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Abstract

The report reviews a method for modeling and controlling two serial link manipulators
which mutually lift and transport a rigid body object in a three dimensional workspace [31,
32, 33, 34]. A new vector variable is introduced which parameterizes the internal contact
force controlled degrees of freedom. A technique for dynamically distributing the payload
between the manipulators is suggested which yields a family of solutions for the contact
forces and torques the manipulators impart to the object. A set of rigid body kinematic
constraints which restricts the values of the joint velocities of both manipulators is derived.
A rigid body dynamical model for the closed chain system is first developed in the joint
space. The model is obtained by generalizing our previous methods for deriving the model.
The joint velocity and acceleration variables in the model are expressed in terms of inde-
pendent pseudovariables. The pseudospace model is transformed to obtain reduced order
equations of motion and a separate set of equations governing the internal components of
the contact forces and torques. A theoretic contral architecture is suggested which explic-
itly decouples the two sets of equations comprising the model. The controller enables the
designer to develop independent, non-interacting control laws for the position control and
internal force control of the system.







1. Introduction

The problem of modeling and controlling two fixed base, serial link robotic manipulators
to mutually lift and transport an object has been a subject of intensive study and research
these past ten years. This interest has been motivated by the potential benefits of employing
automatic and programmable two handed cooperative manipulation in diverse areas such as
material handling and assembly. In the former application, two manipulators can coopera-
tively lift and transport large or voluminous objects that would be difficult or awkward for
a single manipulator to move. Further, two cooperating manipulators can transport objects
whose mass is beyond the lifting capacity of just one. Two cooperating manipulators can
reduce the need for fixturing in many assembly applications, and may ultimately lead to
fixtureless assembly in the air.

There have been numerous approaches proposed for modeling the interactions between
the object and each manipulator and for controlling the forces and torques at the points of
contact. In [1], models were developed which allow the contacts between the manipulators
and object to be accidentally (e.g., due to slippage) or deliberately broken or the nature of
the constraints changed due to wanted or unwanted disturbances. The analysis focused on
a pair of two link planar revolute manipulators maintaining sliding point contacts with an
object. The object was stabilized using a spring-dashpot combination.

In [2], it was proposed that a pair of six degree of freedom (DOF) manipulators maintain
rolling point contacts with a rigid object. In the approach, three virtual revolute joints were
added at the location of each effector. The kinematics of the rolling grasps were modeled.

The application of impedance control has resulted in successful implementations of
two manipulators transporting an object 3, 4, 5]. These approaches enforce a controlled
impedance of the manipulator endpoints or of the manipulated object itself.

This report, however, focuses on the case of two serial link manipulators mutually lifting
and transporting objects that are rigid and jointless in a three dimensional workspace under
the assumption of there being no relative motion between the end effectors and the object.
That is to say, it is assumed that each manipulator securely holds the object without
any slippage. The manipulators and object form a single closed chain mechanism, and
there exists a large body of literature on modeling and controlling the manipulators in this
configuration [6-33]. It should be mentioned that there have been some results reported
for the case of two manipulators holding objects consisting of two rigid bodies connected
by passive rotary or spherical joints [34, 35], where the assumption of no relative motion

between each end effector and the rigid body it holds applied.

There are two challenging problems when modeling and controlling a dual manipulator
closed chain system. First, the problem of dynamically distributing the load induced by
the object between the manipulators is underspecified. Indeed, assuming that the object is
rigid and jointless, its dynamical equations, i.e., Newton’s and Euler’s equations, are linear
functions of the twelve components of contact force and torque the manipulators impart to
it. Therefore, assuming that a reference trajectory for the center of mass of the object has
been specified, there are infinitely many solutions for the contact forces and torques based

on the object’s dynamical equations. Each contact forced  solution contains a component
that causes the object to move along the reference trajectory and a component that induces
internal stress and torsion in the object but does not contribute to its motion. Various
approaches for distributing the load have been proposed [7, 13, 17, 18, 19, 20, 26, 27, 28, 31].

§ Contact force implies both contact force and contact torque hereinafter, unless otherwise specified.




The second problem is how to control the motion of the closed chain system and the con-
tact forces. It has been shown that a set of six rigid body kinematic constraints are imposed
on the values of the joint variables of both manipulators in this configuration [33]. Each
constraint causes a loss of one position controlled DOF. This complicates the motion control
problem because the number of actuated joints exceeds the number of positional DOF in the
closed chain. If each manipulator is kinematically nonredundant, then the motion control
objective is object trajectory tracking. If at least one of the manipulators is redundant,
then there are additional positional DOF available to satisfy other objectives [36].

Another part of the control problem involves controlling or influencing the values of the
internal component of the contact forces. Left unregulated, the internal forces could assume
large values that result in the manipulators pulling against each other and would require
large actuation torques at the joints while moving the object along its specified trajectory.
Furthermore, excessively large values for the internal contact forces may even result in
damage or deformity to the object or manipulators. There are two basic approaches to
this problem: (i) to explicitly control the internal forces to track reference trajectories or
(ii) to calculate the contact forces (including their internal components) by optimization
techniques. In the explicit control case, some approaches proposed in the literature require
knowledge of dynamics of the manipulators and object (e.g., see [10, 11]) while others do not
(e.g. [9]). Most of the approaches that determine the contact forces to optimize a designer
specified criteria involve no servoing and assume knowledge of the dynamics of the held
object [13, 17, 18, 19, 20, 31].

The report reviews our original approach for dynamic load distribution and explicit
position- and internal force-control of the closed chain system consisting of two manipulators
securely lifting and transporting a rigid body object in a three dimensional workspace {31,
32, 34]. The control architecture is dynamic model based, thus the report will also present
a method for deriving a rigid body model for the system. The joint space model given here
is a generalization of our previous techniques for modeling the system [32, 33]. It will be
shown that the earlier results are just special cases of the modeling given here.

The report is organized as follows: A description of the system and the dynamical
equations for the manipulators and object are given in section 2. A general framework for
load distribution is reviewed in section 3. The kinematic coupling effects are modeled in
section 4 and a closed chain dynamical model in the joint space is derived in section 5. A
reduced order model governing the motion of the closed chain and a separate equation for
calculating the internal components of the contact forces are the subject of section 6. A
control architecture originally proposed in [33] is reviewed in section 7 where some recent
insights into its net effect are discussed. A summary and conclusion are given in the final
section. :




2. System Description and Dynamics
of Manipulators and Object

The system is comprised of two serial link manipulators mutually holding and transporting
a rigid body object in a three dimensional workspace. The manipulators and object form a
single closed chain mechanism. Manipulator ¢ (i = 1, 2) has a stationary base and contains
N; single DOF joints (N; > 6 in the spatial case). The manipulators can be structurally
distinct and possess different capabilities, i.e., they can have an equal (N; = N3) or unequal
(N1 # N3) number of joints. The object is rigid and jointless. It assumed that there is no
relative motion between the end effectors and object, i.e., the end efféctors securely hold
the object without any slippage. The configuration of the system is shown in Figure 1.

2.1 System Variables and Coordinate Frames

Let the joint positions, velocities, and accelerations of manipulator ¢ be represented by
the (N; x 1) vectors ¢ = [git, @iz, oo givi]s & = [din, dizs ooy Ginv)” 5 and G =
[Gi1, Gizy -« - s (‘jiN,.]T, respectively. The joint positions of the two manipulators are the gen-
eralized coordinates describing the configuration of the system.

A stationary world coordinate frame ( X,,, Y,,, Z,, ) serves as a reference frame. The
location of this coordinate frame is based on the task geometry. As shown in Figure 1,
the coordinate frame (X ,(:), k(’) Z,(:) ) is assigned to the kth link of manipulator i, where
k=1,2,..., N,

The tips of the (3 x 1) vectors ‘r and ““r emanating from the centerpoint of the end
effector of manipulator ¢ coincide with the point CM,, the center of mass of the rigid object,
as shown in Figure 2. *r and *“r are expressed in the end effector and world coordinate

frames, respectively. They are related by:

b — ipNy )
where ‘RY: = ‘RNi(g;) is an orthogonal (3 x 3) rotation matrix that describes the orien-

tation of the (X](\?, Y(?, Z](\z,t)) coordinate frame which has its origin at the centerpoint of
the end effector of manipulator ¢ in the world coordinates.

2.2 Manipulator Dynamics

This section presents the equations of motion of the individual manipulators. The composite
dynamics of the manipulators are given by:

U Dy ONy xNo G n Ci + JL, On, x6 fa 2)
T2 On, x Ny D, g2 Cs Onxe  J2y fe2

where 0y x., denotes a (k x m) matrix of zeros and superscript T denotes a matrix trans-
pose. The joint torques applied to the joint actuators of manipulator ¢ are signified by the
vector ; = [T, Tig, -+, T,‘NJT. The (N; x N;) symmetric, positive definite inertia matrix is
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D; = Di(¢), and the Coriolis, centripetal, and gravity forces for manipulator ¢ are described
by the (N; x 1) vector C; = Ci{gi, §i)-

Each manipulator imparts a contact force ¥ f, n,41 and a contact torque wy N;,N;+1 to
the object at and about the centerpoint of the end effector for manipulator ¢, respectively,
as shown in Figure 2. *fy, n,+1 and *“np, n,+1 are expressed in the world coordinates,
and the subscript N;, N; + 1 signifies that the contact force or torque is transmitted from
the N;th link of manipulator ¢ to the (N;+4 1)th link, where the latter link is the held object
itself. The (6 x 1) vector f,; in eq. (2) signifies the generalized contact force imparted by
manipulator 7. It is defined by:

fci — { fwai,NH'l :I (3)

RN Ni+1

In eq. (2) , the (N; x 6) transposed Jacobian matrix J% = JZ (¢;) transforms the gen-

eralized contact forcet imparted by manipulator 7 into the joint space. J;,, is assumed to
possess full rank six.

2.3 Object Dynamics

The dynamics for the rigid object are obtained through application Newton’s and Euler’s
equations of motion. It is convenient to express these equations in a compact form:

_ fcl
v -1 { fd} )

In eq. (4) , Y is a (6 x 1) vector representing the net force (and torque) acting at the center
of mass of the object due to its acceleration and gravity. It is defined by:

_ mels Ozxs Ve —M.g _ Ve —Mcg
Y = [ Osgs K, ] [w] + [chfcwc] =A [w] + {Qcchc (5)

where ;. denotes a (k X k) identity matrix and where all Cartesian vectors are with respect
to the world coordinate system ( X,,, Y, Z,, ). In eq. (5) , m. is the mass of the rigid object,
and K, is the (3x3) symmetric inertia matrix of the object about its center of mass. The -
(3x1) vector g represents the gravitational acceleration of the object. The (6x1) vectors

[T, wI' T and [4], wT]T denote the Cartesian velocity and acceleration of the center of
mass of the object, respectively, with (v., ©.) being the translational and (w., w.) the
rotational components. The (6 X 6) matrix A = A(m,, K.) is a compact representation of
the coefficient matrix of [67 , W' |7 in eq. (5) .

In eq. (5) , (Qc Kcw,) is a (3x1) vector arising from expressing the vector cross product
expression (G X(K.w.)) in a matrix-column vector notation, where Q. is a (3x3) skew

symmetric matrix [33]:

g, — Wezs Wey
QC = wcz, O, - wcz . (6)
= Wey, Wezy 0

T
and where w; = [Weg, Weyy Wez]” -

H Generalized contact force will be referred to as contact force hereinafter.




The right side of eq. (4) represents the net force acting on the object at its center of
mass due to the contact forces acting at the contact points between the manipulators and
object. The (6 x 12) matrix L in eq. (4) is an explicit function of the (6 x 6) contact force
transmission matrices Ly and Lo [33]:

L= { Ly, L ] (7)
where matrix L;(1 = 1,2) is defined by [33]:
.[3 03X3
L;, = 0, iwrz, _.iwry = [ lI; 0.?;(3 ;’ (8)
- iw,,.z’ AO’ wp 13 ) 3
zwry, __zw,,.z, 0
In eq. (8) , E; = Ei(*ry, "ry, ™r,) is a (3 X 3) skew symmetric matrix arising from

expressing the vector cross product expression {— *7X* f;, n;+1) in a matrix-column vector
notation, where —**r represents a moment arm from point CM, to point of application
of fei (see Figure 2). It should be mentioned that L; = L;(g;) because *r = *“r(g;) in
accordance with eq. (1) . Interestingly, eq. (8) reveals that L; is nonsingular and that its
determinant is equal to one.

In this report it is assumed that the joint variables of the manipulators in the closed
chain configuration are known through feedback of their sensed or measured values or by
feedback of their calculated values in a forward dynamic simulation of the system. Thus the
nonlinear terms {D;, C;, Jiy} in eq. (2) are known quantities. Furthermore, it is assumed
that the object’s mass, inertia, and geometric properties are known, and that a trajectory
for the object’s center of mass has been specified. Thus matrix L and vector Y in eq. (4)
are known quantities.
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3. A General Framework for Load Distribution

To solve the underspecified dynamic load distribution problem, a new vector variable ¢ =

€1, €2, ..., €)” is introduced. Six position controlled degrees of freedom (DOF) are lost
due to the closed chain configuration [33]. The number of components of € is equal to the
dimension of the null space of matrix L and reflects the fact that the number of position
controlled DOF lost is equal to the number of DOF gained for controlling the internal
contact forces [18]. € parameterizes the internal contact force DOF and is defined by:

fcl
=M 9
‘ [ fc‘Z ( )
The (6 x 12) matrix M in eq. (9) is selected such that the (12 X 12) composite matrix 5,
defined by:
L
s3] w0

is nonsingular.
It is convenient to partition the inverse of 5 into two matrices:

st =le, v] (11)
where ® and ¥ are (12 x 6) matrices. Eqgs. (10) and (11) imply five matrix identities:
L® =I5, LU = Ogxg, M® = Ogxs, MU = Ig, L+ UM = I;; (12)

where, here again, I and Oxx; denote a (k x k) identity matrix and a (k x I) matrix of zeros,
respectively.

The identity L ¥ = (gxe reveals that the column vectors comprising ¥ lie in and span
the null space of L. Observing eq. (7) , an obvious choice for ¥ is:

-1
v - [ 22] (13)

Matrix ¥ is not unique. Indeed, postmultiplying the choice for ¥ in eq. (13) by an arbitrary
(6 x 6) nonsingular matrix yields a new ¥ which lies in the null space of L. In this report
it is assumed that ¥ = W¥(L;, Ly). Thus ¥, like L, is a known quantity. The designer
chooses M to satisfy M U = Is. Then, given {L, ¥, M}, ® is determined based on the
matrix identities in eq. (12) . These issues will be discussed later in this section.

Egs. (4) and (9) can be solved for the contact forces [31, 32]:

fcl
=0Y + U 14
[ fc2 + ¢ ( )
in which eq. (11) has been invoked. The second term {¥ €} on the right of eq. (14) is the

homogeneous solution to eq. (4) and is a component of [fZ, f£]T which causes internal
stress and torsion in the object but does not contribute to its motion since LU ¢ = 0Ogx1.

The first term {® Y} on the right of eq. (14) is a particular solution to eq. (4) and is

the component of [f7, fZ;]T which causes the object to physically move, since L®Y =Y.
However, it will be shown in this report that the particular solution to eq. (4) can contain
a component which lies in the null space of L, and such a component causes internal stress
and torsion in the object but does not contribute to its motion. This has been demonstrated
previously in a dual manipulator context in [19] by a different approach which studied the
characteristics of a class of pseudoinverses of L, but the approach given here is conceptually
simpler.




The symbolic solution for the contact forces given by eq. (14) is significant because
it indicates that the designer can specify the distribution of the payload’s mass between
the two manipulators by the choice of M and ¢. For example, since Y is known, matrix
® governs the distribution of the payload among the motion inducing components in the
contact force solution.

3.1 Identifying Motion Inducing and Internal Stress Components of (¢ Y)

Any vector in the 12-dimensional linear space describing the contact forces imparted to
the object by the manipulators can be expressed as linear combinations of two orthogonal
subspaces: the exact range space of LT and the null space ¥ of L. It is convenient to
introduce the basis V:

V=17, v] (15)

It is easy to see that the columns vectors comprising V' span the 12-dimensional linear space.
Matrix ¢ can be expressed in terms of V:

_ & = LTa+ ¥y (16)
where o and v are (6 x 6) parameter matrices, respectively. It is easy to verify that o =
(L LT)_1 andy = - M LT (L LT)—1 by premultiplying eq. (16) by L and M, respectively,
and noting eq. (12) . Substituting the solutions for {«, v} into eq. (16) yields [31]:

-1

@ = I7(217)7 - yMI” (LI7) | (17)

Eq. (17) reveals that (®Y) always contains a component {L% (L LT)_1 Y} which con-

tributes to the object’s motion, but it may also contain a component {—¥ M LT (L LT)—IY}
which induces internal stress and torsion in the object in the general case.
It is insightful to substitute for @ in eq. (14) using eq. (17) :

[ ;; } =17 (217) Yy - ¥ (MLT (227) 7y - e) (18)

Eq. (18) describes all possible solutions to eq. (4) in terms of the basis V. Each solution
in the family is distinguished by the designer’s choice for the quantities {¥, M, €} given
{L, Y}. Interestingly, each and every distinct solution in the family has the identical object
motion inducing component. Therefore the difference between any two distinct solutions
lies in the null space of L.

3.2 Choosing Matrix M

Matrix S is defined in eq. (10) . The purpose of this section is to determine a family of

solutions for M which results in S being nonsingular and satisfies M ¥ = Ig when ¥ is

known. We then present three possible choices for M and calculate @ for each of the choices.

It is also shown how each choice for M can be obtained by selecting a parameter matrix i

the family of solutions for M. :
M can be expressed in terms of the basis V defined in eq. (15) :

M =p8L+¢uT (19)

where § and ( are (6.X 6) parameter matrices. It is easy to verify that ( = (¥T \IJ)_1 by
postmultiplying eq. (19) by ¥ and observing eq. (12) . Substituting the solution for { in
eq. (19) obtains: _




M= gL+ @) e (20)

When M is defined by eq. (20) , M7 will always contain a component that lies in the null
space of I and therefore S will be nonsingular. Indeed, eq. (20) describes a family of
solutions for M, and each distinct member of the family is characterized by the designer’s
choice for g.

Ezample 1. Choosing M to Obtain a Previous Result
The dynamic load distribution problem that arises when two manipulators mutually lift
a rigid object was not discussed in our earlier work [33] that modeled the closed chain
configuration shown in Figure 1. The approach in [33] to modeling the dynamic coupling
effects between the manipulators was to make the contact forces imparted by manipulator 1
implicit variables using the following procedure: (i) solve eq. (4) for fei[= L7' (Y — La fu2)]
(ii) substitute for f.; into eq. (2) using its solution obtained in step i. The resulting equation
represents the composite dynamics of both manipulators and the object and is an explicit
fun[cti]on of fe.a. The physical interpretation of this modeling procedure was not discussed
in [33].

In this example it is shown that the result of [33] can be obtained by an application of
the general load distribution procedure presented here. The modeling procedure in [33] is
obtained by selecting matrices ¥ and M to be:

[ -
M = | O6xs, Is | (22)

It should be noted that eq. (21) is obtained by postmultiplying the choice for ¥ in eq. (13)
by Ls. Further, the choice for M in eq. (22) is obtained from eq. (20) by selecting 5 to
be:

-1 -1
g = (vT9) 1] (1. L) (23)
Substituting eqs. (21) and (22) into eq. (17) yields the solution for ®:
-1
$ = [ % ] (24)
Osx6

Substituting for {¥, ®} in eq. (14) using egs. (21) and (24) and inserting the result
into eq. (2) yields the model in [33] where € = f.o. The procedure in {33] has unknowingly
distributed the load such that only manipulator 1 induces the object to physically move in
space whereas the contact forces imparted by manipulator 2 are purely internal. In this
extreme case, manipulator 1 bears the entire load.

Ezample 2. Choosing M to be a Function of Constrained Parameters.
Here VU is defined by eq.'(13) . In this example matrix M is selected to be a function of the

force transmission matrices {Ly, L2} and two unknown scalar parameters {c1, ¢z} whose
values are restricted as follows [31, 32]):

a + =1 (25)
Suppose M is chosen to be [31, 32]:

M = [—Cng, C]L2 ] | (26)

which is obtained from eq. (20) by selecting 8 to be:

10




8=al- ()" (1,1])” (27)

The symbolic solution for ¢ can be determined by substxtutmg for ¥ and M in eq. (17)
using eqs. (13) and (26) , respectively, and simplifying:

o = [Cl Ly ] (28)

[} L2

The parameters {c1, c2} will be treated as constants to be selected by the designer in
the explicit internal force control approach given in this report. As an example, the solution
for @ given in eq. (24) is just a special case of eq. (28) with {¢; = 1, ¢ = 0}. Alternatively,
{e1, 2} are viewed as variables when determining a solution for the internal contact forces
by optimization techniques in [31].

It is repeated for emphasis that only the internal component of the particular solution
(@Y) to eq. (4) is a function of M. Therefore the terms in eq. (18) that are explicit
functions of {c;, co} only affect the internal stress and torsion in the held object when
eq. (26) applies.

Ezample 8. Choosing M So That MT Lies in the Null Space of L This example is not
dependent on a specific choice for matrix ¥. Suppose that M is determined by choosing

B8 = Ogxe in eq. (20) :

M= (vTu) T - (29)
When eq. (29) applies, M7 lies in the null space of L, i.e., L MT = 0gx¢ and eq. (17)
immediately simplifies:

@ =17 (L") (30)

Since the internal force component of (2 Y') has vanished, the terms (2Y) and (¥ ¢€) in
eq. (14) are now mutually orthogonal because:

3T ¥ = Ogxe (31)

and orthogonality is the strongest form of linear independence between a pair of vectors [37].
The modeling of the kinematic coupling effects occurring between the manipulators is
discussed next.

11




4. Modeling of Kinematic Coupling Effects

There are two purposes for this section. First, a linear transformation relating the Cartesian
velocity vector of the object and the vector of joint velocities for both manipulators will be
derived. This relationship will be useful for expressing the object’s dynamical equations in
the joint space. Second, a set of rigid body kinematic constraints which must be satisfied
by the joint velocities of the manipulators will be derived.

A linear relationship between the Cartesian velocity of the object at point CM, and
at the point of application of the contact force imparted by manipulator ¢, i.e., the center-
point of the end effector, is established using the theory of infinitesimal rotation of a rigid

object [38, 33]:
v; — 7T ] %
MEEIM @

where the (3 x 1) vectors v; and w; represent the Cartesian translational and rotational
velocities, respectively, of the end effector of manipulator ¢ in the world coordinates.
Substituting for L7 in eq. (32) using eq. ( f)f verifies that w; = w, as expected. Indeed,
the Cartesian angular velocities of the end effectors and object are identical due to the
assumption that the manipulators securely hold the object without any slippage.
Combining the two sets of equations obtained from eq. (32) with ¢« = 1,2 gives:

M :

Wi _ L’ir (2> 7T | Y

5| - L] - 2] ®
w3

There is a well specified solution for the object velocities [v7, wg]T based on eq. (33)

because L has full rank six and [v}, w? ]T lies in the exact range space of LY. The solution
is obtained by premultiplying eq. (33) by matrix ®7 and noting eq. (12) :

V1

[ ve ] = o7 | (34)
We (%]
w2

Three distinct solutions for ® were obtained in the three examples of Section 3.2 given
choices for ¥ and M. It is straightforward to verify that substituting for 7 in eq. (34)

using each of the three solutions (for @) and applying eq. (32) yield [T Z]T = [o7, wZ]T.
The velocities of the end effector of manipulator ¢ in the Cartesian world coordinate

frame and the joint space are related through the (6 X NV;) Jacobian matrix J,,, i.e.:
[ :: ] = Jiw ‘ji (35)

Substituting for [v], wf ]T in eq. (34) using eq. (35) with i = 1,2 relates the Cartesian

velocities of the ob Ject at its center of mass to the joint space:

Ve = @T le .OGXNQ Q:I = @T J q:l (36)
We O6x N, Jow g2 g2
The (12 X (N7 + N3)) composite Jacobian matrix J = J(g1, g2) in eq. (36) has full rank
twelve since it is assumed that Jy, has full rank six.
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It is easy to see from Figure 1 that the end effectors of the manipulators cannot move
independently when they mutually hold the rigid body object. The constraint between the
Cartesian velocities of the end effectors is obtained by premultiplying eq. (33) by UT and
noting eq. (12) : :

0
w
v v; = Oex1 (37)
wa
The constraint can be expressed in the joint space by substituting for [v7, wl ]T in
eq. (37) usingeq. (35) with¢ = 1,2:
\IITJ[Q.I}:A{(‘{I}=06><1 (38)
Q2 vl :

where the (6 x (N1 + N2)) matrix A = A(q1, g2) (= ¥T J) is assumed to have full rank six.

Let *J denote the kth column vector of J, (k = 1,2, ..., N1+ N3). Since *J is a twelve
dimensional vector, it can be expressed in terms of the basis V defined in eq. (15) :

k) = LTa+ ¥y (39)

where o and v are (6 x 1) parameter vectors. If v = 0Ogyx; then the kth column of J lies in

the null space of 7 because LU = 0gyp. It follows that the kth column of A (= ¥T*J) =
Ogx1- In this case, none of the kinematic constraints in eq. (38) would be a function of the
kth element of the vector of joint velocities [q;‘r, qf ]T. Therefore it is further assumed that
each column vector comprising J has a nonzero component lying in the null space of L.

Eq. (38) comprises six scalar constraint equations characterizing the kinematic de-
pendence among the joint velocities when the manipulators operate in the closed chain
configuration. Each independent scalar constraint contained in eq. (38) causes the loss of
one position controlled DOF in the closed chain [38]. Indeed, the number of positional DOF
in the entire closed chain system is (¥ + N2 — 6). This is significant because the number of
positional DOF specifies the number of independent ways that the dual-manipulator closed
chain system can move without violating the constraints in eq. (38) .

A dynamical model for the multiple manipulator system in the joint space is presented
next.
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5. Derivation of Rigid Body Model in Joint Space

The two manipulators and object form a single closed chain mechanism, and a rigid body
model governing the motion of the closed chain and the behavior of the internal component
of the contact forces is derived in the joint space in this section. In the ensuing development
it is useful to define Ny = Ny + N,.

T

The first step in deriving this model is to substitute for [f, fCTz]T in eq. (2) wusing
eq. (14) :

Dl ON1 x No o Cl T T
= . JTOY + A 40
T On, x A, Do ¢t Cy + + ¢ (40)

where J is defined in conjunction with eq. (36) and where ¢ = [¢f, g2 ]T, ¢ = [¢T, T ]T
§ = [d, ('jT]T, and 7 = [rf, 7§ ]T. Interestingly, it is observed that the coefficient matrix
of € in eq. (240) is just the transpose of the coefficient matrix of the vector of joint velocities
in the kinematic constraints given by eq. (38) .

Vector Y in eq. (40) is a function of the Cartesian space variables {w., ., <.} according
to its definition in eq. (5) . Y can be expressed in the joint space by substituting for w. and

. 7T
[67, &7

)

in eq. (5) using eq. (36) and its time derivative, respectively:

(41)

. . —mc
Y:A@TJej+A(<1>TJ+<I>TJ)q+[ g ]

QK. [ 033, Is | @774

In eq. (41) , the (12 x 6) and (12 x Ny3) matrices ® [= (8®/8q)4] and J [= (8J/8q)q),
respectively, are both functions of the variables {g, ¢}. The occurrence of w, on the right of
eq. (5) has been replaced by [0sx3, I3) @7 J ¢ in eq. (41) . The components {wez, Wey, Wez }
in matrix {2 are expressed in the joint space using this transformation, so 2. = Q.(q, ¢)
in eq. (41) .

gukgsti)tuting for Y in eq. (40) using eq. {41) and rearranging terms yield the closed
chain dynamics in the joint space:

T=D§+C+ Hng+ H, + AT ¢ (42)

The (N12 X Ni2) matrix D = D(g) in eq. (42) is the inertia matrix for the entire system.
It is defined by:

Dy O, x V. T T
D = 1252 JTOADJ 43
[ Ony x Ny Dy } * (43)

Since D; is positive definite, the first term to the right of eq. (43) is positive definite. The
second term to the right of eq. (43) is positive semidefinite. Therefore D is positive definite
because the sum of a positive definite matrix and a positive semidefinite matrix is positive
definite [37].

The (N2 x 1) vector C = C(q, ¢) is defined by:

C
C = [C;} (44)

The (Nyg % Nyg) matrix Hy, = Hn(g, ¢) and the (Nyg x 1) vector H, = H,(q, ¢) in’
eq. (42) are defined by:

Hy = JToA (277 + &7 7) (45)
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H = JTo T el (46)
v QK. [ Osxs, Is ] 9774

It should be mentioned that the closed chain dynamical model derived in [32] is just a
special case of eq. (42) with {¥, ®} defined by egs. (13) and (28) , respectively.

Eq. (42) accounts for the dynamics of all components of the closed chain but does not
satisfy the rigid body kinematic constraints in eq. (38) . Indeed, eq. (42) , along with the
time derivative of eq. (38) :

A+ Ag = Ogxa (47)

comprise a joint space model which governs the motion of the closed chain dual manipulator

system and the internal component of the contact forces. The (6 x Ni2) matrix A=
(0A/3q)q] in eq. (47) is a function of the variables {g, ¢}.

The form of egs. (42) and (47) has been obtained for a broad class of constrained
rigid body mechanical systems in {39, 40] using the method of Lagrange undetermined
multipliers [38]. However, it is very unclear how the issues of dynamically distributing
the load and relating ¢ to the internal contact forces would be addressed if the modeling
flechniques given in [39, 40} were applied to the multiple manipulator closed chain considered

ere.

To discuss the application of the joint space model to accomplish a forward dynamics
simulation of the system, it is useful to combine egs. (42) and (47) into a single equation:

T - _C - 5 -
D A gl _ |7 C I{,.,., g - H, (48)
A Ogx6 € —Ag
In the forward dynamics problem, the (N12+6) quantities {§, ¢} are unknowns and the joint
torques T are specified. A symbolic solution for the variables {g, ¢} based on eq. (48) can be

obtained by inverting the coefficient matrix of [§7, eT]T using inverse by partitioning [37]:

§=D'A(r-C=-Hng~H,)- D AT (4D AT)"lAq (49)

¢ = (4D AT) {AD (r = C - Hnd - H)) + Ad) (50)

The solution for ¢ in eq. (50) is based on the invertibility of the quantity (4 D~ AT). D!

is positive definite because D is. Given that A has full rank six, (4 D~! AT) is positive
definite and therefore nonsingular. In eq. (49) , A is a (Ny2 X N12) matrix defined by:

-1
A = Iy, — AT (4D 4T)" AD™ (51)

where, here again, Nig = N; + N, and In,, signifies an (N12 X Ny2) identity matrix. By
a mathematical observation, A is idempotent, i.e., A2 = A, and therefore singular, since
the only nonsingular idempotent matrix is the identity matrix {37}. It has been shown in
our earlier work [33] that the rank of A equals the number of position controlled DOF in
the closed chain, i.e., rank{A} = Ny; — 6.

While the joint space model is useful for understanding how the system evolves with
time in response to applied joint torque inputs, it is not convenient for the controller design
process. Indeed, the number of scalar equations in eq. (48) (or in egs. (49) and (50) ,
which may also be viewed as a rigid body model) exceed the number of joint torque inputs.
However, it is important to note that there is a well specified solution for 7 based on the.
rigid body model. Since the rank of A equals (N12 — 6) and D is positive definite, the rank
of the coefficient matrix (D! A) of 7 in eq. (49) is also equal to (Nyz — 6) [41]. Therefore
an additional six independent scalar equations that are linear functions of 7 are needed to
yield a well specified solution for the Ny, joint torques 7. The six equations are provided by
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eq. (50) . Rather than attempting to design a model based controller by solving egs. (49)
and (50) (or eq. (48) ) for the joint torques, we will derive a reduced order model and
design a control architecture based on it. This is discussed next.




6. Reduced Order Model

The joint velocities and accelerations form coupled sets of generalized velocities and accel-
erations for describing the configuration of the closed chain system, respectively. Linear
transformations which express these variables in terms of new independent generalized ve-
locities and accelerations are derived and then applied to eliminate {¢, ¢} from the closed
chain dynamical equations given by eq. (42) in this section. Then, building on the seminal
work in [39], linear transformations are applied to eq. (42) to separate it into two sets of
equations. The sets of equations govern the motion of the closed chain and the behavior of
the internal component of the contact forces, respectively.

A new vector variable v = (11, 19, ..., uNm_G]T referred to as the pseudovelocity vec-
tor [42, 43, 40] is introduced. The pseudovelocity vector is defined by:

v=DRBgq (52)
where the ((Ni2 — 6) X Nqg) matrix B = B(q) selected so that the composite (N5 X Nip)
matrix U, defined by:

A
- o

is nonsingular, where here again, A is defined in conjunction with eq. (38) and Ny =
Ni + N,.
It is convenient to partition the inverse of U into two matrices:

vl = ['I‘, r] (54)

where T = T(g) is an (Ny2 X6) matrix and I' = T(g) an (N12 X (N12—6)) matrix. Egs. (53)
and (54) imply five matrix identities:

AT = Ie, AI‘ = OGX(ng—G), BT = 0(N12—6)X65 BT = Ile.._s, TA + T'B = I]\I12
(55)
The identity AT = Ogx(n,,-6) reveals that the column vectors comprising I' lie in and
span the null space of A. T' can be determined by the following procedure. Noting that
A = 9T Jand LU = Ogye, six vectors lying in the null space (of A) are given by:

JT (77T

If Ny = N3 = 6, then the above set of vectors spans the null space and is assigned to T'.
If one or both of the manipulators is kinematically redundant, then (N2 — 12) additional
vectors are needed to span the null space. By a mathematical observation, (N, — 12} is
the dimension of the null space of J, and any vector lying in the null space of J also lies in
the null space of A. The null space of J can be determined by the zero eigenvalue matrix
theorem [44].

All vectors lying in the Njj-dimensional articular space may be expressed in terms of
the following basis Z:

z=[AT,r] (56)

It is straightforward to verify that T can be expressed in terms of this basis:

T = AT (a47)7 - rB AT (447)™ (57)

Eqgs. (38) and (52) can be solved for the joint velocities:
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¢g=Tv (58)

Differentiating eq. (52) with respect to time establishes the linear relationship between
the pseudoaccelerations and the joint accelerations:

v =B+ By (59)

The ((N12 — 6) x Ni2) matrix B[= (8B/8q¢)4] in eq. (59) is a function of the variables
o %qs (47) and (59) can be solved for §: |

g=Ti-[TA+TB|Ty ' (60)

where eq. (58) has been used. As a result, the matrices A[= (8A4/8¢)T'v] and B|[=
(0B/8¢)T v] in eq. (60) are now functions of {g, v}.
A solution for § may also be obtained by differentiating eq. (58) with respect to time:

§=To+Tv (61)

where the (Nig X (Ny2 — 6)) matrix [[= (8T'/8¢)T v] is a function of the variables {g, v}.
Egs. (60) and (61) are mathematically equivalent because of the following matrix iden-
tity:

I'=-[rd+rgr (62)

Eq. (62) is obtained by differentiating the identity: T A + I' B = Iy, with respect to
time and postmultiplying the resulting equation by I'.

Substituting for ¢ in eq. (38) using eq. (58) yields the kinematic constraint equation
ATv = 0Ogx1, which is identically true since AT' = Ogy(v,,—¢)- Therefore, the kinematic
constraints at the velocity level are satisfied regardless of the values of the pseudovelocities
when eq. (58) applies. Likewise, substituting for {¢, ¢} in eq. (47) using egs. (58) and (60)
reveals that the kinematic constraints at the acceleration level are also satisfied regardless
of the values of {v, #}. These findings lead to the observation that expressing the closed
chain dynamical model given by eqs. (42) and (47) in terms of the pseudovariables results
in eq. (42) alone representing a rigid body model of the multiple manipulator system:

DT+ ATe =1~ C~H,+ (D[YA+TB| - Ha)Tv (63)

The number of equations in eq. (63) equals the sum of the position controlled DOF and
the internal force controlled DOF in the closed chain system.

It is important to note that eq. (63) is still a nonlinear function of the joint positions
g,ie, D = D(q),C = C(q,v), Hn, = Hy(q, v), and H, = H,(q, v). Thus it is difficult
to perform a forward dynamics simulation of the system based on eq. (63) . However, as
will now be shown, performing a linear transformation on eq. (63) makes the resulting set
of equations valuable for controller design purposes.

Premultiplying eq. (63) by the nonsingular matrix [T, D~! AT} and utilizing eq. (55)
separates the model into two sets of equations governing the position controlled DOF and
the internal force controlled DOF, respectively:

]T

I’DpTs =T7{r - C - H, + (D[TA+TB| - Hn)Tv}, (64)
AD ' ATe¢ = AD ' {r - C - H, - HoTv} + ATv (65)

The (N12 — 6) scalar equations comprising eq. (64) constitute the reduced order equations
of motion for the closed chain system. Vector variable €, which parameterizes the inter-
nal force controlled DOF, has been eliminated from eq. (64) which in turn is calculated
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as a function of the variables (g, v, 7) using eq. (65) . Since D is positive definite and
I and has full rank (N;o — 6), then (I'7 DT) is positive definite and therefore nonsingu-
lar. (AD~! A7) is positive definite and nonsingular by a similar argument given below

eq. (50) . Thus egs. (64) and (65) can be solved for » and ¢, respectively.
Given the separated form of the reduced order model, we can now proceed with the

controller design. This is discussed next.
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7. Control Architecture

The problem considered is to derive a control law for the Ny joint torques 7 = [, J )7
so that the variables {¢, v} quantifying the internal contact force- and position- controlled
DOF can be controlled independently. This can be accomplished by applying the control
architecture proposed in {33} to completely decouple egs. (64) and (65) . The composite
control {7} is the sum of an (N3 x 1) primary controller 77 and an (V2 x 1) secondary
controller 7° which are defined by:

Tp=_(D[TA+FB]-—Hm)FV+C+Hv, (66)
¢ = ATTfS + DFT; (67)

In eq. (67) , 7§ and 7, are (6x1) and ((N1z — 6)x1) vectors, respectively, representing
control variables to be determined.

The composite control (7 = 77 + 7°) defined by egs. (66) and (67) is substituted into
egs. (64) and (65) . The resulting equations, under the assumption of perfect knowledge of
the nonlinear terms in the model, leads to the closed loop system:

vo=T,, (68)
€ = 7} (69)

in which eq. (55) has been invoked. The derivation of egs. (68) and (69) is based on

the quantities {(TT DT),(AD~! AT)} being invertible. It was shown earlier that these
quantities are positive definite and therefore nonsingular.

Suppose 7, is selected to servo the pseudovariable error, and T} for servoing the internal

contact force error. Since eqgs. (68) and (69) are completely decoupled, the secondary

controller components 7, and 77 are non-interacting controllers for position and internal

contact force, respectively.

It was claimed in [33] that the control architecture 7 = 7P + 7° decoupled the control of
the pseudovariables and an independent subset of the contact forces, namely those imparted
by manipulator 2. As shown here in Example 1 of section 3.2, the modeling procedure in [33]
unknowingly distributed the load such that ¢ = f.,, i.e., the contact forces imparted by
manipulator 2 are purely internal. The control law (7 = 7P + 7°) defined by egs. (66)
and (67) in fact decouples the position- and internal force-controlled DOF. The physical
insight into the decoupling was first identified in [34]. It should be mentioned that a similar
decoupling control architecture was developed independently by Wen et al. in [17].

20




8. Conclusion

The report has reviewed a method for modeling and controlling two serial link manipulators
which mutually lift and transport a rigid body object in a three dimensional workspace.
The system was viewed as a single closed chain mechanism and it was assumed that there
is no relative motion between the end effectors and object. A new vector variable ¢ which
parameterizes the internal contact force controlled degrees of freedom was introduced. It
was defined as a linear function of the contact forces that both manipulators impart to the
object using eq. (9) . A family of solutions to the dynamic load distribution problem was
obtained by solving the object’s dynamical equations and eq. (9) for the contact forces.
The motion inducing component of every member of the family was shown to be identical.
The internal component of the general load distribution solution was shown to contain two

terms: {¥¢} and {- ¥ M LT (L LT)-1 Y'}. Three choices for matrix M which transforms
the contact forces to define € in eq. (9) were suggested. Interestingly, the third choice
caused the latter internal force term to vanish and resulted in the motion inducing and
internal components of the solution being mutually orthogonal.

The kinematic coupling effects between the manipulators due to the shared payload were
modeled. First, the Cartesian velocity of the object at its center of mass was expressed as
a linear function of the joint velocities of both manipulators. Then a set of six rigid body
kinematic constraints restricting the values of the joint velocities was derived.

A rigid body dynamical model for closed chain system consisting of (N7 + Ny + 6
second order differential equations was first derived in the joint space. The upper (N1 + N,
equations in the model are the closed chain dynamical equations. They were derived by
substituting the load distribution solution for the contact forces into the manipulators’
dynamical equations. The resulting equations are linear functions of the Cartesian vector
Y defined in eq. (5) . We proposed here a generalization of our previous methods [32, 33]
for expressing Y in the joint space where Y = Y{q, ¢, §) becomes an explicit function of
the matrix ®. Our previous results can be obtained by specifying choices for ® in eq. (41) .

The last six equations in the joint space model are the kinematic acceleration constraints.
By expressing the model in the pseudospace, it was shown that these last six equations are
satisfied regardless of the values of the pseudovariables. Therefore the upper (N; + N;)
equations of the model, when expressed in the pseudospace, comprise a rigid body model for
the system. Linear transformations were applied to the (N; + N;) equations in the model
to obtain reduced order equations governing the motion of the system and a separate set of
equations governing the internal components of the contact forces. Both sets are functions
of the joint torques of both manipulators, but only the latter is a function of €. The control
architecture originally proposed in [33] was applied to completely decouple the two sets of
equations comprising the separated form of the model. As a result, the pseudovariables and
the elements of € are controlled independently.
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