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SHAPE REACTIVITY EFFECTS IN THE ROD EJECTION ACCIDENT

Detailed three-dimensional MEKIN-B! calculations of the PWR control
rod ejection accident (REA) are being performed as part of the BNL/MRC evalua-
tion of methods currently used to aﬁa]yze PWR REA events. A principal aob-
jective of these calculations has been to evaluate in three dimensions the ef-
fect of flux redistribution on the core transient reactivity and hence on
transient core power level.

The core reactivity is expressed in terms of the net neutron production

operator,s£, and the shape function,s , as?

o= }T{“"*Efo’i’o) + (w,as(wo) + (W, sy) + (w,séﬂsw)} (1)
where
Lefr0m-a + 0 [os 00+ el e} (2)
- ip ZsixJF '
J i=1
N = (WSFy) (3)
and
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In equations (1) through 14), W is an arbitrary weight function, and the
symbols D,A,F,3 and X have their usual meaning. &£ , and ¥, denote the
steady state values of the net production operator and the shape function,
respectively. By choosing an initially critical reactor, W=y, , and
applying equation (1) to a component, p., of the total reactivity, we find

oo = b {lugs o) + (uEasdsu)) (5)

The first term is the usual perturbation theory expression for p.. The
second term gives the contribution of the change in the shape function,sy, to

the reactivity, and is the subject of the present paper.

A three-dimensional MEKIN-B quadrant symmetric model of a typical four-

loop PWR at the beginning of life was constructed for the REA calculations.
The standard loading pattern, was slightly altered near the center of the core
to ensure that a center rod worth of approximately 1% was obtained at hot zero
power with the control banks D and C fully inserted. Nomina: design values
were used for the coolant flow rate, inlet temperature and the system pres-
sure. The initial power level was taken to be 3.25 MW, or 0.1% of the rated
power. Cross-sections were generated at refereiice and off-reference con-

ditions using the CASM0O3 code.
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The rod was ejected out of the core with uniform velocity in 0.1 seconds
and the transient was followed out to 0.48 seconds. In Figure 1, the total,
control, Doppler and moderator density reactivities are presented versus time.
Qut to 0.1 seconds, the total reactivity is determined almost entirely by the
reactivity due to the ejecting control rod. The Doppler reactivity makes a
significant contribution beyond ~ 0.12 seconds. Between 0.11 seconds and 0.19
seconds, the total reactivity is seen_to decrease by 0.90% A k/k and the
transient is reversed. O0f this decrease, the Doppler reactivity contributes
0.42%, while the change in control reactivity (which is entirely a shape re-
activity during this period) contributes as much as 0.48%, establishing the

importance of the flux shape reactivity in determining the course of this

transient.

The variation of the core thermal power with time is presented in Figure
2. The core thermal power exhibits oscillations which are clearly seen here
to be associated with oscillations in the control reactijvity. These control
reactivity oscillations are also a shape reactivity effect, produced by flux
shape oscillations that follow the ejection of the control rod. The shape
oscillations inf]uenfe the Doppler reactivity also, although the oscillations

are less developed, and the phase is opposite to that of the control

reactivity oscillations.
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In summary, the shape reactivity has a significant influence on the rod
ejection accident. After the control rod is fully ejected from the core, the
neutron flux undergoes a large reduction at the ejected rod location due to
Doppler feedback. The corresponding effect on tha control reactivity is
comparable in magnitude to the Doppler reactivity, and makes a significant

contribution to 1imiting the power excursion during the transient.
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