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Toward the Automated Analysis of Plasma
Physics Problems

Harry E.Mynick
Princeton Plasma Physics Laboratory
Princeton University
P.O. Box 451
Princeton. New Jersey 08543-0451, U.S.A.

ABSTRACT

A program (CALC) is described, which carries out nontrivial plasma physics
calculations, in a manner intended to emuiate the approach of a human the-
arist. This includes the initial process of gathering the relevant equations
from a plasma knowledge base, and then determining how to solve them. So-
lution of the sets of equativns governing physics problems, which in general
have a nonuniform, irregular structure, not amenable to solution by stan
dardized algorithmic procedures, is facilitated by an analysis of the structure
of the equations and the relations among them. This often permits decom-
positions of the full problem into subproblems, and other simplifications
in form, which renders the resultant subsysterns soluble by more standard.
ized tools. CALC’s operation is illustrated by a detailed description of its
treatment of a samgle plasma calculation.
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1. Introduction

Understanding the processes by which a human analyzes problems in
phiysics is of cbvious interest to artificial inielligence (Al), [rom both a the-
oretical and a practical standpoint. In earlier work [1j [ have described the
goals and early structure of a “Plasma Apprentice Program™ (PAP), whose
general purpose is to automate as much as possible the activities of a human
plasma theorist. using techniques from the fields of artificial intelligence and
svmbelic computation. An apprentice system able to handle even a mod-
est fraction (25%, perhaps) of the tasks which form the human theorist’s
job would represent a great enhancement of his productivity. Since much
of what a theorist does has a structure which is fairly clear. and therefore
amenable to machine imitation, the possibilities for a practical apprentice
svstem seem quite real. On the more theoretical side. plasma theorv pro-
vides a rich and formally developed domain in which te study a range of
Al problems. including problem solving, planning, theorem proving. and
learning. In its knowledge base (KB}, the Apprentice possesses information
about the imporiant physical quantities in plasma physics, the equations
governing them. something about the relations among them, and a body »f
mathematical tools for manipulating them. In order to give it the requisite
algebraic capability, most of the PAP routines are written in the MACSYMA
language. with a few utility routines written in LISP.

At the more ambitious end of the spectrum of potential facilities dis-
cussed in Ref. 1 is the automation of setting up and solving nontrivial plasma
physics calculations. A good deal of work has been done 2! in which a hu-
man user either guides an algebraic manipulator like MACSYMA through
some physics caleulation, or in which the purpose of the calculation is suf-
ficiently narrow. and the corresponding structure sufficiently clear, that the
control structure a human would impose can be written out beforehand. In
either case, the user provides the analysis and control structure, regulating
the invocation of the MACSYMA tools. In this work, in contrast. the ob-
jective is to attempt to automate that analysis and control structure. As a
first step in this direction, an early form of a “high-level calculator.” CALC.
was applied to doing plasma transport calculations. Previously known but
nontrivial transporst results were recovered, with the user providing cnlv min-
imal guidance. However. attempting to apply the early version of CALC to
other piasma prablems as well has brought out a number of deficiencies in
the original approach. requiring substantial broadening of i*s solution strat-
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egr. The resultant upgraded version is a good deal rmiore general, less brittle,
and more human in its operation than previously. This paper describes the
operation of the new CALC, and attempts in so doing to bring out some of
the significant issues involved.

1 begin Sec. 2 by giving a brief description of the nature of magnetic con-
finement of plasmas, and then discuss the particular plasma physics problem
chasen for illustration, defining the problem, and outlining the course of its
solution. It should be recognized that, while the particular problem domain
being studied here is plasma physics, the general approach being developed
is of much broader applicability. equally relevant to any other domain which
is conveniently described mathematically. Section 3 describes how CALC
approaches the sample problem. Section 4 provides some summarizing dis-
cussion. reflecting on some of the important features of this kind of problem
solving which are brought out by CALC's operation.

2. A Model Linear Response Problem

Before focussing on the particular illustrative prablem to which CALC is
to be applied, a few brief remarks are in order on plasma problems generally.
A plasma is an ionized gas. Because i1t is a gas, it is often convenient
to describe it in terms of Auid quantities, such as density, temperature,
and pressure. Because it is ionized, the plasma responds to electric and
magnetic fields. In particular, while a plasma can flow paralle! to a ragnetic
field B almost unimpeded. it has great dificulty moving acress B This
fact provides the basis of devices (such as tokamaks) which “ magnetically
confine™ high-temperature plasmas in the laboratory. The plasma is created
within a magnetic field. whose lines run in a circle, (approximately) closing
on themselves, and thus defining a toroidal volume, Moving easily along the
field. the plasma runs in a circle, and thus does not escape, and it moves
across B only with difficulty. and so is slow to make its way across Lhe
“minor radius” 7 of the torus, i.e., from the center of the torus ro jts edge.

The plasma always finds wavs to outwit this “magnetic trap” eventually.
and the objective is to design the trap so that this takes as long as passible.
One quick way for the plasma to reach the wall is if the plasma is “unstable”
to an initial small dispiacement from its ideal, equilibrium position. When
the plasma is given such a displacement, it generates fields which, if the
trap is not properly designed. will cause the displacement to grow further.
The catculation of haw the plasma will respond in time to such a small



initial perturbation is a “linear respanse” calculation, an example of which
is described in this paper. Even if there are no such linear instabilities
of the plasma, the particles of the plasma are still being bounced about,
due to collisions with other plasma particles, and smali deviations from the
equilibrium fields which are also present. These cause the plasma particles
o move diffusively, hence on a longer time scale than that induced by an
instability, but nevertheless allowing the plasma to escape rapidly eneugh
0 be of practical interest. This sort of slower escape of the plasma {rom the
confinement volume is called “plasma transport.”

We now turn to considecation of the particular illustrative praoblem, a
lintear response calculation, using a simplified set of model fluid equations in
its KB. instead of the full fluid equations, which are often used in realistic
plasma calculations. Employing the same calculation strategy, CALC is also
successful for both the transport calculation on which the eatlier version
of CALC succesded, and for a more realistic linear response calculation.
using the {ull fluid equations. The structure of the transport calculation
was simpler (in 3 sense to be made more precise later on) than the linear
response calculations, on either of which the earlier CALC fails. I discuss the
simplified Auid mode] {SF)) because it is less complicated, while retaining
some of the physics, and bringing out the same structural features of the
calculation as using the Iull fluid model (FFM).

We (and CALC) shall assume a “slab geometry,” a simplifying geometry
commonly used by plasma theorists (cf.Fig. 1). Parametrizing space by
Cartesian coordinates (z, y, z). the slab geometry has straight magnetic field
lines B lving in the z direction. with translational symmetry in the y and :
directjons, but with inhomogeneities of the magnetic field and equilibrium
plasma possible in the z direction, which corresponds to the miner-radial
direction r in a realistic confinement device. On this slab equilibrium is
superposed a small initial perturbation of the plasma and electric field, which
varies sinusoidally in the y~direction. The purpose of the linear response
calculation is to determtine how this initial perturbation develops in time.

Specifically, the equations of the SFM are

n — ugd.n - dinu,) = 0, 1

A,E, = 1me(n - ng). N

u- = cE, B 13

Here. for any variable v. «.  «/ v denotes a partial derivative with respect

to r, n is the plasma densit:. n, s a background equilibrium density, as-



sumed to be a known function of z. as is the fluid flow velocity u,q in the y
direction. u, is the fluid flow velocity in the z direction, E, is the electric
field in the y direction, B is the magnitude of the magnetic field. e is the pro-
ton charge, and c is the speed of light. Eq. (1) is the “continuity equation,”
slightly simplified from the exact form valid in the FFM by our assumption
that 1, = uy depends only on z, and by our neglect of flow u, in the z
direction. Eq. (2) is Poisson's equation. simplified from the full equation by
neglect of the contributions from the z and z components E; , of the electric
field. and by our replacement of the electron density by a static neutralizing
background ng. Eq. (3} is the z component of the “E x B drift,” describing
the response of a magnetized plasma to an electric field applied normal to
B. One notes that Eqgs. (1} and {2) are differential equaiions, while Eq. (3)
is algebraic, and may be thought of as making u. a subsidiary variable, a
specified function of Ey. Using it in Eq. (1) to eliminate u. in faver of
E,. one sees in Eqgs. {1.2) the self-consistent coupling characterizing plasma
problems generally: the motion of the plasma (here characterized by the
single variable n) is determined by the fields [Eq. (1)], and the fields {here
described by the single variable E,) are determined by the plasma {Eq. (2).
The structure is the same for the FFM, but there, several more variables
are required to represent the state of the plasma, and the fields. Moreover,
while the FF)M is a system of pdes in 4 independent variables (¢, 2.y, z), for
the SFA this nunber has been reduced to only 3, (¢, z,y).

The task which CALC will be asked to perform is to find the linear re.
sponse behavior of the variable £, assuming it is governed by the SFM.
There are two steps to be taken here. First is the process of collecting the
set of equations governing the problem, within the confines of some chosen
theoretical model (here, the SFM). This should yield the set (1-3). Second,
finding the “linear response™” behavior of these equations implies following
a certain perturbative approach to solving the system (1-3}, involving the
following steps: (a) First, compute the "equilibrium” for this system of
equations. This entails setting all the time derivatives to zero, 2nd, further
simplifving the equations by using the symumetries of the geometry at hand.
finding the steady-state values v} for the dynamical variables of the problem
‘in this case, {v'} = {n, E,},(: = 1,2}, and, through Eq. (3), u. . (b) Lin
earize the equations about the equilibrium, and sclve for the linear portion
viit) of the v's. This is facilitated by Feurier transforming the solution in
each of the syaumetry directions of the unperturbed problem (in the case of
the SEAM problem, ¢ and y). Equivalently, this means writing the v} as ar



amplitude ©}(z) times the “eikonal” factor expi(k,y — wt). This substitu.
tion turns differential operators into algebraic factors, making the resultant
linearized equations easier to solve. From these equations one determines
the system’s “dispersion relation.” i.e., the equation D(w) = 0 which deter-
mines the {possibly complex) eigenfrequencies w of the linearized equations.
Instability is implied if the tmaginaiy part of w is positive. Lastly. (¢} solve
the dispersion relatior for the eigenfrequencies, and, knowing these, solve
the linearized equatious for the system eigenmodes.

This concludes a briel characterization of the problem to be treated. from
a human perspective. In the following section, we will see that the process
which the Apprentice goes through in collecting the relevant equations and
physical variables, assessing their roles in the problem and, on the basis of
this, choosing a solution approach, is quite parallel.

3. The Automated Linear Response Calculation

\WWe now turn to the approach which PAP takes in solving the SFM
probiem deseribed in the previous section. In writing input to or output
from the Apprentice, we will avoid the use of MACSYMA-spacific notation
where possible. rewriting the mathematics in more standard mathematical
notation. However, it will be helpful to use it occasionally, Thus. square
brackets in such exp-essions, enclosing comma-delimited cornponents. des-
ignate a list. The MACSYMA function get(vr,p) returns property p of
variable vr. the function put(vr,vl,p) gives property p of variable vr the
value v1. and the Junction part(1,i) returns the ith part of list 1. An un-
derscore is a legal character within a symbol name. Other symbolic notation
is common to MACSYMA and many other programming languages. and so
should be clear.

The desired calculation is invoked by issuing the command

calc{lin rsp( £}, [geometry=slak ,model=sim]).

The first argument exp {with value lin rsp(E,) here] is the object to be
calculated. The second argument, empentxt, is a list of qualifiers specifving
the “computational context” within which the calculation is to occuril'. At
certain points in the calculation. CALC makes use of information about the
particular gepmetry (if any) being considered (e.g.. symmetry directions).
and it finds such information by checking cmpentxt for geometry gquali-
fiers. The qualifier model=sfm is used by PAP in selecting from the KB as



governing equations those of the SFA. Far example, Eq. (2) is to be used in
determining £, rather than the full Poisson’s equation, which would enter
for the FFM.

Easlier, exp had to be a purely algebraic object, 1.e., one involving only
the standard algebraic operations. This made the range of tasks which could
he expressed to CALC too resrrictive to deal with many tasks of interest.
For example, the sequence of operations invelved in a linear response cal-
culation, outlined in the previous section, cannot readily he described in a
single algebraic formula. Rather, a more natural description is in terms of
a procedure, each of whose steps may involve algebraic operations, or still
other procedures. A purely algebraic expression may also be thought of as
describing a particular simple class of procedures (e.g., “first, add z to 3,
then, multiply this result by the sum of ¥ minus 7,..”), so this extension of
the allowabie domain of exp represents a natural extension of the language
which CALC understands. The operator 1in_rsp acting on the variable E,,
in the invocation of CALC above is the name of a non- purely-algebraic pro-
cedure. We refer to such procedures as “scripts,” intended to denote, as in
the use of the term in natural langnage comprehension, a sequence of events
or operatiors being implied by some shorthand designation. Currently. en-
counter of a script name is noted by adding a qualifier to empentxt. e.g..
calctyp=lin_rsp. At certain points in CALC’s operation, indicated below.
the presence of script qualifiers in empentxt are checked for, and if present,
these aHect the choices CALC makes.

We now consider the general methed by which the calculation is car-
ried out. CALC runs in a cxrcle, consisting of first assembling the relevant
equations to be solved (via the function KITOGEN), then apalvsing the
structure of this system of equations (GENSUPRTREE,CLASSIFY), then
solving them {SFRSND), and then absorbing the solution so obtained into
the svstem's KB (DIGEST-SOLN). Often, these solutions introduce new
variables into the problem. to which the same ¢ycle must then be applied.
until no new variables are introduced.

I now discuss the cvcle in a bit more detail. First, the [unctien KI-
TOGEN generates a “solution net” for the problem|[1!, a graph showing
the connections among the variables 2nd equations involved. (As noted in
Ref. 1. “KITO” stands for “Known In Terms Of.” the question answered by
the solution net.) The solution net developed [rom the initial application of
KITOGEN to linrsp(E,) is shown in Fig. 2. This given task is assigned
to the root node ndl of the net Newly encountered variables, and their



node names, are stored on a list called stack. KITOGEN terminates when
all variables encountered have ber .1 properly added to the sulution net, hence
when stacit is empty. Given a node is yet untreated, if the node value is a
nonatomic expression, KITOGEN creates « new child node for each variable
in that expression which has not vet been encountered, linking the parent
expression with the child variable by an appropriate arc. If the variable
has already been encountered, only a new parent-child arc is created. If the
nude value is a variable v, KITOGEN looks under the givenby property of v
to see what equation it should use ta determine it. If the equation Ey(v,...)
for v is of the “unravelled" form v = 17(...), with the function V indegen-
dent of v, then a child node to v's node is created, with value V{,..). In the
SFM example (Fig. 2), such an equation is Eq. (3), with v — u,. If E, is
not of this form, so that it must be solved for v, then instead *he child node
created lias value solvefor(E., v) [abbreviated to sfx{E,, v) in Fig. 2}, and
this node is put on the list sfrstack, in addition to being attached to its
parent node in the solution net. Such nodes in 'ig, 2 are nd3 and nd§,
corresponding to Eqs. (2) and (1), respectively. If no equation is found from
the request get(v,givanby). the node is a terminal (i.e., “leal") node, and
v ts treated as a fundamental quantity, such as e or y in Fig. 2.

At the end of KITOGEN's operation, a solution net has been generated,
stack is empty, sfrstack contains the nodes representing each of the equa-
tions (or sets of equations) which must l;# solved, and from the net structure,
a preliminary classification of the variables encountered has been developer .
for subsequent use (see below).

The objective now is to determine how to simultaneously solve all of
the equations whose nodes are i, sfrstack, for all the variables listed thesa,
Often. this task can be decomposed into a number of separate subsets «{
equations and variables, which, when possible, considerably lessens the dif
ficulty of solution. The decomposition is accoraplished by the routine GEN-
SUPRTREE. which partitions the solution net into a covering retwcrk of
“strongly connected components,” or “supernodes,” i.e., collections of nodes
having the property that each node in a given supernode is both a descen-
dant and an ancestor of every other member of the supernode, and therefore
of itself. While this "super-net"” is not necessarily a tree, it does share with
trees the property thar it contains no loops {circuits) as the solution -t
may. and therefore establishes a clear order in which the supernodes are
to be solved. viz. from the terminal supernodes upward (i.e., toward the
ancestor supernodes).



The initial stage of the problem, shown in Fig. 2, possesses orly a single
nontrivial supernode (i.e., one which contains inore than a single node)
sndl, and this conta‘nus all of Eqs. (1-3). Thus, the topology of the solution
net, as brought out by its supernode structure, reflects the coupling which
exists among the equations in the problem. The full scintion net, shown in
Fig. 3, possesse: two additisnal snpernodes snd2 and its parent and3. These
correspond, respectvely, to the zero and first-order portions of the problern,
and, as :f.e direction of descent correctly indicates, it is first appropriate to
solve the zero-nedar supernode end2, and then snd3.

The transport caleulation, in contrast, had ne nentrivisl supernodes,
hence no coun!ing of the equations to solve. It is in this sense that the
structure of the lransport calculation is simpler than the linear response
calculation for either the SFM or FFM, and for this reason that the earlier
CALC contrei structure could cope with it. Moreove., the supernede struc-
ture of the SFM and FFM problemns are idertical. though the nontrivial
supernodes for the FFM eack contain more nodes. This corresponds to the
human sense that these two problems have essentially the same structure,
but with the SFM being simpler in detail.

The supernode structure heing determined, the supernode-solving rou-
tine SFRSND is called .uccessively on the supernode of tie first element of
sfrstack, until sfrstack is einpty. Once a supernode snd has been solved,
SFRSND removes all nodes which snd has in sfrstack. Befcre soiving a
given supernode, SFRSND first checks that all its children have been solved
and, if rot, recursively appliee SEFRSND to them. In the SFM illustration,
for example, this ensures that the zero-order problern will be solved before
the first—arder problem.

Having found a supernode to be solved, SFRSND assembies, from all
its nodes in 2frstack, the full set of equations (assembled iato a list eqlst)
and variables v' (assembled into a list vist) for which it is to selve. It
then calls the routine CLASSIFY, which uses the structure of the equations
in eqist ta partition the variables oceusring in this snd’s subproblem into
“variable classes” VCi (i=0-1). VCO is the set of constant parameters in
the problem, VC1 is the set of “independent variables” (¢, z and y, for the
full SFM problem of snd1), \'C2 is :hat subset of dynamical variables v*
in vist judged to be deterwined by a differential equation in eqist, while
VC3 is that subset of vist judged te be determined by equations in eqlst
which are algebraic in thouse ¢*. Finally, variahle class VC4, containing
those variables (like u. in the SFA probler) which may e regarded as



auxiliary functions of the other varjables, has already been determined by
the preliminary classification occurring in KITOGEN. Parallel to each of
VC2-4 are equation lists eqlst2-4, containing the determining equations of
the corresponding VCi. On this first pass, CLASSIFY returns

VCo = [E, B, Cy Uyns 1100}

VEL = [t, .,y

VC2 = [E,. n]
YCI =1
VCY = u.)

eglst2 = [3,E, = 4me{n — ngqa), Ben + uyodyn + 8(cEyn/B) = 0]

eqlstd = | ]

eqlstd = [uxeq),
where uxeq means Eq. (3). One notes that the variable classification is in
accrrd with the roles which a human weuld assign them.

Solving a supernode means obtaining expressions for each of the v' com.
prising VC2 and VC3 of the “un:zvelled” form mentioned above in connec-
tion with KITOGEN. On obtaining such a form for a v*, it is transferred
from VC2 or VC3 to VC4, and the corresponding unravelled expression is
placed on eqlst4. 1t should be noted that this variable partition is relative
to the given supernode under consideration. A given variable plays different
mathematical roles for different supernodes.

Once the classification from CLASSIFY has been obtained, SFRSND
first calls subroutine SFA, which solves the algebraic equations in eqlst3 for
the variables in VC2, then transferring these to VC4. Using the equations
in eqlst4, the differential equations in eqlst2 are then written just in terms
of the variables in VC0-2, by the subroutine VC4XPND. The differential
equations in this “expanded” form are then submitted to subcoutine SFD,
which attempts their solution. SFD refers to empentxt for indications of
what kinds of solution procedures might be appropriate. There, the qualifier
calctyp=lin_rsp tells SFD that the perturbative procedure, outlined at the
end of Sec. 2, should be used. In the transport calculation, in which cmpe-
ntxt provided no such information, CALC first embarked on a qualitative
analysis of the kinetic equation whose solution was required, and on this
hasis decided to attempt a perturbative solution. Here, CALC is informed
from cmpentxt that a perturbative solution is appropriate, and so is able
to skip the initial analysis of the kinetic equation. This decided, however,
the routines employed to generate the expansion hierarchy, which essentially



encapsulate a certain mathematical technique, are the same.

For some systems of equations, SFA and SFD are able to solve the equa-
tions outright. and when this occurs, they return a list of the desired unrav-
elled equations giving the sought-after v'. For other problems, the “solu-
tion" returned is not a real solutior, but is instead a formal solution in terms
of new variables, which must themselves be solved for in order to genuinely
solve the problem, but for which the governing eguations are (hopefull+)
simpler than those for the original set. This parallels, of course. a familiar
Luman technique for reducing the complexity of a problem. For the linear
response solution procedure described at the end of Sec. 2 (and in many
other cases as well), two such formal solutions are used. The first was the
introduction of an expansion, Y= vy +€v} +.. ., In which the new dynamical
variables introduced are the vj and v}, and ¢ is an expausion parameter. The
second was the introduction of the eikonal form for the first-order variables,
ri{t.z,y) = 0#{{z) expi(k,y —wt), with new variables the v}. From the initial
call to SFRSND on the SF)M problem, for example, where VC2=(E_, ni and
VC3=[], all the equations to be solved are differential, so that only SFD is
called, returning a list of the form [solutions, IFWAICH, naw_info]. Here,
solutions is a list of solutions for variables already encountered. In the
present case, solutions is

ng = ”00(:)' Ey = Ep = 6E‘y’l exp i(kyy - wt),

R = ngo{z) + enyexp i(k,y — wi)l.
This introduces some new variables (e.g., £,,), which are determined by new
governing equations. The latter are contained in the list 2ew_info, along
with some additional qualifiers (xpnparm=¢,eiknl=. ..}, which provide both
CALC and the user with useful information. For the present calculation,
new_info is

‘givenby([Eyol, (¢ Epo/B)8znm(zr) + (cnoo{z); B} Eyp = 01),
givenby([Evl, 2],
iik‘lEvl = {men,, (CEyl ,"’B)a,ng(](t‘) —wny +ikyfll Uy0 '.—(Cflj,' B)axfyo = D),
xpnparm = ¢, eiknl = exp i{k,y - «t);.
This response from SFD and SFRSND is structured so that its English
meaning when read from the terminal is basically self-explanatory.

The output from SFRSND is then given as input to the routine DIGEST-

SOLN, vhose function is to absorb this information into the solution net,
and into che system's KB. The new information to the solution net comes
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from soluzions: variables previously given only by nodes solvefor(.,.}
in the net now are given by unravetled expressions. These new axpressions
are dulv artached to the nodes for the variables they describe. these nodes
are put into stack for treatment by the next call of KITOGEN, and those
newly unravelled variables in variable class VC2 are transferred tn V4,
rompleting the bookkeeping mentioned earlier. The additions to the KB
come from new info. Thus. the 1wo givenby(.,.) forms in new_info cause
the governing equations for the zero and first-order parts of the problem to
be put under the “givenby"” property of these newly iutroduced variables. so
that KITOGEN may treat them on the second pass of the problem in just
the same fashion as it dealt with the original members o!'its KB on the first
pass. In this sense, PAP is able to “learn,” i.e.. to expand its KB with new
findings in a uniform fashion.

The first jtem in solutions has a somewhat different origin from the
rest. In the process of generating the equation hierarchy given in new info.
for the first pass of the linear response problem. SFRSND calls subroutine
IMPOSE-EQUIL-CONDE, which makes use of geometryv-specific informa-
tion. in this case stored unider the variable slab, 1o incorporate specializing
features of the equilibrium geometry under consideration inta the governiug
equations. This includes use of the svmmetry directions, and also mav in-
rtude particular forms normally assumed about certain physical quantities.
[n this case. no = nen{z) specifies that ng is to be given by the background
density ng = noo(z), hence treated as a known but unspecified function of x.
overriding equations from the equation hierarchy which would otherwise be
used 1o solve for it. Thus, the total geometric information used in this ralcu-
lation is stored under two properties of s1ab. Under the property sym.dirns
is stored the list t,y, =}, and under the property subst_1ist is stored the
substitution ‘ng = nge(z) .

From the givenby forms in new_info and from Fig. 3, one notes a feature
with which CALC has been provided, needed in order tu permit it to deai
with solving coupled sets of equations for sels of variables. If the givenby
forms only specified a single variable v and a singie specifving equation
eg, each givenby could simply be implemented in DIGEST-SOLN by the
MACSYMA command put(v,aq,'givenby). Since instead sets of coupled
variables and equations are -ed. it is ne longer alwavs possible 1o assign
a given new equation to a sp new variable. An example is the first order
set of equations shown abave, m which ny and E‘vl enter on equal footine.
Accordingly. such sets of equations are assigned to the givenby property
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of a “variable-set™ variable (in this case, called vrblset2), aitd the set of
variables ' £,y, ;! is assigned to vrblset2’s vrbls property. For consistent
extension of the KB, therefore. DIGEST-SOLN puts part{vrblset2,1}
under E’y.’s givenby, and similarly for ;. With this :tructure, the next
pass of KITOGEN, operating just as already described, will correctly link
the variable sets and equation sets as illustrated in Fig. 3, without having
to make any artificial assignments of individual variables to equations.

This completes the first cvele, in which the equations of the full prob-
lem have been trezted. resulting in the attachment to the solution net of
expressiotis involving the variables of the zero and first order portions of
the problem. The second pass is then entered, and praceeds in the same
way. Now. GENSUPRTREE finds two new supernodes snd2 and snd3.
as already mentioned. Following the structure of the ‘supertree,” SFRSND
is first applied to snd2. which in this case involves solving only a single
differential equation for E q. carried out by SFI7. Then, SFRSND solves
snd3. which is a simple algebraic system of two linear equations. For linear
response calculations such as this one. SFA returns the form

E,y.hy, INWHICH,

. ek, —dme E
—— v B gy
givenhy(w, c: B3cngg(z) thyuy - 1w J [ Ay } 0)!

The equation to be placed under the givenby property of w here is the eigen-
mode equation, aud setting the determinant of the matrix in that equation
equal to zern vields the dispersion relation. This information is absorbed by
DIGEST-SCLN, and both stack and sfrstack being empty, CALC returns
the final response,

tE, expijkyy — wt), INWHICH,

o ik, —4me S .
givenby(w, c/ B8 nge(z) ikyuyg—iu} { 7ty ]_D)'

Onlv the final step of the solution procedure cutlined at the end of Sec. 2, the
actual solution of these equations, has not been carried out, this being within
the reach of scandard symbolic algebra facilities, or of newer extensions of
these (e.g., Sacks' NEWTON program [3}, which is able to approximatelv
sulve a wide range of algebraic equations, extending the range of problems
exactlv solvable by the MACSYMA routine SOLVE). CALC returns the
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form shown above, which bridges the gap between the problem statement
and existing algebraic capabilities, and shows in a perspicuous fashion the
information of interest in a linear response problem.

4. Discussion

Regarding CALC as a particular type of problem solver, one notes that it
implements the common problem-solving technique of attempting to convert
a problem into a set of simpler subproblems. each of which is nearer to
“primitive” problems, in this context, thase which are imumediately solvabje
by existing automated algebra facilities. We have seen two general ways
ir which this process of prnblem reduction is carried out: (a) “problem
transformation,” i.e., intreducing a “formal solution,” whose form captures
something about the nature of the problem. resulting in more tractable
equations for the new variables introduced by the formal solution, and (h)
“problem partition,” achieved by studying the topology of the equations in
the problem, as represented bv the solution net and its covering super-
net. These two melhods are adequate to allow PAP to deal with both the
transport and linear response problems considered su far.

Figuring importantly in these two techniques is the process of ciussifi-
cation of the equarions and variables in the problem. For example. the VCi
variable classes are used i applying both the perturbation expansion and
eikanal types of problem transformation, as well as the non-formal solution
methods employed by SERSND. The attributes in terms of which this clas-
sification is described give the beginnings of a semantic significance. i.e., a
meaming, to the variables classified. While MACSYMA is indifferent to a
variable's significance, the meanings which a scientist attaches to the diffes-
ent variables In a set of relevant equations play a great role in how he thinks
about the equations, and what manipulations on these equations he is likely
to attempt. The variable classification which CALC uses, and its 2ffect on
CALC’s solution strategy, models in a simple way this more human way of
thinking about doing mathematies.

The variable classification evolved in order to permit CALC to svlve
systems of equations, and is therefare essentially mathematical in charac-
ter; it does not vet possess sornething which might be identified with the
physical associations whicl: 4 human attaches to the quantities appearing
in physical equations, except insofar as the mathematical role the variables
play determines the wav people chink about them physically. Thus, while a



fiuman has a quite different mental image of mass and electrical inductance,
to CALC applied to considering the mathematically identical problems of a
damped simple harmonic oscillator and an LRC cireuit, they are completely
isomorphic, and therefore indistinguishable. This isomorphism is something
which would be broken by a more fully developed KB, one from which it
would be possible to consider problems in which both mechanical and electri-
cal elements are present. Additionally, however. there is in CALC’s present
operation nothing of the human difference in visualization of these two sys-
tems, which probably also significantly affects how a human goes about
getting a physical feel for a problem. However, it is unclear in what way
two systems, governed by precisely the same mathematics, may be distin-
guished, the difference in visualization menticned above perhaps amounting
to two representations of the same system, induced by the human sensory
apparatus, with different strengths and weaknesses for purposes of analysis.

The current variable classification resides in two places, in the VCi vari-
able classification, and also in the KB, both in the “permanent” portion
KBO. present at the start of PAP's operation, and in the extension dKB,
developed in the ¢ourse of the calculation. An example taken from dKB,
illustrating some of the classifying attributes needed for CALC's operation.
is the list of properties developed for the first order density n, in the course
of the calculation:

property value

givenby ny = Ry exp i{kyy — wit)
depends_on itz y

xpansn_coef_of n

origin xpansn_coef_of

This may be parapkrased as “m i givenby the (eikonal form ...). It
depends upon the VCI variables ¢, z, and y. It was created as an expansion
coefficient of the variable n.” The last attribute here ties n; to n, which,
in addition to providing needed information to SFRSND for the present
problem, also allows =, to inherit useful information from n. This helps to
fulfill a design criterion for PAP, that, like a human, it shouldn’t have to be
told the same information more than once.

Related to the issues of variable semantics and classification, it is worth
reiterating the central role in CALC’s operation played by the solution net
and its associated super-net. As already indicated, these objects capture
something of what humans think of as the “structure” of a calculation, so

15



that similar calculations have similar solution net structures, Solution nets
thus fill a similar role to the semantic nets used in theories of reasoning and
learning by analogy /4], or to automated analysis of case law [5].

Finally, a significant aspect of PAP which has evolved with the present
work with CALC, and for which further evolution seems important, is the
language in terms of which PAP and the user communicate. This should be
rich encugh that many of the plasma physics questions one might wish to
ask can be phrased within it, in a fairly natural format. The mathematical
»scripts” illustrated hete in a simple way seem to offer significant potential
for extension of the PAP language, as do the English~like compound forms
(e.9.. [solutions, INWEICH,new_info]l} in terms of which PAP routines
can communicate their findings to other routines, and to the user.
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Figures

Fig. 1. Depiction of the physical situation considered in the sample problem
to which CALC is applied. To a plasma density ng(z) varying in the
2 direction, and uniform in the y and z directions, is applied a small
perturbation ny, sinusoidal in the y direction.

Fig. 2. Solution net generated by the first call to KITOGEN on the SFM
prablem. The main goal {at “root” node ndl; appears at the top, and
subgoals arising from this main task appear below it. The upward di-
rected dashed lines lead to nodes already established at the time of the
rreation of the “parent” node from which they emanate. The upward
directed line labelled nd2 emanating {rom nd13 indicates an arc which
goes to nd2, not drawn for simplicity of display.

Fig. 3. Complete solution net for the SF)M problem, using the same con-
ventions as for Fig. 2. and in addition indicating the three nontrivial
supernode groupings.
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