ORNL/TM-13470

Tom Dunigan
Cathy Cao

=

oy

=

e

o

2

-
=
-

:

S

=

)
. .
i aw)m“«

-

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific
and Technical Information, P. O. Box 62, Oak Ridge, TN 37831, prices
available from (423) 576-8401, FTS 626-8401.

Available to the public from the National Technical Information
Service, U.S. Department of Commerce, 5285 Port Royal Road,
Springfield, VA 22161.

This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the
United States Government of any agency thereof. ’

DISCLAIMER

Portions of this document may be illegible
electronic image products. Images are
produced from the best available original
document.

ORNL/TM-13470
Computer Science and Mathematics Division

Mathematical Sciences Section

GROUP KEY MANAGEMENT

Tom Dunigan and Cathy Cao

Mathematical Sciences Section
Oak Ridge National Laboratory
P.O. Box 2008, Bldg. 6012
Oak Ridge, TN 37831-6367
thd@ornl.gov cao@cs.utk.edu

Date Published: August 1997

Research was supported by the Office of Scientific Com-
puting of the Office of Energy Research, U.S."Department
of Energy. '

Prepared by the
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831
managed by
Lockheed Martin Energy Research Corp.
for the
U.S. DEPARTMENT OF ENERGY

under Contract No. DE-AC05-960R22464

Contents

1 Imtroduction e 1
2 Backgroup and related work oo oo Lo L. 2
2.1 PublicKeys e 2
2.2 Difhe-Hellman 3
2.3 IPv6 and secure multicast 4
24 Secure PVMo 5
2.5 Tree-based key distribution 5
26 GKMP e 6
3 Group Key Management Architecture 7
3.1 Message protocol L L o 9
3.2 Group Authorization 11
3.3 Keyescrow e e 13
4 Implementation e 13
4.1 Certificate infrastructure L. 13
4.2 APIL e 14
4.3 Performance o 15
5 Critical Analysis oo 16
5.1 Limitations e e e e e e 16
5.2 Comparison with GKMP 16
53 Scalability L0, e e 17
5.4 IntegrationwithIPsec 18
6 Summary e e e e e e e e e e e e e 19
7 References L e 20
A Implementationnotes L L oL, 23

- 1ii -

GROUP KEY MANAGEMENT

Tom Dunigan and Cathy Cao

Abstract .

This report describes an architecture and implementation for doing
group key management over a data communications network. The archi-
tecture describes a protocol for establishing a shared encryption key among
an authenticated and authorized collection of network entities. Group ac-
cess requires one or more authorization certificates. The implementation
includes a simple public key and certificate infrastructure. Multicast is
used for some of the key management messages. An application program-
ming interface multiplexes key management and user application messages.
An implementation using the new IP security protocols is postulated. The
architecture is compared with other group key management proposals, and

the performance and the limitations- of the implementation are described.

1. Introduction

The Internet and private intranets are increasingly being used for business, gov-
ernment, and military communication. Information flowing over these networks
often needs to be authenticated and perhaps encrypted to protect against modifi-
cation or disclosure. Information protection is usually provided by each applica-
tion, if provided at all. Standards and implementations are being developed that
would provide information protection for data flowing between pairs of network
applications. However, there is a growing body of group software, where several
applications or computers collectively communicate, providing shared access to
files, whiteboards, video, and audio. These group applications could protect their
communications with a massive collection of pairs of encrypting keys, but many
group applications utilize multicast protocols. With multicast, only a single copy
of a message is transmitted but it can be received by all members of the multicast
group. Clearly a single group key is needed for protecting multicast communi-
cation. This report looks at techniques for protecting communication among a
group of participants. Specifically we define an architecture that '

e specifies group communication policy
¢ defines group membership requirements

e generates and distributes a group key

The architecture is flexible and extensible, allowing one to specify various algo-
rithms for encryption, signing, and hashing. Strong authentication and autho-
rization is required, but centralized key servers and complex public key infras-
tructures are avoided. The associated protocol is efficient in terms of memory,
bandwidth, and number of messages. Key management and group access are
managed by members of the group. The architecture provides perfect forward
secrecy or optional key escrow.

An implementation of this architecture is also described in this report. The
implementation is self-contained, providing the necessary certifying infrastruc-
ture. The implementation is portable and interoperable over various computer
architectures and UNIX operating systems. The implementation includes a sim-
ple application programming interface (API). The implementation is simple to
deploy and economical to operate.

The organization of this report is as follows. The next section reviews other
research related to key management. Section Three describes our group key
management architecture. Section Four describes our current implementation.

Section Five compares our architecture and implementation with other group key

-92-

management schemes and describes how the architecture might be implemented
under the developing IP security protocols. Section Six summarizes our findings
and suggests further work. This report is is a synopsis of the work reported in
[6].

Our research makes only a few assumptions. Our group key management ar-
chitecture assumes the existence of a public key infrastructure in order to provide
strong authentication. As part of the implementation, we have provided a simple
public key infrastructure and mechanisms to create the necessary certificates for
authenticating group members. Though our long-term goal is to provide scalable
group key management, the funding agency was specifically interested in a work-
able solution for only dozens of members. Thus the current architecture manages
only a limited number of members. The architecture does not assume or require
the existence of the developing IP security protocols.

2. Backgroup and related work

There are several critical technologies that are required for our group key manage-
- ment architecture. In this chapter we summarize those technologies and review
related works on key management.

2.1. Public Keys

The cryptographic tools that are needed to provide secure communication (in-
tegrity, privacy, and authenticity) are hash functions, encryption functions, ran-
dom number generators, and public key functions. Hash, or one-way, functions
like MD5 [24] or SHA [25] provide message integrity. Encryption functions (DES,
IDEA, Blowfish, RC5 [25]) use a shared secret to encrypt and decrypt messages,
providing message privacy. The strength of an encryption algorithm is usually
in proportion to the key length. Strong (unpredictable) random numbers are
needed for key generation.'

Shared-secret cryptographic systems are difficult to manage. One needs a
secure channel to establish the shared secret between two parties. For n parties,
each party needs to establish shared secrets (keys) with each other, or there needs
to be a central, trusted key distribution center (KDC) that can establish a key on
behalf of one or more parties, for example, Kerberos [19]. One of our design goals,
however, was to avoid a such a central point of failure and potential performance
bottleneck. Finally, shared-secret systems do not provide strong authenticity to
a third party - if two people share a key, a third party cannot be certain which
of the two was the originator of an encrypted message.

-3

Public key algorithms like RSA and DSA [25] simplify key management and
provide message authenticity. Each party has a public/private key pair. The ‘
public and private keys are mathematically related. The private key must be
kept secret, but the public key can be published in a directory or otherwise made
publicly available. Alice can encrypt a message for Bob using Bob’s public key.
Bob can decrypt the message using his private key. Alice can encrypt (or sign)
a message with her private key, and others can use her public key to verify that
Alice, and only Alice, signed the message. Encryption/decryption (or sign/verify)
involve many multiplications of very large (1000-bit) numbers and can be quite
slow — a thousand times slower than secret-key encryption algorithms [23]. As a
result, when Alice digitally signs a document, she usually signs (encrypts) a hash
of the document. ‘

Although distributing public keys is easier than distributing shared secrets,
one still needs a mechanism to assure that a public key really belongs to Alice or
to Bob. Public keys are often signed by a certifying authority or by a friend, and
these signed keys (or certificates) are distributed informally or by a directory ser-
vice (e.g., X.500 or even the Internet domain name service). If someone manages
to discover your private key, then you need a way to invalidate the public key.
So one often needs a public key infrastructure to name, certify, distribute, and
revoke keys. Most of the key management protocols, including ours, assume that
a public key infrastructure is in place. However, our implementation provides its
own simple infrastructure similar to that proposed by Ellis [7].

2.2. Diffie-Hellman

Given a public key system, one could use it to encrypt and decrypt messages
between two entities, but the computations are slow. Also if the two parties
already share a secret, that secret could be used to encrypt messages. However,
to protect past encrypted traffic, neither of these approaches is satisfactory. It
is desirable to have a new traffic encrypting key for each session. Using a new
traffic key not derived from previous keys provides “perfect forward secrecy” [14].
That is, learning the key for one session provides no information on the key for

past or future sessions.

An algorithm that provides perfect forward secrecy was described by Diffie
and Hellman [8]. Like public key schemes, it is based on the exponentiation of
large (1000-bit) numbers. The Diffie-Hellman algorithm is used by many key
management protocols and applications. It permits two entities, Alice and Bob,
to establish a shared secret. A prime, p, and generator, g, are publicly known.
Alice generates a secret random number a and calculates o = ¢g* mod p. Bob

-4 -

generates a secret random number b and calculates 8 = g® mod p. They exchange
o and B, then their shared secret is a® = 4% = ¢ mod p. An eavesdropper
hearing the exchange cannot calculate the shared secret without knowing one of
the secrets a or b, and cannot easily calculate a or b from the exchange due to
the intractability of doing discrete logarithms. The algorithm is vulnerable to a
person-in-the-middle attack, but that can be avoided if Alice and Bob sign their
exchanges with their public keys.

Diffie-Hellman can be extended to establish a group key by having the group
members do exchanges with a designated group controller or by arranging the
members into a ring. Ingemarsson [17] describes a conference key distribution
system using Diffie-Hellman with the members arranged in a ring. Paoli [23] also
describes a ring-based system for conference key distribution. The conference
key models often assume a single packet source {e.g., the conference speaker or a
pay-tv system) and that the packet source shares a different secret key with each
source. Just [18] and Burmester [5] also describe extensions to Diffie-Hellman to
support multi-party key establishment.

2.3. IPv6 and secure multicast

Substantial progress has been made in defining and implementing the security
options associated with the next version of IP [1]. Security extensions are defined
to provide both authenticity and encryption to the current generation IP (IPv4)
and to the new version (IPv6). The effort has been directed toward pair-wise
communication security and not group or multicast security. Two hosts establish
a security association (SA) that describes the algorithms and keys to be used
in secure communication. The SA is referenced by destination address in con-
junction with a Security Parameter Index (SPI). A number of key management
protocols have been proposed, including ISAKMP [9], SKIP [2], and Photuris
[28]. These protocols negotiate the SA parameters (algorithms for encryption,
hashing, signing, lifetimes, etc.) and establish the secure channel, assisted by a
Diffie-Hellman exchange.

We have done some experimenting with Naval Research Lab’s implementation
of IPv6 along with Cisco’s ISAKMP implementation. ISAKMP is in turn based
on the Oakley key management protocol [14]. The privileged ISAKMP daemon
does SA/key management through the PF_KEY interface [21]. When machine
policy or the application requests an SA, the kernel notifies the ISAKMP daemon
which then negotiates with the destination daemon, and then both set up the SA
structures in the kernel. The key exchange involves some sort of authentication.
In the case of the ISAKMP implementation (September, 1996), DSA was used

for authentication.

The IP security architecture [1] notes that association management for multi-
cast applications is not trivial. The destination address of a security association
can be a multicast address, but some third party or member of the multicast
group will need to establish the SA/SPI and somehow communicate that to the
rest of the group. Then each member needs to establish the SA within its host’s
kernel. Sender authentication is also problematic and does not scale well.

Gong [13] describes the basic elements for trusted multicast (membership poli-
cies, joining/leaving, encrypted/authenticated messaging). He also describes his
Enclave system[12] which provides secure group collaboration over the Internet.
Ballardie and Crowcroft [4] discuss the security threats to IP multicast and the
need for group access control.

2.4. Secure PVM

Secure PVM [10] was our first effort with group key management. PVM [11]
provides a programming library and unprivileged daemons that allow a user to
parallelize his application over a collection of networked hosts. We added a group
key management protocol to the PVM protocol to establish a shared group key
among the networked hosts so they could encrypt PVM messages. Diffie-Hellman
was used to establish a shared key between each slave PVM daemon and the
master daemon. The master daemon established a group key and distributed it
to each slave daemon under their respective Diffie-Hellman keys. There was no
authentication of the Diffie-Hellman exchange, but this was considered to be an
acceptable risk. The master PVM deamon knows who the group members are
going to be — a weak form of an access control list. Other systems with embedded

group key management are Enclave [13], ICKDS [20], and RHODOS [23].

2.5. Tree-based key distribution

Ballardie [3] describes a scalable multicast key distribution protocol (SMKD) that
utilizes the multicast routers of the Core Based Tree (CBT) multicast protocol
[3]. SMKD assumes that the routers and group members have access to a public
key infrastructure. In SMKD, a group initiator provides a primary core router
with a digitally signed access control list for the group. The list enumerates
those hosts and routers that may participate in the secure group cormmunication.

The primary core establishes the security association parameters, SPI, group
session key (GTEK), and key encrypting key (GKEK) for the group. This group
information (ACL, keys, SPI) is distributed by the primary core to secondary

cores as join requests are processed. The group information is signed by the
primary core router and encrypted with the public key of the secondary router.
The group information can be propagated down the routing tree in this fashion.
Thus any number of end node routers can process group-join requests from hosts,
providing a scalable key distribution. SMKD requires some modifications to the
IGMP ! protocol and, of course, assumes that CBT is deployed (which it is not).

The protocol consists of a JOIN-REQUEST and JOIN-ACK message. A host
wishing to join a multicast group uses IGMP to transport a signed token to its
nearest CBT router. If the router does not have the group information yet, the
request is forwarded up the CBT under the signature of each router. If the routers
in the path are authorized, the group information is passed from the primary core
back down the tree. The end router then can verify the requesting host is on the
ACL and send the group information to the host encrypted with the host’s public
key.

Recently, Wallner, Harder and Agee [27] proposed a scalable key manage-
ment infrastructure. The group controller is the root of a key distribution tree
where the intermediate nodes are assigned encryption keys. Each group member
establishes a pair-wise key with the controller (e.g., using Diffie-Hellman), and
each member acquires the keys of the nodes above it in the tree. The memory
requirements for the intermediate keys and the bandwidth requirements (number
of messages) are analyzed.

2.6. GKMP

Harney and Muckenhirn describe the architecture [15] and specification [16] for
a Group Key Management Protocol (GKMP). In the fall of 1996, they also
made available a demonstration implementation. Our work adheres closely to
the GKMP architecture and its goals, but deviates from its protocol specifica-
tion. The GKMP architecture assigns group control to one of the group members.
A group authority defines and signs a group token that lists the group members
(an access control list) and the military security clearance (level and categories)
of the group. A public key infrastructure is assumed, but the group authority
signs the members’ public keys and their clearance. The group controller (or con-
trollers) enforces the group-join policy and generates a group key encrypting key
(GKEK) and a group session or traffic key (GTEK). The architecture describes
key lifetimes and rekeying requirements as well as compromise recovery. Certifi-
cate revocation lists (CRL) are proposed as a means of identifying compromised

1IGMP is a management protocol for IP multicast.

group members.

The GKMP specification describes the various messages, state diagrams, and
protocol used for group key management, though not the specific algorithms nor
detailed message layout. The messages include Diffie-Hellman exchange, group
join, download keys, member permission, group token, multicast rekey, and mem-
ber delete. All group key management messages are signed by the sender and
verified by the receiver. Each member performs a Diffie-Hellman exchange with
the group controller and an encrypted channel is established between the con-
troller and each member. The Diffie-Hellman exchange provides keying material
to the group controller for generating the GKEK and GTEK. GKMP requires
seven messages for a new member to join the group (join request (1), Diffie-
Hellman exchange (2), group token (1), member permission (1), group keys (1),
ack (1)). The group key message is encrypted with the Diffie-Hellman key, and
rekey messages are encrypted with the GKEK. Rekey requires another Diffie-
Hellman exchange between the controller and first member.

Harney’s GKMP demonstration application is a multi-threaded C application
(30,000 lines of code/comments) for Sun OS. Key management demonstration
is controlled from a menu-driven command program demsetup which communi-
cates with dem-drv running on one or more member hosts. Member roles (group
authority, group controller, group member) are assigned by demsetup and then
demsetup can be instructed to initiate key/permission certification, group cre- -
ation, group join, and rekey (not multicast). The public key information (DSA)
is generated as part of the demonstration. UDP is used for message transport,
DSA for message and certificate signatures, SHA for hashing, and DES for en-
cryption.

3. Group Key Management Architecture
The critical components of a group key management architecture are
e a means of identifying group members (authentication)
e a means of defining and controlling access to the group (authorization)
¢ a protocol to join the group and to distribute and refresh encryption keys

e cryptographic software for secure key-management communication

In addition, the architecture should not require any central authority or key dis-
tribution center. The architecture should be self-contained and portable, not
requiring any special hardware or special system-level services or privileges. The

_8-

architecture should provide an application interface that maintains the key man-
agement environment while managing the application messages in accordance
with the group security requirements. Finally, the architecture should be effi-
cient in its use of network bandwidth.

Our architecture uses public/private keys to verify member identity. A group
access policy defines what is required to join the group, and various access cer-
tificates are used to control access and enforce the membership policy. A simple
protocol using signed messages and multicast is used to implement the key man-
agement communication. There are messages to join, rekey, update the key,
rejoin, and locate the group. A suite of cryptographic functions provides encryp-
tion, hashing, random number generators, and digital signatures.

Any network host can create and manage a group. The entity or host defin-
ing a group 1s designated the group authority. The group authority specifies
the group name, or group id, the security policy and cryptographic algorithms
required, and communication requirements (multicast address, port, time-to-live
and management port). This information is conveyed in a group information
token (Table 3.1) that is signed by the group authority. The token includes a
validity period, and the group authority need not be active when the group is
actually convened.

group id
algorithms (cipher,hash,sig)
key length
policy
security clearance
validity period
mcast addr,port,ttl
mgt port
group controller

SPI

access control list

Table 3.1: Group information.

The group information token includes the id (network address or name) of
the group controller. This can be statically assigned by the group authority,
or if the group authority is active, a group discovery protocol is supported. With
group discovery, the first group member contacting the group authority will be
designated as the group controller.

-9-

Using the information in the group information token, a member joins the
group by communicating with the group controller. The group controller enforces
the group policy, validating a member’s id, signature, and access certificates.
The group controller manages key lifetimes and rekeying as well as compromise
recovery.

In the following sections, we will look in more detail at the key management
message protocol and the access control policy.

3.1. Message protocol

Group keys are managed by means of a simple message protocol between group
controller and group member. Each message consists of a header (see Table 3.2) -
followed by one or more payloads. A message is transported over a protocol
such as UDP or TCP. For UDP, the group member is responsible for message
reliability (timeout and retransmission). Each key management message is signed
by the sender, assuring authenticity and message integrity. The message header
indicates the message type and length. The header is not encrypted though
some payloads are encrypted. The message header indicates the keyid of the
key used for encryption, and the policy field indicates the encryption algorithm.
The header also contains a nonce, or cookie, to discourage message replay, and
contains the type of the following payload. Message types include group join,
group rekey, group rejoin. All lengths or other integer values are transported in
network-byte order. Variable length ASCII strings are transported with a trailing
NULL byte (i.e., a C string).

type
policy
keyid

nonce

version
next payload
length

Table 3.2: Key management message header.

Each payload in the message has its own header (Table 3.3). The payload
header indicates the length of the payload and the type of the next payload, or
zero if this is the last payload of the message. Payloads include the group infor-
mation token, Diffie-Hellman values, the various certificates required for joining,
and a signature payload.

- 10 -

next payload
length

Table 3.3: Payload header.

A member wishing to join a group first obtains the group information either
from a pre-delivered certificate or by sending a group discovery message to the
group authority. For group discovery, the first member is designated as the group
controller and the group controller’s name becomes part of the group information
token. Subsequent members contact the group controller with a group-join mes-
sage (Table 3.4). The group-join message is signed by the sender and includes the
sender’s Diffie-Hellman value and any certificates required by the group policy.

message header
D-H value
authorization certificates
signature

Table 3.4: Group-join message.

The group controller processes the group-join request by validating the sig-
nature on the requester’s message and confirming the required certificates are
valid and meet the group policy. If the requester is authorized, the controller
generates his Diffie-Hellman value and calculates the Diffie-Hellman shared se-
cret key. The controller also generates the group keys (GKEK and GTEK) and
sends back a group-join reply (Table 3.5) signed with the controller’s key. The
reply contains the controller’s Diffie-Hellman value, and the group keys encrypted
with the Diffie-Hellman shared secret. The member receives the reply, verifies the
signature, calculates the Diffie-Hellman shared secret key and uses it to decrypt
the group key block.

message header
gc D-H value
encrypted key block
signature

Table 3.5: Group-join reply message.

The group controller may also receive a message from the group authority
indicating the need for a group rejoin because a member has been compromised.
The group controller also monitors key lifetimes and multicasts a group rekey

- 11 -

message which contains a new GTEK encrypted under the GKEK key. If multi-
cast is not supported, the group controller saves each member’s network address
and simulates multicast for rekey or rejoin by sending a unicast message to each
member. (Secure PVM and the GKMP demonstration implementation use only
unicast for key management.) If members notice their keys are out of date (per-
haps, having missed a rekey message), they can send a key update request to the
group controller asking for the current group key.

The simplest mode of operation for an application is to join the group and
then get the GTEK and then disassociate itself from the key management process.
If however, the application wishes to remain under the group key management
protocol, getting rekey or rejoin messages, then the application must conform to
the API and message structure provided by our architecture. Table 3.6 illustrates
the application header that is built and recognized by our APL. The application
header has the same first few fields as the key management message and has the
length of the original application message. (The transported message may have
increased in size to account for padding for encryption and for a signature.) The
header also indicates encoding convention used and the keyid of the encrypting
key.

type
flags (enc,sig,hmac)
keyid
length

Table 3.6: Application message header.

3.2. Group Authorization

The policy field in the group information token specifies the type of authorization
required to join a group. The join request is signed by the requesting member so
the group controller can authenticate the request. At a minimum, the group con-
troller must have a public key certificate for the requester signed by the group au-
thority. (Our reference implementation provides certificate signing by the group
authority.) In addition the policy may require that the requester be on the group
access control list, or have a ticket (invitation), or have a clearance certificate.
The policy can specify that some or all of these certificates are required to join a

group.
Our certificates are much like SPKI certificates [7] and consist of certificate
type, algorithms used for signature, a validity period (start time, expiration time),

- 12 -

subject id, authorization field (what the subject is permitted to do), and the
signer’s (group authority) digital signature over the certificate (Table 3.7). For a
key certificate, the authorization field is the public key of the subject. For a ticket
certificate, the authorization field is just the group id. For a clearance certificate,
the authorization field contains the requester’s clearance level and categories. No-
tice that these certificates are not like a capability (i.e., they are not transferable)
since they contain the subject id and must be transported in a message signed by
the subject to be valid. The group authority can choose expiration times short
enough to preclude the need for certificate revocation procedures. The lifetime of
these certificates is assumed to be short, for example, hours or days. The short
lifetime permits us to avoid the difficulties in maintaining certificate revocation
lists. If a certificate or private key has been compromised, the group authority
or group controller can multicast a group-rejoin request to the group, effectively
disbanding the current group. The group authority can then issue new certifi-
cates or issue a new group token with stronger access requirements {(e.g., a new’
ACL or now requiring a ticket).

type
algorithms (hash,sig)
validity
subject 1d
authorization
signature

Table 3.7: Authorization certificate.

The group information may contain a military type security clearance. This
consists of a hierarchical clearance level (top secret, secret, classified, unclassified)
and one or more categories. If a clearance is specified by the group policy, then
the requester must provide a clearance certificate (signed by the group authority).
A member’s clearance certificate specifies his clearance level and the categories
for which he is cleared for that level. To be admitted to the group, the requester’s
clearance must “dominate” the group clearance.

Though not directly a part of group key management, the policy field also
specifies how application messages should be encapsulated. Application mes-

sages may be integrity checked using a keyed-hash [22] or hashed and sender-
authenticated with the sender’s digital signature and/or optionally encrypted
with the group cipher and key (GTEK). If the policy specifies just encryption,
the encrypted payload includes a CRC-32 checksum for message integrity.

-13-

3.3. Key escrow

The group policy may specify that key escrowing is required. This results in the
group controller building an escrow payload and appending it to all group key
distribution and key update messages. The escrow payload consists of the key
id, GTEK, and GKEK signed by the group controller and encrypted with the
public key of the escrowing agent. Like the US Government Clipper technology
[25], this permits a sniffer to collect the group traffic and then later decrypt it
if one has access to the private key of the escrowing agent. Unlike the hardware
Clipper technology, the receiver does not ignore data with faulty or missing escrow
payloads. The receiver, in fact, ignores the escrow payload. The escrow payload
obviously defeats perfect forward secrecy.

4. Implementation

To refine and validate our architecture, we implemented a group key manage-
ment library under UNIX. The code is written in C (about 3,000 lines) and
utilizes software from ssh [26], RSA, and GNU’s multiprecision arithmetic pack-
age. Appendix A contains additional implementation details and a multicast chat
program to demonstrate the simplicity of the key management calls.

4.1. Certificate infrastructure

To provide a fully operational software package, we implemented software to gen-
erate and sign the various certificates needed for group access control and to serve
as the group authority. We used ssh-keygen to generate our RSA public/private
key pairs and then used our certifying software to create public key certificates
signed by the group authority. Note, our public/private keys are not the ones
used by ssh and our key management software does not use ssh, only some of the
ssh source and key-generation programs.

The certificates are stored in a keys directory, and it is up to the user or a
networked file system to distribute the certificates to the group member’s hosts.
The certificates can use local names and are short-lived. Each member needs
his public and private key and any permission certificates and the public key
certificate of the group authority. The private key should be encrypted and
protected, but the certificates need not be protected since they are immutable
as a result of the accompanying digital signature. The group controller (which
could be any member) needs the public key certificates for all members. The user

interface to the group authority services are still quite primitive, but adequate

for demonstration.

4.2. API

An application wishing to support secure group communication can operate in
one of two modes. In one mode the application remains in the key management
infrastructure. In the other mode, the application joins the group merely to get
a shared key and does not participate in rekeys or rejoins.

For the first mode, the following functions are provided:

group-join() gets the group token for the given group. The group token in-
dicates the group controller and key management port and the multicast
addressing information. The member submits his credentials and joins the

group.

group-open() obtains the file descriptor for the multicast port. This permits
the application to operate asynchronously using select().

group-msend() sends the application data on the multicast channel. The func-
tion builds the header and encapsulates the message (encryption, signa-
tures) as specified by the group policy.

group.recv() receives application data from the multicast channel. Under-
neath, the function handles key management messages as well, doing rekeys
and rejoins. ‘

Appendix A has a sample multicast chat program that illustrates the use of these
functions.
For the second mode the functions are:

group_join() as above, joins the group.
group_getkey() retrieves the GTEK for the group.

group-encap() encapsulates the applications data buffer according to the group
policy. It is up to the application to send or whatever the resulting buffer.
This function gives the application access to the library’s encryption, sign-
ing, and hashing services.

group-decap() decodes a block of data according the the group policy.

The group policy specifies how the application messages should be encoded.
Our implementation provides for application message integrity, privacy, and au-
thenticity. If message integrity is required (and not privacy), then a cryptographic

215 -

message digest (e.g., keyed-MD35 hash [22]) is provided. For multicast communi-
cation with a shared group key, one cannot be sure of who the sender was unless
the message is signed. If sender authenticity is required, then the application
message is signed by the sender. (The receiver will need public key certificates
for senders in order to verify sender authenticity.) The digital signature implies
message integrity as well. The signed message can optionally be encrypted if
privacy is required. If only encryption is specified in the policy, a simple check-
sum (CRC-32) is attached and encrypted with the message to provide message
integrity. The group information token specifies the encryption algorithm (DES,
3DES, IDEA, Blowfish, TSS, RCfour), providing tradeoffs in speed and crypto-
graphic strength.

4.3. Performance

The headers, hashes, and signatures increase the size of messages, but only on the
order of a hundred bytes or so, and our key management protocols require only
two messages per member, so our implementation makes relatively efficient use
of network bandwidth. The memory requirements for group key management are
reasonable and include memory for the key management library code, storage for
public keys and for four encrypting keys (the Diffie-Hellman key, GTEK, GKEK,
and the previous GTEK), and possible storage for the access control list.

Many of the operations involved in group key management are very compute
intensive. Digital signatures require hashing the message and then encrypting
the hash. Hashes are relatively fast, but the hash time is in proportion to the
message length. The digital signature and Diffie-Hellman require multi-precision
" multiplies of 1000-bit numbers. Random number generation for key generation
can be slow and take time in proportion to the number of bits of entropy needed.
Encryption/decryption is somewhat slower than hashing and also a function of
message length, though for the key management function only the group key
block (GTEK/GKEK) is encrypted. (Our API provides encryption/decryption
for the application as well, [10] provides a more detailed analysis of the effects of
hashing and encryption on message passing.)

The actual time for a member join will be a function of the CPU speed of
the member and group controller hosts and of the network latency. The Diffie-
Hellman calculations can take several seconds or more on a 120 MHz Pentium
depending on the speed of the random number generator. A digital signature can
add another second. (On a Sun Sparc 2, a member join can take ten seconds. Cao
[6] provides additional data on cryptographic performance in group key manage-
ment.) This time penalty is inflicted only once for each member at group join. A

- 16 -

later rekey does not require the Diffie-Hellman exchange, since the rekey is done
under the GKEK. If several members attempt to join at the same time from the
same group controller, then some members will be delayed. Such congestion can
occur after a rejoin message is multicast to the group. Multi-threading the group
controller will provide little benefit, since the operations are compute-intensive.
For large groups, multiple group controllers are needed (see section 5.3).

5. Critical Analysis

In this section, we identify the various limitations and shortcomings in our ar-
chitecture. We compare our architecture with Harney’s GKMP [15], Ballardie’s
SMKD [3], and Secure PVM [10]. We also describe how group key management
might utilize the developing IP security standards.

5.1. Limitations

None of the group key management architectures and implementations have had
the benefit of extensive testing or scrutiny. Though group compromise recovery is
supported, it is not clear how group compromise is discovered nor how the group
controller or authority is notified. Scalable compromise recovery is unsolved (see
section 5.3).

Our implementation would benefit from a nice graphical interface for defining
and editing group definitions. It is not clear how one should advertise or discover
groups or how the group definition should be integrated with existing multicast
‘group registries (e.g., sdr). Our certification infrastructure is simplistic.

5.2. Comparison with GKMP

Table 5.1 compares the group key management features of our architecture and
demonstration implementation with GKMP, SMKD, and secure PVM. SMKD
does not actually have an implementation, so it is not clear if it is a tractable
solution to secure group communication. SMKD uses the public key to encrypt
the group key, so perfect forward secrecy is not provided. Secure PVM does not
authenticate its Diffie-Hellman exchanges, but that was considered an acceptable
risk in view of the way slave daemons join the collaboration.

GKMP’s demonstration application does not provide an independent certifi-
cate structure — keys and permissions are built and distributed by the demonstra-
tion control program. Multicast rekey is not actually implemented, though the ar-
chitecture describes it. The implementation does not handle timeout/retransmission.

- 17 -

| Feature || ours | GKMP | SMKD | sPVM |
Y Y

authentication
PKI

ACL

clearance

ticket

escrow

rekey

delete
multicast
SA/SPI

PFS
implementation
portable
scalable Y

Y Y Y
Y

R =<

R <

|]]]]] |]]] o]]

Y
Y
Y

Table 5.1: Comparison of group key management schemes.

The access policy is an ACL and signed clearance certificates. Both controller-
initiated and member-initiated join are supported by GKMP, our architecture
provides only member-initiated join. Our member-initiated join requires. only
two messages compared with GKMP’s seven. :

Our implementation provides additional modes of authorization for group
join, and the group authority may specify the algorithms for encryption, hash-
ing, and signing. Key escrow may be specified, and timers are provided for
timeout /retransmission and for rekeying when keys expire. Our rekey does not
require another Diffie-Hellman exchange, and multicast is used for rekey and re-
join. The implementation provides several levels of abstraction in the API and
compiles and runs on most UNIX systems, even with differing byte orders. Qur
certificate infrastructure provides a simple and portable means to establish a
working group key management system.

'5.3. Scalability

Our group key management architecture scales in the sense that there is no central
group manager or key distribution center for all groups. Each group can have
its own independent group authority and controller. However, if one group has
thousands of members, our architecture does not describe how multiple group
controllers might be deployed. One could argue that it is not much of a secret if
thousands of people share it, so perhaps the need for secure communication for

- 18 -

large groups is of minor importance. Our initial design assumptions permitted us
to avoid this difficult issue. Our group token (and GKMP’s) is distributed to all
the group members, so in theory, several members could act as group controller.
The difficulty is setting up a topology to distribute the control. One needs the
notion of a “near” group controller. For efficiency, the key management topology
should closely match the underlying network topology. For reflector services
like IRC, CU-SeeMe, or NetMeeting, one could use the hierarchy of reflectors
to act as a hierarchy of group controllers. For IP multicast with DVMRP or
PIM, one could entrust the MBONE routers with group controller privileges but
most applications would not be willing to include such routers into their realm of
trust. Wallner and Ballardie both propose scalable, tree-based key distribution.
Ballardie’s SMKD uses the underlying network topology but requires that the
core routers be trusted. With multiple group controllers, synchronizing rekeying
and member-delete becomes more difficult. A scalable group key management
protocol remains an open research issue.

5.4. Integration with IPsec

Since the new IP security protocols [1] are not widely deployed, our short-term
design goal was to develop a group key management architecture at the appli-
cation level. We have done some early testing of ISAKMP [9] with the new IP
protocols and have included an SPI field in our group information token. Bal-
lardie’s SMKD presumes the primary core has established a Security Association
and holds an SPI along with the GKEK and GTEK, though it does not describe
how the SA is created.

Our ISAKMP testing was done with NRL’s IPv6 implementation. Assuming
that implementation, our group key management architecture could be simpli-
fied. Each member would not need to do the Diffie-Hellman negotiation to set
up a secure channel with the group controller. Rather, a member would use the
underlying IP security protocols to establish a secure chanunel with the group con-
troller. We would still need to provide a signed group information token, and the
member would still need to provide signed credentials for joining the group. The
group controller would verify credentials and create a Security Association based
on the specifications in the group information token. However, the current IPv6
implementation does not allow an unprivileged process (i.e., our group controller)
to set the key and SPI for a multicast group.

It is possible for root to manually set up a multicast SA with the key program,
where INADDR_ANY is used as the source address with the multicast address
and key in the SA. To establish the SA under program control we would need a

- 19 -

privileged daemon, a gkmd or an extension to the ISAKMP daemon, to provide
access to the kernel’s SA tables. The gkmd would need to communicate only
with local tasks. A group member would transmit to the local daemon the SA
information, GTEK, multicast parameters, and SPI from the group information
token. The daemon using the PF_KEY interface would establish the SA in the
kernel. The member could then create the socket for the group multicast channel,
and the kernel would then handle encrypting and authenticating the multicast
group communication.

If the application required sender-authentication, the application would be re-
sponsible for appending digital signatures to the payload or setting up a separate
SA/SPI for each sender. Group rekey and compromise recovery would still have
to be managed by the application and would also require being able to update
the keying material in the multicast SA through the daemon. The daemon would
need to enforce SA lifetimes and remove expired group SA’s from the kernel. De-
signing a way to create and modify a multicast SA will be the subject of further
research.

6. Summary

Our group key management architecture enables a collection of authenticated
and authorized network entities to establish a common encryption key. The im-
plementation is portable and provides the necessary components for creating and
verifying authorization certificates and public keys. No centralized key manage-
ment facility is needed, and any number of groups can operate independently.
The implementation does not require the developing IP security protocols and
does not require multicast, though it can use multicast to speed up some key
management functions. A simple API is provided to develop applications that
need secure group communication.

Further work remains to support alternative certificate and public key algo-
rithms. It would be beneficial to include a list of alternative certificate authorities
in the group token. Additional messages would be required to pass long access
control lists. More testing over other architectures is needed, specifically 64-bit.
We have source for a version of ssh that compiles under Windows NT| so porting
the group key management software to NT could be undertaken. The imple-
mentation needs more user-friendly interfaces for group creation and certificate
management. Finally, there are open research issues on how to deploy multiple
group controllers for large groups and how to establish the group SA under the

new [P security protocols.

7. References

[1] R. Atkinson. “Security Architecture for the Internet Protocol”. RFC 1825,
August 1995.

[2] Ashar Aziz and Martin Patterson. “Design and Implementation of SKIP”.
In INET’95, June 1995.

[3] A. Ballardie. Scalable Multicast Key Distribtuion. RFC 1949, May 1996.

[4] A. Ballardie and J. Crowcroft. Multicast-specific Security Threats and
Counter-Measures. Proceeding of the INternet Society Symposium on Net-
work and Distributed System Security, February 1995.

[5] M. Burmester and Y. Desmedt. Efficient and Secure Conference Key Dis-
tribution. International Workshop on Security Protocols, Vol. 1189:119-129,
May 1996.

[6] Cathy Cao. Group key management. Technical report, University of Ten-
nessee, 1997. Master’s Thesis.

[7] C.Ellison, W. Frantz, and B. Thomas. Simple Public Key Certificate. IETF
draft spki, March 1997.

[8] Whitfield Diffie and Martin Hellman. “New Directions in Cryptography”.
IEEE Transactions on Information Theory, Vol. IT-22:644-654, November
1976.

[9] Douglas Maughan and Mark Schertler and Mark Schneider and Jeff
Turner. “Internet Security Association and Key Management Protocol
(ISAKMP)”. Internet Draft - Work in Progress, February 1997. URL:
ftp:/ /ds.internic.net/internet-drafts/.

[10} T. H. Dunigan and N. Venugopal. Secure PVM. Technical report, Oak
Ridge National Laboratory, 1996. ORNL/TM-13203.

[11] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek,
and Vaidy Sunderam. “PVM - A Users’ Guide and Tutorial for Network
Parallel Computing” . The MIT Press, 1994.

[12] L. Gong. Enclaves: Enabling Secure Collaboration over the Internet. In
Proc. 6th USENIX Secuirty Symposium, pages 149-159, 1996.

-9l -

[13] L. Gong and N. Shacham. Elements of Trusted Multicasting. In Proc. of
IEEE International Conference on Network Protocols, pages 23-30. IEEE,
1994.

[14) D. Harkins and D. Carrel. The Resolution of ISAKMP with Oakley . IETF
draft oakley-03, February 1997.

[15] H. Harney and C. Muckenhirn. Group Key Management Protocol (GKMP)
Architecture. IETF draft gkmp-arch, June 1996.

[16] H. Harney and C. Muckenhirn. Group Key Management Protocol (GKMP)
Specifciation. IETF draft gkmp-spec, June 1996.

[17] I. Ingemarsson, D. Tang, and C. Wong. A Conference Key Distribution Sys-
tem. IEEFE Transactions on Information Theory, Vol. 28-5:714-720, Septem-
ber 1982.

[18] M. Just and S. Vaudenay. Authenticated Multi-Party Key Agreement.
In Advances in Cryptology ASIACRYPT’96, pages 26-35. Springer-Verlag,
1996.

[19] J. Kohl and B. Neuman. “The Kerberos Network Authentication Service
(V5)”. RFC 1510, October 1993.

[20] K. Koyama and K. Ohta. Identity-based Conference Key Distribution Sys-
tems. CRYPTO 87, Vol. 293:175-184, 1987.

[21] D. McDonald, B. Phan, and R. Atkinson. A Socket-based Key Management
API . Proceedings INETY6, June 1996.

[22] P. Metzger and W. Simpson. “IP Authentication using Keyed MD5”. RFC
1828, August 1995.

[23] D. Paoli and A. Goscinski. The Development and Testing of the Ring Based
Conference Authentication Service. Technical report, Deakin University,
1993. TR-C93/06.

[24] R. Rivest. “The MD5 Message-Digest Algorithm”. RFC 1321, April 1992.
[25] Bruce Schneier. Applied Cryptography. Wiley, 1996.

[26] Tatu Ylonen. “The Secure Shell (SSH) Remote Login Protocol”. Internet
Draft - Work in Progress, November 1995. URL: http://www.cs.hut.fi/ssh.

99 .

[27] D. Wallner, E. Harder, and R. Agee. Key Management for Multicast: Issues
and Architecture. IETF draft wallner-key, July 1997.

[28] William Simpson and Phillip Karn. “The Photuris Session Key Manage-
ment Protocol”. Internet Draft - Work in Progress, November 1995. URL:
ftp://ds.internic.net /internet-drafts/.

-93 .
Appendix

A. Implementation notes

Our test implementation uses a number of functions from the ssh distribution
(version 1.2.16), including the public key file management functions (and the
program ssh-keygen, RSA glue routines, the RSA reference library, various ci-
pher routines (DES, IDEA, RC4, TSS), and GNU’s GMPlib for multi-precision
arithmetic. (We do not actually use the ssh keys in .ssh, rather generate our own
key files using ssh-keygen and certify them with our certify program.) The code
has been tested on Sun OS, SGI IRIX, and Linux and with architectures having
different byte orders.

The major modules that we wrote to support our group key management are:

gkmp.h contains the main data structures and constants (see below).

gkmp_subs.c contains the functions for building and parsing key management
messages. The group controller code is also in this file.

netsubs.c contains the routines for managing IP /UDP transport, including mul-
ticast, and timeout/retry. '

dh_subs.c contains the code for doing a Diffie-Hellman key exchange.
rsasign.c contains the code for doing an RSA signature and verify.
hmac-md5.c contains the code for doing a keyed MD5.

truerand.c is Matt Blaze’s random number generator for UNIX.

ga.c is the group authority code that provides a signed group token and assigns
the group controller to the first contacting member.

cert.h defines the data structures for our certificate infrastructure.

cert_subs.c contains the code for creating and verifying the various certificates
(key, group info, ticket, permission).

certify.c is a group authority service program to create certificates for ssh public
keys and for tickets and permissions.

Most of the key data structures are defined in gkmp.k. Its contents follow.

- 94 -

/* gkmp.h */

#define GKMP_PORT 8642
#define GK_MAXBUFF 4096

/* bytes in a signature */
#idefine GK_SIGLTH 128
#define GK_MDSLTH 16
#define GK_KEY_TIMEQUT 60
#define GK_TIMEOUT 11
#define GK_RETRY 3

/* messages types */
#define GKMP_APP O
#define GKMP_CLOSE 1
#define GKMP_REQGC 2
#define GKMP_ERROR 3
#define GKMP_JOIN 4
#define GKMP_REPLYGC &
#define GKMP_REPLYJOIN 6
#define GKMP_REJOIN 7
#define GKMP_KEYUPD &

/* GC initiated messages */
#define GKMP_REKEY 20
#define GKMP_DOREJOIN 21

/* appl message/policy flags */
#define GKF_ENC 1

#define GKF_SIG 2

#define GKF_HMAC 4

/* payloads */
#define GPL_ERROR 1
#define GPL_GRPINFO 2
#idefine GPL_SIG 3
#define GPL_CERT 4
#define GPL_DH1 5
#define GPL_DH2 6
#define GPL_OPAQUE 7
#define GPL_KEYS 8
#tdefine GPL_PERMS ©

- 95 -

#define GPL_TICKET 10
/* note: escrow payload is invisible */

/* error codes */
f#idefine GERR_NOGA 1
#define GERR_NSGRP 2

/* message struct’s */
#define COUKIE_LEN 4

struct GK_Hdr {
unsigned char type; /% message type */
unsigned char rsvdi; .
unsigned char keyid; /* keyid 1-255 %/
unsigned char flags; /* whether appl is encrypted/signed from policy */
unsigned char ga_cookie[COOKIE_LEN]; /* nonce gen’d by ga */
unsigned char next_payload;
unsigned char version;
unsigned short len; /* net byte order */

struct GK_Payload {
unsigned char next_payload;
unsigned char reserved;
unsigned short payload_len;

¥

#define APP_HDR_LEN (sizeof(struct App_Hdr))
struct App_Hdr {
unsigned char type; /* message type */
unsigned char rsvdi;
unsigned char keyid; /* keyid 1-255 =/
unsigned char flags; /* whether appl is encrypted/signed from policy */
unsigned long ulth; /% length of original user data (net byte order) */
};

/* group info */
#define GKMP_KEYLTH 16

enum LEVELS {LVL_U, LVL_C, LVL_S, LVL_TS};
enum HASHES {GK_MD5, GK_SHA, GK_RIPEM, GK_HAVAL};

-9 -

enum SIG_ALGS {GK_RSA, GK_DSA, GK_ECC};
/* permission categories -- bits */
#define GK_CAT1 1

#define GK_CAT2 2

#define GK_CAT3 4

#define GK_CAT4 8

/* grp_policy -- AND bit set implies others that are set are all required */
/* O implies, just need key signed by ga */
#define GK_AND 128
#define GK_ACL 64
#define GK_SECLBL 32
#define GK_TICKET 16
#define GK_ESCROW 8
/* also see message flags */

struct Group_Info { /* in net byte order */
char * grp_id;
unsigned char grp_cipher;
unsigned char grp_keylth; /* # of bytes of keying material */
unsigned char grp_hash;
unsigned char grp_sig;
unsigned char grp_seclvl, grp_seccat; /* security label (level, categories) :

short grp_port; /* application port */
unsigned long grp_timbeg, grp_timend; /#* lifetime, UNIX time() seconds */
unsigned long grp_maddr; /* 0 or mcast addr in net byte order */

unsigned long grp_spi;
char * grp_gc;

short grp_gcport; /* key mgt port */
unsigned char grp_policy; /* auth required */
unsigned char grp_ttl; /* mcast ttl */

int grp_member_cnt;

char * * grp_members; /% ACL =%/

};

A simple chat program that uses multicast and group key management fol-

lows. Key management is mostly hidden from the application. Key establishment

is handled in group_join() and lifetime rekeying are handled by group_recv(). The

group token specifies the group policy, including the type of encryption and in-

- 97 -

tegrity that is performed for the application by group_msend() and group_recv().

#include <sys/time.h>

#include <sys/types.h>

#include <stdio.h>

#include “gkmp.h"

-fd_set rdfds, wrtfds, tmprd, tmpwrt;

main()

{

int fd,grpid;
char buff[1024];
char hname[64];
int 1lth,n;

gethostname (hname,sizeof (hname));

FD_ZERO(&rdfds);

FD_ZERO(&wrtfds);

grpid = group_join("smtalk","thdsun",GKMP_PORT ,hname) ;

fd = group_open{grpid);
FD_SET(O, &rdfds);
FD_SET(fd, &rdfds);
while(1){
tmprd =rdfds;
tmpwrt = wrtfds;
n = select(FD_SETSIZE, &tmprd, &tmpwrt,NULL,NULL);
if (n <0){perror(“select"); exit(1);}
if (FD_ISSET (fd, &tmprd)) {
group_recv(fd,buff,sizeof (buff),<h);
if (1th) printf(*%s\n",buff);
} else if (FD_ISSET (0,&tmprd)){
if (gets(buff) == NULL) break;
group_msend(grpid, buff,strien(buff)+1);

}
close(fd);

1
2
3.
4

59.

0
1
2
3

[T S WY

27.

28.

29.

30.

3L

32.

33.

34.

35.

36.

37.
38.

39.

-29 .

ORNL/TM-13470
INTERNAL DISTRIBUTION
. J. Barhen 14. R. T. Primm
. S. G. Batsell 15-19. S. A. Raby
T. S. Darland 20. P. H. Worley
J.J. Dongarra 21. Central Research Library
T.H. Dunigan 22. ORNL Patent Office
. G. A. Geist 23. K-25 Applied Tech. Library
. K. L. Kliewer 24. Y-12 Technical Library
. M. A. Kuliasha 25. Laboratory Records - RC
. C.E. Oliver) 26. Laboratory Records Department
EXTERNAL DISTRIBUTION

Cleve Ashcraft, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle, WA
98124-0346

Clive Baillie, Physics Department, Campus Box 390, University of Colorado, Boulder, CO
80309

Jesse L. Barlow, Department of Computer Science, 220 Pond Laboratory, Pennsylvania
State University, University Park, PA 16802-6106

Chris Bischof, Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

James C. Browne, Department of Computer Science, University of Texas, Austin, TX 78712

Bill L. Buzbee, Scientific Computing Division, National Center for Atmospheric
Research, P.O. Box 3000, Boulder, CO 80307

Thomas A. Callcott, Director Science Alliance, 53 Turner House, University of Tennessee,
Knoxville, TN 37996

Ian Cavers, Department of Computer Science, University of British Columbia, Vancouver,
British Columbia V6T 1W5, Canada

Jagdish Chandra, Army Research Office, P.O. Box 12211, Research Triangle Park, NC 27709
Eleanor Chu, Department of Mathematics and Statistics, University of Guelph, Guelph,
Ontario, Canada N1G 2W1

Tom Coleman, Department of Computer Science, Cornell University, Ithaca, NY 14853

Paul Concus, Mathematics and Computing, Lawrence Berkeley Laboratory, Berkeley, CA
94720

Andy Conn, IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.
54.

55.

56.

57.

58.

59.

60.

- 30 -

John M. Conroy, Supercomputer Research Center, 17100 Science Drive, Bowie,
MD 20715-4300

Jane K. Cullum, IBM T. J. Watson Research Center, P.O. Box 218, Yorktown
Heights, NY 10598

Larry Dowdy, Computer Science Department, Vanderbilt University, Nashville,
TN 37235

Tain Duff, Numerical Analysis Group, Central Computing Department, Atlas Cen-
tre, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX, England

Patricia Ebérlein, Department of Computer Science, SUNY at Buffalo, Buffalo,
NY 14260

Albert M. Erisman, Boeing Computer Services, Engineering Technology Applica-
tions, P.O. Box 24346, M/S TL-20, Seattle, WA 98124-0346

Geoffrey C. Fox, Northeast Parallel Architectures Center, 111 College Place, Syra-
cuse University, Syracuse, NY 13244-4100

Robert E. Funderlic, Department of Computer Science, North Carolina State Uni-
versity, Raleigh, NC 27650

Professor Dennis B. Gannon, Computer Science Department, Indiana University,
Bloomington, IN 47401

J. Alan George, Vice President, Academic and Provost, Needles Hall, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1

John R. Gilbert, Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo
Alto, CA 94304

Gene H. Golub, Department of Computer Science, Stanford University, Stanford,
CA 94305

Joseph F. Grcar, Division 8245, Sandia National Laboratories, Livermore, CA
94551-0969

John Gustafson, Ames Laboratory, Iowa State University, Ames, IA 50011

Michael T. Heath, 2304 Digital Computer Laboratory, University of Illinois, 1304
West Springfield Avenue, Urbana, IL 61801-2987

Don E. Heller, Scalable Computing Laboratory, Ames Laboratory, US Dept. of
Energy, Iowa State University, 327 Wilhelm Hall, Ames, Iowa 50011-3020

Dr. Dan Hitchock ER-31, MICS, Office of Energy Research, U. S. Department of
Energy, Washington DC 20585

Robert E. Huddleston, Computation Department, Lawrence Livermore National
Laboratory, P.O. Box 808, Livermore, CA 94550

Lennart Johnsson, 592 Philip G. Hoffman Hall, Dept. of Computer Science, The
University of Houston, 4800 Calhoun Rd., Houston, TX 77204-3475

Harry Jordan, Department of Electrical and Computer Engineering, University of
Colorado, Boulder, CO 80309

Malvyn H. Kalos, Cornell Theory Center, Engineering and Theory Center Bldg.,
Cornell University, Ithaca, NY 14853-3901

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.
75.

76.

77.

78.

79.

80.

81.

-31 -

Hans Kaper, Mathematics and Computer Science Division, Argonne National Lab-
oratory, 9700 South Cass Avenue, Bldg. 221, Argonne, IL 60439

Kenneth Kennedy, Department of Computer Science, Rice University, P.O. Box
1892, Houston, TX 77001

Dr. Tom Kitchens ER-31, MICS, Office of Energy Research, U. S. Department of
Energy, Washington DC 20585

Richard Lau, Office of Naval Research, Code 1111MA, 800 Quincy Street, Boston,
Tower 1, Arlington, VA 22217-5000

Alan J. Laub, Department of Electrical and Computer Engineering, University of
California, Santa Barbara, CA 93106

Robert L. Launer, Army Research Office, P.O. Box 12211, Research Triangle Park,
NC 27709

Charles Lawson, MS 301-490, Jet Propulsion Laboratory, 4800 Oak Grove Drive,
Pasadena, CA 91109

Paul C. Messina, Mail Code 158-79, California Institute of Technology, 1201
E. California Blvd., Pasadena, CA 91125

James McGraw, Lawrence Livermore National Laboratory, L-306, P.O. Box 808,
Livermore, CA 94550

Dr. David Nelson, Director of Scientific Computing ER-30, Applied Mathematical
Sciences, Office of Energy Research, U. S. Department of Energy, Washington DC
20585 .

Professor V. E. Oberacker, Department of Physics, Vanderbilt University, Box
1807 Station B, Nashville, TN 37235 :

Dianne P. O’Leary, Computer Science Department, University of Maryland, Col-
lege Park, MD 20742

James M. Ortega, Department of Applied Mathematics, Thornton Hall, University
of Virginia, Charlottesville, VA 22901

Charles F. Osgood, National Security Agency, Ft. George G. Meade, MD 20755

Roy P. Pargas, Department of Computer Science, Clemson University, Clemson,
SC 29634-1906

Merrell Patrick, Department of Computer Science, Duke University, Durham, NC
27706

Robert J, Plemmons, Departments of Mathematics and Computer Science, Box
7311, Wake Forest University, Winston-Salem, NC 27109

James Pool, Caltech Concurrent Supercomputing Facility, California Institute of
Technology, MS 158-79, Pasadena, CA 91125

Alex Pothen, Department of Computer Science, Pennsylvania State University,
University Park, PA 16802

Professor Daniel A. Reed, Computer Science Department, University of Illinois,
Urbana, IL 61801 :

John R. Rice, Computer Science Department, Purdue University, West Lafayette,
IN 47907

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92

93-94

-39

Donald J. Rose, Department of Computer Science, Duke University, Durham, NC
27706

Joel Saltz, Dept. of Computer Science and Institute for Advanced Computer
Studies, 4143 A. V. Williams Bldg., University of Maryland, College Park, MD
20742-3255

David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaver-
ton, OR 97006

Horst Simon, NERSC Division, Lawrence Berkeley National Laboratory, Mail Stop
50A/5104, University of California, Berkeley, CA 94720

Danny C. Sorensen, Department of Mathematical Sciences, Rice University, P. O. Box
1892, Houston, TX 77251

G. W. Stewart, Computer Science Department, University of Maryland, College
Park, MD 20742

Paul N. Swartztrauber, National Center for Atmospheric Research, P.O. Box 3000,
Boulder, CO 80307

Robert Ward, Department of Computer Science, 107 Ayres Hall, University of
Tennessee, Knoxville, TN 37996-1301

Andrew B. White, Computing Division, Los Alamos National Laboratory, P.O. Box
1663 MS-265, Los Alamos, NM 87545

David Young, University of Texas, Center for Numerical Analysis, RLM 13.150,
Austin, TX 78731

. Office of Assistant Manager for Energy Research and Development, U.S. Depart-
ment of Energy, Oak Ridge Operations Office, P.O. Box 2001 Oak Ridge, TN
37831-6269

. Office of Scientific & Technical Information, P.O. Box 62, Oak Ridge, TN 37831

