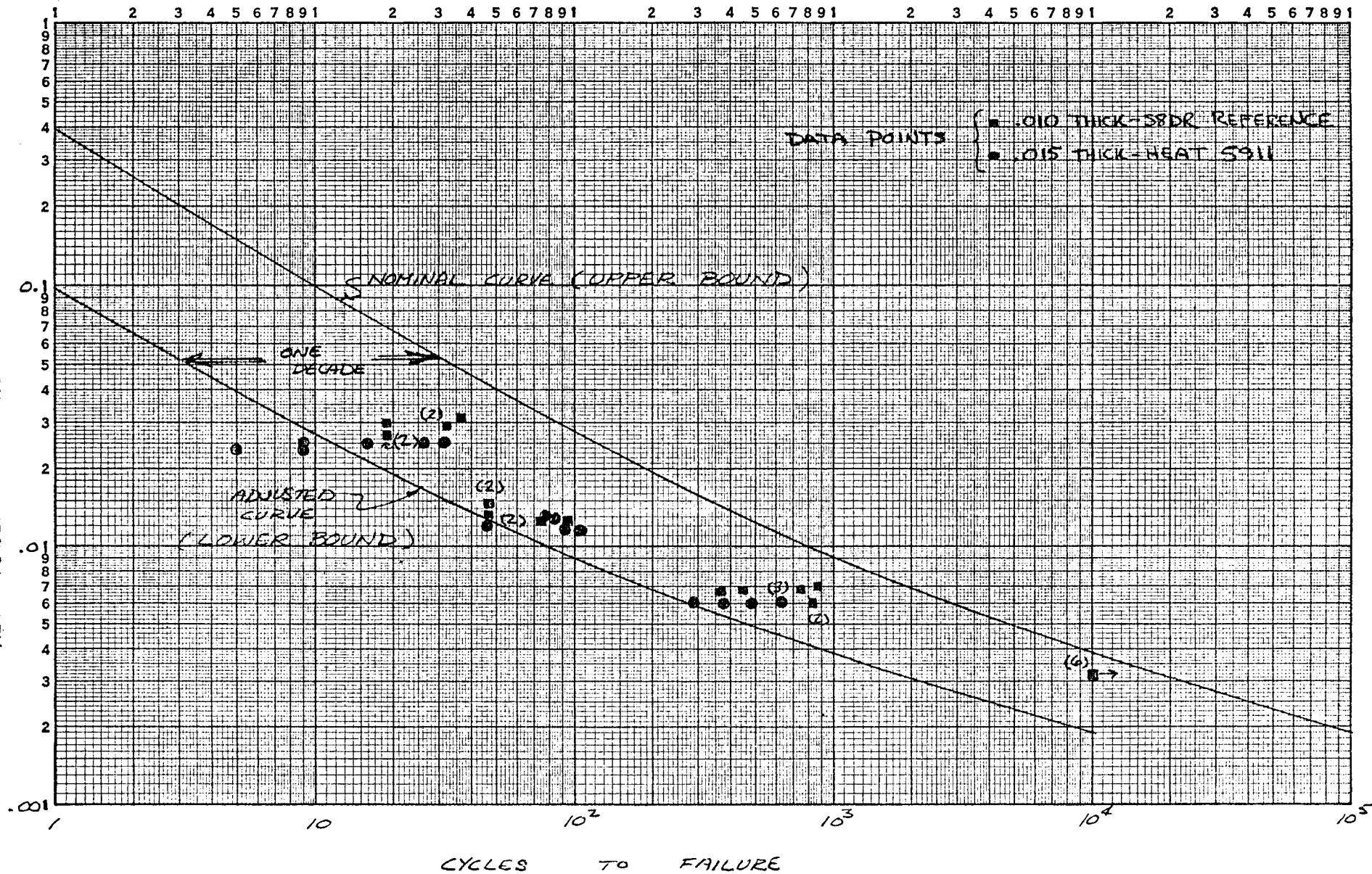
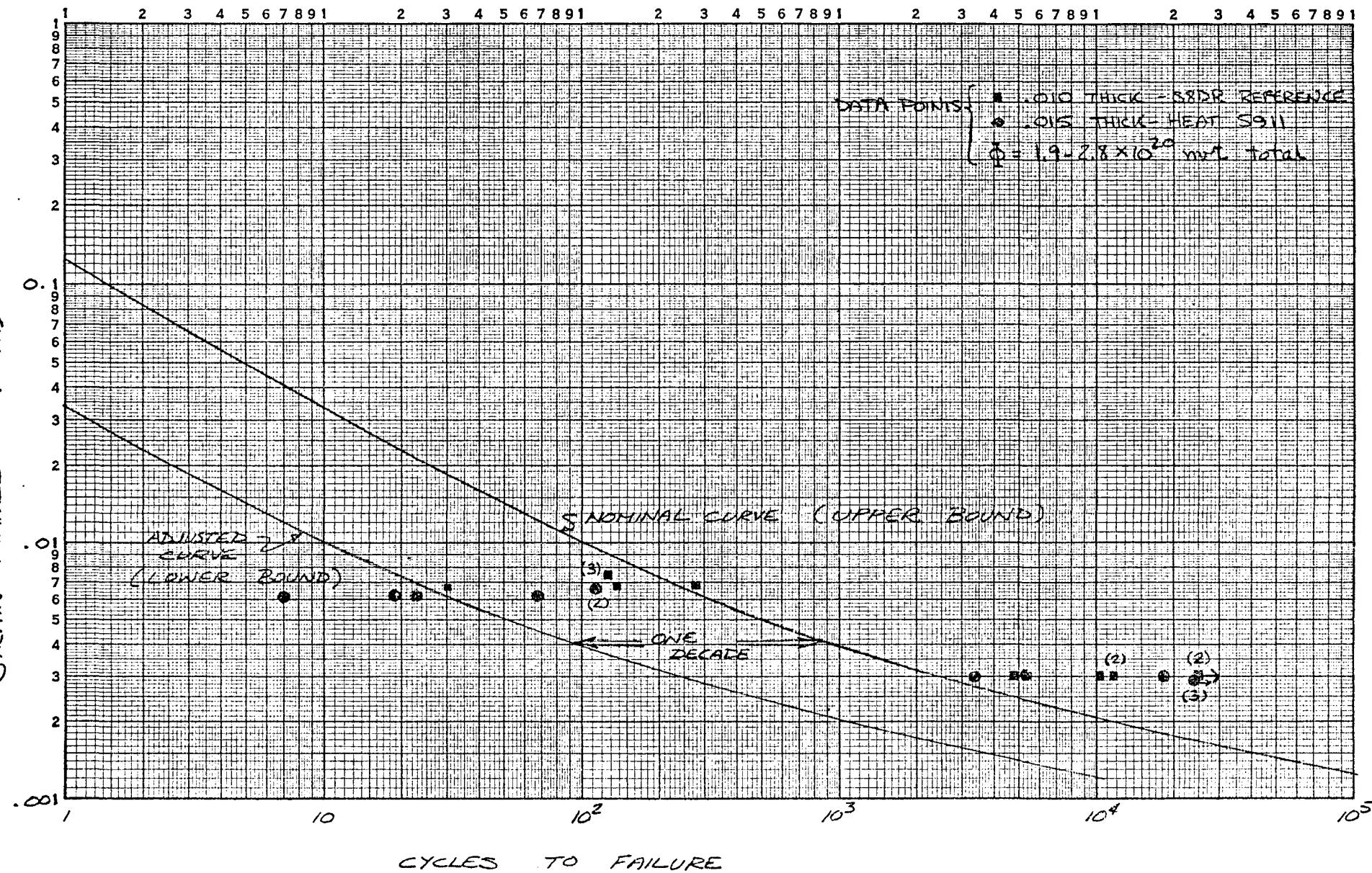



FIG. IV. A2.

PREDICTED STRAIN RANGE VS CYCLES TO FAILURE - NOMINAL & REDUCED VALUES
 IRRADIATED HASTELLOY-N - 1400°F - HEAT 5911 AW

ATOMICS INTERNATIONAL
A Division of North American Rockwell Corporation

NO. . AI-AEC-TDR-12824
PAGE. . 31

The strength of the ceramic is assumed from typical values of Reference IV.B.2, and is as follows:

Tensile strength	\approx	10,000 psi
Shear strength	\approx	40,000 psi
Compressive strength	\approx	80,000 psi

V. ANALYTICAL RESULTS

A. Fabrication and Assembly Stresses

Certain processes undergone by the S8DR fuel element during fabrication and assembly produce significant stresses in the cladding and barrier materials. The discussion and summary of these stresses is given in the following section.

1. Fabrication Stresses

The fabrication steps noted below produce changes in the stress states at various locations in the fuel element.

- a) Welding of the upper end cap to the cladding tube.
- b) Thermal soak at 2000°F for 2 hours (Ref. V.A.1).
- c) Mechanical sizing and straightening of cladding tube.
- d) Thermal soak at 2100°F for 5.5 to 6.5 minutes (Ref. V.A.2).
- e) Shrink-fit and welding of lower end cap to tube.
- f) Thermal soak lower portion of element at 1975°F.
- g) Leak testing at 1400°F for 65 hours (Ref. V.A.4).

The thermal soaks noted will all produce relaxation of the residual stresses induced by the mechanical processes. The relaxation rate is determined by use of the method outlined in Reference IV.A.4. As noted in the reference, the creep rate relationship is given by

$$\frac{d\epsilon}{dt} = 4.83 \times 10^{-4} \sigma^5 \exp(-9.03 \times 10^4/T)$$

where T is in °R. From this equation, the equation relating the time required to reduce an initial stress, σ_o , to a final stress, σ_r , is determined to be

$$t = \frac{5.18 \times 10^2}{E \sigma_r^4} \exp(9.03 \times 10^4/T) \ln \left(1 - \left(\frac{\sigma_r}{\sigma_o} \right)^4 \right)$$

For Hastelloy-N material, the stress-strain curves above the yield point are nearly flat (zero strain hardening) (Ref. IV.A.1). Therefore, the maximum residual stress at any temperature is limited to the magnitude of the yield strength of the material. The residual stress at a temperature below that of a particular thermal process will be directly proportional to the elastic modulus assumption that the elastic strain is independent of temperature.

The calculated stress amplitudes resulting from the various operations are summarized below.

a. Stresses in Top Cap Region (Ref. V.A.5)

(1) Induced by Ceramic Coating

$$\sigma_0 = \sigma_z = +31,000, \sigma_r = 0 \quad \text{at } 70^{\circ}\text{F}$$

$$\sigma_0 = \sigma_z = +4,000, \sigma_r = 0 \quad \text{at } 1300^{\circ}\text{F (operating temperature)}$$

(2) Induced by Chrome Coating

$$\sigma_0 = \sigma_z = -1450, \sigma_r = 0 \quad \text{at } 70^{\circ}\text{F}$$

$$\sigma_0 = \sigma_z = +1450, \sigma_r = 0 \quad \text{at } 1300^{\circ}\text{F}$$

(3) Tube Sizing Residual Stresses

$$\sigma_0 = \sigma_z = +2200, \sigma_r = 0 \quad \text{at } 70^{\circ}\text{F}$$

$$\sigma_0 = \sigma_z = +1730, \sigma_r = 0 \quad \text{at } 1300^{\circ}\text{F}$$

b. Stresses Near Element Mid-Plane (Ref. V.A.5)

(1) Induced by Ceramic Coating

$$\sigma_0 = \sigma_z = +31,000, \sigma_r = 0 \quad \text{at } 70^{\circ}\text{F}$$

$$\sigma_0 = \sigma_z = +6,000, \sigma_r = 0 \quad \text{at } 1200^{\circ}\text{F (operating temperature)}$$

(2) Induced by Chrome Coating

$$\sigma_0 = \sigma_z = -1450, \sigma_r = 0 \quad \text{at } 70^{\circ}\text{F}$$

$$\sigma_0 = \sigma_z = +1450, \sigma_r = 0 \quad \text{at } 1200^{\circ}\text{F}$$

(3) Due to Fuel-Cladding Interference

$$\sigma_z = + 4,900 \text{ at point of load}$$

$$\sigma_z = - 4,900 \text{ opposite load}$$

$$\sigma_z = 0 \text{ at } 90^\circ \text{ to load}$$

$$\sigma_\theta = + 11,650 \text{ at load, outer surface of clad}$$

70°F

$$\sigma_\theta = - 11,650 \text{ at load, inner surface of clad}$$

$$\sigma_\theta = 0 \text{ remote from load}$$

$$\sigma_r = 0$$

$$\sigma_z = + 1,600 \text{ at point of load}$$

$$\sigma_z = - 1,600 \text{ opposite load}$$

$$\sigma_z = 0 \text{ at } 90^\circ \text{ to load}$$

$$\sigma_\theta = + 3,890 \text{ at load, outer surface of clad}$$

1200°F

$$\sigma_\theta = - 3,890 \text{ at load, inner surface of clad}$$

$$\sigma_\theta = 0 \text{ remote from load}$$

$$\sigma_r = 0$$

c. Lower End Cap (Ref. V.A.5)

(1) Induced by Ceramic Coating

$$\sigma_\theta = \sigma_z = + 31,000 \text{ at } 70^\circ\text{F}, \sigma_r = 0$$

$$\sigma_\theta = \sigma_z = + 8,500 \text{ at } 1100^\circ\text{F}, \sigma_r = 0 \text{ (operating temperature)}$$

(2) Induced by Chrome Coating

$$\sigma_\theta = \sigma_z = - 1450 \text{ at } 70^\circ\text{F}, \sigma_r = 0$$

$$\sigma_\theta = \sigma_z = + 1450 \text{ at } 1100^\circ\text{F}, \sigma_r = 0$$

(3) Induced by Residual Shrink-Fit Pressure

$\sigma_z = 0$	Inner Surface	at 70°F	
$\sigma_\theta = + 3100$			
$\sigma_r = - 110$			
$\sigma_z = 0$	Outer Surface	at 1100°F	
$\sigma_\theta = 2980$			
$\sigma_r = 0$			
$\sigma_z = 0$	Inner Surface		
$\sigma_\theta = + 2550$			
$\sigma_r = - 90$			
$\sigma_z = 0$	Outer Surface		
$\sigma_\theta = + 2450$			
$\sigma_r = 0$			

2. Assembly Stresses (Ref. V.A.5)

a. Due to Element to Element Interference

$\sigma_z = - 1000$ at point of load

$\sigma_z = + 1000$ opposite load

$\sigma_z = 0$ at 90° to load

$\sigma_\theta = - 1100$ at load, outer surface of clad

$\sigma_\theta = + 1100$ at load, inner surface of clad

$\sigma_\theta = 0$ remote from load

$\sigma_r = 0$

B. Static Load Stresses

Membrane stresses in the fuel element cladding were calculated based on the static external and internal pressures reported in Section III.A. The analysis and results are presented below.

$$\sigma_{\theta} = - \frac{P r}{t} = - P \frac{(0.275)}{(0.010)} = - 27.5 P$$

$$\sigma_r = - P \text{ outer surface}$$

$$\sigma_r = 0 \text{ inner surface}$$

$$\sigma_z = - P r/2 t = - 13.8 P$$

$$P = (\text{NaK System Pressure}) - (\text{Fuel Element Pressure})$$

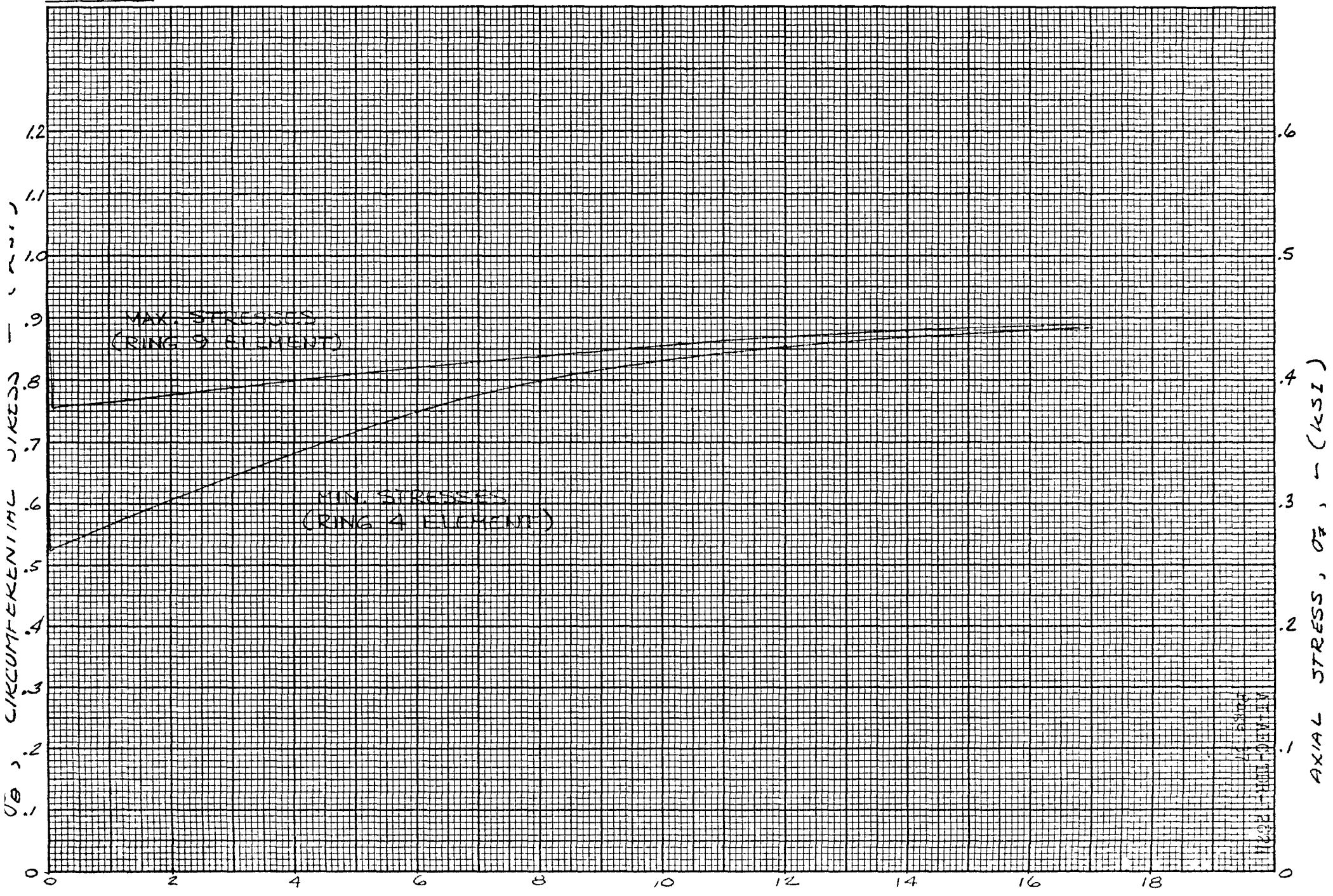
From III A:

$$P = (35 - 16.2) = 18.8 \text{ psi (minimum)}$$

$$P = (35 - 2.8) = 32.2 \text{ psi (maximum)}$$

The pressure varies from the minimum value to the maximum due to the loss of hydrogen pressure as shown in Figure III.A.1. The result is a changing cladding membrane stress. The values are noted in Figure V.B.1.

At the end caps, the static pressure leads to bending stresses due to the cylinder-plate junction discontinuity. The stress values are given by:


$$\sigma_z \text{ max} = \pm 1.55 Pr/t = \pm 42.6 P \text{ (tensile on outer surface)}$$

$$\sigma_{\theta} = 1.31 Pr/t \text{ outer surface}$$

$$\sigma_{\theta} = 0.39 Pr/t \text{ inner surface}$$

$$\sigma_r = 0$$

FIG. D.B.1. CLADDING MEMBRANE STRESSES

If the system is pressurized prior to power generation, the net compressive pressure will be 35 psi. Using this value, the secondary stresses are found.

$$\sigma_z^*_{\max} = \pm 1490 \text{ psi tensile on outer surface}$$

$$\sigma_\theta^* = + 1260 \text{ psi outer surface}$$

$$\sigma_\theta^* = + 380 \text{ psi inner surface}$$

$$\sigma_r^* = 0$$

The average fuel temperatures required to rupture the fuel element cladding, based on ultimate Hastelloy-N tubing strength, were determined by P. M. Magee as reported in Reference V.B.1. In this study, the average H/Zr of the fuel varied from 1.72 to 1.77. Since the hydrogen dissociation pressure increases with temperature, the failure temperature was considered to be that which produced the hydrogen pressure which would, in turn, produce the cladding failure stress. The reported results show that the minimum temperature required is 1635°F.

The fuel element was analyzed to determine the maximum allowable external pressure on the cladding (corresponding to a NaK system surge pressure). The calculations (presented below) indicate that elastic buckling will occur when the net compressive pressure is 82 psi. It was assumed, for this evaluation, that the duration of the high-pressure condition is short.

PREPARED BY: A.W.D.	ATOMICS INTERNATIONAL A DIVISION OF NORTH AMERICAN AVIATION, INC.	PAGE NO. 39 OF AI-AEC-TDR-12824 REPORT NO.
CHECKED BY:		
DATE:		MODEL NO.

MAXIMUM OPERATING TEMPERATURE = 1340°F

$$E = 24.6 \times 10^6 \text{ psi}$$

$$\nu = 0.3$$

$$F_{cy} = 25000 \text{ psi}$$

USING THE PROCEDURE FROM NAA S-1 ID
STRUCTURES MANUAL, SECTION 9.30

$$Z = \frac{L^2}{rt} \sqrt{\frac{1-\nu^2}{1-\nu^2}} = \frac{(17)^2 (0.955)}{(280)(0.010)} = 9.86 \times 10^4$$

$$K_p = 0.6 (Z)^{.544} = 0.6 (9.86 \times 10^4)^{.544} = 312.5$$

THE BUCKLING PRESSURE IS :

$$P = K_p \frac{\pi^2 E}{12(1-\nu^2)} \frac{t^3}{L^2 r}$$

$$P = \frac{(312.5 \times \pi^2) (24.6 \times 10^6 \times 1 \times 10^{-6})}{12 (0.955) (17^2) (280)} = \frac{75870}{927}$$

$$P = 81.8 \text{ psi} \quad \xrightarrow{\text{ELASTIC BUCKLING}}$$

C. Static Thermal Stresses

1. Radial Thermal Gradients

The occurrence of a radial thermal gradient in a cylindrical shell leads to stresses at the outer and inner surfaces according to the expression

$$\sigma_z = \sigma_\theta = \pm \frac{E \alpha (T_i - T_o)}{2(1-\nu)}$$
$$\sigma_r = 0$$

at points remote from end effects (Reference V.C.1). The upper sign refers to the outer surface, indicating that a tensile stress will act on this surface if $T_i > T_o$.

Under steady-state conditions, the radial thermal gradients become negligible in the end cap regions. Use of the above equation is therefore justified since the noted qualification is satisfied.

The significant gradient conditions are defined by Cases III-3 and III-4 in Table III.B.1. The resultant stresses for these cases are as follows.

Average Radial Gradient

$$\sigma = \pm \frac{(250)(9.6)}{(1.4)} = \pm 1720 \text{ psi}$$

Maximum Radial Gradient (Center element; $Z/L = 0.5$)

$$\sigma = \pm \frac{(250)(25.6)}{(1.4)} = \pm 4560 \text{ psi}$$

2. Circumferential Thermal Gradients

Cladding stresses due to circumferential temperature variations were studied by Hsieh (Reference V.C.2) and found to follow the relationship

$$\sigma_z = -1/2 E \alpha (\Delta T) \cos \theta$$

$$\sigma_r = \sigma_\theta = 0 \quad \text{for elastic conditions.}$$

Using the ΔT values noted in Section III.B. the stresses are:

Maximum "60" variation (center element, $Z/L = 0.5$)

$$\sigma_z = \pm \left(\frac{250}{2}\right) (100) (1) = \pm 12,500 \text{ psi}$$

Maximum "60" variation at point of minimum cladding creep strength (Ring 7, $Z/L = 0.95$)

$$\sigma_z = \pm \left(\frac{250}{2}\right) (25) (1) = \pm 3130 \text{ psi}$$

These stresses are tensile (+) in the regions where $\cos 60$ is negative ("cold" strips).

At the top end cap, the "60" stress becomes

$$\sigma_z = \pm \frac{250}{2} (19) (1) = \pm 2380 \text{ psi}$$

Due to the presence of the circumferential temperature variation, and the associated stresses, strain concentrations are produced at the hot line zones where neighboring fuel tubes come in closest proximity. This occurs, at operating temperatures, because hot region creep rates are significantly higher than those of the adjacent cold zones.

The magnitude of hot line creep strains and stresses were determined with the use of the digital computer code CREEP (Ref. V.C.3). Figure V.C.1 shows the maximum axial (z) stresses and maximum creep strains resulting from the circumferential temperature variation plotted against time. The calculations are representative of the Case III.1, of Section III (center element, midplane, zero spacing, 1250°F average cladding temperature). The curves are terminated at 1200 hours; the design lifetime for the S8DR reactor. Figure V.C.2 is an extension (inverted) of the hot strip maximum axial plastic strain curve of the previous figure. Here, a straight line

FIG. IV.C.1.

60° STRESS & AXIAL PLASTIC STRAIN VS TIME

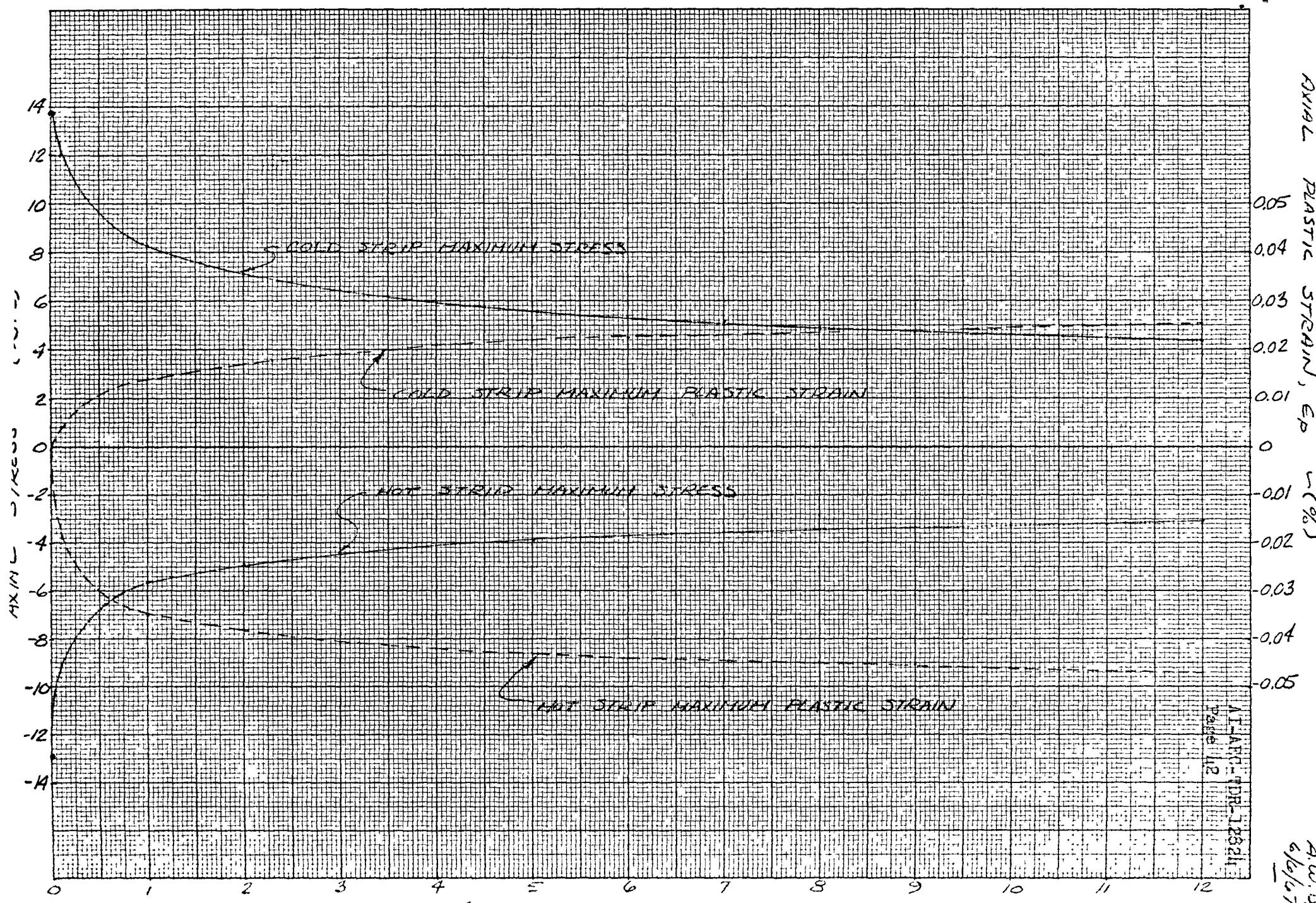
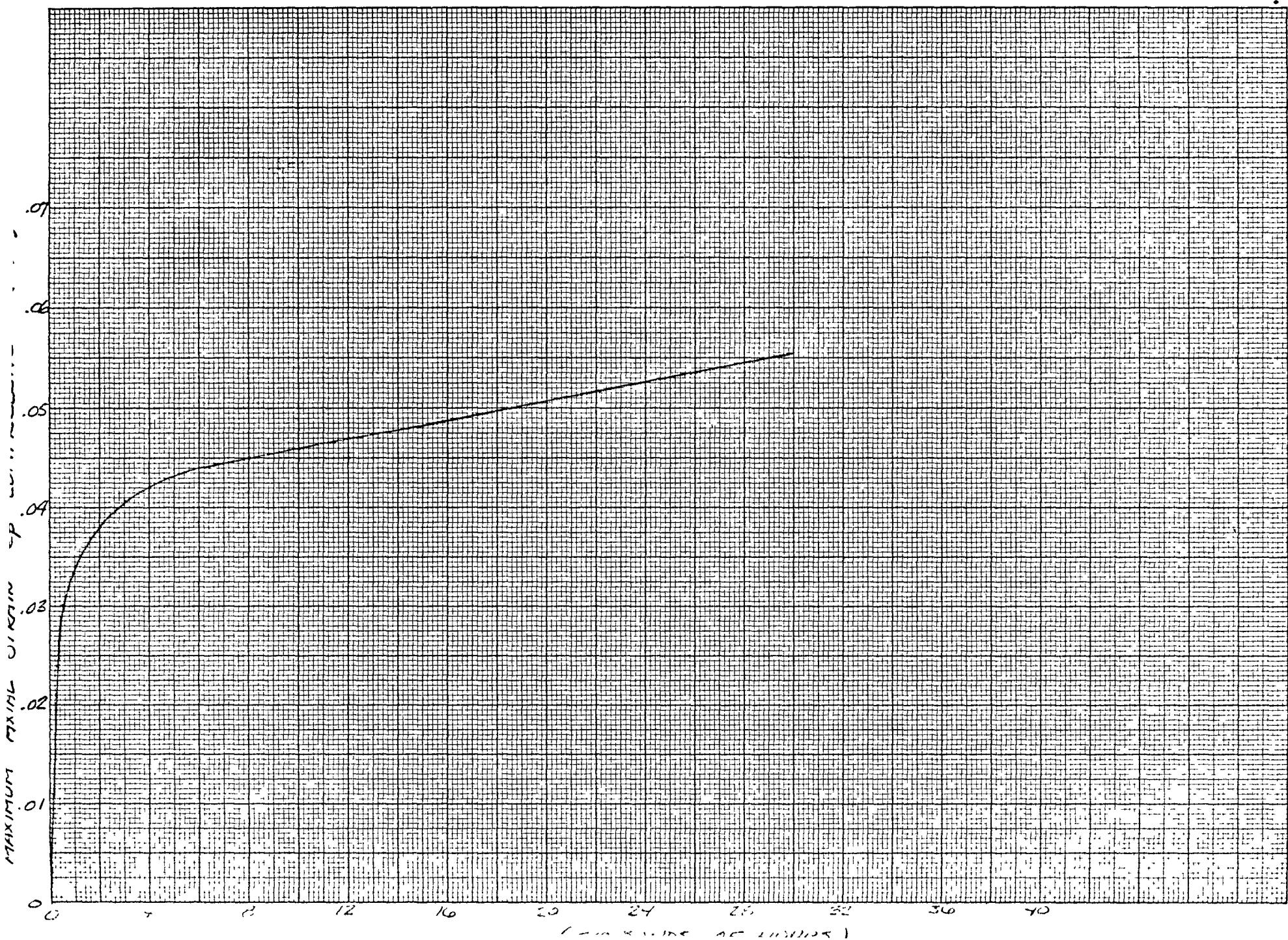



FIG. I.C.2.

PLASTIC STRAIN DUE TO 60 STRESS VS TIME - HOT STRIP

extrapolation was made to 30,000 hours to examine conditions at that point in time.

The condition defined as Case III-2 of Section III (maximum 60 variation at the point of minimum cladding creep strength) has been analyzed for creep-collapse in Section V.D.

3. Axial Thermal Gradients

The maximum axial thermal gradient occurs in the lower end cap region as defined in Section III.B., and is equal to $16.5^{\circ}\text{F/inch}$. Using this value, and assuming that the cladding is built-in to a rigid end cap, the stresses are:

$$\sigma_z = 0.706 E \alpha \sqrt{rt} (\Delta T)$$

$$\sigma_z = (0.706) (250) (0.053) (16.5) = 154 \text{ psi}$$

This result indicates that the maximum axial gradient produces a very small maximum stress. Therefore, the stresses produced by axial gradients will be assumed to be negligible throughout the element cladding.

4. Isothermal Conditions

The maximum ΔT from the stress-free condition (Case III-8 of Section III.B) has been included in Section V.E., and evaluated as a transient condition rather than static.

D. Creep Collapse

Due to the combined actions of net compressive pressure and initial tubing ovality, the fuel cladding is subject to creep collapse at high operating temperatures. This problem has been studied extensively by Y. Pan (Ref. V.D.1.) who developed a method for calculating creep deflections and predicting creep buckling of a thin-walled cylinder under uniform external pressure and arbitrary temperature gradients. The method allows for shell materials with arbitrary creep characteristics, and thus may include the effects of primary creep as well as secondary, if desired. The analytical model forms the basis for the digital computer code, CREEP (Ref. V.C.4) which numerically solves the differential equations by a finite difference technique and time-wise iterations.

From numerous cases studied, it was found that the minimum creep-collapse time occurs at the fuel cladding location of maximum creep rate. This location is the same as that defined by Case III-2, Section III; i.e., $Z/L = 0.95$, Ring 7. At this position, the average temperature is 1342°F with a 25°F circumferential variation (Section III.B.2.). A more severe thermal condition was analyzed with the use of CREEP for two values of external pressure; 43 and 28 psi. The actual temperatures input were 1350°F average, 50°F 60 ripple, and 5°F radial gradient. The initial cladding ovality assumed for these cases was 0.002 inch (semimajor axis minus semiminor axis). The results of this evaluation are shown in Figure V.D.1. and V.D.2. The curves indicate that collapse occurs at approximately 370,000 hours with 43 psi NaK pressure, and at approximately 2,200,000 hours with 28 psi. As noted in Section III.A, the maximum long term net compressive pressure is 32 psi. Interpolation between the previously calculated values shows that collapse would occur at approximately 1,300,000 hours for the latter pressure.

Figure V.D.3. has been constructed using the above results for the average-time-to-collapse curve. The curve in the figure noted as minimum time to collapse was plotted by applying a factor of 1/5 to the higher curve. The latter factor is intended to provide for potential creep rate scatter (Ref. V.D.2.).

The analytical results presented do not take the fuel dimensions into account. That is, the cladding is analytically allowed to strain progressively until collapse would theoretically occur for a hollow tube. In actuality, the fuel will be present to restrict excessive diametral cladding strains. With fuel swelling, fuel restraint will occur long before collapse would occur. The analysis is, therefore, considered to be conservative.

FIGURE IV.D.1.
PLASTIC STRAIN VS TIME - CREEP COLLAPSE - $P=43$ PSI , 25/5/1810 (FROM R.D. ELLIOTT, RUN 91, CASE 2)

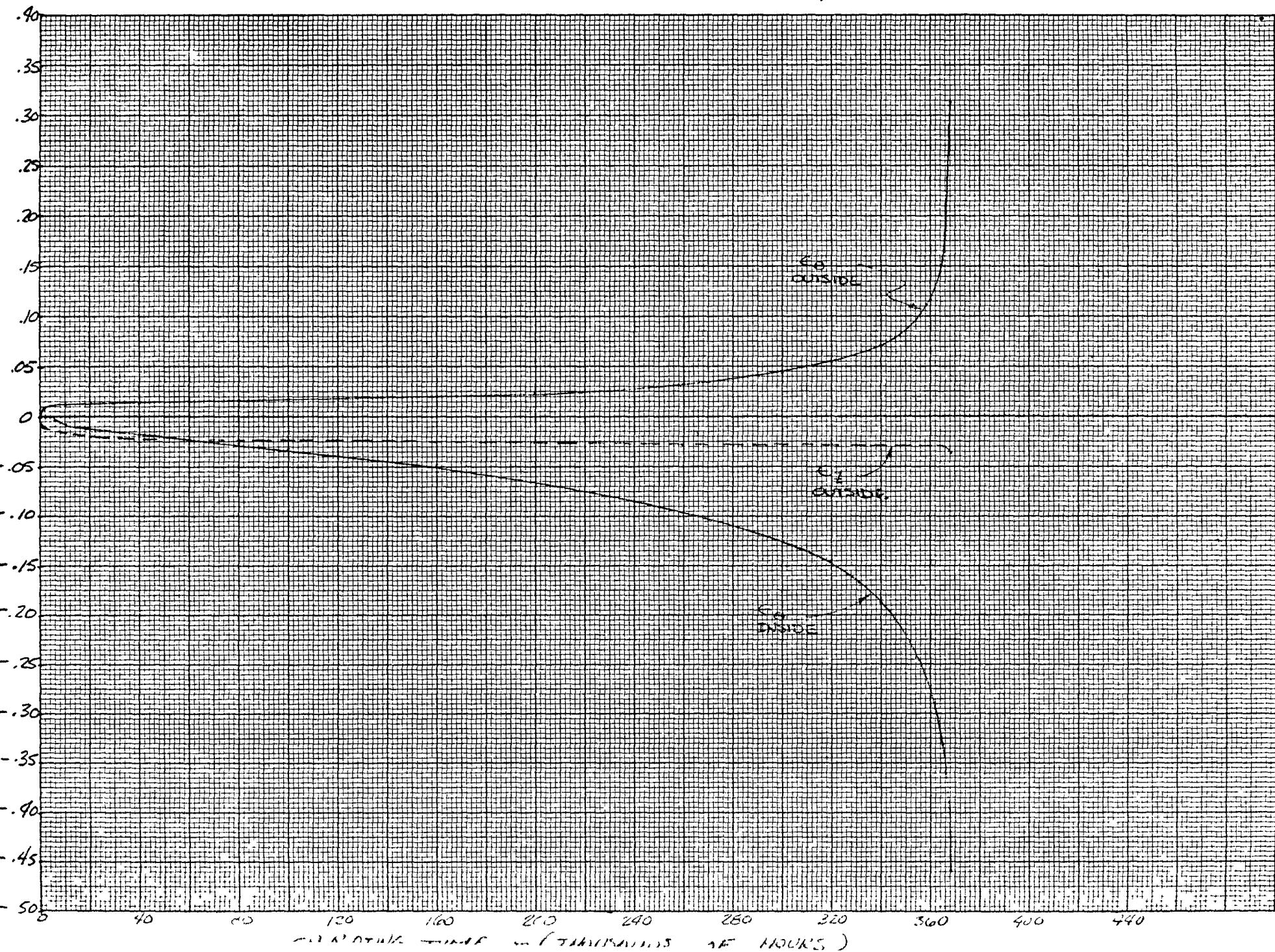


FIG. II.02.

PLASTIC STRAIN vs TIME - CREEP COLLAPSE $P = 28 \text{ PSI}$ TEMP - 25/5/1810 (FROM R.D. ELLIOTT'S RUN 44, CASE 1)

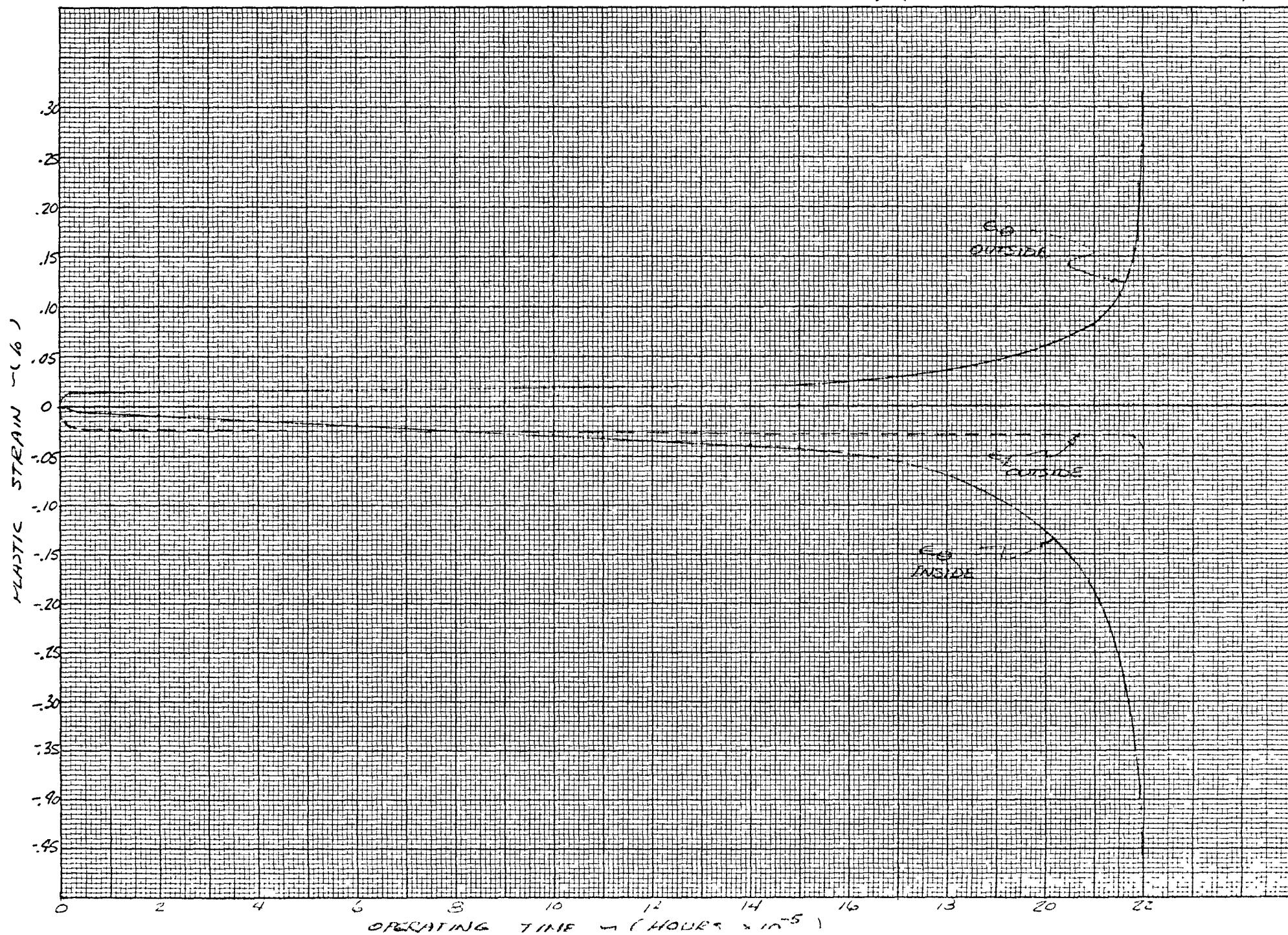
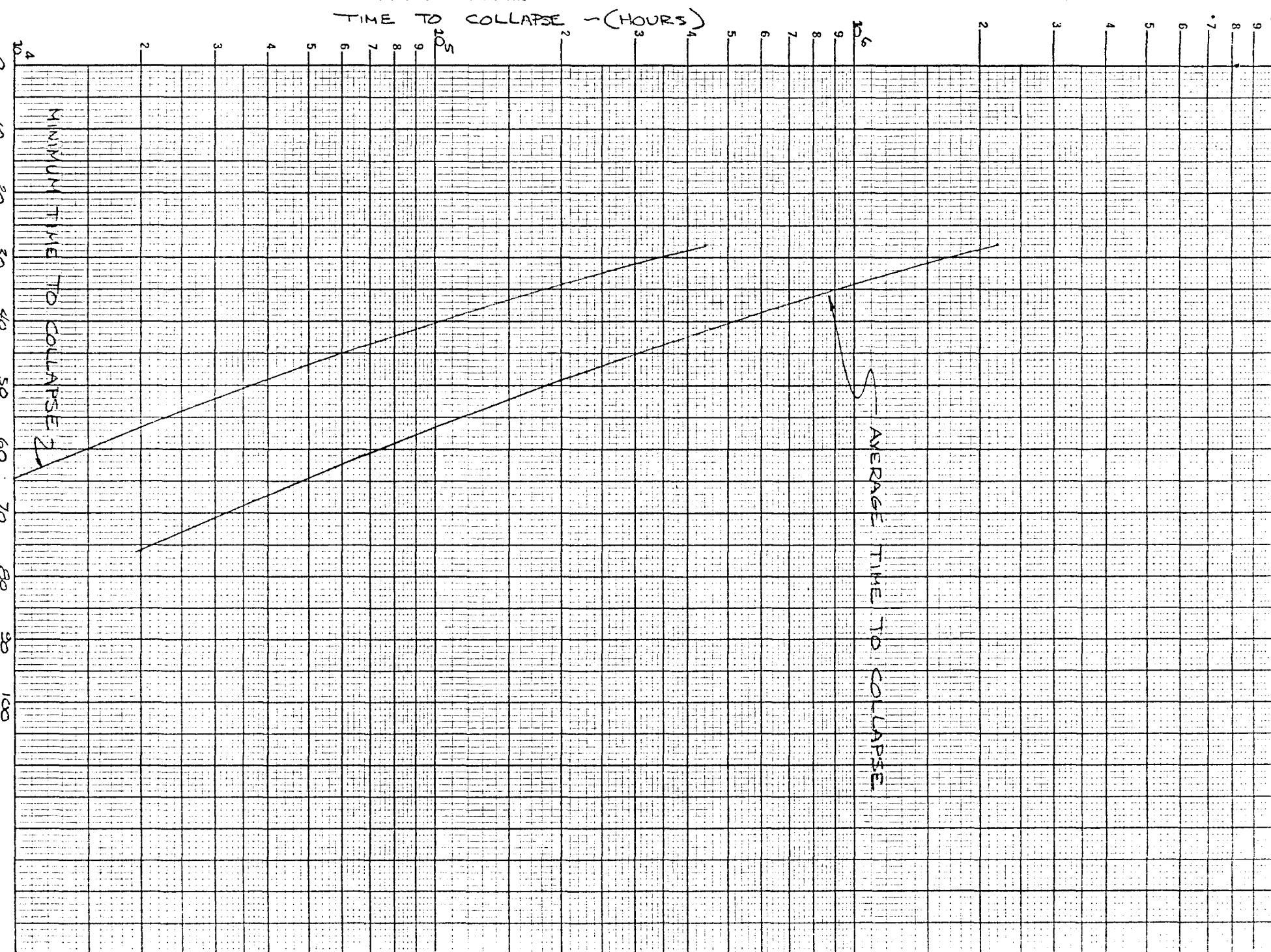



FIG. V.D.3. TIME TO CREEP COLLAPSE VS. NET NAL PRESSURE

E. Transient Thermal Stress Analysis - General Discussion

The fuel element assembly is "thermal-soaked" isothermally at 1400°F for approximately 40 hours during permeation testing. Since the ceramic barrier (Reference V.E.1) creeps readily at this temperature, it has been assumed that all residual stresses in the assembly are relieved during the operation. The stress-free condition is therefore 1400°F , and all thermal stress calculations are based accordingly.

The glass is assumed to creep readily at temperatures above 900°F . Although values have not been measured, experience and recent investigation (Reference V.E.1) indicates that the glass creep rate is considerably greater than that of Hastelloy-N at these temperatures. Below 900°F , the creep-rate of the glass is assumed to be nil. The effect of the accelerated creep at temperatures in the operating range, is to reduce the stresses due to differential thermal expansion of the metal and glass. Therefore, the high initial thermal stresses induced in the cladding by the barrier are reduced with time at static operation. These considerations were incorporated into the fuel element stress analysis evaluation.

The stress analysis was accomplished with the use of the modified AVCO shell analysis digital computer code (Reference V.E.2). The code solves plane stress problems for thin shells of revolution by a finite difference solution of the differential equations of elastic equilibrium. The analytical model used is shown in Figures V.E.1 and V.E.2. Neither end cap lends itself readily to division into simple geometric shapes required for input to the code. Therefore, the model used is an approximation of the actual structure, and the computer output should be evaluated accordingly. The models yielded accurate results as judged by the satisfaction of boundary conditions and the absence of strain inconsistencies in the interior portion of the regions.

Transient thermal stresses were analyzed with temperature inputs as described in Section III.C. The analytical approach used treated the problem as quasi-steady-state. That is, the temperature distributions at each interval of time during the transient period were examined, and the

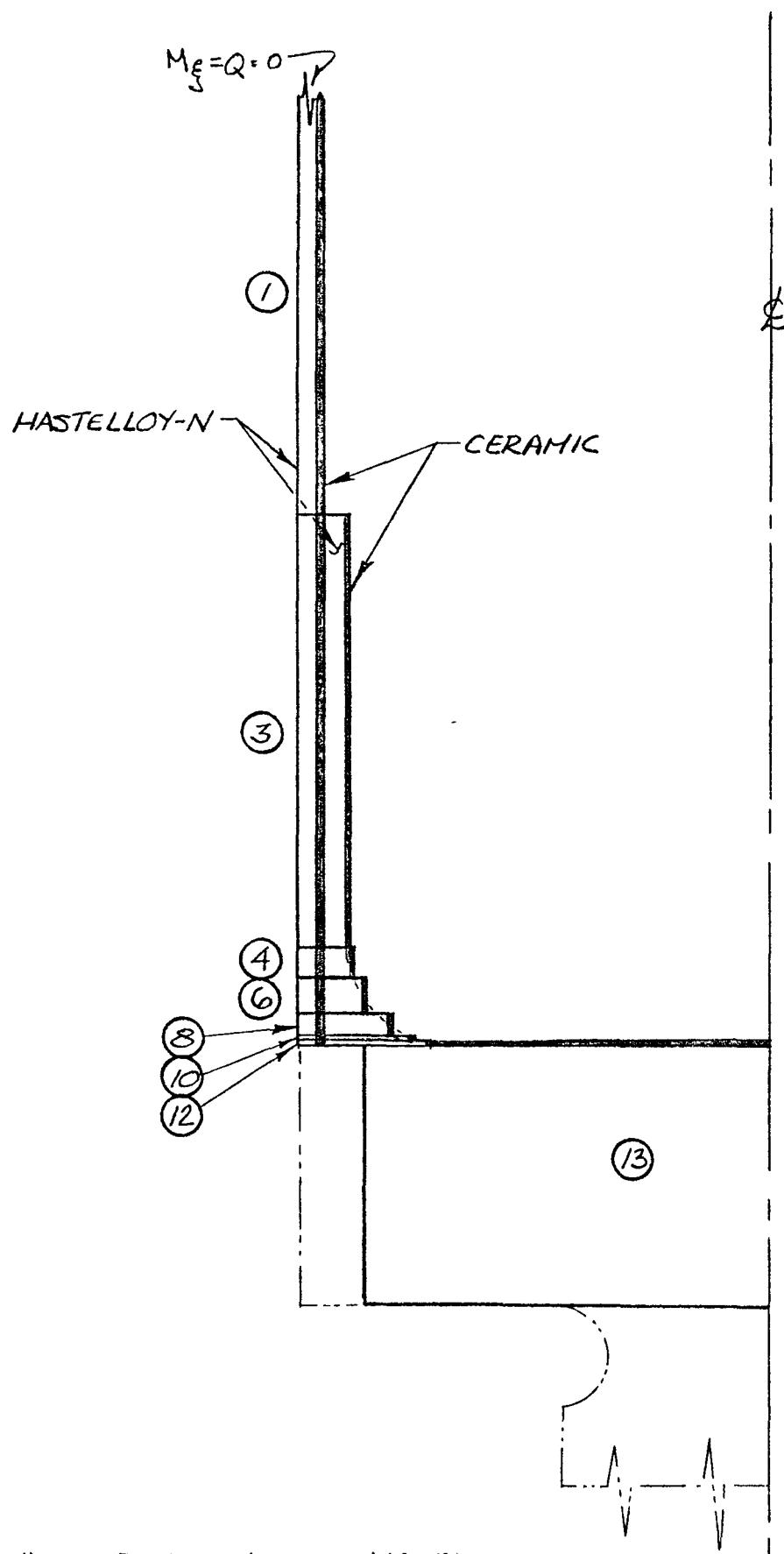


FIG V.E.1.

LOWER END CAP ANALYTICAL MODEL

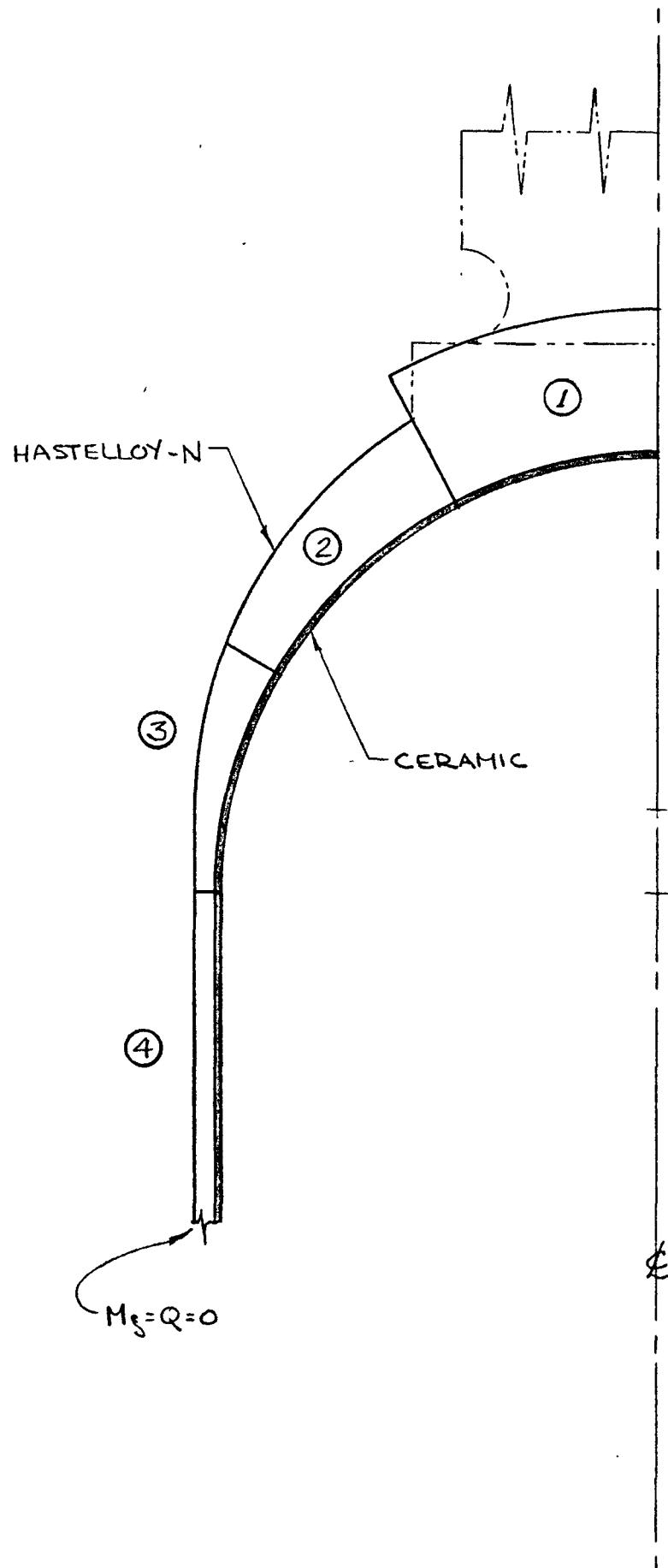


FIG. IV.E.2.
UPPER END CAP ANALYTICAL MODEL

instantaneous distribution was then used as input for the analysis of the shell stresses as though the condition were a static one. The resultant stresses represented the range (alternating stress amplitude) realized during the transient.

1. Lower End Cap

Table V.E.1.1. summarizes the maximum and minimum stresses for each of the significant lower end cap thermal transients. The temperature distributions for the transient conditions exist exclusively during the transient period. The transient stresses, therefore, are not additive to any other thermal stresses.

Stress distribution plots are presented in Figures V.E.1.1., V.E.1.2., and V.E.1.3. The solid curves represent the circumferential stresses for the outside surface of the cladding, and the dashed curves represent the meridional stresses for the internal surface of the cup. The six other principal metal stresses have not been plotted since they do not include the maximum and minimum calculated values for the transients. The thick-walled end cap stresses (Region 13) have also not been included in the figures because they are not of principal interest. The barrier (ceramic) stresses vary only slightly over the end cap region for any thermal condition. Because of this, these stresses were also excluded from the figures.

The 200°F hot slug transient is the mirror image of the 200°F cold slug. Figure V.E.1.1., then, may be used to represent the latter transient by reversing the signs of the stresses. Figure V.E.1.3 may also be used to represent the room temperature isothermal condition by suitable modification of the ordinate scale (apply factor of - 6.1).

The curves show the effects of the structural discontinuity at the upper end of the cup (junction of Regions 3 and 1). Portions of the curve have been smoothed to eliminate fictitious stress discontinuities produced by the analytical model discontinuities. The model discontinuities were necessitated by the computer code's inability to properly handle sharply tapered regions.* The tapered portion of the end cap was,

*Recent modifications to the code (Ref. V.E.3) have eliminated this shortcoming.

therefore, approximated by a series of short, concentric cylindrical steps as shown in Figure V.A.1.

TABLE V.E.1.1
Lower End Cap Maximum and Minimum Transient Thermal Stresses

Operating Condition	Maximum and Minimum Stresses (psi)	
	Cladding	Barrier
Isothermal @ Room Temp.	(+25,600) (3)	- 85,100 (4)
	+24,300 (4)	- 92,700 (8)
	+ 3,570 (12)	
200° F Hot Slug Transient	+ 950 (6)	+ 6,620 (6)
	- 3,850 (6)	0 @ t = 0
200° F Cold Slug Transient	+ 3,850 (6)	0 @ t = 0
	- 950 (6)	- 6,620 (6)
Loss of Heat Reject Transient	+ 800 (8)	+ 6,510 (6)
	- 3,850 (12)	0 @ t = 0
+ 200° F Isothermal	- 600 (12)	+ 15,360 (8)
	- 4,000 (4)	+ 14,000 (4)
	(- 4,200) (3)	

Numbers in circles () denote region
number for stress location (see Figure V.A.1.)

IVE METAL STRESSES - SPDS LWR END CAP - REF. DESIGN - 200F HOT SLUG TRANSIENT

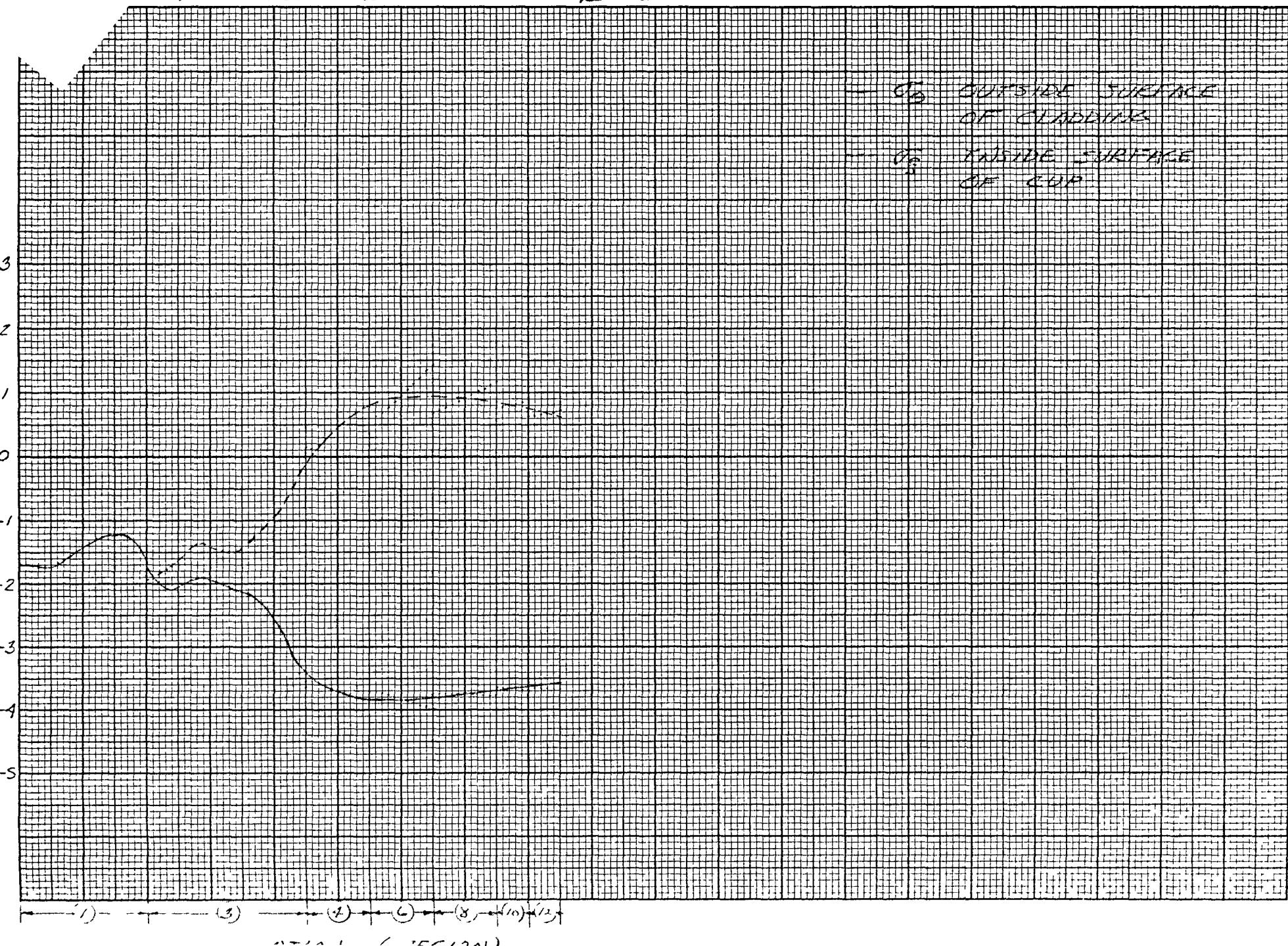


FIG. I.E. 1.2.

REPRESENTATIVE METAL STRESSES-38DS LWR END CAP~ REF DESIGN - LOSS OF HEAT REJECT TRANSIENT

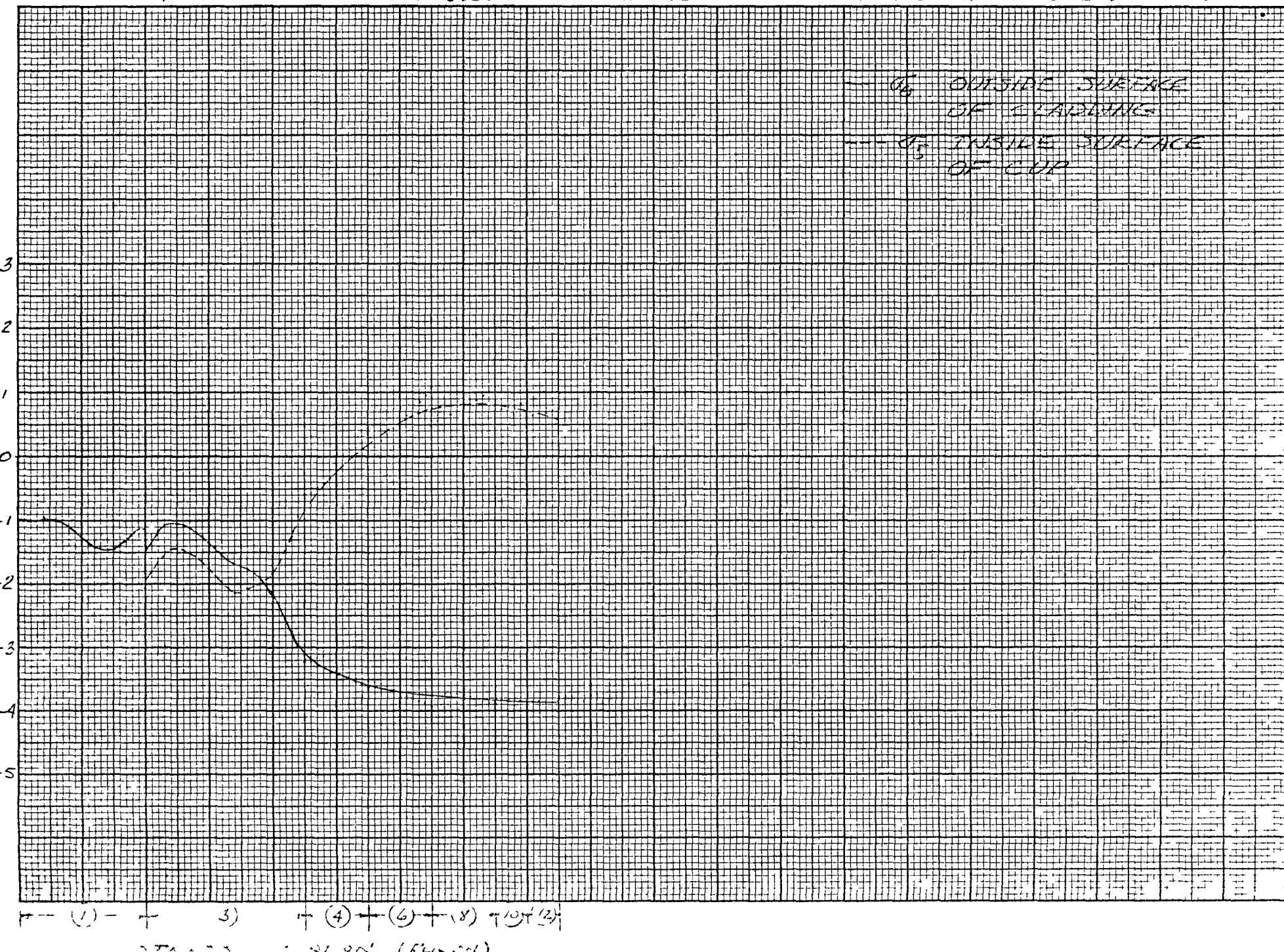
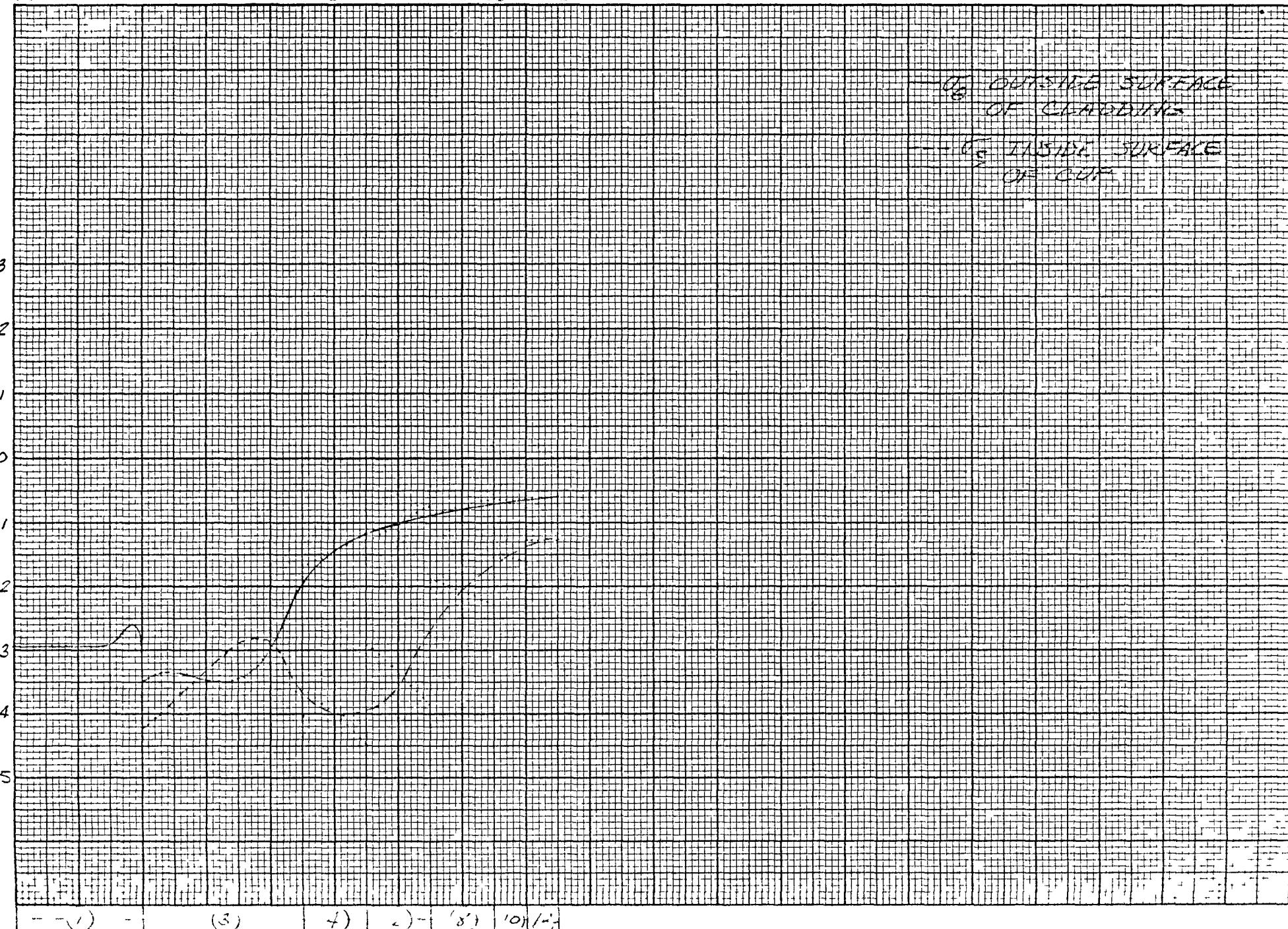



FIG. D.E 13.

REPRESENTATIVE METAL STRESSES - 580S LUR END CAP - REF DESIGN - +200 F ISOTHERMAL

2. Upper End Cap

The maximum and minimum stresses in the upper end cap are summarized for each of the important thermal transients in Table V.E.2.1.

Stress distribution plots are presented in Figures V.E.2.1, V.E.2.2, V.E.2.3, and V.E.2.4. The solid curves represent the circumferential stresses for the outside surface of the cladding. The dashed curves represent the meridional stresses on the inner surface of the cladding. The other two principal stresses have not been plotted since they do not include the maximum and minimum values for the transients.

In general, the comments made concerning the lower end cap transient stresses are also pertinent to the upper end cap stresses.

TABLE V.E.2.1

Upper End Cap Maximum and Minimum Transient Thermal Stresses

Operating Condition	Maximum and Minimum Stresses (psi)	
	Cladding	Barrier
Isothermal @ Room Temp.	+ 27,600 (4) - 10,860 (2)	- 82,560 (4) - 97,060 (2)
200°F Cold Slug Transient	+ 1,350 (1) - 2,470 (1)	0 @ t = 0 - 3,090 (3)
200°F Hot Slug Transient	+ 2,470 (1) - 1,350 (1)	+ 3,090 (3) 0 @ t = 0
Low Flow Scram Transient	+ 3,710 (1) - 1,810 (3)	+ 4,760 (3) 0 @ t = 0
Power Scram Transient	+ 5,870 @ 12 sec (3) - 5,820 @ 6 sec (1)	0 @ t = 0 -18,300 (2) @ 12 sec
+ 200°F Isothermal	+ 1,530 (2) - 6,000 (4)	+ 21,240 (2) + 17,950 (4)

Numbers in circles () denote region number for stress locations (see Figure V.A.2.)

FIG. V.E.2.1.

REPRESENTATIVE METAL STRESSES - 58DS UPPER END CAP - 200F HOT SLUG TRANSIENT

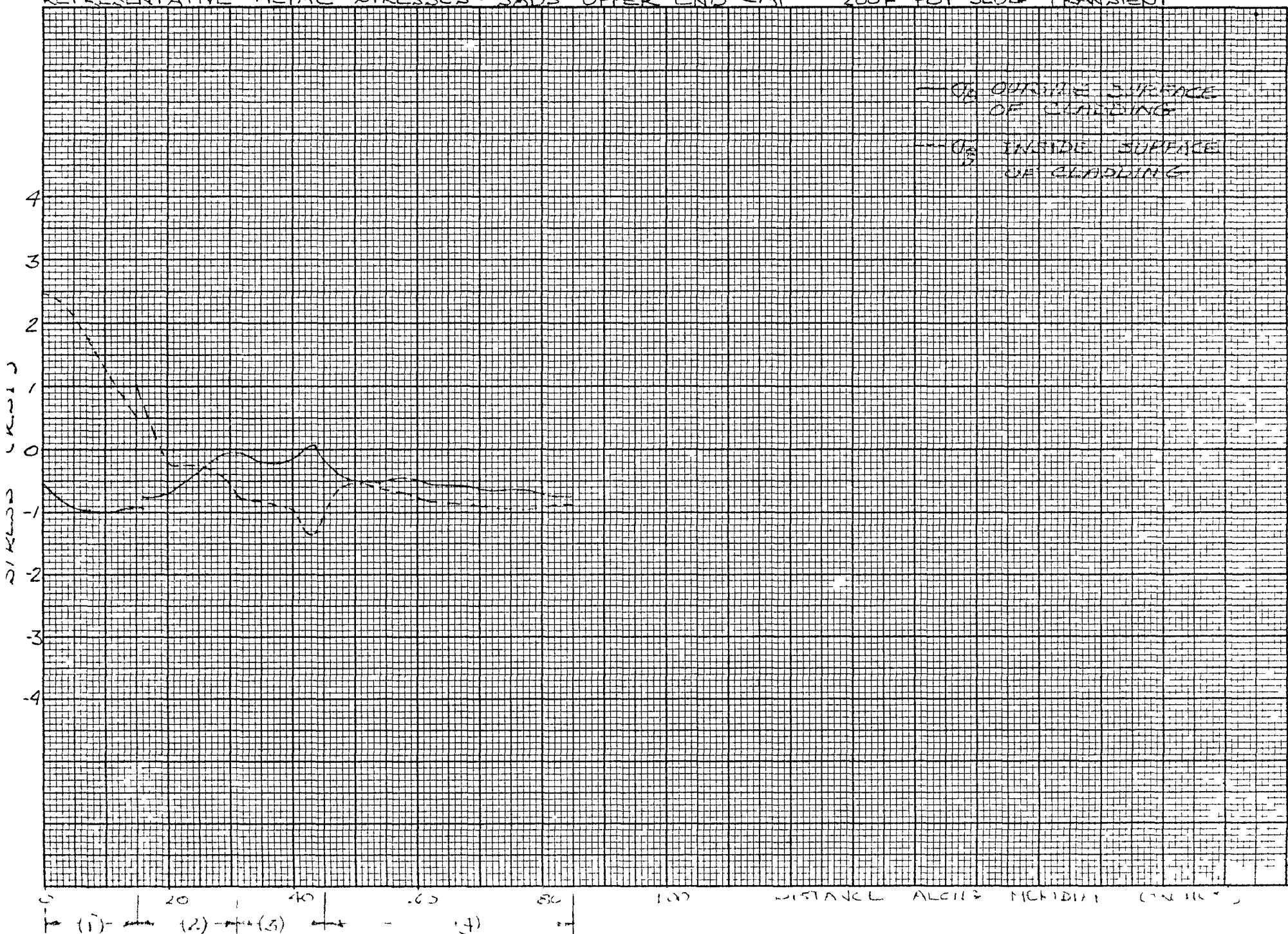


FIG. V.E. 2.2.

REPRESENTATIVE METAL STRESSES - 3BDS UPPER END CAP - LOW FLOW SCRAM TRANSIENT

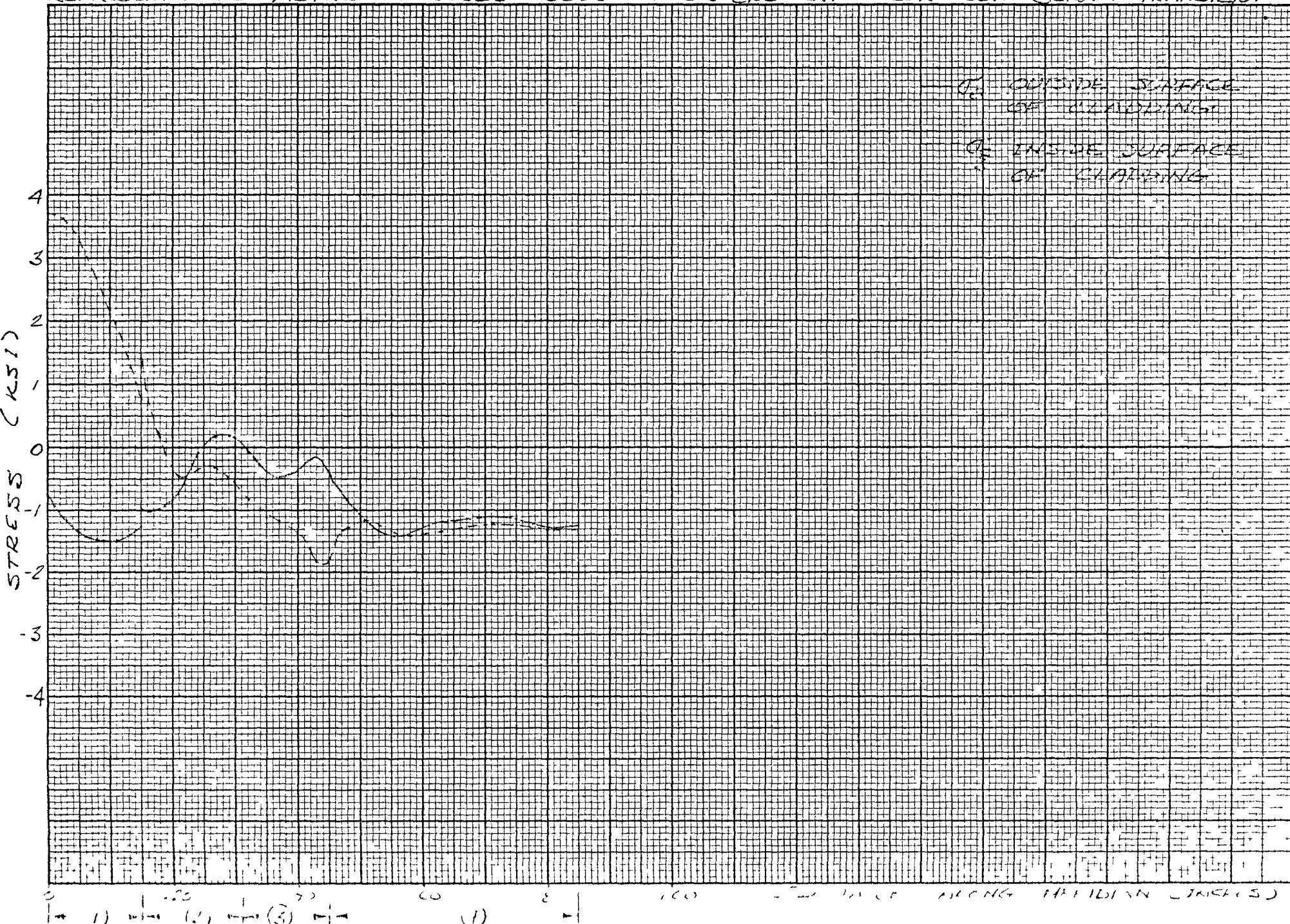


FIG. VE 23

REPRESENTATIVE METAL STRESSES - S8DS UPPER END CAP - POWER, SCRAM TRANSIENT @ $t = 12$ SEC.

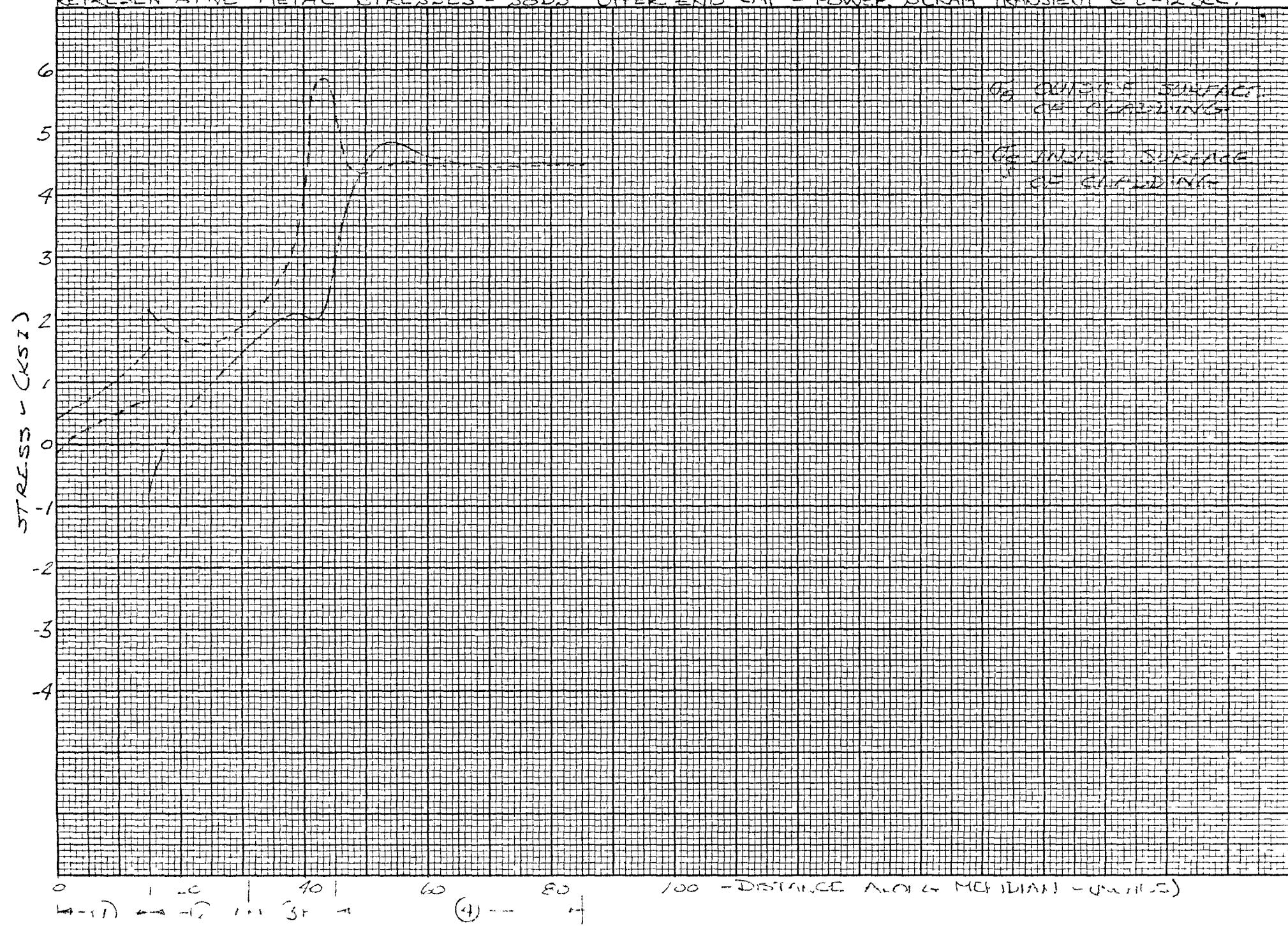
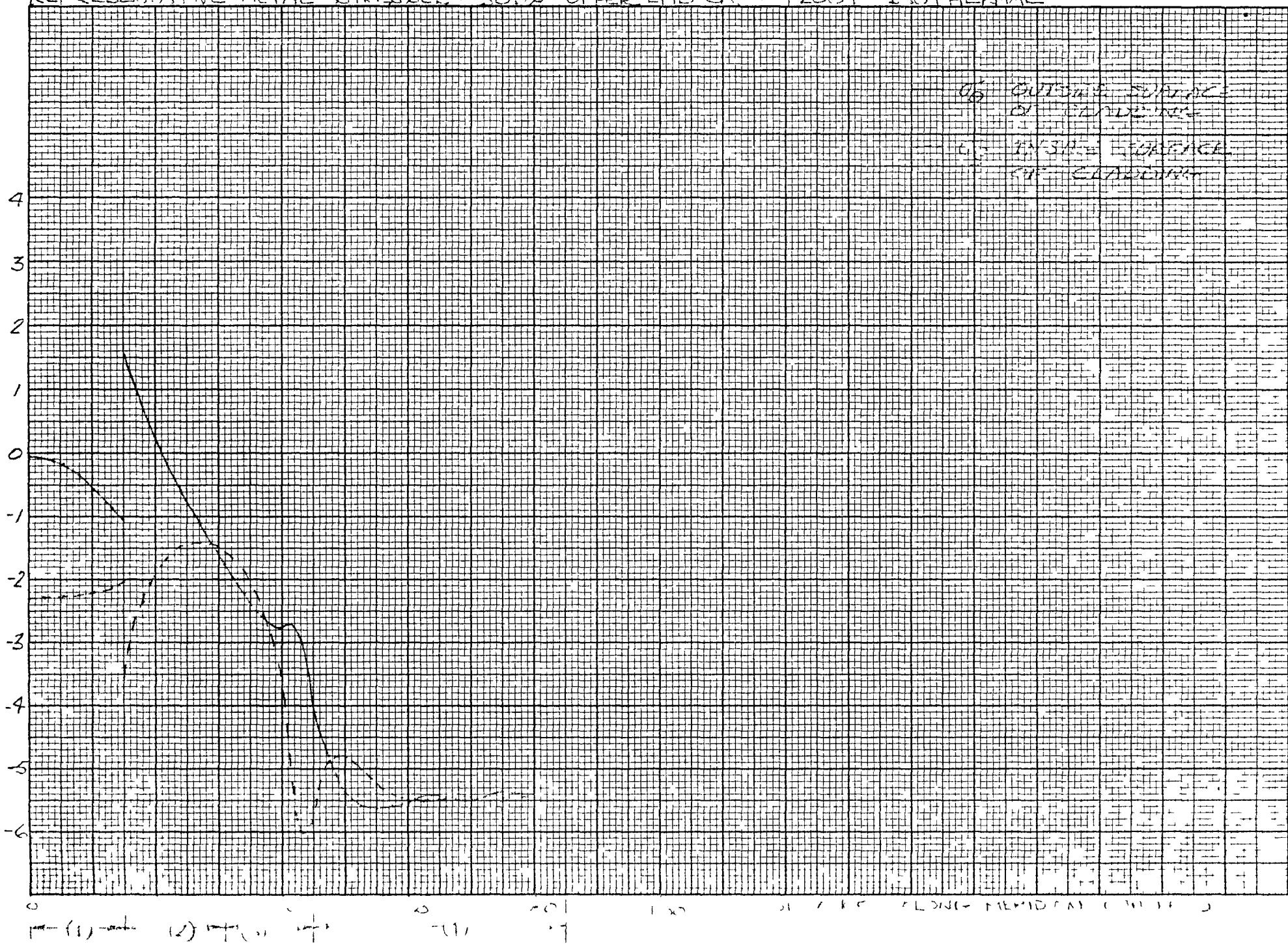



FIG. V E. 2.4.

REPRESENTATIVE METAL STRESSES - SDS'S UPPER END CAP - +200 F ISOTHERMAL

VI. EVALUATION OF RESULTS

The stresses calculated for the fuel element were evaluated in accordance with the procedures outlined in Section III of the ASME Boiler and Pressure Vessel Code (Ref. VI.1). The stresses were classified into the categories of primary (P_m , P_b , P_L), secondary (Q) and peak (F) as recommended in Article IV of the noted reference. The conditions, and identifying classification are noted in Table VI.1. Certain stresses do not fall into established categories. These were classified as 'special' and were separately evaluated.

A. Primary Stresses

The stresses are found from V.A. and V.B. and are identical for all portions of the cladding. There are no significant local membrane or primary bending stresses. The general membrane stresses during operation are:

σ_z	=	- 440	Outer Surface
σ_θ	=	- 890	
σ_r	=	- 30	
$\tau_{\theta z}$	=	220	
$\tau_{\theta r}$	=	430	
$\tau_{z r}$	=	230	

σ_z	=	- 440	Inner Surface
σ_θ	=	- 890	
σ_r	=	0	
$\tau_{\theta z}$	=	220	
$\tau_{\theta r}$	=	450	
$\tau_{z r}$	=	220	

TABLE VI.1
STRESS CLASSIFICATIONS
(Sheet 1 of 2)

I. Lower End Cap

1. Ceramic coating-induced	(F)
2. Chromizing-induced	(F)
3. Shrink-fit residual	(F)
4. Hydrogen-permeation-test pressure primary	(P _m)
5. Operational pressure primary	(P _m)
6. Hydrogen-permeation-test pressure secondary	(Q)
7. Operational pressure secondary	(Q)
8. Over-temp (V.B.3)	(P _m)
9. Surge pressure (V.B.4)	(P _m)
10. Axial thermal gradient	(Q)
11. Thermal transients (exclusive of axial gradients)	(F)

II. Central Element

1. Ceramic-induced	(F)
2. Chromizing-induced	(F)
3. Fuel-clad interference:	
a. Axial	(Q)
b. Circumferential	(F)
4. Element-element interference	
a. Axial	(Q)
b. Circumferential	(F)
5. Hydrogen-permeation-test pressure primary	(P _m)
6. Operational pressure primary	(P _m)
7. Over-temp (V.B.3)	(P _m)
8. Surge pressure (V.B.4)	(P _m)
9. Radial thermal gradient	(F)
10. Circumferential gradient	(F)
11. Hot-line creep	(Special)
12. Creep-collapse	(Special)

TABLE VI.1
Stress Classifications
(Sheet 2 of 2)

III. Upper End Cap

1. Chromizing stress	(F)
2. Tube sizing residual stress	(F)
3. Ceramic-induced stress	(F)
4. Hydrogen-permeation-test pressure primary	(P _m)
5. Hydrogen-permeation-test pressure secondary	(Q)
6. Operational pressure secondary	(Q)
7. Operational pressure primary	(P _m)
8. Over-temp (V.B.3)	(P _m)
9. Surge pressure (V.B.4)	(P _m)
10. Axial thermal gradient	(Q)
11. Circumferential gradient	(F)
12. Hot-line creep	(Special)
13. Creep-collapse	(Special)
14. Thermal transients (exclusive of axial gradients)	(F)

The primary stress intensity obtained from these values is

$$S = \sigma_1 - \sigma_3 = 890 \text{ psi}$$

From Section IV,

$$S_m = 3000 \text{ psi}$$

The design margin is found to be

$$\text{M.S.} = \left[\frac{3000}{890} - 1 \right] 100 = + 238\%$$

for primary stresses during operation.

The primary stresses during hydrogen permeation testing are:

$$\begin{aligned} \sigma_z &= + 600 \\ \sigma_\theta &= + 1190 \\ \sigma_r &= 0 \\ \tau_{\theta z} &= 300 \\ \tau_{\theta r} &= 600 \\ \tau_{z r} &= 300 \end{aligned} \quad \boxed{\quad} \quad \text{Outer surface}$$

$$\begin{aligned} \sigma_z &= + 600 \\ \sigma_\theta &= + 1190 \\ \sigma_r &= - 45 \\ \tau_{\theta z} &= 300 \\ \tau_{\theta r} &= 620 \\ \tau_{z r} &= 320 \end{aligned} \quad \boxed{\quad} \quad \text{Inner surface}$$

From these values, the stress intensity is

$$S = 1240 \text{ psi}$$

The design margin is

$$\text{M.S.} = \left[\frac{3000}{1240} - 1 \right] 100 = + 142\%$$

for primary stresses during permeation testing.

In the event of fuel over-temperature, as discussed in V.B., the maximum allowable temperature without excessive cladding deformation may be determined.

The maximum stress intensity will be

$$S = (27.5 P + P) = 28.5 P$$

The allowable pressure is (for cladding $T_{\max} = 1400^{\circ}\text{F}$)

$$P = \frac{3000}{28.5} = 105 \text{ psig}$$

With normal operating NaK pressure of 35 psi, the required hydrogen pressure becomes

$$P_H = 140 \text{ psia}$$

The minimum fuel temperature for this to occur is 1500°F with $\text{H/Zr} = 1.77$ (Ref. VI.2). This is approximately 150°F higher than the maximum fuel temperature predicted (Ref. III.B.2) (averaged axially and radially). For this calculation, the H/Zr upper limit for as-built S8DR fuel rods was used. This procedure results in the maximum dissociation pressure and the minimum margin on fuel temperature.

Should a high pressure surge occur in the NaK system, the cladding will collapse elastically at a pressure of 82 psig as noted in Section V.B. With the normal operating pressure equal to 32 psig maximum, the margin is 50 psi for this condition.

B. Secondary Stresses

Secondary stresses due to static loads are given in Sections V.A. and V.B. During hydrogen permeation testing the stresses at the upper and lower end caps are:

σ_z = - 1850	Outer Surface	σ_z = + 1850
σ_θ = - 1560		σ_θ = - 460
σ_r = 0		σ_r = 0
$\tau_{\theta z}$ = 150		$\tau_{\theta z}$ = 1160
$\tau_{\theta r}$ = 780		$\tau_{\theta r}$ = 230
τ_{zr} = 930		τ_{zr} = 930

Inner Surface

These stresses combine with the primary stresses with the results being

σ_z = - 1250	Outer Surface	σ_z = + 2450
σ_θ = - 370		σ_θ = + 730
σ_r = 0		σ_r = - 45
$\tau_{\theta z}$ = 440		$\tau_{\theta z}$ = 860
$\tau_{\theta r}$ = 190		$\tau_{\theta r}$ = 390
τ_{zr} = 690		τ_{zr} = 1250

Inner Surface

The primary plus secondary stress intensity becomes

$$S = 2500 \text{ psi}$$

The allowable stress intensity is $3 S_m$ (Ref. VI.1). The design margin is

$$\text{M.S.} = \left[\frac{3 \times 3000}{2500} - 1 \right] 100 = + 260\%$$

Secondary stresses occur in the central portion of the fuel element due to assembly interferences as summarized in Section V.A. The most critical condition is at the maximum temperature, and the stresses are

$$\begin{aligned}\sigma_z &= \pm 1600 \\ \sigma_\theta &= 0 \\ \sigma_r &= 0\end{aligned}\quad] \quad \text{fuel-cladding interference}$$

$$\begin{aligned}\sigma_z &= \pm 1000 \\ \sigma_\theta &= 0 \\ \sigma_r &= 0\end{aligned}\quad] \quad \text{element-element interference}$$

The combined secondary stresses are

$$\begin{aligned}\sigma_z &= + 2600 \text{ Maximum} \\ \sigma_z &= - 2600 \text{ Minimum} \\ \sigma_\theta &= 0 \\ \sigma_r &= 0\end{aligned}$$

Combined with the primary stresses, during hydrogen permeation testing, the stresses become

$$\begin{aligned}\sigma_z &= + 2760 \text{ Max} \\ \sigma_z &= + 1560 \text{ Min} \\ \sigma_\theta &= + 1190 \\ \sigma_r &= 0 \\ \tau_{\theta z} &= 190 \text{ Min} \\ \tau_{\theta z} &= 790 \text{ Max} \\ \tau_{\theta r} &= 600 \\ \tau_{z r} &= 780 \text{ Min} \\ \tau_{z r} &= 1380 \text{ Max}\end{aligned}\quad] \quad \text{outer surface} \quad \begin{aligned}\sigma_z &= + 2760 \text{ Max} \\ \sigma_z &= + 1560 \text{ Min} \\ \sigma_\theta &= + 1190 \\ \sigma_r &= - 45 \\ \tau_{\theta z} &= 190 \text{ Min} \\ \tau_{\theta z} &= 790 \text{ Max} \\ \tau_{\theta r} &= 600 \\ \tau_{z r} &= 800 \text{ Min} \\ \tau_{z r} &= 1400 \text{ Max}\end{aligned}\quad] \quad \text{inner surface}\end{aligned}$$

The maximum primary plus secondary stress intensity for the central portion of the element is

$$S = 2810 \text{ psi}$$

The design margin is

$$\text{M.S.} = \left[\frac{3 \times 3000}{2810} - 1 \right] 100 = + 220\%$$

during hydrogen permeation testing.

During operation, the combined primary and secondary stresses in the central portion of the element are

σ_z	=	+ 1720	Max	outer surface	σ_z	=	+ 1720	Max	inner surface
σ_z	=	- 2600	Min		σ_z	=	- 2600	Min	
σ_θ	=	- 890			σ_θ	=	- 890		
σ_r	=	- 30			σ_r	=	0		
$\tau_{\theta z}$	=	1310	Max		$\tau_{\theta z}$	=	1310	Max	
$\tau_{\theta z}$	=	890	Min		$\tau_{\theta z}$	=	890	Min	
$\tau_{\theta r}$	=	430			$\tau_{\theta r}$	=	450		
τ_{zr}	=	830	Min		τ_{zr}	=	860	Min	
τ_{zr}	=	1290	Max		τ_{zr}	=	1300	Max	

The stress intensity for this condition is

$$S = 2620 \text{ psi}$$

The margin becomes

$$\text{M.S.} = \left[\frac{3 \times 3000}{2620} - 1 \right] 100 = + 244\%$$

In all regions, the secondary stresses at room-temperature are small relative to the allowable room-temperature stress intensity. Design margins for these have, therefore, not been included here. These stresses have, however, been included for the evaluation of combined primary, secondary, and peak stresses.

C. Peak Stresses

Peak stresses in the lower end cap region are the results of thermal transients, ceramic coating differential expansion, chromized layer differential expansion, and residual shrink-fit pressure. The combined stresses due to the last three conditions are the following (from V.A.).

σ_z	=	+ 29,550	inner surface	at 70°F	
σ_θ	=	+ 32,650			
σ_r	=	- 110			
$s_{z\theta}$	=	- 3,010			
$s_{\theta r}$	=	+ 32,760			
s_{rz}	=	- 29,660			
σ_z	=	+ 29,550	outer surface		
σ_θ	=	+ 32,530			
σ_r	=	0			
$s_{z\theta}$	=	- 2,980			
$s_{\theta r}$	=	+ 32,530			
s_{rz}	=	- 29,550			

During hydrogen permeation testing, the maximum alternating stress is found by combining the fabrication stresses and the hydrogen pressure at temperature.

$$\begin{array}{ll} \sigma_z = + 200 & s_{z\theta} = - 3180 \\ \sigma_\theta = + 3380 & s_{\theta r} = + 3380 \\ \sigma_r = 0 & s_{rz} = - 200 \end{array}$$

The maximum stress difference, establishing the alternating stress is:

$$S_{rZ} = 29,350$$

$$S_a = 14,680$$

for hydrogen permeation testing.

The stress ranges, determined in the same manner as above, for the other operating cycles, along with the alternating strain ranges, allowable number of cycles, and usage factors, are presented in Table VI.2. The table indicates that the total usage factor (U) is less than 1%.

TABLE VI.2
Lower End Cap Fatigue Stress Evaluation

Condition	n	S_a	Range	N	U
Room Temperature to Steady-State Operation	12	10,710	8.9×10^{-4}	90,000	0.013%
Steady-State to 200°F Cold Slug	25	1,430	1.2×10^{-4}	∞	-0-
Room Temperature to 200°F Hot Slug	33	12,400	1.03×10^{-3}	25,000	0.132%
Loss of Heat Reject Scram to Room Temp.	10	12,570	1.04×10^{-3}	25,000	0.040%
Hydrogen Permeation Testing	1	14,680	1.22×10^{-3}	9,000	0.011%

The number of stress cycles for each condition is derived from NAA-SR-MEMO-11373 (Ref. VI.3). For the evaluation, it was assumed that of the 55 expected startups during S8DR operation, 33 are followed by hot slugs (the total number of expected scrams) and 10 are followed by loss of heat reject scrams; leaving 12 normal startups. The 25 expected cold slugs were assumed to cycle from steady-state operating conditions. Although this assumed sequencing is unlikely in operation, it leads to the maximum cyclic stress ranges for fatigue evaluation, and it accounts for all expected transients.

The details of the stresses and stress combinations are shown in Table VI.3 and VI.4. The numbers in column headings of the former correspond to the lower end cap stress item number in Table VI.1.

Peak stresses in the central portion of the fuel result from ceramic coating differential expansion, chrome coating differential expansion, fuel-clad interference, element-element interference, and radial and circumferential thermal gradients. Stresses due to thermal transients are negligible in this region because of the extremely short response time of the cladding with the assumption that there are no local hot spots (see Section III.C.). The combined stresses, due to these conditions (from V.A, and V.C.) which produce the maximum alternating shear stress are given below. These stresses occur at the inner surface of the cladding.

$$\begin{aligned}\sigma_z &= + 33,450 \\ \sigma_\theta &= + 19,000 \\ \sigma_r &= 0 \\ s_{z\theta} &= + 14,450 \\ s_{\theta r} &= + 19,000 \\ s_{rz} &= - 33,450\end{aligned}$$

at 70°F

$$\begin{aligned}\sigma_z &= - 9,450 \\ \sigma_\theta &= - 790 \\ \sigma_r &= 0 \\ s_{z\theta} &= - 8,660 \\ s_{\theta r} &= - 790 \\ s_{rz} &= + 9,450\end{aligned}$$

at 1200°F

The maximum stress difference is

$$s_{rz} = 42,900 \text{ psi}$$

TABLE VI.5
LOWER END CAP REGION - STRESS COMBINATIONS

AI-AEC-TDR-12824
Page 74

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	PROJECT SHEET OF	
-		① (70 F)	① (1400 F)	① (1100 F)	② (70 F)	② (1100 F) (1400 F)	③ (70 F)	③ 1100 F	③ 1400 F	④ 1400 F ONLY	⑤ 1400 F ONLY	⑥ 1100 F	⑦ 1100 F	⑧ 200 F HOT SLUG FROM 1100	⑨ 200 F COLD SLUG FROM 1100	⑩ LOSS OF HEAT REJ FROM 1100	⑪ +200 F 150TH.	⑫ -200 F 150TH				
1	J ₂₀ (o)	+31000	-	+8500	-1450	+1450	-	-	-	+600	-1850	-490	+1490	-3370	+3370	-2420	-2470	+2470				
2	J ₂₀ (o)	+31000	-	+8500	-1450	+1450	+2980	+2450	+2300	+1190	-1560	-890	+1260	-3850	+3850	-3850	-1440	-1440				
3	J ₂₀ (o)	-	-	-	-	-	-	-	-	-	-30	-	-	-	-	-	-	-				
4	S ₂₀														-480							
5	S ₂₀														+3850							
6	S ₂₀														-3370							
7																						
8																						
9																						
10																						
11	J ₂₀ (o)	+31000	-	+8500	-1450	+1450	-	-	-	+600	+1850	-440	-1490	-2590	+2590	-2080	-2980	+2980				
12	J ₂₀ (o)	+31000	-	+8500	-1450	+1450	+3100	+2550	+2390	+1190	-460	-890	+380	-3380	+3380	-3720	-1590	+1590				
13	J ₂₀ (o)	-	-	-	-	-	-110	-90	-80	-	-	-	-	-	-	-	-	-				
14	S ₂₀														-790							
15	S ₂₀														+3380							
16	S ₂₀														-2590							
17																						
18																						
19																						
20																						
21																						
22																						
23																						
24																						
25																						
26																						
27																						
28																						
29																						
30																						
31																						
32																						
33																						
34																						
35																						

TABLE VI.4
LOWER END CAP REGION - STRESS COMBINATIONS & STRESS RANGES

AI-AEC-TDR-12824
Page 75

This value determines the alternating stress intensity for the central portion of the cladding

$$S_a = 21,450 \text{ psi}$$

The corresponding strain range is

$$\epsilon_{\text{range}} = \frac{2 S_a}{E}$$

$$\epsilon_{\text{range}} = \frac{(2)(21,450)}{(24.2 \times 10^6)} = 1.78 \times 10^{-3} \text{ in./in.}$$

From Figure IV.A.2., the allowable number of cycles for this strain range is

$$N = 1800 \text{ cycles}$$

The usage factor, with n taken to be 55 cycles (Ref. VI.3.)

$$U = \frac{55}{1800} = 0.031 = 3.1\%$$

The stress range multiplier to produce failure is

$$M_{\sigma} = 2.7$$

The indicated design margin on stress is

$$M.S. = \left[\frac{57,800}{21,450} - 1 \right] 100 = + 170\%$$

As for the lower end cap, the details of the stresses and stress combinations are presented in tabular form (Tables VI.5. and VI.6.). The number headings refer to the central portion stress list numbers of Table VI.1.

TABLE VI.S
 CENTRAL PORTION OF FUEL ELEMENT

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	PROJECT OF SHEET
		① (70F)	① (1400F)	② (70F)	② (1400F) (1200F)	③ (70)	③ (1400)	④ (70) (1200)	⑤ (1400) ONLY	⑥ (70), (1200)	⑦	⑧	⑨ (1200) ONLY	⑩ (1200) ONLY	⑪	⑫ (1200F)	⑬ (1200F)	⑭ (1200F)	⑮		
1	$\sigma_{20}(\sigma)$	+31000	—	-1450	+1450	+4900	+1000	-1000	+600	-440			+4560	-12500			+6000	+1600			
2	$\sigma_{20}(\sigma)$	+31000	—	-1450	+1450	+11650	+2510	-1100	+1190	-890			+4560	—			+6000	+3890			
3	$\sigma_{20}(\sigma)$	—	—	—	—	—	—	—	—	-30			—	—			—	—			
4																					
5																					
6	$\sigma_{20}(\sigma)$	+31000	—	-1450	+1450	—	—	—	+600	-440			+4560	+12500			+6000	—			
7	$\sigma_{20}(\sigma)$	+31000	—	-1450	+1450	—	—	—	+1190	-890			+4560	—			+6000	—			
8	$\sigma_{20}(\sigma)$	—	—	—	—	—	—	—	—	-30			—	—			—	—			
9																					
10																					
11	$\sigma_{20}(\sigma)$	+31000	—	-1450	+1450	-4900	-1000	+1000	+600	-440			+4560	-12500			+6000	-1600			
12	$\sigma_{20}(\sigma)$	+31000	—	-1450	+1450	—	—	—	+1190	-890			+4560	—			+6000	—			
13	$\sigma_{20}(\sigma)$	—	—	—	—	—	—	—	—	-30			—	—			—	—			
14																					
15																					
16	$\sigma_{20}(\sigma)$	+31000	—	-1450	+1450	+4900	+1000	-1000	+600	-440			-4560	-12500			+6000	+1600			
17	$\sigma_{20}(\sigma)$	+31000	—	-1450	+1450	-11650	-2510	+1100	+1190	-890			-4560	—			+6000	-3890			
18	$\sigma_{20}(\sigma)$	—	—	—	—	—	—	—	-45	—			—	—			—	—			
19																					
20																					
21	$\sigma_{20}(\sigma)$	+31000	—	-1450	+1450	—	—	—	+600	-440			-4560	+12500			+6000	—			
22	$\sigma_{20}(\sigma)$	+31000	—	-1450	+1450	—	—	—	+1190	-890			-4560	—			+6000	—			
23	$\sigma_{20}(\sigma)$	—	—	—	—	—	—	—	-45	—			—	—			—	—			
24																					
25																					
26	$\sigma_{20}(\sigma)$	+31000	—	-1450	+1450	-4900	-1000	+1000	+600	-440			-4560	-12500			+6000	-1600			
27	$\sigma_{20}(\sigma)$	+31000	—	-1450	+1450	—	—	—	+1190	-890			-4560	—			+6000	—			
28	$\sigma_{20}(\sigma)$	—	—	—	—	—	—	—	-45	—			—	—			—	—			
29																					
30																					
31																					
32																					
33																					
34																					
35																					

 ATOMICS INTERNATIONAL
 A Division of North American Aviation, Inc.

 ORIGINATED BY
 CALCULATED BY
 CHECKED BY
 DATE

TABLE VI.6
CENTRAL PORTION OF FUEL ELEMENT

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	PROJECT SHEET
		E Q (70F) ①+③	E (1400F) ②+⑤	ΔE	F (1400) E+② 1400	F R (70F) E+③ (70)	ΔF	Q (1200) ①+②+④ +⑤+⑩	ΔQ ₀	R (1200) Q ₀ +③ 1200 1200	ΔR ₀	S (1200) R+④ (1200)	S' (70) R+④ (70)	ΔS	T (70) Q ₀ +④ (70) (70)	T (1200) Q+④ (1200) (1200)	ΔT				6
1	J ₂₀ (0)	+29550	+2050		+3050	+34450		-930		+670		-330	+33450		+28550	-1930					
2	J ₂₀ (0)	+29550	+2640		+5150	+41200		+11120		+15010		+13910	+40100		+28450	+10020					
3	J ₁₀ (0)	-	-		-	-		-30		-30		-30	-		-	-30					
4	J ₂₀	-	-590	590	-2100	-6750	4650	-12050	12050	-14340	7590	-14240	-6650	7590	-100	-11950	11850				
5	S ₂₀	+29550	+2640	26910	+5150	+41200	36050	-11150	40700	+15040	261160	+13940	+40100	261600	+29450	+10050	18400				
6	S ₁₀	-29550	-2050	28500	-3050	-34450	31400	+900	30450	-700	33750	+300	-33450	33750	-28550	+1900	27650				
7	J ₂₀ (V ₂)	+29550	+2050		+2050	+29550		+24070		+24070		+24070	+29550		+29550	+24070					
8	J ₂₀ (V ₁)	+29550	+2640		+2640	+29550		+11120		+11120		+11120	+29550		+29550	+11120					
9	J ₁₀ (V ₁)	-	-		-	-		-30		-30		-30	-		-	-30					
10	S ₁₀	-	-590	590	-590	-	590	+12950	12950	+12950	12950	+12950	-	12950	-	+12950	12950				
11	S ₂₀	+29550	+2640	26910	+2640	+29550	26910	+11150	18400	+11150	18400	+11150	+29550	18400	+29550	+11150	18400				
12	S ₂₀	-29550	-2050	28500	-2050	-29550	27500	-29100	5450	-24100	5450	-24100	-29550	5450	-29550	-24100	5450				
13	J ₂₀ (T)	+29550	+2050		+1050	+24650		-930		-2530		-1530	+25650		+30550	-70					
14	J ₂₀ (H)	+29550	+2640		+2640	+29550		+11120		+11120		+11120	+29550		+29550	+11120					
15	J ₂₀ (H)	-	-		-	-		-30		-30		-30	-	-	-	-30					
16	S ₂₀	-	-590	590	-590	-	590	-4900	4310	-12050	12050	-13050	8150	-12650	-3900	8750	+1000	-11190	12190		
17	S ₂₀	+29550	+2640	26910	+2640	+29550	26910	+11150	18400	+11090	18460	+11150	+29550	18400	+29550	+11150	18400				
18	S ₂₀	-29550	-2050	28500	-1050	-24650	23600	+900	30450	+2500	27150	+1500	-25650	27150	-30550	+40	30590				
19	J ₂₀ (O)	+29550	+2050		+3050	+34450		-10050		-8450		-9450	+33450		+28550	-11050					
20	J ₂₀ (O)	+29550	+2640		+130	+17900		+2000		-1890		-790	+19000		+30650	+3100					
21	J ₁₀ (O)	-	-45		-45	-		-		-		-	-	-	-	-	-				
22	S ₂₀	-	-590	590	+2920	+16550	13630	-12050	12050	-6560	23110	-84660	+14450	23110	-2100	-14150	12050				
23	S ₂₀	+29550	+2640	26910	+180	+17900	17720	+2000	27550	-1890	19790	-790	+19000	19790	+30650	+3100	27550				
24	S ₂₀	-29550	-2050	28500	-3100	-34450	31350	+10050	39600	+8450	42900	+9450	-33450	42900	-28550	+11050	39600				
25	J ₂₀ (V ₂)	+29550	+2050		+2050	+29550		+14950		+14950		+14950	+29550		+29550	+14950					
26	J ₂₀ (V ₁)	+29550	+2640		+2640	+29550		+2000		+2000		+2000	+29550		+29550	+2000					
27	J ₁₀ (V ₂)	-	-45	-45	-	-		-		-		-	-	-	-	-	-				
28	S ₂₀ (V ₂)	-	-590	590	-590	-	590	+12950	12950	+12950	12950	+12950	-	12950	-	+12950	12950				
29	S ₂₀	+29550	+2640	26860	+2690	+29550	26860	+2000	27550	+2000	27550	+2000	+29550	27550	+29550	+2000	27550				
30	S ₁₂	-29550	-2100	28540	-2100	-29550	27450	-14950	14600	-14950	14600	-14950	-29550	14600	-29550	-14950	14600				
31	J ₂₀ (T)	+29550	+2050		+1050	+24650		-10050		-11650		-10650	+25650		+30550	-9050					
32	J ₂₀ (T)	+29550	+2640		+2640	+29550		+2000		+2000		+2000	+29550		+29550	+2000					
33	J ₁₀ (T)	-	-45	-45	-	-		-		-		-	-	-	-	-	-				
34	S ₂₀	-	-590	590	-590	-	590	-4900	5490	-12050	12050	-13650	8150	-12650	-3900	8750	+1000	-7050	8050		
35	S ₂₀	+29550	+2640	26860	+2690	+29550	26860	+2000	27550	+2000	27550	+2000	+29550	27550	+29550	+2000	27550				

All possible stress combinations were considered in order to determine the maximum stress range. This value was then used as representative of every stress cycle. This approach is conservative, but nevertheless, leads to a generous design margin indication.

Peak stresses in the upper end cap region are produced by ceramic coating differential expansion, chrome coating differential expansion, tube sizing residual stresses, circumferential thermal gradients, and thermal transients. The stress ranges for the various operational conditions are presented in Table VI.7., along with the alternating strain ranges, allowable number of cycles, and usage factors. The total usage factor, U , is less than 1%.

The upper end cap stress details are presented in Tables VI.8. and VI.9. The stress column headings correspond to the upper end cap stress list of Table VI.1.

The number of stress cycles for each condition was determined by assuming that, of the 55 expected startups, 50 are normal, and 5 are followed by power scrams. Since the stress range produced by a low flow scram to room temperature is less severe than a steady state to room temperature transient, the low flow scram was assumed to cycle from steady state conditions followed by a cold slug. Of the 25 expected cold slugs, the remaining 7 were coupled with hot slugs. As for the lower end cap, it was assumed that every scram has an associated hot slug. The remaining 7 of 33 hot slugs were considered to cycle about the steady state operating condition. This method of evaluation produces the maximum fatigue damage while accounting for all thermal transients.

TABLE VI.7
Upper End Cap Fatigue Stress Evaluation

Condition	n	S _a	Range	N	U
Room Temperature to Steady State Operation	50	14,440	1.19×10^{-3}	11,000	0.336%
Steady State to - 200°F Slug	7	2,470	2.0×10^{-4}	∞	0.0
Steady State to + 200°F Slug	8	1,240	1.0×10^{-4}	∞	0.0
Power Scram to Room Temperature	5	16,160	1.34×10^{-3}	5,500	0.091%
Low Flow Scram to - 200°F Slug	18	3,090	2.5×10^{-4}	∞	0.0
Hydrogen Permeation Test	1	14,910	1.23×10^{-3}	8,500	0.011%

The calculated ceramic-coating-induced stresses in Section V.A. for room temperature conditions are not identical to those calculated for the same condition in Section V.E. This results from a more conservative approach being taken in the former section (worst case tolerances, etc.). For evaluation of peak stress fatigue damage, the maximum stresses, from V.A., have been used.

For the evaluation of thermal transients, the stresses in two principal directions, meridional and circumferential, were determined from the computer analysis. The third principal stress (radial) was assumed to be zero for all cases (plane stress). These stresses were then used to determine the maximum stress intensity as defined in Reference VI.1.; twice the maximum shear stress, or the absolute value of the algebraic difference between the maximum and minimum principal stresses at a point.

TABLE VI.8
UPPER PORTION OF FULL ELEMENT - STRESSES

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	PROJECT SHEET OR		
		① (70F)	① (1300) (1400)	② (70F)	② (1300F) (1400F)	③ (70F)	③ (1300F)	④ (400)	④ (1400)	⑤ (1400)	⑥ (1300)	⑦ (1300)	⑧ (1300)	⑨ (1300)	⑩ 200F HOT SLUG FROM 1300	⑪ 200F COLD SLUG FROM 1300	⑫ LOW FLOW SCRAM FROM 1300	⑬ POWER SCRAM FROM 1300	⑭ +200F ISOTherm	⑮ -200F ISOTherm			
1	J ₂₀ (6)	-1450	+1450	+2200	+1730	+31000	+4000	-	+600	-1850	-440	+1490	-2380	-530	+530	-730	+1180	-6000	+6000				
2	J ₈₀ (6)	-1450	+1450	+2200	+1730	+31000	+4000	-	+1190	-1560	-890	+1260	-	-530	+530	-730	+1180	-5380	+5380				
3	J ₁₀ (6)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
4	S ₂₀													-	-	-		-620	+620				
5	S ₈₀													-530	+530	-730		-5380	+5380				
6	S ₁₀													+530	-530	+730		+6000	-4000				
7																							
8																							
9																							
10																							
11	J ₂₁ (6)	-1450	+1450	+2200	+1730	+31000	+4000	-	+600	+1450	-440	-1490	-2380	+2470	-2470	+3710	-5820	-4810	+4810				
12	J ₈₁ (6)	-1450	+1450	+2200	+1730	+31000	+4000	-	+1190	-460	-890	+380	-	+2470	-2470	+3710	-5820	-5030	+5030				
13	J ₁₁ (6)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
14	S ₂₁													-	-	-		+180	-180				
15	S ₈₁													+2470	-2470	+3710		-5030	+5030				
16	S ₁₁													-2470	+2470	-3710		+4810	-4810				
17																							
18																							
19																							
20																							
21																							
22																							
23																							
24																							
25																							
26																							
27																							
28																							
29																							
30																							
31																							
32																							
33																							
34																							
35																							

TABLE VI.9.
UPPER PORTION OF FUEL ELEMENT - STRESS COMBINATIONS.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	OF	
		A B C D (400) ①+②+③ (400)	A (400) ①+②+③ (400)	ΔA	B (1300) ①+②+③ ④+⑤ (1300)	ΔB	C (1300) B + ③ (1300)	ΔC	D A B + ④A (1300)	ΔDA	ΔCB ④B (1300)	DC B + ④C (1300)	ADC	DD B + ④D (1300)	ΔDD							
1	σ_{20} (o)	+31750	+1930		+8230		+5850		+9490		+7500		+9410									
2	σ_{30} (o)	+31750	+2810		+7550		+7550		+7590		+7020		+8730									
3	σ_{40} (o)	-	-		-		-		-		-		-									
4	σ_{50}	-	-880	880	+680	680	-1700	1700	+850	850	-	+480	480	+680	+680							
5	σ_{60}	+31750	+2810	28940	+7550	24200	+7550	24200	+7590	24160	+530	+7020	24730	+9730	23020							
6	σ_{70}	-31750	-1930	29820	-8230	23520	-5850	25900	-8440	23310	-530	-7500	24250	-9410	22340							
7																						
8																						
9																						
10																						
11	σ_{21} (o)	+31750	+5630		+5250		+2870		+3900		+8960		-570									
12	σ_{31} (o)	+31750	+3910		+6670		+6670		+6110		+10380		+850									
13	σ_{41} (o)	-	-		-		-		-		-		-									
14	σ_{51}	-	+1720	1720	-1420	1420	-3800	3800	-2210	2210	-	-1420	1420	-1420	1420							
15	σ_{61}	+31750	+3910	27840	+6670	25080	+6670	25080	+6110	25640	-2470	+10380	21370	+850	30900							
16	σ_{71}	-31750	-5630	26120	-5250	26500	-2870	28880	-3900	27850	+2470	-8960	22790	+570	32320							
17																						
18																						
19																						
20																						
21																						
22																						
23																						
24																						
25																						
26																						
27																						
28																						
29																						
30																						
31																						
32																						
33																						
34																						
35																						

D. Special Conditions

For evaluation of hot-line creep strain (from Section V.C.) the maximum calculated values (Figure V.C.2.) are compared with the available strain for irradiated cladding material (Ref. IV.A.2.). From Table IV of the noted reference, the minimum available creep strain is taken to be 0.31% (Specimen 5039 R) and the average strain at failure (from all specimens) is 1.19%. The indicated margins are:

$$\text{M.S.} = \left[\frac{0.31}{0.047} - 1 \right] \times 100 = + 560\% \text{ (minimum)}$$

$$\text{M.S.} = \left[\frac{1.19}{0.047} - 1 \right] \times 100 = \text{high} \quad \text{(average)}$$

for failure during the 12,000 hour design lifetime.

From the creep-collapse results discussed in Section V.D., the design margin for this consideration is quite high based on time. Based on stress, the margin for collapse during the S8DR design life is (from Figure V.D.3.):

$$\text{M.S.} = \left[\frac{62}{35} - 1 \right] \times 100 = + 77\%$$

E. Barrier Stresses

The ceramic barrier stresses vary with the stiffness of the metal to which the glass is bonded. For this reason, the maximums occur in the region of the upper and lower end cap centerlines where the metal thickness is greatest. The stresses, as noted in Tables V.E.1.1. and V.E.2.1. are compressive at room temperature. The stresses remain compressive at all temperatures since the stress condition at the start of the transients must be added to the noted stress values. For the lower end, the additive value is - 24,500 psi and for the upper end the value is - 25,700 psi. The compressive state of stress in the ceramic is the case throughout the element because the differential expansion occurs at temperatures below the stress-free condition, and, because of the small thickness of the layer, no significant thermal gradients are realized. The ceramic could, however, experience tensile stresses if prolonged operation at an elevated

temperature is followed by a large temperature increase. This condition could occur if long term operation at 1100°F were followed by a hot slug. The extent of ceramic creep at the temperatures of concern has not been established quantitatively.

The design margin for the ceramic is difficult to assess because the strength properties are not well known. The values cited in Section IV.B. show that the compressive strength is approximately 80,000 psi. This stress is exceeded only at low temperatures. Since shear failures of the ceramic at room temperature have not been reported, it has been assumed that the compressive strength is greater than the calculated stresses, and fracture will not occur.

F. Cladding Evaluation Summary

Table VI.10. summarizes the design margins calculated for all stress conditions. The margins are based on stress unless otherwise noted.

TABLE VI.10
Cladding Stress Design Margins

Stress Conditions	Design Margin (Minimum)		
	Lower End Region	Central Region	Upper End Region
Primary (P_m)	+ 142%	+ 142%	+ 142%
Primary + Secondary ($P_m + Q$)	+ 260%	+ 220%	+ 260%
Primary + Secondary + Peak ($P_m + Q + F$)	+ 360%	+ 170%	+ 260%
Hot Line Creep Strain	---	+ 56.0%	---
Creep Collapse	---	---	+ 79%
Fuel Over-Temperature	+ 200°F	+ 150°F	+ 200°F
System Over-Pressure	---	+ 160%	---

The effects of stress ratcheting and thermal bowing were considered for the defined operating conditions, and found to not contribute significantly to the other results.

VII. CONCLUSIONS

The primary, secondary, and thermal stresses have been calculated for the SNAP 8 DR fuel element cladding. The stress analysis has included fabrication and assembly stresses as well as test and operational stresses. These have been appraised by using the evaluation procedure and philosophy of Section III of the ASME Boiler and Pressure Vessel Code (Nuclear Vessels) where applicable. Certain special conditions; creep collapse, and hot-line creep strain, were considered as special cases. A summary of the cladding evaluation is tabulated in Section VI.F.

The largest fuel element stresses are produced at room temperature due to the differential thermal contraction of the cladding and barrier from the 1400°F stress-free condition. The maximum cladding stress calculated for this condition is well below the metal's yield strength. The maximum barrier stress, however, exceeds the assumed compressive ultimate strength of the ceramic material (see Section VI.E.). If failure of the latter were to occur, it would most likely be in the form of microcracking or crazing. Room temperature failures of this sort have not been reported which tend to indicate that the actual strength of the material is greater than that assumed in Section IV. These differential contraction stresses are reduced with increasing temperature.

The largest stresses at power are produced as the result of the 60 temperature variation (see Section V.C.2.) occurring at the center element midplane. This condition does not produce bowing of the element provided that the circumferential variation is symmetrical. With the assumption that the elements do not rotate, these stresses are constant at constant power.

The largest stress range calculated was found to occur at the central element midplane. The range is produced by the rise from room temperature to steady-state nominal power. Since the expected number of these cycles is small, the resulting usage factor is also small (see Section VI). The associated usage factor is, however, the largest calculated for the element.

The smallest design margin calculated, based on stress is + 7%, and is associated with creep-collapse (see Section VI.D.). The design margin for this condition based on time, however, is high.

The results of this analysis indicate that the fuel element cladding is structurally adequate for the established S8DR operating conditions.

VIII. REFERENCES

- I.1. SNAP 8 Fuel Element Stress Briefing - Canoga Park, California, July 19-20, 1966, NAA-SR-MEMO-12097 (CRD)
- I.2. SNAP 8 Briefing - Washington, D. C., August 15-16, 1966, NAA-SR-MEMO-12122 (CRD).
- I.3. SNAP 8 Briefing to AEC - Washington, D. C., December 1, 1966, NAA-SR-MEMO-12272 (CRD).
- I.4. P. M. Magee, "SNAP 8 Development Reactor (S8DR) Core Thermal and Hydraulic Performance," NAA-SR-12564, March 10, 1968 (CRD).
- III.A.1. L. D. Swenson, Personal Communication
- III.A.2. IL, E. H. Ottewitte to H. Rood, "Comments on SNAP Fuel Element Gas Gap Conductivity," July 26, 1967.
- III.A.3. L. D. Swenson, "S8DR Core Performance Evaluation," NAA-SR-12482, August 9, 1967.
- III.B.1. P. M. Magee, "Detailed Thermal Analysis of SNAP Reactor Fuel Elements Including Asymmetry and Spacing Effects," NAA-SR-MEMO-12384, March 20, 1967 (CRD).
- III.B.2. P. M. Magee, "SNAP 8 Development Reactor (S8DR) Core Thermal and Hydraulic Performance," NAA-SR-12564, March 10, 1968 (CRD).
- III.C.1. IL, R. E. Stanbridge to R. A. Johnson, "Thermal Analysis of S8DR Fuel Elements with Alternate End Cap Designs," October 24, 1967.
- IV.A.1. IL, J. P. Thorel to E. J. Donovan, "Hastelloy-N Data Report," October 27, 1966.
- IV.A.2. G. G. Allaria, "ORR S-2 Irradiated Hastelloy-N Biaxial Stress-Rupture Data," NAA-SR-TDR-12457, May 2, 1967.
- IV.A.3. S. S. Manson and Gary Halford, "A Method of Estimating High Temperature Low Cycle Fatigue Behavior of Materials, NASA-TM-52270.
- IV.A.4. D. G. Mason, "SNAP 8 Progress Report, May-July 1967," NAA-SR-12521, September 15, 1967 (CRD).
- IV.A.5. A. W. Dalcher, "Computed Stress-Relaxation Curves for Hastelloy Alloy N," NAA-SR-TDR-12590

- IV.B.1. D. F. Atkins, Unpublished thermal expansion plots for barrier materials.
- IV.B.2. W. D. Kingery, "Factors Affecting Thermal Stress Resistance of Ceramic Materials," Journal of the American Ceramic Society, Vol. 38, No. 1, pp. 3-17.
- V.A.1. D. T. McClelland, K. Langrod, C. A. Martin, "Process Flow Sheets, S8DR Cladding Tube Fabrication," Rev. 1., May 18, 1967 (CRD).
- V.A.2. AI Spec ST0622NA0040
- V.A.3. AI Spec ST0622NA0041
- V.A.4. G. W. Meyers, Personal Communication
- V.A.5. J. V. Facha, "Tolerance Study and Calculation of Fabrication and Assembly Stresses," July 1966 (Unpublished).
- V.B.1. IL, P. M. Magee to R. A. Johnson, "Revised Rupture Temperature for S8DR Fuel Elements," July 11, 1967.
- V.C.1. S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, McGraw Hill Book Co.
- V.C.2. IL, P. Y. Hsieh to R. I. Jetter, "Thermal Stress and Displacement Analysis - S8ER Cladding," November 29, 1965 (CRD).
- V.C.3. R. D. Elliott, Digital computer code CREEP, and CREEP problem runs, May 1967 (Undocumented).
- V.D.1. Y. S. Pan, "Creep Buckling of a Thin-Walled Circular Cylindrical Shell Subject to Uniform External Pressure and Arbitrary Temperature Gradients," Presented at the 6th Annual NAA Science Symposium, Ojai, California, October 1967.
- V.D.2. Letter, R. F. Wilson to Mr. J. V. Levy, Manager CPAO USAEC, "Margin of Safety on Creep Collapse of SNAP 8 Fuel Element Cladding," 67AT-2657, May 15, 1967.
- V.E.1. L. Stone, Personal Communication
- V.E.2. W. M. Faust, "Modification of the AVCO Program," Rocketdyne SR-4111-7001, July 23, 1964.

ATOMICS INTERNATIONAL
A Division of North American Rockwell Corporation

NO. . AI-AEC-TDR-12824

PAGE.. 89

- V.E.3. G. O. Warren to Those Listed, "Changes to the AVCO Shell Program," SSM7109-3011, August 22, 1967 (Rocketdyne).
- VI.1. ASME Boiler and Pressure Vessel Code, Section III, Nuclear Vessels, 1965.
- VI.2. Dissociation Pressure Isochores of Zirconium Hydride, AI Photo Plate No. 7569-01653, August 14, 1964.
- VI.3. J. Roecker, "SNAP 8 Development Reactor (S8DR) Safety Analysis Report, Addendum 1," NAA-SR-MEMO-11373, P. 26.

IX. NOMENCLATURE AND SIGN CONVENTION

σ_z = σ_z = Longitudinal (meridional) stress component, psi
 σ_θ = Tangential (circumferential) stress component, psi
 σ_r = Radial stress component, psi
 $\tau_{\theta z}$ = $\tau_{z\theta}$ = Shearing stress component acting on the θ or z plane in the z or θ direction, psi
 $\tau_{\theta r}$ = $\tau_{r\theta}$ = Shearing stress component acting on the θ or r plane in the r or θ direction, psi
 τ_{zr} = τ_{rz} = Shearing stress component acting on the z or r plane in the r or z direction, psi

P = Pressure, psi
 r = Mean radius of cylinder, inches
 t = Shell thickness, inches
 Z = Axial distance along cylinder, inches ($Z = 0$ at lower end cap)
 L = Length of cylinder, inches
 ϵ_z = Longitudinal (meridional) strain component, in./in.
 ϵ_θ = Tangential (circumferential) strain component, in./in.
 ϵ_r = Radial strain component, in./in.
 T = Temperature, $^{\circ}$ F
 ν = Poisson's ratio
 N = Number of cycles (allowable)
 n = Number of cycles (operational)
 $s_{z\theta}$ = $\sigma_z - \sigma_\theta$, stress difference, psi
 $s_{\theta r}$ = $\sigma_\theta - \sigma_r$, stress difference, psi
 s_{rz} = $\sigma_r - \sigma_z$, stress difference, psi
 Δ = Increment
 θ = Angle (circumferential)
 U = Fatigue usage factor ($= n/N$)
 $\bar{\alpha}, \alpha_i$ = Mean and instantaneous thermal expansion coefficients, micro inches/inch/ $^{\circ}$ F
 E = Young's Modulus, psi

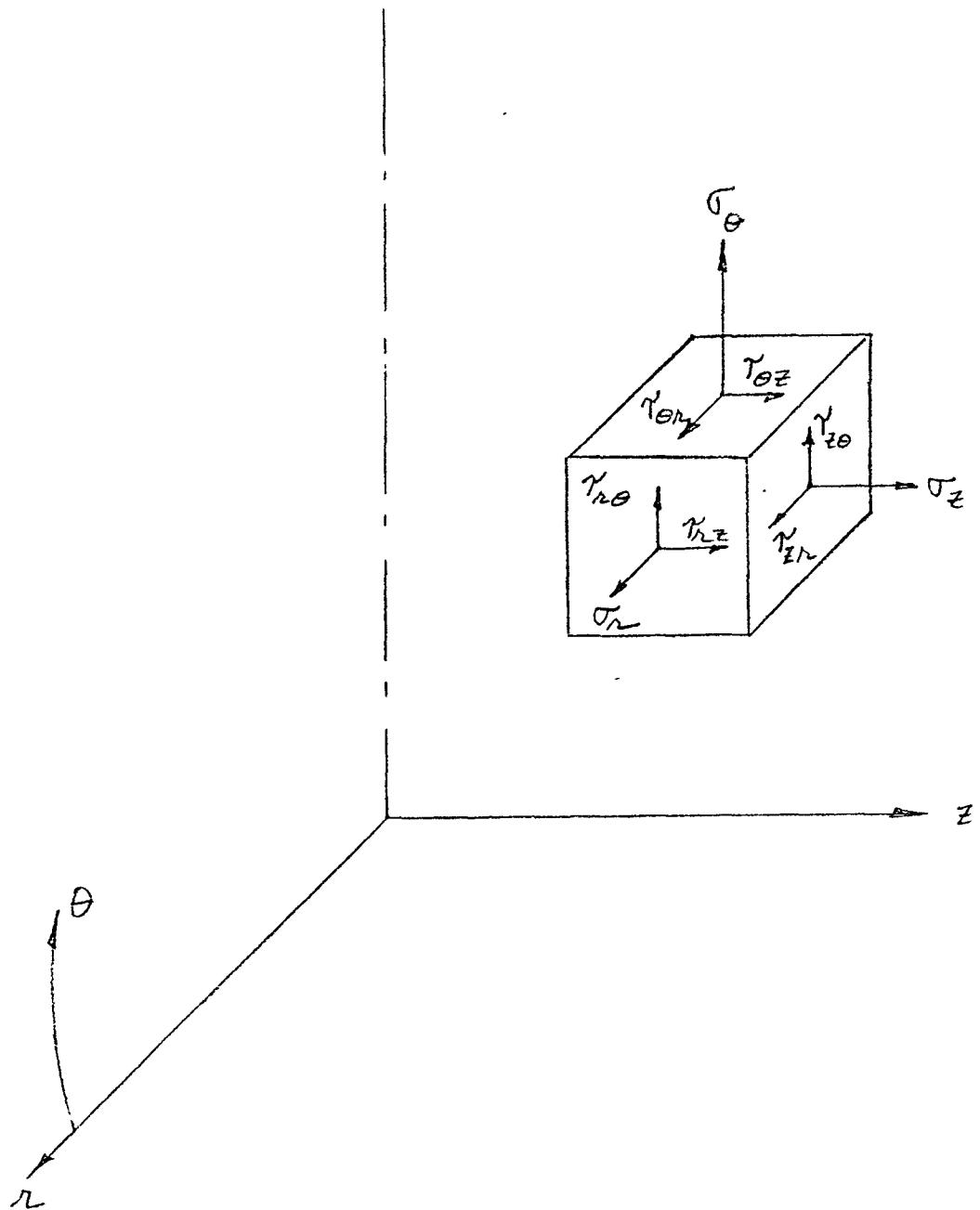


FIGURE IX.1. SIGN CONVENTION FOR STRESS COMPONENTS
THE DIRECTIONS SHOWN ARE POSITIVE.