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ABSTRACT

The FAR computer code, which post processes the results of a Finite Difference Time Domain (FDTD)
code to produce far-field quantities from near-field values, is described. The integral equation and differential
equation approaches are two methods of calculating the radiation and scattering effects of systems. Each
method has practical hmitations when used in general application codes. For instance, integral equation
approaches such as the method of moments usually consider only perfectly conducting wires and patches
in the frequency domain and the differential equation approaches such as FDTD, while applicable to multi-
media and the time domain, are constrained to finite volumes determined by the specific computer memories.
The FAR code allows the near-field details in the time domain modeled by FDTD codes to be extended to
the far-field. This combined FDTD-FAR code set greaty extends the class of numerical electromagnetic
modeling problems that can be treated with discrete differential equation methods.

The FAR code uses the equivalence principle. Specifically, the code utilizes the tangential electric and
magnetic fields at a specified surface’ of the FDTD computational volume and calculates the resulting far-
fields from the equivalent magnetic and electric sources. In this process the sources of errors are sampling
density, the length of the excitation pulse, the total time history record length, the time step size, and the
size of the FDTD volume. The FDTD-FAR approach will be illustrated with a pulse driven array of dipole
elements. The far-field time histories and the resulting frequency domain antenna patterns will be presented.
The sizes of the various errors in this approach will be discussed in detail. The efficacy of this approach will
be contrasted with conventional methods.

. INTRODUCTION

The finite difference time domain (FDTD) codes have several advantages including the
ability to model very complex and elaborate systems, multi-media, and multiple frequencies
(through Fourier inversion). The disadvantage of FDTD codes is that the problems they
model are generally limited by the size of the available computer memory; hence, only
the near-field may be modeled. The Lawrence Livermore National Laboratory (LLNL)
developed code, FAR, will be described in this paper. It is a postprocessing code that uses
the near-field results of discrete codes to determine the corresponding far-field in either
the time or frequency domain. _

The output of a FDTD code is the time domain E and H fields at the different grid
points throughout the computational volume. With these E and H values we use the
equivalence principle to define equivalent electrical and magnetic currents on a specified
surface in this computational space. The projection of these dipole currents to the far-field
is achieved with standard frequency and time domain dipole field formulas.

We assume zero sources outside the computational volume and use Maxwell’s boundary
conditions with a null field internal to the volume to determine the surface currents which
would produce the same external field. For this condition, the magnetic(J) and electric(M)

currents are:
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M,=FE xn (2)

It should be noted that we do not have the exact surfaces currents from the grid values
given in the FDTD codes but only point values of these currents. This approximation will
cause some error which we will discuss later.

Since exterior to this equivalent source surface the problem is linear (interior to the
computational volume, the finite element methods allow some types of non-linearity), we
assign the far-field of an equivalent infinitesimal dipole to each point of that surface and
sum over all these surface points.

The field of an infinitesimal electric dipole may be determined by calculating the fields

in the Fourier domain and transforming into the time domain. The equations for the dipole
¢ field is [1]:

§= —L e (jw)P ‘ (3)
drr
P = p(w)(izp® + typ¥ + @.p°) (4)

where {p®,pY.p°} are components of a unit vector pointing in the direction of the point
source and p(w) is a scalar corresponding to dipole strength. For an array of V; electric
sources, equation (4) can be summed as:

N;

) D — 1 ki ~ T ~ Az
Ey(w,B) = 752 3 —e " (ju)piw){iapf + iyp! + d:pi} (5)
=1 1
ri=|R - 7l (6)
R=u,X +4,Y +i.Z (7)
= gzh + dyy) + a2 (8)

Capital letters will always designate total fields and the observer distance whereas primes
will indicate the source coordinates. Since we are calculating the far-field, we follow the
usual conventions and remove the inverse distance term R = |E| from the summation sign
and treat the phase term as [1]:

ri = R —; (9)

Y; = z,sinfcos ¢ + y;sinfsin ¢ + 2, cos § (10)

Transforming into spherical coordinates will result in:

Ejo(w,R) = —K p(cos 8 cos ¢Sy, + cos @ sin ¢Sy —sinéS;;) (11)
Ej4(w,R) = Kpu(sin ¢S, — cos ¢Sy,) (12)
—-FE
Hjy = J¢ (13)
n
E
Hog==* (14)
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Sz = jw Y ¥ pi(w)pt (16)
1=1
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Sy = Jw Z e’V pilw)p? (17)
1=1
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S'J; = ]wz 6'71;1"‘[])‘1_(‘_‘))[)1; (18)
1=1

In equétions (13) and (14) we have designated the medium impedance as n = (/€)%
The radiation field pattern is then a plot of {REy, or {RE;|. As R approaches infinity, the
phase relation used in (14) is exact.

The time domain fields may be obtained from the inverse Fourier transform, i.e.,
1 o ot
E(t)=— E(w)e!'dw (19)
27 J_ o

To transform these into the time domain we will use the time shifting and time differenti-
ation properties:

for f(t) = F(w) <= f(t —1) = F(w)e ¥ (20)
and for f(t) » Flw) < Z—J; — (Jw)F(w) (21)

The time domain fields from the electric sources can be written as:

Ejs(t, fi) = —K'u(cos @ cos ¢S’ + cos 8 sin ¢5'Jy —sin 57%,) (22)
Ejs(t, R) = K'p(sin 657, — cos ¢S7,) (23)
1
K'= — 24
4R (24)
N
o - ii (' \pZ 25
Jz = dt’.p’( )P (25)
=1 !
N
Sy, = i 4 ot 26
Jy — dt{pz( i)pi ( )
i=1
! NJ d ! 1 [rd
Sh. =Y < Pilti)pi ‘ (27)
=1

In these field expressions the retarded time is:

;=t—5+—”-[’- (28)
C C
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The fields for magnetic sources are found by duality.
II. VALIDATION

We selected a problem involving two infinitesimal dipoles radiating in free space for
our validations. The geometry is shown in Figure 1. The driving function and its Fourier
transform are shown in Figures 2 and 3. We generally considered results at 1.0 GHz near
the peak of the frequency spectrum.

We used four combinations of codes in our tests: TSAR-FAR. XNEAR-FAR. JOB.
and NEC. TSAR is a LLNL developed FDTD code. XNEAR is a code which calculates
the exact output of two infinitesimal dipoles and outputs the results in the same format
as TSAR. JOB is a derivative of XNEAR which calculates the exact field at points on
the specified equivalent current simulation surface. NEC is the LLNL developed Numer-
ical Electromagnetics Code. The XNEAR-FAR comparison with NEC yields the errors
due solely to FAR. The TSAR-FAR comparison with NEC yields the overall error. In
computing the errors we made frequency plots of Ee in two planes: the horizonal plane
(8 = 90; —90 < ¢ < 90) and the vertical plane (¢ = 0;0 < 8 < 180). The error was then
the maximum difference between the NEC and FAR plots. Figures 4 and 5 show a com-
parison between the TSAR-FAR and NEC predicted patterns at 1.0GHz in the horizonal
and the vertical planes respectively when the dipoles are driven with the pulse shown in
Fig. 2 and both a “10 cells and 20 cells per wavelength” discretization is used in TSARS.

Here we report on four types of errors we have uncovered and studied. We term these
errors: discrete Fourier transform (DFT) errors, averaging errors, grid size errors, and
frequency errors.

(1) Discrete Fourier Transform Errors

The FAR code has a subroutine which takes the DFT of the time domain TSAR (or
XNEAR) output and then projects the DFT to the far-field. There are three types of errors
inherit with the numerical DFT subroutines: aliasing, leakage, and picket-fence [2],[3].

Aliasing is caused by the sampling rate. It occurs when the high frequency components
of the time signal impersonate a low frequency component. Since the time record is finite,
the frequency transform will be infinite and there is no absolute cure for the error. The
best that can be done is to design the excitation pulse as one which has most of the energy
near the frequency of interest and to use a sampling frequency which is much higher.

Both leakage and the picket-fence errors are caused by using a time signal of finite
duration. This is equivalent to multiplying (in the time domain) an infinite duration time
signal by a window of amplitude one with the same duration as that of the time signal.
In the frequency domain this is equivalent to a convolution of the time signal’s Fourier
transform and the “sinz/z” Fourier transform of the window. The result is that each
discrete frequency impulse of the time signal is replaced with the “sinz/z” function and
all “sinz/z” functions summed. )

Leakage refers to the error caused by the summation of the trailing ends of the “sinz /z”
functions. If there is a DC component to the time signal this error is exacerbated because
the discontinuity of the signal at the record end will produce many more frequency points
with each point convolved with the “sinz/z” functions. The method of mitigation for
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leakage errors is to multiply the time history by a window other than the rectangular
window or to use a transit pulse (one which begins and ends at zero).

The picket-fence error is caused when the frequency of interest is not an exact multiple
of the sampling frequency. (Here the series of “sinz/z” functions act as filters in the
frequency domain giving a picket-fence effect.) There are two cures which mitigate this
effect. The first is to take the DFT at multiples of the sampling frequency and then to
perform complex interpolation. The other is to “zero-pack™ the time signal (i.e., add a
large number of zero points to the time signal which creates a much longer time signal).
The effect of zero-packing is to spread out the frequency components.

To mitigate the effects of aliasing. we use a pulse which has most of its energv at and
below 1.0GHz and has continuous derivatives. Omne such pulse is termed the Z-pulse’d .
The equations describing this pulse for a period from zero to one are: '

f(z)
f(x)
Although this pulse is good with reference to aliasing, it still has a poor characteristic with
reference to leakage. In the near-field, the dipole is a sum of three terms. each proportional
to the original excitation pulse, its derivative, and its integral. Asis seen the integral term
of the Z-pulse would have a DC term and thus a leakage problem. In order to mitigate
the leakage effect, we have found that either a Half Hamming window or a Half Blackman
window will give good results. The equations for these windows are:

il

322° — 48z  for 0<z<05 (29)
32(1—z)* —48(1 - z)*  for 0<r<05 (30)

Wg(z) = 0.54 — 0.56 cos (%) (31)
Wpg(z) = 0.42 — 0.5 cos (—2—7—};—__——1—12> + 0.08 cos (%) (32)

where M = the pulse length and the range is M/2<z < M.
A better pulse (i.e., a transit pulse), with all the good characteristics of the Z-pulse is
its derivative termed the DZ-pulse. It is described by the equations:

f(z) = 9627 — 1922° for 0<z<05 (33)
f(z) = —96(1 —z)* +192(1 - z)*  for 0<z <05 (34)

Figures 2 and 3 show this pulse for a time of 5.0e-11 sec. and a period of 120.0e-11 sec. It
can be seen that most of the energy is below 2.0e9 Hz. and it has continuous derivatives.
We have found that a good choice of the excitation pulse will produce minimum aliasing
and leakage errors. To account for the picket-fence error we have found that zero-packing
to an order 12 yields results as good as any higher packing. (By zero-packing to an order
12 we mean to increase the time record by 21? zeros. It should be pointed out that the time
records are not actually increased by this amount, but with the proper choice of sampling
frequency in the DFT subroutine, the DFT appears to add this order of zeros.)

(2) Averaging Errors

Another source of error is due to the staggered grid used in the FDTD calculations.
The magnetic and electric fields are not recorded at the same spatial point in the FDTD
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codes. We have chosen the measurement surface such that the the electric field calculation
points exactly lie on it. Since the offsets for the magnetic fields are at half points on the
grid cell, two sets of the magnetic field are computed. and then averaged to determine the
magnetic field values on the measurement surface. This averaging process introduces an
additional error.

To investigate the magnitude of the error introduced by this averaging two codes were
used: XNEAR which calculates the magnetic fields at the half points (the same points as

TSAR) and JOB. The other variables were set as follows:

Frequency. f = 1.0GHz

Grid size, Dx = A/10

Time sampling size. Dt = 5.0 e-11 sec.
Time record length, NTOT = 201
Zero packing order, ISTEP = 3

Pulse = Z-Pulse

Window = Half Hamming

P
-1 3O U W N
— e e S e

Figure 6 shows the averaged (XNEAR) and exact (JOB) time records of the magnetic field
H, at the center of the front face of the measurement surface. The maximum percent error
between these two curves is 3.53%. There are 2548 measurement points for the magnetic
field over the six surfaces of this problem. When the horizonal pattern plot is compared
with NEC the resulting errors are:

XNEAR error = 2.5793 %
JOB error = 0.6447 %

Thus, magnetic field averaging introduces an additional 1.8547% error in the far-field
electric field patterns.

(3) Grid Size Errors

The grid size (Dz) is set in the FDTD code. In addition to wavelength sampling
criterions, practical considerations such as the size of computer memory and near-field
detail dlctate the grid size. With decreasmg grid size, more surface values of E and H are
output and, from an information view, the more accurate the results of FAR will be. The
objective of this part of our study was to quantify this effect.

We used the JOB code to investigate this error. This precluded FDTD or averaging er-
rors and allowed us to concentrate on the grid size errors. In addition this choice premitted
cost efficient code runs with grid sizes from A/6 to A/20 to be made.

When executing a FDTD code, the Courant condition sets a limit on the time sampling
size (Dt). Therefore, as we varied Dx we correspondly varied Dt by the relation Dt =
Dz /c (where c is the velocity of light). Table 1 indicates the error associated with these
variations. It is seen that major improvements occur with decreasing the grid size until
A/10 at which the rate of improvement decreases.



Dx Dt Final Error

A/6 8.333333¢-11 1.750

A/8 6.250000e-11 0.949

2/10 5.000000e-11 0.594

A/12 4.166667e-11 0.402

A/16 3.125000e-11 0.247

/20 2.500000e-11 0.159
TABLE 1.

Error Variation with respect to Dz

We also made code runs with variations of Dt while holding Dz constant to test the
error effects of Dt variations. Throughout the Dx range of A/6 to A/20 we found negligible
error.

(4) Frequency Errors

The last type of error we report on is the effect of varying the frequency while holding
the geometry shown in Fig. 1 fixed. Figures 7 and 8 show horizonal plane plots at
frequencies of 0.5GHz and 1.5GHz of TSAR-FAR and NEC. We made code runs at every
0.1GHz over this range at grid sizes of A/10 and A/20. In these code runs we have found
maximum errors from 1.0% up to 20.0% when comparing the electric field pattern plots
with NEC. (The average errors are on the order of up to 5.0%.) Figure 9 shows these
pattern plot maximum errors as a function of frequency for XNEAR (which produces the
exact dipole fields at the measurement surfaces) and TSAR-FAR (with a grid size of A/20).
With reference to the pattern plots shown in Figures 4, 7, and 8 it can be seen that these
maximum errors occur at the nulls and peaks of the pattern near the endfire directions.

At this point we do not understand completely the causes of these errors. We do
believe that a major factor of the error is associated with the sampling of the surface
currents. That is, at lower frequencies (and longer wavelengths) our sampling density over
the surface is greater, i.e., there are more samples per square wavelength. In contrast, at
higher frequencies the sampling density decreases. Figure 10 shows a comparison of the
sampling density (normalized to the error at 1.0GHz) and the XNEAR-FAR error over the
range of frequencies. As can be seen the general trend of the curves support our contention.
The fine structure remains to be investigated.

III. CONCLUSIONS

A limitation of FDTD codes has been the inability to model radiation and scattering
effects of systems at distances far from their sources. At LLNL we have developed the
code FAR which, using the equivalence principle, projects the computational surface time-
domain E and H fields from a FDTD code to the far-field. The code output may be in
either the frequency or time domain. This paper has described that code and its validation.

The major errors associated with this near-to-far-field procedure were identified and
discussed. As noted above, we have tried to quantify these errors thoroughly. We grouped
the errors as DFT, averaging, grid size, and frequency errors.

-
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The aliasing, leakage, and picked-fence errors are always present whenever a DFT is
used; thus, they are absent whenever time domain results are desired. The aliasing error
may be mitigated with the proper choice of input pulse. We have found that the Z and
DZ-pulses reduce aliasing to a negligible effect. Because the Z-pulse, when used as a dipole
excitation, produces a DC term. windows must be used to mitigate the leakage effect. We
have found the Half Hamming and Half Blackman windows to be adequate in these cases.
The picked-fence error is negligible when "zero-packing™ to the 12-th order is used. The
averaging error is caused when the H field is averaged to make it coincident with the electric
field values on the measurement surfaces. This error will account for approximately 2% of
the total error. The grid size is set by the FDTD code parameters. The range of error is
from slightly less than 0.16% to 2.0%. Although smaller grid sizes are desirable, we have
found that a A/10 choice is a good oune. Here. A corresponds to the frequency of interest.
This choice is also appropiate when considering the FDTD parameters. Although we have
not completed our investigation of frequency errors, we have found the error proportional
to the surface sampling density (measurement points / square wavelengths). Choosing
a grid size of A/10 will produce good results (approximately 5% errors). The error is
reduced at lower frequencies. It appears that when higher frequency results are required,
the problem should be run with a grid spacing account for this fact.
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FIGURE CAPTIONS

Figure 1. Geometry for the two pulsed dipole problem ( Frequency = 1.0GHz, A =
0.2997925m).

Figure 2. The input excitation pulse that drives each dipole. (Time Domain)

Figure 3. The Fourier transform of the input dipole excitation pulse. (Frequency
Domain)

Figure 4. The horizontal pattern plot for § = 90, and —90 < ¢ < 90 predicted at
1.0GHz by NEC (—-), TSAR-FAR X/20 (- - -), and TSAR-FAR X\/10 (---).

Figure 5. The vertical pattern plot for ¢ = 0, and 0 < 6 < 180 predicted at 1.0GHz

8



by NEC (—-), TSAR-FAR X/20 (- - -), and TSAR-FAR )\/10 (---).

Figure 6. The time record of the magnetic field for JOB(ezact)(—-) and XNEAR(average)
(- - -) at a measurement point on the front face.

Figure 7. The horizonal pattern plot for § = 90, and -90 < ¢ < 90 predicted at
0.5GHz by NEC (—), TSAR-FAR A/20 (- - -), and TSAR-FAR \/10 (---).

Figure 8. The horizonal pattern plot for § = 90, and —90 < ¢ < 90 predicted at
1.5GHz by NEC (—-), TSAR-FAR \/20 (- - -). and TSAR-FAR X\/10 (---).

Figure 9. The maximum pattern plot error for XNEAR (—-) and TSAR-FAR X/20 (-
- -) as a function of frequency.

Figure 10. A comparison of the X.VEAR (—-) maximum pattern plot error and the
NORMALIZED SAMPLING DENSITY (- - -).
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