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ABSTRACT 

A program (CALC) is described, which carries out nontrivial plasma physics 
calculations, in a manner intended to emulate the approach of a human the­
orist. This includes the initial process of gathering the relevant equations 
from a plasma knowledge base, and then determining how to solve them. So­
lution of the sets of equatiuns governing physics problems, which in general 
have a nonuniform, irregular structure, not amenable to solution by Stan 
dardized algorithmic procedures, is facilitated by an analysis of the structure 
of the equations and the relations among them. This often permits decom­
positions of the full problem into subproblems, and other simplifications 
in form, which renders the resultant subsystems soluble by more standard­
ized tools. CALC's operation is illustrated by a detailed description of its 
treatment of a sample plasma calculation. 
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1. Introduction 

Understanding the processes by which a human analyzes problems in 
physics is of obvious interest to artificial inlelligence (AI), from both a the­
oretical and a practical standpoint. In earlier work [lj I have described the 
goals and early structure of a "Plasma Apprentice Program" (PAP), whose 
general puipose is to automate as much as possible the activities of a human 
plasma theorist, using techniques from the fitlds of artificial intelligence and 
symbolic computation. An apprentice system able to handle even a mod­
est fraction (25%, perhaps) of the tasks which form the human theorist's 
job would represent a great enhancement of his productivity. Since much 
of what a theorist does has a structure which is fairly clear, and therefore 
amenable to machine imitation, the possibilities for a practical apprentice 
svstetn seem quite real. On the more theoretical side, plasma theory pro­
vides a rich and formally developed domain in which to study a range of 
AI problems, including problem solving, planning, theorem proving, and 
learning. In its knowledge base (KB), the Apprentice possesses information 
about the important physical quantities in plasma physics, the equations 
governing them, something about the relations among them, and a body of 
mathematical tools for manipulating them. In order to give it the requisite 
algebraic capability, most of the PAP routines are written in the MACSYMA 
language, with a few utility routines written in LISP. 

At the more ambitious end of the spectrum of potential facilities dis­
cussed in Ref. 1 is the automation of setting up and solving nontrivial plasma 
physics calculations. A good deal of work has been done (21 in which a hu­
man user either guides an algebraic manipulator like MACSYMA through 
some physics calculation, or in which the purpose of the calculation is suf­
ficiently narrow, and the corresponding structure sufficiently clear, that the 
control structure a human would impose can be written out beforehand. In 
either case, the user provides the analysis and control structure, regulating 
the invocation of the MACSYMA tools. In this work, in contrast, the ob­
jective is to attempt to automate that analysis and control structure. As a 
first step in this direction, an early form of a ''high-level calculator." CALC. 
was applied to doing plasma transport calculations. Previously known but 
nontrivial transport results were recovered, with the user providing only min­
imal guidance. However, attempting to apply the early version of CALC to 
other plasma problems as well has drought out a number of deficiencies in 
the original approach, requiring substantial broadening of i's solution strat-



rgy. The resultant upgraded version is a good deal more general, less brittle, 
and more human in its operation than previously. This paper describes the 
operation of the new CALC, and attempts in so doing to bring out some of 
the significant issues involved. 

I begin Sec. 2 by giving a brief description of the nature of magnetic con­
finement of plasmas, and then discuss the particular plasma physics problem 
chosen for illustration, defining the problem, and outlining the course of its 
solution. It should be recognized that, while the particular problem domain 
being studied here is plasma physics, the general approach being developed 
is of much broader applicability, equally relevant to any other domain which 
is conveniently described mathematically. Section 3 describes how CALC 
approaches the sample problem. Section 4 provides some summarizing dis­
cussion, reflecting on some of the important features of this kind of problem 
solving which are brought out by CALC's operation. 

2. A Model Linear Response Problem 

Before focussing an the particular illustrative problem to which CALC is 
to be applied, a few brief remarks are in ordet on plasma problems generally. 
A plasma is an ionized gas. Because it is a gas, it is often convenient 
to describe it in terms of fluid quantities, such as density, temperature, 
and pressure. Because it is ionized, the plasma responds to electric and 
magnetic fields. In particular, while a plasma can flow parallel to a magnetic 
Held B almost unimpeded, it has great difficulty moving across B This 
fact provides the basis of devices (such as tokamaks) which " magnetically 
confine" high-temperature plasmas in the laboratory. The plasma is created 
within a magnetic field, whose lines run in a circle, (approximately) closing 
on themselves, and thus defining a toroidal volume. Moving easily along the 
field, the plasma runs in a circle, and thus does not escape, and it moves 
across B only with difficulty, and so is slow to make its way across the 
"minor radius" r of the torus, i.e.. from the center of the torus to its edge. 

The plasma always finds ways to outwit this "magnetic trap" eventually, 
and the objective is to design the trap so that this takes as long as possible. 
One quick way for the plasma to reach the wall is if the plasma is "unstable" 
to an initial small displacement from its ideal, equilibrium position. When 
ihe plasma is given such a displacement, it generates fields which, if the 
trap is not properly designed, wilt cause the displacement to grow further 
The calculation of how I he plasma will respond in time to such a small 
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initial perturbation is a "linear response'1 calculation, an example of which 
is described in this paper. Even if there are no such linear instabilities 
of the plasma, the particles of the plasma are stil] being bounced about, 
due to collisions with either plasma particles, and small deviations from the 
equilibrium fields which are also present. These cause the plasma particles 
lo move diffusively, hence on a longer time scale than that induced by an 
instability, but nevertheless allowing the plasma to escape rapidly enough 
to be of practical interest. This sort of slower escape of the plasma from the 
confinement volume is called "plasma transport." 

We now turn to consideration of the particular illustrative problem, a 
linear response calculation, using 3 simplified set of model fluid equations in 
its KB. instead of the full fluid equations, which are often used in realistic 
plasma calculations. Employing the same calculation strategy, CALC is also 
successful for both the transport calculation on which the earlier version 
<jf CALC succeeded, and for a more realistic linear response calculation, 
using the full fluid equations. The structure of the transport calculation 
was simpler (in a sense to be made more precise later on) than the linear 
response calculations, on either of which the earlier CALC fails. I discuss the 
simplified fluid model (SFM) because it is less complicated, while retaining 
some of the physics, and bringing out the same structural features of the 
calculation as using the full fluid model (FFM). 

We (and CALC) shall assume a ''slab geometry," a simplifying geometry 
commonly used by plasma theorists (cf.Fig. 1). Parametrizing space by 
Cartesian coordinates ( i , y , ; ) . the slab geometry has straight magnetic field 
lines B lying in the c direction, with translations] symmetry in the y and : 
directions, but with inhomogeneities of the magnetic field and equilibrium 
plasma possible in the i direction, which corresponds to the minor-radial 
direction r in a realistic confinement device. On this slab equilibrium is 
superposed a small initial perturbation of the plasma and electric field, which 
varies sinusoidal!)- in the ^-direction. The purpose of the linear response 
calculation is to determine how this initial perturbation develops in time. 

Specifically, the equations of the 5FM are 

dtn — \i.joi)..n - <ir\miT\ = 0, i I) 
djE.j = lie{n - n 0 ) . i2i 

u- = c £ w B. i 31 

Here, for any variable v. •'. •' <>i- denotes a partial derivative with respect 
to i'. n is the plasma densir-.. n., n a background equilibrium densitv. as-
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sumed to be a known function of r . as is the fluid flow velocity u, v 0 in the \j 
direction. u T is the fluid flow velocity in the x direction, Ey is the electric 
field in the y direction, B is the magnitude of the magnetic field, e is the pro­
ton charge, and c is the speed of light. Eq. (1) is the "continuity equation," 
slightly simplified from the exact form valid in the FFM by our assumption 
that uv = Ujo depends only on x, and by our neghct of flow u, in the z 
direction. Eq. (2) is Poisson's equation, simplified from the full equation by 
neglect of the contributions from the x and z components Ex,s of the electric 
field, and by our replacement of the electron density by a static neutralizing 
background no. Eq. (3) is the x component of the "E x B drift," describing 
the response of a magnetized plasma to an electric field applied normal to 
B. One notes that Eqs. (1) and (2) are differential equations, while Eq. (3) 
is algebraic, and may be thought of as making u- a subsidiary variable, a 
specified function of Ey, Using it in Eq. (1) to eliminate ux in favor of 
£ y , one sees in Eqs. (1.2) the self-consistent coupling characterizing plasma 
problems generally: the motion of the plasma (here characterized by the 
single variable n) is determined by the fields [Eq. (1)), and the fields (her? 
described by the single variable Ey) are determined by the plasma {Eq. {2)\. 
The structure is the same for the FFM, but there, several more variables 
are required to represent the state of the plasma, and the fields. Moreover, 
while the FFM is a system of pdes in -5 independent variables (t.x.y, ; ) , for 
the SFM this number has been reduced to only 3, (t,z,y). 

The task which CALC will be asked to perform is to find the linear re­
sponse behavior of the variable Ev, assuming it is governed by the SFM. 
There are two steps to be taken here. First is the process of collecting the 
set of equations governing the problem, within the confines of some chosen 
theoretical model (here, the SFM). This should yield the sei (L-3). Second, 
finding the "linear response" behavior of these equations implies following 
a certain perturbative approach to solving the system (1-3), involving the 
following steps: (a) First, compute the "equilibrium" for this system of 
equations. This entails setting all the time derivatives to zero, and, further 
simplifying the equations by using the symmetries of the geometry p.t hand, 
finding the steady-state values L-J for the dynamical variables of the problem 
in tliis case, {v1} s {n, Ey) ,(i = 1,2), and, through Eq. (3), u r \ | b) Lin­

earize the equations about the equilibrium, and solve for the linear portion 
fjli) of the v's. This is facilitated by Fourier transforming the solution in 
each of the symmetry directions of the unperturbed problem (in the case of 
the SFM problem, t and y). Equivalently, this means writing the v\ as an 
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amplitude v\(z) times the "eikonal'' factor «xpi{kvy - uit). This substitu­
tion turns differential operators into algebraic factors, making the resultant 
linearized equations easier to solve. From these equations one determines 
the system's "'dispersion relation.'1 i.e., the equation D(ui) — 0 which deter­
mines the Ipossibly complex) eigenfrequencies o> of the linearized equations. 
Instability is implied if the Imaginary part of u; is positive. Lastly, (r) solve 
the dispersion relation for the eigenfrequencies, and, knowing these, solve 
the linearized equations for the system eigenmodes. 

This concludes a brief characterization of the problem to be treated, from 
a human perspective. In the following section, we will see that the process 
which the Apprentice goes through in collecting the relevant equations and 
physical variables, assessing their roles in the problem and, on the basis of 
this, choosing a solution approach, is quite parallel. 

3 . T h e A u t o m a t e d L i n e a r R e s p o n s e C a l c u l a t i o n 

We now turn to the approach which PAP takes in solving the SFM 
problem described in the previous section. In writing input to or output 
from the Apprentice, we will avoid the use of MACSYMA-spacific notation 
where possible, rewriting the mathematics in more standard mathematical 
notation. However, it will be helpful to use it occasionally. Thus, square 
brackets in such expressions, enclosing comma-delimited components, des­
ignate a list. The MACSYMA function g a t ( v x , p ) returns property p of 
variable vr. the function p u t ( v r , v l , p ) gives property p of variable vr the 
value v l . and the function p m x t t l . i ) returns the ith part of list 1. An un­
derscore is a legal character within a symbol name. Other symbolic notation 
is common to MACSYMA and many other programming languages, and so 
should be clear. 

The desired calculation is invoked by issuing the command 

ca lcd in- r ipCjSj , ) , [g«oa«try=i l»b,aod«l=»im]) . 

The first argument exp [with value l i n - r i p ( £ j , ) here] is the object to be 
calculated. The second argument, e m p e n t x t , is a list of qualifiers specifying 
the "computational context" within which the calculation is to occur 1 ;. At 
certain points in the calculation. CALC makes use of information about the 
particular geometry (if any) being considered (e.g.. symmetry directions*, 
and it finds such information by checking e m p e n t x t for geometrv quali­
fiers. The qualifier mod«l=sfm is used by PAP in selecting from the KB as 
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governing equations those of the SFM. Far example, Eq. (2) is to be used in 
determining Ey, rather than the full Poisson's equation, which would enter 
for the FFM. 

Earlier, exp had to be a purely algebraic object, i.e., one involving only 
the standard algebraic operations. This made the range of tasks which could 
be expressed to CALC too restrictive to deal with many tasks of interest. 
For example, the sequence of operations involved in a linear response cal­
culation, outlined in the previous section, cannot readily be described in a 
single algebraic formula. Rather, a more natural description is in terms of 
a procedure, each of whose steps may involve algebraic operations, or still 
other procedures. A purely algebraic expression may also be thought of as 
describing a particular simple class of procedures (?.(j., "first, add x to 3, 
then, multiply this result by the sum of y minus " , . ." ) , so this extension of 
the allowable domain of exp represents a natural extension of the language 
which CALC understands. The operator l in_r»p acting on the variable Ey 

in the invocation of CALC above is the name of a non- purely-algebraic pro­
cedure. We refer to such procedures as "scripto," intended to denote, as in 
the use of the term in natural language comprehension, a sequence of events 
or operations being implied by some shorthand designation. Currently, en­
counter of a script name is noted by adding a qualifier to c m p c n t x t . e.g.. 
ca lc typ=l in_rsp . At certain points in CALC's operation, indicated below, 
the presence of script qualifiers in cmpcntxt are checked for, and if present, 
these affect the choices CALC makes. 

We now consider the general method by which the calculation is car­
ried out. CALC runs in a cycle, consisting of first assembling the relevant 
equations to be solved [via the function KITOGEN), then analysing the 
structure of this system of equations (GENSUPRTREE,CLASSIFY), then 
solving them (SFRSND), and then absorbing the solution so obtained into 
the system's KB (DIGEST-SOLN). Often, these solutions introduce new 
variables into the problem, to which the same cycle must then be applied, 
until no new variables are introduced. 

i now discuss the cycle in a bit more detail. First, the function KI-
TOGEN generates a "solution net" for the problem) 1], a graph showing 
the connections among the variables and equations involved. (As noted in 
Ref. 1. -'KITO" stands for "Known In Terms Of," the question answered by 
the solution net.) The solution net developed from the initial application of 
KITOGEN" to lin-TfpCiT.j) is shown in Fig. 2 This given task is assigned 
to the root node n d l of the net Newly encountered variables, and their 



node names, are stored on a list called stack. KITOGEN terminates when 
all variables encountered have be .i properly added to the solution net, hence 
when stack is empty. Given a node a yet untreated, if the node value is a 
nonatomic expression, KITOGEN creates « new child node for each variable 
in that expression which has not yet been encountered, linking the pare"* 
expression with the child variable by an appropriate arc. If the variable 
has already been encountered, only a new parent-child arc is created. If the 
node value is a variable t', KITOGEN looks under the giv«nby property of v 
to see what equation it should use to determine it. If the equation £„(» , . . . ) 
for i' is of the "unravelled" form v = I ' ( . . . ) , with the function V indepen­
dent of v, then a child node to u's node is created, with value V( , . . ) . In the 
SFM example (Fig. 2), such an equation is Eq. (3), with v -» ux. If Ev is 
not of this form, so that it must be solved for v, then instead the child node 
created has value solv«ior(£ , . , u) [abbreviated to atx(S«, v) in pig. 2j, and 
this node is put on the list sfratack, in addition to being attached to its 
parent node in the solution net. Such nodes in Fig. 2 are n d 3 and nd8 , 
corresponding to Eqs. (2) and ( l ) , respectively. If no equation is found from 
the request g» t (v .g iv«nby) . the node is a terminal (i.e., "leaf") node, and 
v is treated as a fundamental quantity, such as « or j in Fig. 2. 

At the end of KITOGEN's operation, a solution net has been generated, 
s tack is empty, sfrstack contains the nodes representing each of the equa­
tions (or sets of equations) which must h". solved, and from the net structure, 
a preliminary classification of the variables encountered has been developc 
for subsequent use (see below). 

The objective now is to determine how to simultaneously solve ail of 
the equations whose nodes are ir, sfrstack, for all the variables listed the:?. 
Often, this task can be decomposed into a number of separate sublets <. f 
equations and variables, which, when possible, considerably lessens ihe dif 
ficultv of solution. The decomposition is accomplished by the routine GEN-
SUPRTREE. which partitions the sotution net into a covering netwtrk or 
"'strongly connected components," or "supernodes," i.e., collections of nodes 
having the property that each node in a given supernode is both a descen­
dant and an ancestor of every other member of the supernode, and therefore 
of itself. While this "super-net" is not necessarily a tree, it does share with 
trees the property that it contains no loops (circuits) as the solution .-t 
may. and therefore establishes a clear order in which the supernodes are 
to be solved, viz. from the terminal supernodes upward (i.e., toward the 
ancestor supernodes). 
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The initial stage of the problem, shown in Fig. 2, possesses o:Jy a single 
nontrivial supernode (i.e., one which contains more than a single node) 
s n d l , and this contains all of Eqs. (1--1)- Thus, the topology of the solution 
net, as brought out by its supernode structure, reflects the coupling which 
exists among the equations in the problem. The full solution net, shown in 
Fig. 3, possesse', two additir^ial snpernodes snd2 and its parent and3 . These 
correspond, respect.vely, to the zero and first-order portions of the problem, 
and, as "t.e direction of descent correctly indicates, it is first appropriate to 
solve the zero-ordar supernode «nd2, and then snd3. 

The transport calculation, in ccntrasi, had no nontrivial supernodes, 
hence no coup'ing of the equations to solve. It is in this sense that the 
structure of tht transport calculation is simpler than the linear response 
calculation for either the SFM or FFM, and for this reason that the earlier 
CALC control structure could cope with it. Moreove.', the supernode struc­
ture of the SFM and FFM problems are identical, though the nontrivial 
supernodes for the FFM each contain more nodes. This corresponds to the 
human sense that these two problems have essentially the same structure, 
but with the SFM being simpler in detail. 

The supernode structure being determined, the supeinode-solving rou­
tine SFRSND is railed successively on the supernode of the first element of 
sfrstack, until sfrstock is empty. Once a supernode snd has been solved, 
SFRSND removes all nodes which snd has in sfrstack. Before solving a 
given supernode, SFRSND first checks that all its children have been solved 
and, if r.ot, recursively applies SFRSND to them. In the SFM illustration, 
for example, this ensures that the zero-order problem will be solved before 
the first-order problem. 

Having found a supernode to be solved, SFRSND assembles, from all 
its nodes in sfrstack, the full set of equations (assembled into a list eqlst) 
and variables v' (assembled into a list vlst) for which it is to solve. It 
then calls the routine CLASSIFY, which uses the structure of the equations 
in eqlat to partition the variables occurring in this and's subproblem into 
"variable classes" VCi (i=0-4). VCO is the set of constant parameters in 
the problem, VCI is the set of ''independent variables" (t ,x and y, for the 
full SFM problem of s n d l ) , VC2 is ;hat subset of dynamical variables v' 
in vlst judged to be determined by a differential equation in eqist , while 
VC3 is tha*. subset of vlst judged to be determined by equations in eqlst 
which are algebraic in thus* <.•'. Finally, variable class VC4, containing 
those variables (like uz in die SFM problem) which may ie regarded as 
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auxiliary functions of the other variables, has already been determined by 
the preliminary classification occurring in KITOGEN. Parallel to each of 
VC2-4 are equation lists eqlat2-4, containing the determining equations of 
the corresponding VCi. On this first pass, CLASSIFY returns 

VCO = (e, B, c, Ujio.̂ ooj 
VOl = \t,x,y\ 
VC2 = [Ey.n\ 
VC3 = j ] 
VC4 = iu r ] 
eqlst2 = [diEy - i*e{n - n O T ) , dtn 4- u^c^n + 9x{cEynlB) - 0] 
eqlst3 = [ ] 
eqlst4 = [uxeqj, 

where ux«q means Eq. (3). One notes that the variable classification is in 
accrrd with the roles which a human would assign them. 

Solving a supernode means obtaining expressions for each of the v' com­
prising VC2 and VC3 of the "unravelled" form mentioned above in connec­
tion with KITOGEN. On obtaining such a form for a v', it is transferred 
from VC2 or VC3 to VC4, and the corresponding unravelled expression is 
placed on eqls t4 . It should be noted that this variable partition is relative 
to the given supernode under consideration. A given variable plays different 
mathematical roles for different supernodes. 

Once the classification from CLASSIFY has been obtained, SFRSND 
first calls subroutine SFA, which solves the algebraic equations in eq ls t3 for 
the variables in VC3, then transferring these to VC4. Using the equations 
in eqls t4 , the differential equations in eqhit2 are then written just in terms 
of the variables in VCO-2, by the subroutine VC4XPND. The differential 
equations in this "expanded" form are then submitted to subroutine SFD, 
which attempts their solution. SFD refers to c m p c n t x t for indications of 
what kinds of solution procedures might be appropriate. There, the qualifier 
ca lc typ=l in_rsp tells SFD that the perturbative procedure, outlined at the 
end of Sec. 2, should be used. In the transport calculation, in which cmpc-
ntjct provided no such information, CALC first embarked on a qualitative 
analysis of the kinetic equation whose solution was required, and on this 
basis decided to attempt a perturbative solution. Here, CALC is informed 
from c m p c n t x t that a perturbative solution is appropriate, and so is able 
to skip the initial analysis of the kinetic equation. This decided, however, 
the routines employed to generate the expansion hierarchy, which essentially 
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encapsulate a certain mathematical technique, are the same. 
For some systems of equations, SFA and SFD are able to solve the equa­

tions outright, and when this occurs, they return a list of the desired unrav­
elled equations giving the sought-after v'. For other problems, the "solu­
tion" returned is not a real solution, but is instead a formal solution in terms 
of new variables, which must themselves be solved for in order to genuinely 
solve the problem, but for which the governing equations are (hopefullv) 
simpler than those for the original set. This parallels, of course, a familiar 
human technique for reducing the complexity of a problem. For the linear 
response solution procedure described at the end of Sec. 2 (and in many 
other cases as well), two such formal solutions are used. The first was the 
introduction of an expansion, u* = VQ -r tv\ +..., in which the new dynamical 
variables introduced are the vj, and v\, and e is an expansion parameter. The 
second was the introduction of the eikonal form for the first-order variables, 
r)[t. x,y) = L'}(z)expi(fcyjr-u/<), with new variables the i<\. From the initial 
call to SFRSND on the SFM problem, for example., where VC2=,'£ V , n< and 
VC3 = [ j , all the equations to be solved are differential, so that only SFD is 
called, returning a list of the form [ so lu t ion ! . I IHHICH,n«_ in io ] . Here, 
s o l u t i o n s is a list of solutions for variables already encountered. In the 
present case, s o l u t i o n s is 

«o = n«>(x), Ey = EyQ - cE.ji exp i(kvy - ijt), 
" = "oof 1) "~ e " i e x P '(̂ vW ~ "' ')!-

This introduces some new variables [e.g., Eyi), which are determined by new 
governing equations. The latter are contained in the list a««- in lo , along 
with some additional qualifiers U p n p t r s » F , « i k n l = . . . ) , which provide both 
CALC and the user with useful information. For the present calculation, 
nas . inf o is 

'givenby((£>j, [ { c E W B ^ n o o d ) - (cnoo(i),. B)dIEy0 = 0|). 
givenby([£ y l ,rt[], 
ik.jtyi - i*en\,{cEv\,! B)dTnm{x)-iui-hi+ikyh\v.yo-r(chy; B)dzE,jo - u1 t. 

xpnparm = «, eixnl = exp i ( t v ^ - -•();. 

This response from SFD and SFRSND is structured so that it? English 
meaning when read from tlte terminal is basically self-explanatorv. 

The output from SFRSND is then given as input to the routine DIGEST 
SOL:\, vhose function is to absorb this information into the solution net. 
and into che system's KB. The new information to the solution net comes 
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from so lu t ions : variables previously given only by nodes solvaf o r ( . , . ) 
in the net now are given by unravelled expressions. These new expressions 
are duly attached to the nodes for the variables they describe, these nodes 
are put into j t ack for treatment by the next call of KITOGEN, and those 
newly unravelled variables in variable class VC2 are transferred tn VC-i, 
completing the bookkeeping mentioned earlier. The additions to the KB 
tome from n»aAnlo. Thus, the two giv»nby(. , . ) forms in n«»_inio cause 
the governing equations for the zero and first-order parts of the problem to 
be put under the 'givenby'' property of these newly introduced variables, so 
that KITOGEN may treat them on the second pass of the problem in just 
the same fashion as it dealt with the original members ol'its KB on the first 
pass. In this sense, PAP is able to "learn,'' i.e.. to expand its KB with new 
findings in a uniform fashion. 

The first item in l o l u t i o n i has a somewhat different origin from the 
rest. In the process of generating the equation hierarchy given in a»w _inlo. 
Tor the first pass of the linear response problem. SFRSND calls subroutine 
IMPOSE-EQUIL-CONDE. which makes use of geometry-specific informa­
tion, in this case stored under tlw variable s l ab , to incorporate specializing 
features of the equilibrium geometry under consideration into the governing 
equations. This includes use of the symmetry directions, and also inav in 
rlude particular forms normally assumed about certain physical quantities, 
[n this case, no = noa{x) specifies that ijq is to be given by the background 
density «o = "oo(zJ, hence treated as a known but unspecified function of x. 
overriding equations from the equation hierarchy which would otherwise be 
used to solve for it. Thus, the total geometric information used in this calcu­
lation is stored under two properties of s l ab . Under the property s y m J i m s 
is stored the list t ,y, ri, and under the property §ub i t_ l i* t is stored the 
substitution n<j = noo(i)'. 

From the givanby forms in nan _inf o and from Fig. 3, one notes a feature 
with which CALC has been provided, needed in order to permit it to deal 
with solving coupled sets of equations for sets of variables. If the giv«iby 
forms only specified a single variable v and a single specifying equation 
•q, each givanby could simply be implemented in DIGEST-SOLN bv the 
MAC5YMA command pu,t(v,«q, 'g ivanby) . Since instead sets nf coupled 
variables and equations are ed. it is no longer always possible to assign 
a given new equation to a sp new variable. An example is the first order 
set of equations shown above, tn which iii and £ v l enter on equai footing. 
Accordingly, such sets of equations are assigned to the givanby property 
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of a "variable-set" variable (in this case, called vrbls«t2). a;td the set of 
variables ' £ v i , n t i is assigned to vrbli»t2's vrbl i property. For consistent 
extension of the KB, therefore. DIGE5T-SOLN puts p « r t ( v r b l » » t 2 , l ) 
under Em's giv«nby, and similarly for n t . With this •.tructure, the next 
pass of KJTOGEN, operating just as already described, will correctlv link 
the variable sets and equation sets as illustrated in Fig. 3, without having 
in make any artificial assignments of individual variables to equations. 

This completes the first cycle, in which the equations of the full prob­
lem have been treated, resulting in the attachment to the solution net of 
expressions involving the variables of the zero and first order portions of 
(he problem. The second pass is then entered. And proceeds in the same 
way. Now. GEN'SUPRTREE finds two new supernodes snd2 and snd3. 
as already mentioned. Following the structure of the 'supertree,' SFRSND 
is first applied to snd2. which in this case involves solving only a single 
differential equation for EyQ. carried out by SFD- Then, SFRSND solves 
snd3. which is a simple algebraic system of two linear equations. For linear 
response calculations such as this one, SFA returns the form 

Evi.ni\ INWHICH, 

givenhy(ij. iky -4-re 
c£76\.n 0 o(ij ifcyU^ - tu 

Eyl 
" 1 

= 0)1. 

The equation to be placed under the givanby property of ui here is the eigen-
mode equation, and setting the determinant of the matrix in that equation 
equal to « r o yields the dispersion relation. This information is absorbed by 
D1GEST-SOLN, and both stack and sfrstack being empty, CALC returns 
the final response, 

tEtJ, e x p i r y - j t ) T INWHICH, 

givenby(u>, ifc,j -4xe 
c/Bdzn00(x) ikyUyo - "*• 

Ey\ 
= 0) 

Onlv the final step or the solution procedure outlined at the end of Sec. 2. the 
actual solution of these equations, has not been carried out, this being within 
the reach of standard symbolic algebra facilities, or of newer extensions of 
these (e.g.. Sacks' NEWTON program [3j, which is able to approximated 
sulve a wide range of algebraic equations, extending the range of problems 
exact I v solvable by the MACSYMA routine SOLVE). CALC returns the 
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form shown above, which bridges the gap between the problem statement 
and existing algebraic capabilities, and shows in a perspicuous fashion the 
information of interest in a linear response problem. 

4. D i s c u s s i o n 

Regarding CALC as a particular type <>f problem solver, one notes that it 
implements the common problem-solving technique of attempting to convert 
a problem into a set of simpler subproblems. each of which is nearer to 
"primitive'' problems, in this context, those which are immediately solvable 
by existing automated algebra facilities. We have seen two general ways 
ir which this process of problem reduction is carried out: (a) "proMem 
transformation," i.e., introducing a "formal solution." whose form captures 
something about the nature of the problem, resulting in more tractable 
equations for the new variables introduced by the formal solution, and (b) 
"problem partition," achieved by studying the topology of the equations in 
the problem, as represented bv the solution net and its covering super-
net. These two methods are adequate to allow PA? to deal with both the 
transport and linear response problems considered iu far. 

Figuring importantly in these two techniques is the process of classifi­
cation of the equations and variables in the problem. For example, the VCi 
variable classes are used in applying both the perturbation expansion and 
eikonal types of problem transformation, as well as the non-formal solution 
methods employed by SFR.SND. The attributes in terms of which this clas­
sification is described give the beginnings of a semantic significance, i.e., a 
meaning, to the variables classified. While MACSYMA is indifferent to a 
variable's significance, the meanings which a scientist attaches to the differ­
ent variables in a set of relevant equations play a great role in how he thinks 
about the equations, and whac manipulations on these equations he is Likely 
to attempt. The variable classification which CALC uses, and its effect on 
CALC's solution strategy, models in a simple way this more human way of 
thinking about doing mathematics. 

The variable classification evolved in order to permit CALC to solve 
systems of equations, and is therefore essentially mathematical in charac­
ter; it does not yet possess something which might be identified with the 
phy$ical associations which .1 human attaches to the quantities appearing 
in physical equations, exeppi insnfar as the mathematical role the variables 
plav determines the way penile think about them physically. Thus, whilt a 
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human has a quite different mental image of mass and electrical inductance, 
xo CALC applied to considering the mathematically identical problems of a 
damped simple harmonic oscillator and an LRC circuit, they are completely 
Isomorphic, and therefore indistinguishable. This isomorphism is something 
which would be broken by a more fully developed KB, one from which it 
would be possible to consider problems in which both mechanical and eLectri-
cal elements are present. Additionally, however, there is in CALC's present 
operation nothing of the human difference in visualization of these two sys­
tems, which probably also significantly afFects how a human goes about 
getting a physical feel for a problem. However, it is unclear in what way 
two systems, governed by precisely the same mathematics, may be distin­
guished, the difference in visualization mentioned above perhaps amounting 
to two representations of the same system, induced by the human sensory 
apparatus, with different strengths and weaknesses for purposes of analysis. 

The current variable classification resides in two places, in the VCi vari­
able classification, and also in the KB, both in the "permanent" portion 
KBO. present at the start of PAP's operation, and in the extension dKB, 
developed in the course of the calculation, An example taken from dKB, 
illustrating some of the classifying attributes needed for CALC's operation, 
is the list of properties developed for the first order density n L in the course 
of the calculation: 

property value 
givenby n t = TIJ expi(feyjj - u>t) 
dependi.on '£, i , y | 
xpansn.coef-of n 
origin xpansn_eoef.of 

This may be paraphrased as "tsi is givenby the (eikonal form ...). It 
depends upon the VCl variables t,x, and y. It was created as an expansion 
coefficient of the variable n." The last attribute here ties n t to n, which, 
in addition to providing needed information to SFRSND for the present 
problem, also allows i i to inherit useful information from n. This helps to 
fulfill a design criterion for PAP, that, like a human, it shouldn't have to be 
told the same information more than once. 

Related to the issues of variable semantics and classification, it is worth 
reiterating the central role in CALC's operation played by the solution net 
and its associated super-net. As already indicated, these objects capture 
something of what humans think of as the "structure" of a calculation, so 
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tliat similar calculations have similar solution net structures. Solution nets 
thus fill a similar role to the semantic nets used in theories of reasoning and 
learning by analogy f-ll, or to automated analysis of case law [5j. 

Finally, a significant aspect of PAP which has evolved with the present 
work with CALC, and for which further evolution seems important, is the 
language in terms of which PAP and the user communicate. This should be 
rich enough that many of the plasma physics questions one might wish to 
ask can be phrased within it, in a fairly natural format. The mathematical 
"scripts" illustrated here in a simple way seem to offer significant potential 
for extension of the PAP language, as do the English-like compound forms 
(e.g.. [ s o l u t i o n s , IIWHlCH,n»»-info]) in terms of which PAP routines 
can communicate their findings to other routines, and to the user. 
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Figures 

Fig. 1. Depiction of the physical situation considered in the sample problem 
to which CALC is applied. To a plasma, density n 0 (x) varying in the 
i direction, and uniform in the y and z directions, is applied a small 
perturbation n j , sinusoidal in the y direction. 

Fig. 2. Solution net generated by the first call to KITOGEN on the SFM 
problem. The main goal [at "root" node n d l i appears at the top, and 
subgoah arising from this main task appear below it. The upward di­
rected dashed lines lead to nodes already established at the time of the 
rreation of the "parent" node from which they emanate. The upward 
directed line labelled ndZ emanating from n d l 3 indicates an arc which 
goes to nd2, not drawn for simplicity of display. 

Fig. 3. Complete solution net for the SFM problem, using the same con­
ventions as for Fig. 2. and in addition indicating the three nontrivial 
supernode groupings. 
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