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ABSTRACT

For a redundant manipulator, the objective of redundancy resolution is to follow a
specified path in Cartesian space and simultaneously perform another task (For example,
maximize an objective function or avoid obstacles) at every point along the path. The
conventional methods have several drawbacks: a new function must be defined for each
task, the extended Jacobian can be singular, closed cycles in Cartesian space may not yield
closed cycles in joint space, and the objective is point-wise redundancy resolution (to
determine a single point in joint space for each point in Cartesian space).

We divide the redundancy resolution problem into two parts: (1) calculate seli-
motion coordinates for all possible positions of a manipulator at each point along a
Cartesian path and (2) determination of optimal self-motion coordinates that maximize an
objective function along the path. This paper will discuss the first part of the problem. Our
path-wise approach overcomes all of the drawbacks of conventional redundancy resolution
methods: we do not need to define a new function for each task, our extended Jacobian
cannot be singular, and closed cycles in extended Cartesian space will yield closed cycles in
joint space.



1. INTRODUCTION

A manipulator is a set of links connected in a chain by joints. Usually, each joint
has one degree of freedom. The state of the manipulator is described by a vector of joint
variables, 6. All points on the manipulator move in Cartesian space. We are usually
interested in the position and orientation of the end of the manipulator. The position and
orientation of end of the manipulator are described by a vector (x) with six components in
3D space and three components in 2D space. There is a unique mapping from the joint
space to the Cartesian space:

x = f(6) 6y

A redundant manipulator has more joint variables than position variables. Thus, a
redundant manipulator that can move in 3D space has more than six joint variables. The
objective of redundancy resolution is to find a trajectory in joint space [6(t)] that will keep

the end of the manipulator on a given path [xG(t)]. Since the redundant manipulator has

extra degrees of freedom, it can follow a given path and simultaneously accomplish other
objectives: avoid obstacles, avoid joint limits, minimize joint torques.

Most of the literature on redundancy resolution begins with the time derivative of
Eq. (1):

x =176 @
where J is the Jacobian of f.

In 1969, Whitney solved the redundancy resolution problem by finding the
minimum length vector of joint velocities that satisfied Eq. (2):

6 =JPx (3)
where JP is the Moore-Penrose generalized inverse of J:

® = 3T grhyl @

In 1983, Klein and Huang discovered that Whitney's solution did not yield
repeatable paths in joint space; at the end of a closed cycle in Cartesian space (x), the joints
might not return to their initial positions. In 1988, Shamir and Yomdin published a
necessary and sufficient condition for repeatable paths in joint space.

In 1985, Baillieul developed the extended Jacobian technique for redundancy
resolution. He considers a local optimization problem: maximize an objective function

[2(6)] subject to the constraint provided by Eq. (1). He proves the following Theorem.

Theorem. A necessary condition for 8¢ to define a local maximum of an objective function
[g(0)] subject to the positional constraint [Eq. (1)] is that:



G®) = 28 y = ozt 5)

for all vectors ¥ in the null space of J.

While the end of the manipulator is following a given path [xG(t)] and
simultaneously maximizing the objective function, Eq. (5) will be satisfied for all of the
basis vectors of the null space. Thus, Eq. (5) becomes a vector equation:

GO =0 6)
along the optimal trajectory.

Define a constraint Jacobian (J.) by:

_ 9G(8)

Je =55 | ©
Baillieul defines the extended Jacobian (J) by:
J
Je = [ Je ] 8)
Along an optimal trajectory, the joint velocities satisfy:
0 =| % 9
Je [ 0 ] ®

If the extended Jacobian is nonsingular, Eq. (9) can be solved for the optimal joint
velocities. Baillieul's extended Jacobian method will yield repeatable paths in joint space.

In 1989, Seraji a developed the configuration control method for redundancy
resolution. His method is not based on local optimization. He adds an additional task (z)
that will be performed by the manipulator:

z=g(0) (10)

The task Jacobian (J,) is given by:

_ 0g(0)
Je =55 | .an

The extended Jacobian (J,) is given by Eq. (8) and the joint velocities satisfy:

3.6 =[x] (12)
N |



If the extended Jacobian is nonsingular, Eq. (12) can be solved for the joint velocities.
However, the primary problem with practical applications of Seraji's method is that the
extended Jacobian can be singular: when J is not of full rank, when J,. is not of full rank,

and when the rows of J,, are not linearly independent of the rows of J.

Since the extended Jacobian can be singular, Seraji developed an improved
configuration control method in 1990. The improved method is based upon a damped
Jeast-squares solution to a set of linear equations. The method suppresses large joint
velocities near singularities, at the expense of small task trajectory errors in Eq. (12).

Examples of tasks are: obstacle avoidance, elbow control, and minimization of the
distance between the joint angles and a goal for the joint angles. In general, calculation ofa
task function and its Jacobian is very difficult for a realistic application. For example, the
minimum distance from any point on the manipulator to any obstacle in the environment
will be a continuous function of the joint angles. However as the arm moves in the
workspace, the point on the arm that is closest to an obstacle can have discontinuous .
motions. Consequently, the derivative of the function may not exist at many points in joint
space. Furthermore, each additional obstacle requires a new definition of the task function.

If x is fixed, Eq. (1) defines a manifold: the self-motion manifold. In 1989,
Burdick discussed the features of the self-motion manifolds. The inverse kinematic

solution (or preimage) is a set of points in joint space that are mapped to x by Eq. (1). In
general, the preimage [f 1 (x)] is the union of disjoint s dimensional manifolds:

ﬂ®=?Mw (13)

where k =n - m, 6 is an n vector, X is an m vector, and M;(q) is ank dimensional
self-motion manifold with local coordinates q.

In 1991, Burdick defined two types of redundancy resolution methods:
configuration resolution and path-wise resolution. A configuration resolution method finds

a point in joint space [0] that will keep the end of the manipulator at a given point [xC] and
maximize a scalar objective.function [g(6)]. A path-wise method finds a trajectory in joint

space [0(t)] that will keep the end of the manipulatdr on a given path [xG(t)] and maximize
a scalar objective function that is computed over the entire path. (We believe that point-
wise resolution is a better name than configuration resolution.)

Furthermore, there are two types of solutions for the two types of redundancy
resolution methods: global and local. A global method yields a solution that has the highest
possible value for the objective function. Ifa solution method is not global, it is called
Jocal. After noting that all current redundancy resolution methods are local, Burdick
develops a global method for configuration resolution.

We are interested in global path-wise methods for motion planning for a redundant
manipulator in a cluttered environment. Consider a manipulator that is performing
assembly tasks under the dash of a car. In some regions of task space, the primary
objective of redundancy resolution is to avoid joint limits while in other regions the
objective is to avoid obstacles. A general motion planning algorithm would be capable of
planning transitions from one of the self-motion manifolds to another: to move from an



elbow up configuration in one region of task space to an elbow down configuration in
another region.

At each point in task space, the self-motion coordinates define all of the points in
the preimage. At each point in the preimage, several scalar objective functions (for obstacle
avoidance, joint limit avoidance, minimizing joint torque, and avoiding singular states) can
be computed. The path-wise motion planner would find a trajectory in joint space that
would maximize a weighted sum of the multiple scalar objective functions over the entire
path in task space.

The advantages of using self-motion coordinates for posture control are discussed
in Seraji (1990). Since the self-motion coordinates can be difficult to calculate, Seraji has
used the arm angle (the angle between the arm plane and a reference plane) for a 7 joint arm
[see Seraji (1991)]. However, the extended Jacobian can be singular when the arm angle is
the task function.

In this paper, we develop an improved method for calculating self-motion
coordinates. Our method does not require the calculation of local coordinates for the self-
motion manifold. We work in the tangent space of the self-motion manifold. Given the
Jacobian, we use the standard methods of linear algebra to define self-motion parameters
and self-motion coordinates. Our approach overcomes all of the drawbacks of
conventional redundancy resolution methods: we do not need to define a new function for
each task, our extended Jacobian cannot be singular, and closed cycles in extended
Cartesian space will yield closed cycles in joint space.

In the next section, we will develop our method to parameterize the self-motion
manifold and define a self-motion coordinate. We have developed and demonstrated a
control system that allows us to move the manipulator to a position specified by both
Cartesian position and orientation and self-motion coordinate. In the third section, we will
discuss our experimental results. The fourth section will present our conclusions.

2. THEORY

A manipulator (or a machine tool) is a set of links connected in a chain by joints.
Usually, each joint has one degree of freedom. The state of the manipulator is described by
a vector of joint variables, 8. All points on the manipulator move in Cartesian space. We
are usually interested in the position and orientation of the end of the manipulator, which is
described by a vector (x) with six components in 3D space and three components in 2D
space. If x is fixed, the joint variables are constrained to move on the self-motion
manifold. If © is an n vector, X is an m vector, and the rank of J is r, then the dimension
(k) of the self-motion manifold is: k =n - r. Any point on the manifold can be defined by
local coordinates (q), where q is a k vector. - We can express the mapping from q to the
manifold by:

q=g0) 14

Mathematically, Eq. (14) is identical to Eq. (10). However, we are defining local
coordinates for the manifold, while Seraji is defining an additional task for the manipulator.
The Jacobian for Eq. (14) is given by Eq. (11). To simplify the notation and make the
notation consistent with our previous work, we will call the self-motion Jacobian B:



_ 0g(0)
B = =5 (15)

Since the elements of the B matrix are obtained by taking partial derivatives of g,
the partial derivatives of the elements of the B matrix will be symmetrical:

BBki _ Bzgk _ BBH
38; ~ 00;00;  96;

(16)

If r (the rank of J) is less than m, we will remove redundant rows and reduce the

number of rows in J (and the components of X ) tor. We shall call the extended Jacobian
K:

«-[3]

From this point on, we will consider B to be an arbitrary kxn matrix. We will choose B to
make the K matrix nonsingular. Later we will discuss options for the choice of the B
matrix. Thus, we may not be able tofinda g function that is consistent with B and B may
not satisfy Eq. (16). Since the q may not be coordinates, we will call them self-motion

parameters.

Using the K matrix, the kinematic equation relating joint velocities to Cartesian and
manifold velocities is:

K6 =[x} (18)
q

The inverse of the K matrix is partitioned into two matrices (E and F):

K!=[E F] (19)
The matrices J, B, E, and F satisfy:

JE=1 (20)

JE=0 (21)

BE =0 (22)

BF =1 (23)

EJ+FB=1 2]
Using the inverse of the K matrix, the solution of Eq. (18) is:

@ =Ex + Fq 25)

The solution has the form of a particular solution plus a null space solution (F is in the null
space of J).



In Seraji's configuration control method, B is the Jacobian of an arbitrary task
function. The extended Jacobian (K) will be singular if BT does not have a sufficient
number of components in the null space of J and Eq. (23) is not satisfied.

For any arbitrary matrix B that makes the K matrix nonsingular, the self-motion
parameters (q) are determined by:

q =BO (26)
with the initial condition q(0) = 0.

An arbitrary matrix B may not satisfy Eq. (16). However, for an arbitrary constant
matrix (C) the partial derivatives of the elements of the C matrix will be zero and will
satisfy Eq. (16). Let C be the initial value of B:

C = B(0) 27)

The self-motion coordinates p are determined by:

p=Co ’ (28)

with the initial condition p(0) = 0. If B is an appropriate matrix, then -B could also be
used. To overcome this ambiguity, we require that the matrix 1/2(CTB + BTC) be

positive definite. If the smallest positive eigenvalue of 1/2(CTB + BTC) approaches
zero, we choose a new value for C: C = B(t¥). If we choose B (and C)to be
. dimensionless, the units of p and q are radians. .

Our goal is to develop a motion control system that allows us to move the
manipulator to a position specified by both Cartesian position and orientation and self-
motion coordinates (see Figure 1). For any arbitrary matrix B that makes the K matrix

nonsingular, Eq. (25) can be used to calculate 6 from inputs of X and q. The motion
control system requires an error calculation system that calculates the changes in x and q

" (x and q). The inputs to the error calculation system are goals for both the position and

orientation of end of the manipulator (xG) and for the self-motion coordinates (pG) and the
current values of the state variables (x and p). To completely define the motion control

system, we must define x, X , J, B, and the error calculation system. We begin with B.

2.1. Definition of the B Matrix.

We would like to parameterize all possible choices for the B matrix. We need to

develop a basis for n vectors. A natural basis is provided by the rénge of JT and a basis
for the null space of J. To calculate a basis for the null space of J, we apply Singular



xG
»| Calc X q
Goal p® Error
-
X P
Calc Calc tlc.:int
State Velocities
q
‘9
8 or 66
Arm -

Fig. 1. The goal for the motion control system is specified by both Cartesian position and

orientation and self-motion coordinates.



Value Decomposition (SVD) to the matrix K with a zero B matrix: [ g ] . The SVD algorithm
provides an orthonormal basis for the null space, V:

JVv=0 | (29)
viv=1 3 (30)

!

Using the basis [JT and V], we can write general expressions for B, E, and F:

F=Va (3D
BT = JTy + VA (32)
E=JTn+Vo (33)

where Q., 7, A, M, and © are parameter matrices.

If E satisfies Eq. (20), the | parameter matrix must satisfy:

n = gIH! (34
If B and E satisfy Eq. (22), the ¥, A , and © parameter matrices must satisfy:

v +aTo=0 ' (35)
If B and F satisfy Eq. (23), the A , and 0, parameter matrices must satisfy:

ATa=I (36)

A convenient solution for Eq. (36) is obtained when the F matrix is orthonormal: F = V,
o =1Tand A =1

The particular solution (E) is the sum of the Moore-Penrose generalized inverse of
J [Eq. (4)] and a component in the null space. The B matrix has a component in the null

space FTand a component in the range of J. The tradeoffs between the two components
are expressed by Eq. (35). We will choose B to break the connection and place B in the
null space with E in the J space. Thus, Y = 6 =0 and our choices are:

BT =F=vV (37)
E=JTQIN)!=p (38)

where JP is the Moore-Penrose generalized inverse of J [see Eq. (4)].

When we do not have null space motion [q = 0], our solution is the Moore-
Penrose generalized inverse of J and Klein and Huang have demonstrated that the
Moore-Penrose solution did not yield repeatable paths in joint space; at the end of a closed
cycle in Cartesian space (x), the joints might not return to their initial positions. In our
experimental results, we will find that closed cycle paths in x and p space result in



repeatable paths in joint space. However, the final values of q may not be equal to the
initial values.

‘Unlike the extended Jacobian of Baillieul and the configuration control method of
Seraji, our method cannot have kinematic singularities or algorithmic singularities. IfJis
rank deficient, the null space of J becomes larger. The K matrix cannot be singular.

We conclude this subsection by developing a simple example to illustrate the
differences between local coordinates for the self-motion manifold and our self-motion
parameters. Consider a manipulator with one prismatic joint and one revolute joint:

x = 0; +0.5co0s 6,
The Jacobian is given by:

J =[1 -05sin6,]

If BT is in the null space of J:

B = [0.5sin 6, 1].

and the K matrix is never singular: [Kl = 1 +0.25 sin? 6.

Since B does not satisfy Eq. (16), the self-motion parameters are not self-motion
coordinates.

Two sets of self-motion coordinates are: 8; and 6,. If g =98y,
B = [1 0] and Kl = 0.5 sin 8, which is singular when 6, = 0.
Ifg=6,B = [0 1]and IKI = 1 which is never singular.

2.2. Definition of the x vector.

We have been discussing the position and orientation of the end of the manipulator,

the vector x and its derivative X . However, there are several different ways to define these
vectors. In this section, we will discuss our choices. In general, rigid body motions
consist of both a rotation and a translation. The representation of rigid body motions
requires both a rotation matrix and a translation vector. The standard method for defining
the position and orientation of end of the manipulator in 3D space is by a 4x4
homogeneous transformation matrix [T(t)] that maps from a fixed coordinate frame (F) to a
moving coordinate frame (M):

v 4]

where R is a 3x3 rotation matrix, and d is a three vector for translation. In the langnage of
group theory, rotation matrices are in the group SO(3) and transformation matrices are in
the group SE(3). We would like to map from T to x and from x to T. The vector d
provides three of the components of x. The difficult problem is to find a three vector that



10

maps to R. Options include: Euler angles, quaternions, Rodrigues' parameters and
exponential coordinates.

Euler's theorem [Goldstein (1980)] states that any rotation can be expressed as a
rotation about a vector (the axis of rotation). Initially, we used the method of Mladenova
(1990) and associated a rotation matrix with a vector ¢. The vector is the axis of rotation
and the magnitude of the vector is related to the angle of rotation (¢) by: ¢ = tan ¢/2.
However, a rotation of 180 degrees results in a vector with an infinite magnitude. A more
convenient representation is when the magnitude of the vector is equal to the angle of
rotation. Thus, we use exponential coordinates and map the rotation matrix to a vector (h)
where the direction is determined by the axis of rotation and the magnitude is the angle of
rotation. This mapping is well known [see Paul (1981) or Craig (1986) or Murray
(1994)]. Using the rotation vector (h), the x vector is given by:

- (5]

McCarthy (1990) demonstrates that the motion of the end of the manipulator is
determined by the tangent operator (S): ‘

S=TT! @41

The tangent operator for 3D motion is:
Q
S =[ 0 0 ] 42)

where € is the angular velocity matrix (and is skew symmetric), and v is a 3 component
velocity vector. Let w be the vector associated with the Q matrix:

0 - w3 Wo
Q = w3 0 - Wi 43)
- Wo A 0

and let Q be the six component vector that maps to S:

Q= V] | ' 44)

Murray (1994) calls Q a twist. In the language of group theory, angular velocity matrices
are in the group so(3) and S matrices are in the group se(3). There is a one to one
exponential map from so(3) to SO(3) and from se(3) to SE(3): R = eQ and T = es.

We will identify Q with X in Eq. (2):

x =Q (45)
Unfortunately, Q is not the time derivative of x defined by Eq. (40).
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2.3. Calculation of the J matrix.

The derivation in this subsection follows McCarthy (1990). Murray (1994) has a
similar derivation. In Eq. (2), the Jacobian (J ) is the partial derivative of f with respect to
the joint variables (6). To calculate J, the position and orientation of the end effector must
be related to the joint angles. Since the T matrix depends on the joint variables
[T =T (0)], the time derivative of the T matrix is given by:

oo aT(®) 5
T= z 26, O (46)
i ,
The tangent operator S is defined by Eq. (41):
+ dT(0)
S = 2 0; =—T-! 47
' 3e, @
i
We define the partial tangent matrices (S;) by:
- 9TO) 5
S; = 36; T (48)

Using the partial tangent matrices, the S matrix may be written:

S =Zsiéi 49)
i )

Let Q be the vector that determines the S matrix and let Q; be the vector that
determines the S; matrix:

e=[V] | \ (50)

Qi = [ ‘:ii ] (51)

McCarthy (1990) demonstrates that:

Q=2Qiéi (52)
i ) ‘
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Our goal in this subsection is to define J (the Jacobian matrix). In the last subsection, we

defined X to be equal to Q [Eq. (45)]. Since Eq. (52) relates X to 0 , it has the same form
as the definition of J [Eq. (2)]. We define the columns of J to be the vectors Q;. Thus,

Eq. (52) may be written:
Q=176 (53)

The T matrix is the product of A matrices and each A matrix depends on a single
joint variable:

T =[] A;®) (54)
i
The first partial tangent matrix is given by:
dA,
= —(A 55
S1= 25 A1) | (55)

Thus, S; only depends on ;.
If we define the partial T matrices (Uy) by:
U; = A (56)
Ui = Ui A; fori greater than 1 &Y))
The partial tangent matrices are given by:

dA;

5= Vi g,
1

(U;)_, fori greater than 1 (58)

Each S; depends on the first i joint angles: from 6, to 6;.

2.4. Solution of the control problem.

Our goal is to develop a motion control syétem that allows us to move the
manipulator to a position specified by both Cartesian position and orientation and self-
motion coordinates (see Figure 1). For any arbitrary matrix B that makes the K matrix

nonsingular, Eq. (25) can be used to calculate 8 from inputs of X and § . The motion
control system requires an error calculation system that calculates the changes in x and q

(X and q ). The inputs to the error calculation system are goals for both the position and

orientation of the end of the manipulator (x®) and for the self-motion coordinates (pG) and
the current values of the state variables (x and p). Rather than using the x vector directly,
we will map to the T matrix (see Figure 2).
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xG T
—>.—>@ Calc |x 4
Goal p® Error
-
T AY
Calc Calc Joint
State Velocities |
i x4
0
8 or 6%
Arm -

Fig. 2. The Cartesian position and orientation goal (xG) for the motion control system is

mapped to a T matrix before calculating the error.
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Given a Cartesian goal [xG(t)], we can calculate a goal for the T matrix [TG(t)].
Let TC be a correction T matrix that moves the system from its current state [T] to the goal:

¢ = 1°T (59
Solving Eq. (59):

1€ = TC 71 (60)
We can calculate a matrix (L) that is the logarithm of TC:

TC = expL ‘ (61)

Brockett (1984) noted that any T matrix can be mapped to a logarithm matrix with the same
structure as the right side of Eq. (42). Thus, the L matrix consists of a skew symmetric
matrix and a vector and can be mapped to a six component Q vector. If we definea T
matrix (A) by:

A =exptL \ (62)

and take the time derivative of A, we find:

A =LexptL (63)
Using the definition of the tangent operator [Eq. (41)]:
S=L (64)

As t increases from 0 to 1, A moves from I to T, The L matrix can be mapped to
a Q vector. The Q vector determines X [see Eq. (45)], one of the two terms on the right

side of Eq. (25) that determine the joint space move [é 1. We calculate the other term [q ]

as the difference between the goal for the null space coordinate (pG) and the current state
®):

q =p°-p (65)
where p is determined by integrating Eq. (28).

If the manipulator moved from I to T in one second, we might exceed the limits
on the joint space velocities. If any of the calculated joint space velocities violate the speed
limits, we use a scale factor to reduce all of the calculated joint space velocities and increase
the estimated time required for the motion. Since the system is highly nonlinear, the
estimated time of arrival may not be accurate but it should steadily decrease as we near the
goal.
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3. EXPERIMENTAL RESULTS

We have created a software system that performs the calculations described in the
last section to control a seven degree of freedom manipulator, our Robotics Research |
manipulator (see Figure 3). As shown in Figure 4, our software system is modular and
communication between the modules is through shared memory using the Helix software
[see Jones (1992)]. There are three data structures in shared memory: aGoal, r1Goal, and

aState. The aGoal is a Cartesian goal with position and orientation (xG) and self-motion

coordinate (pG). The rrGoal is a joint goal with either joint velocity or joint position. The
aState contains data on the current state of the system and some details of the calculation of
the self-motion coordinates. There are four modules in the software system: Control,
Control_x, Monitor_x, and Capture. Each of the modules runs at 60 Hz using a real time
operating system (VxWorks). )

Fig. 3. The ORNL Robotics Research manipulator.




Shared Memory
(Helix)

aState

aGoal

rrGoal

‘ 4 )

aState Output
[aGoal }' Capture ! Fijog
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Monitor_x {—m.| aGoal

\_ J
aGoal rrGoal
Joint Anglesl » Control_x "l aState
Control Arm Host

[ rrGoal

\T/

Interface

Fig. 4. The architecture of the software system for the mahipulator.
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The controller for the Robotics Research manipulator has a host interface with a
loop time of 36 ms (28 Hz) and a servo interface with a 6ms loop time (167 Hz). The arm
controller communicates with joint mounted servo hardware that runs four nested servo
loops: position (512 Hz), velocity (1024 Hz), torque (1024 Hz), and current (10,240 Hz).
Our software runs on a CPU in a VME rack and communicates with the host interface to
the arm controller using a bus to bus connector. We cannot communicate directly with the
joint mounted servo hardware.

The Control module reads the joint goal data structure from shared memory and
sends an appropriate command to the host interface. The host interface will accept velocity
or position commands for both joint angles and Cartesian coordinates. For our
experiments, we send joint velocity commands when we are far from the goal and send
joint position commands when we are near the goal.

An experiment consists of a sequence of Cartesian goals for predetermined times
that are written to shared memory at the appropriate times by the Monitor_x module. The
Control_x module reads the Cartesian goal from shared memory and reads the joint angles
from the host interface. The Control_x module performs the calculations described in the
* previous section and writes the joint goal and the current state of the system to shared

memory.

The Capture module reads shared memory (at 20 Hz) and writes the state and goal
data to output files. The graphs in this section were prepared using the output files
produced by Capture.

The experiments described in this section are produced by processes that operate at
three distinct frequencies. The high level goals are changed slowly (the durations of the
Cartesian goals range from 0.83 seconds to 4.33 seconds). The host interface operates at
28 Hz. The servo loops for the arm controller run at high rates (512 Hz to 10,240Hz).
Our experiments demonstrate that our control system can reach a goal. However, we are
not tracking a path. During an experiment, the Cartesian positions can have significant
errors. We could reduce the errors by giving the system high level goals at a higher
frequency using the servo interface.

We will discuss the results of four experiments. The first experiment is a loop in
Cartesian position: increase Xs, increase xg, decrease Xs, and decrease xg. The second
experiment is a loop in Cartesian orientation: increase X, increase X, decrease X, and
decrease x5. The third experiment is a cycle in the self-motion coordinate: increase p from
0 to 1, decrease p to -1, and increase p to 0. The final experiment is a loop in Cartesian
position (x) and self-motion coordinate.

The first experiment is a loop in Cartesian position. As shown in Table 1, x5
increases from 0.6514 m to 0.7500 m before returning to 0.6514 m. Simultaneously, X¢
increases from -0.1026 to 0.0 m before returning to -0.1026. Time series values of x5 and
x¢ are plotted in Figs. 5 and 6. The perturbations in x5 near 1.0 seconds and near 3.5
seconds are caused by the large changes in x¢ at those times. Comparing Table 1 and Figs.
5 and 6, the time values in Table 1 correspond to periods when the position variables are
constant.
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Table 1. Values of the Cartesian position for the first experiment.

Time

X5 X6
seconds meters meters
1 0.03 0.6514 -0.1026
2 0.73 0.7500 -0.1026
3 1.60 0.7500 0.0000
4 2.63 0.6514 0.0000
S 3.70 0.6514 -0.1026

The second experiment is a loop in Cartesian orientation. As shown in Table 2,
both x; and x; increase from 0.0 radians to 0.5 radians before returning to 0.0 rad. Time
series values of x; and x; are plotted in Figs. 7 and 8. The perturbations in x; near 2.0
seconds and near 5 seconds are caused by the large changes in x5 at those times.
Comparing Table 2 and Figs. 7 and 8, the time values in Table 2 correspond to periods

when the position variables are constant.

Table 2. Values of the Cartesian orientation for the second experiment.

Time X1 X2
seconds radians radians
1 0.05 0.0000 0.0000
2 1.65 0.4998 0.0002
3 3.15 0.5001 0.4999
4 4.55 0.0000 0.5000

The third experiment is a cycle in the self-motion coordinate (p). The changes in
self-motion coordinate (p), the cosine of the angle between the vectors B and C (cos ),
and local coordinates (q) are displayed in Table 3 for the third experiment. We will
examine plots of each of these variables. Time series values for p are plotted in Fig. 9.

The value of p increases from O to 1, decreases to -1, and increases to 0. Ateachstepon -
the control algorithm, we can estimate the time required to get to the goal without exceeding
the speed limits on the joint velocities (Goal Time). The values of Goal Time are plotted in
Fig. 10 for the third experiment. When a new goal is provided to the control system, the
value of Goal Time increases rapidly to a peak and decreases as the arm approaches the

goal. At the end of the big swing from p = 1.0 to p = -1.0, the value of p overshoots the
goal. When the overshoot occurs (at 4.35 seconds), the Goal Time jumps from 0.05
seconds to 0.12 seconds.

Table 3. Values of the self-motion coordinate (p), cos |1, and local coordinates @

for the third experiment.
Time p cos I q
seconds radians radians
1 0.05 0.0000 1.0000 0.0000
2 2.05 1.0000 0.7699 1.0778
3 5.55 -1.0000 0.7699 -1.0228
4 7.95 0.0000 1.0000 -0.0006
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In Table 3, the changes in the local coordinates (q) are a little bit larger than the
changes in the self-motion coordinate (p). The difference between g and p is displayed in
Fig. 11. We are surprised that the curve is not more symmetrical (we expect positive
values when p is positive to be mirrored by negative values when p is negative). In Table
3, the difference when p = 1.0 (0.0778) is more than three times as large as the difference
when p = -1.0 (-0.0228). At the end of the experiment, p, q, and the joint coordinates
have returned to their original positions.

For the general case, we require that the matrix 1/2(CTB + BTC) be positive
definite. For our experiments, k=7 - 6 = 1, B and C are vectors with unit length, and

CTB is a scalar. Thus, CTB is the cosine of the angle (1) between B and C. To keep the
coordinates single valued and invertible, we require that the magnitude of p be less than 90

degrees. Thus, cos [ should be positive. If cos [L approaches zero, we choose a new
value for C: C = B(t*), where B(t¥) is the current B vector when we chose a new value

for C. Values of cos L are plotted in Fig. 12 for the third experiment. All of the values of
cos |1 are positive during the experiment. In Table 3, we find that cos 1 = 0.7699 when p
= +1.0. Thus, the angle between B and C is 1 = 0.69 radians (40 degrees) whenp =
+1.0.

During the third experiment, four of the seven joint angles have substantial changes
in their values (see Table 4). The values in Table 4 demonstrate that the joint angles return
to their initial values.

Table 4. Values of the joint angles for the third experiment.

Time 0, 03 65 05
seconds radians radians radians radians
1 0.05 -~ 0.0000 0.0000 0.0000 -0.7854
2 2.05 0.8624 0.4403 -0.8584 -1.3055
3 5.55 -0.8624 -0.4404 0.8583 -1.3052
4 7.95 0.0004 -0.0008 -0.0028 -0.7853

Each of the joints has a speed limit. The targets for the joint velocities are required

to be less than the speed limits. Targets and measured values for the velocity of joint one

are displayed
degrees per sec
values alternate

in Fig. 13. The speed limit for joint one is 1.2 radians |
ond). During periods when the target is at the speed 1
between a value that is slightly above the speed limit (1.3 radians per

per second (70
imit, the measured

second) and zero. In the period from 2.72 seconds to 4.52 seconds, there were 27
measurements of 1.3 1/s and 10 measurements of zero. No other values were measured!

We apply
space of J. Since we have
will be zero. If J is rank deficient,

Singular Value Decomposition (SVD) to calculate a basis for the null
added a row of zeros to the matrix, one of the singular values
a second singular value will be zero. We monitor the

second smallest singular value () to detect when J is becoming rank deficient. Values of €
are plotted in Fig. 14 for the third experiment. The singular value varies from 0.35 to

0.39. Thus, it does not approach zero.
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The final experiment is a loop in Cartesian position (xg) and self-motion coordinate.
The changes in self-motion coordinate (p), the Cartesian position (X¢), and local
coordinates (q) are displayed in Table 5 for the fourth experiment. Time series values for p
are plotted in Fig. 15. The value of p increases from 0 to 1 and then decreases to 0. Time
series values for x¢ are plotted in Fig. 16. The value of x¢ increases from -0.1 m to 0.0
and then decreases to -0.1 m. Small changes in p occur during large changes in xg and vice
versa.

The difference between q and p is displayed in Fig. 17. As p increases from O to 1,
q increases from 0.0 to 1.08 radians (the change is the same as for the third experiment).
However, the increase in xg requires an increase in q from 1.08 radians to 1.14 radians.
As p decreases from 1 to 0, q decreases from 1.14 radians to -0.09 radians. During the
final decrease in x¢ there is no change in q. At the end of the experiment, p, X, and the
joint coordinates have returned to their original positions. However, the local coordinate
(q) does not return to zero. In the third experiment, the local coordinate returned to zero.
In the third experiment the position and orientation (x) was constant, while the position
changed in the fourth experiment. In Table 5, a 1.0 radian change in p requires a 1.08
radian change in q at the lower value of xg and a 1.23 radian change in q at the upper value |
of xg.

Table 5. Values of the self-motion coordinate (p), Cartesian position (x6), and
local coordinates (q) for the fourth experiment.

Time D X6 q
seconds radians meters radians
1 0.02 0.0000 -0.1026 0.0@0
2 1.85 T.0001 -0.1026 1.0772
3 4.05 1.0004 0.0000 1.1395
4 6.65 0.0002 0.0000 -0.0885
5 7.55 0.0000 -0.1026 -0.0887

During the fourth experiment, foir of the seven joint angles have substantial
changes in their values (see Table 6). The values in Table 6 demonstrate that the joint
angles return to their initial values.

Table 6. Values of the joint angles for the fourth experiment.

Time 0, 03 05 06
seconds radians radians radians radians
1 0.05 0.0000 0.0000 0.0000 -0.7854
2 1.85 0.8625 0.4403 -0.8586 -1.3056
3 4.05 0.9689 0.3341 -1.0410 -1.2680
4 6.65 0.0002 0.0000 -0.0006 -0.5953
5 7.55 0.0000 0.0000 0.0000 -0.7854
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Seraji's configuration control method for redundancy resolution adds an additional
task that will be performed by the manipulator. One example of a task is control of the
elbow angle (), the angle between the plane containing the shoulder, elbow, and hand of
the arm and a reference frame containing the line that joins the shoulder to the hand [see

Seraji (1991)]. We conclude this section by comparing the elbow angle with both the self-
motion coordinate and the angle between B and C for several experiments.

Values of the three angles for the third experiment are displayed in Table 7.
Although the magnitudes of the three angles are different, the angles move together (all are
at their maximum at 2.05 seconds and at their minimum at 5.55 seconds.

Table 7. Values of the self-motion coordinate (p), the angle (i) between B and C,
and the elbow angle () for the third experiment.

Time p Y
seconds radians radians radians
1 0.05 0.0000 0.0000 0.0000
2 2.05 1.0000 0.6921 0.8332
3 5.55 -1.0000 -0.6921 -0.8330
4 7.95 0.0000 0.0000 0.0000

The position and orientation of the hand are constant for the third experiment, while
the position of the hand changes during the fourth and fifth experiments. Values of the
three angles for the fourth experiment are displayed in Table 8. The first two rows of Table
8 have the same values as the first two rows of Table 7. In the third row of Table 8, x4
increases while p is constant and both p and y increase. In the fourth row of Table 8, p
decreases to zero while x¢ is constant, y decreases to zero, but | only decreases to 0.25
radians.

Table 8. Values of the self-motion coordinate (p), the angle (1) between B and C,
and the elbow angle () for the fourth experiment.

Time P 1L v
seconds radians radians radians
1 0.05 0.0000 0.0000 0.0000
2 1.85 1.0001 0.6923 0.8331
3 4.05 1.0004 0.7513 0.8922
4 6.65 0.0002 0.2472 0.0002
5 7.55 0.0000 0.0000 0.0000

Values of the three angles and the Cartesian position for the fifth experiment are
displayed in Table 9. The first two rows of Table 9 have the same values as the first two
rows of Tables 7 and 8. In the third row of Table 9, x¢ increases by three times the amount
as in the fourth experiment while p is constant and both |t and y increase by more than in
Table 8. In the fourth row of Table 9, p decreases to 0.02 radians while x¢ is constant, Y
decreases to 0.02 radians, but [t increases slightly to 1.00 radians. Table 9 demonstrates
that the values of the three angles can have independent changes.
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Table 9. Values of the self-motion coordinate (p), Cartesian position (X¢), the angle (1)
between B and C, and the elbow angle (y) for the fifth experiment.

~ Time p X6 W
seconds radians meters radians radians
1 0.07 0.0000 -0.1026 0.0000 0.0000
2 2.30 1.0000 -0.1026 - 0.6921 0.8330
3 - 5.80 0.9999 0.2000 0.9350 1.0736
4 10.13 0.0244 0.2000 1.0042 0.0220

4. CONCLUSIONS

There is a large literature ‘on the control of redundant manipulators. Whitney solved
the redundancy resolution problem by using the Moore-Penrose generalized inverse. Klein
and Huang discovered that Whitney's solution did not yield repeatable paths in joint space.
Shamir and Yomdin published a necessary and sufficient condition for repeatable paths in
joint space. Baillieul developed the extended Jacobian technique for redundancy
resolution. He maximizes an objective function at every point on the specified path in
Cartesian space. If the extended Jacobian is nonsingular, the method will yield repeatable
paths in joint space. Seraji a developed the configuration control method for redundancy
resolution. His method is not based on local optimization. He adds an additional task that
will be performed by the manipulator. The kinematic Jacobian can be combined with the
task Jacobian to define an extended Jacobian. If the extended Jacobian is nonsingular, the
joint velocities can be determined. The extended Jacobian will be singular if either the
kinematic Jacobian or the task Jacobian are not of full rank.

At every point on the specified path in Cartesian space, the arm is constrained to
move on the self-motion manifold. Burdick has discussed the features of the self-motion
manifolds. The inverse kinematic solution is the union of disjoint manifolds. A general
path planning algorithm for a redundant manipulator should plan transitions from one of the
self-motion manifolds to another. Burdick has defined two types of redundancy resolution
methods: configuration resolution and path-wise resolution. A configuration resolution
method finds a point in joint space that will keep the end of the manipulator at a given point
in Cartesian space and maximize a scalar objective function. A path-wise method finds a
trajectory in joint space that will keep the end of the manipulator on a given path in
Cartesian space and maximize a scalar objective function that is computed over the entire
path. Our long term objective is to develop a global method for path-wise resolution.

In this paper, we have defined and demonstrated a self-motion coordinate system.
For the extended Jacobian methods of Baillieul and Seraji, either the objective function or
additional task is specified by a predetermined function of the joint variables. There are
three problems with this approach: how to choose a function, the function may be difficult
to calculate, and the extended Jacobian can become singular. Calculation of an obstacle
avoidance function for a realistic problem may be difficult. As the arm moves in the
workspace, the point on the arm that is closest to an obstacle can have discontinuous
motions. The Jacobian may not be defined at the discontinuties. Adding or moving an
obstacle will require the calculation of a new function. Our method does not require a
predetermined function; we numerically determine a basis for the null space of the -
kinematic Jacobian. Our method cannot have kinematic singularities or algorithmic
singularities.
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We have developed and demonstrated a control system that allows us to move the
manipulator to a position specified by both Cartesian position and orientation and self-
motion coordinates. When we do not have null space motion, our solution is the Moore-
Penrose generalized inverse of J and Klein and Huang demonstrated that the
Moore-Penrose solution did not yield repeatable paths in joint space. In our experimental
results, we find that closed cycle paths in x and p space result in final values of the joint
angles that are equal to the initial values however the final values of q may not equal to the
initial values. We have demonstrated that our self-motion coordinates are not the same as

Seraji's elbow angle.
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