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Alum Cave Bluff is actually a natural shelter protected by the overhanging rock. There is no
real cave at the site.

Secondary sulfate minerals accumulating as a shallow subsurface deposit in the soil at Alum
Cave.

Photo taken during a rain shower. Note the darker area in the lower right, further out from
the overhang, which is subject to direct impingement of rainfall and runoff from above.

Small rounded crystals of native sulfur on hair salt (apjohnite). The sulfur crystals are about
100 pm in diameter.

Crude octahedral crystals ~ 50-100 um presumed to be tschermigite.
Acicular gypsum crystals ~ 25 pm djameter, which to the unaided eye might appear to be hair

salt. The terminations visible at this magnification are characteristic of gypsum, and the
chemical analysis confirms the identification.

Epsomite crystals. Top: crystal on matrix from Alum Cave. Bottom: glassy, rounded
crystals on rock fragment collected in soil during rainy conditions. Inset: commercial Epsom
salt.

Top: 300 um aggregates of melanterite forming cauliflower-like masses on halotrichite.
Bottom: detail of melanterite aggregate.

Acicular crystals of apjohnite, one of the "hair salts” showing characteristic subparallel
needles forming a solid mass.

Slightly curved fibrous crystals of halotrichite, another of the "hair salts".

Micaceous plates ~ 100 pm diameter, of an aluminum sulfate (possibly alunogen). If the
sample is indeed alunogen, it is a fairly uncommon habit for the mineral, which is more
typically fibrous [8].

A jarosite group mineral, presumably ammoniojarosite.

Another "jarosite” from a different sample.

Minute fibers with S:Al ~ 1:2, presumed to be aluminite.

Foliated crystals with S:Al ~ 1:4, consistent with the composition of basaluminite.

A 100 pum rosette of bladed crystals whose composition suggests a slightly ferroan
botryogen.

Top: A small group of slavikite crystals (largest is about 70 pm across). Bottom: Slavikite
crystal separating along basal cleavage into laminae about 2 pm thick.

Tabular 5 pm crystals of magnesiocopiapite. Top: View of sample showing arrangement of

crystals in a scaly mass. Bottom: Another sample with individual crystals showing
prominent cleavage.
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Euhedral diadochite crystals about 10 x 20 [m on massive earthy material.

Diadochite crystals similar to those in Figure 20 but growing in clusters on acicular gypsum.
Platy crystals of coskrenite-(Ce), the largest of which are about 100 um long, forming
radiating clusters. These particular crystals were cream-colored in natural light. XRF
showed Ce>Nd>>La and (Ce+Nd+La):S ~ 1:1.

Another sample of coskrenite-(Ce); although these crystals were pink, the XRF data showed
no discernable difference from the composition of the cream-colored crystals shown above.

Euhedral crystals of levinsonite-(Y), the largest of which is about 75 x 100 x 150 pum.
A crystal of levinsonite-(Y) in the form of a simple elongated tablet.

Slavikite crystals attached to a crystal of levinsonite-(Y).

Blocky crystals of zugshunstite-(Ce), the largest of which is about 250 um.

Single crystal of zugshunstite-(Ce) with a habit very similar to epsomite.



ABSTRACT

Microcrystals of secondary sulfate minerals from Alum Cave Bluff, Great Smoky Mountains
National Park, were examined by scanning electron microscopy and identified by X-ray
fluorescence (XRF) in the SEM. Among the samples, the author discovered three new rare-earth
sulfates: coskrenite-(Ce), levinsonite-(Y), and zugshunstite-(Ce). Other minerals illustrated in this
report include sulfur, tschermigite, gypsum, epsomite, melanterite, halotrichite, apjohnite, jarosite,
slavikite, mégnesiocopiapite, and diadochite. Additional specimens whose identification is more
tentative include pickeringite, aluminite, basaluminite, and botryogen. Alum Cave is a "Dana

locality" for apjohnite and potash alum, and is the first documented North American occurrence of
slavikite.
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1. INTRODUCTION

Alum Cave Bluff in the Great Smoky Mountains National Park is a long-known sulfate
locality; Dana’s System mentions two sulfate minerals (potash alum and apjohnite) from “Alum
Cave” [1]. The locality was studied during the 1800's; however, the present study represents the
first systematic examination of the sulfate minerals at the site by modern electron microscopic
techniques.

Alum Cave Bluff is on a southern spur of Mount Le Conte, at an elevation of about 1,600
meters. No cave exists; Alum Cave Bluff is a rock shelter about 30 meters high and 10 meters
deep, Figure 1. The site is 3.6 kilometers via a hiking trail from a parking lot on the main highway
through the Park (U.S. 441). Salts at Alum Cave Bluff have been known since at least 1837 [2],
and gave the site its name. According to Jenkins [2], “the minerals of Alum Cave, contiguous to
each other, include alum, Epsom salts [epsomite], saltpeter, magnesia, and copperas
[melanterite].” Many tons of alum and Epsom salt had accumulated at the site. The easily mined
salts were depleted by the mid-1840’s and activities there gradually diminished, except for a brief
revival of mining for saltpeter during the Civil War.

Alum in the modern sense is a general term for hydrous alkali sulfates [3] with the formula

* AB(SO,),12H,0 where

A is potassium or a higher alkali metal (rarely sodium), thallium(T), or ammonium;

B is a trivalent ion of relatively small ionic radius (0.5 - 0.7 A) such as Al, Fe, or Cr.

Alum per se is uncommon at the locality. However, the hair-salt series, apjohnite-
halotrichite, is abundantly present. These minerals were originally called alums and were used for
the same purposes (astringents, dyeing, etc.). In view of the abundance of hair salt at Alum Cave
Bluff, and the small amount of true alum present, it is probable that nineteenth-century authors
were not referring to alum in the present strict sense. The Dana mention of potash alum at Alum
Cave Bluff [1] does not cite any reference; if it is based on historical accounts of "alum" in the
broad sense, then it may be called into question. Although some true alum is present, all samples
analyzed in the present study had no potassium and are probably tschermigite [ammonia alum,
NH,AI(SO,),12H,0].
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Figure 1. Alum Cave Bluff is actually a natural shelter protected by the overhang-
ing rock. There is no real cave at the site.
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2. GEOLOGY

Bedrock at Alum Cave Bluff is the Anakeesta Formation, a dark-gray phyllite of late
Precambrian age. It is rich in carbon and pyrite, as is true of much of the Precambrian rock of the
area [4]. The chief minerals composing the rock are muscovite, biotite, chlorite, quartz, and
pyrite. Chloritoid is commbnly observed as 1- to 2-ium crystals in the finer-grained beds. X-ray
fluorescence analysis showed the chloritoid to be near the iron end-member; both manganese and
magnesium were very low. Tiny manganese-rich garnet dodecahedra (approximately .75
spessartine, .20 almandine, .05 pyrope [5]) are also present. A bulk chemical analysis of one
sample of Anakeesta is given in Table 1; note the comparatively high manganese content, which
accounts for the existence of spessartine garnets in the greenschist-facies rock and the presence of

apjohnite among the secondary minerals.

Table 1. Bulk chemistry of the Anakeesta Formation

SI0,  eeerens 55.80 HO- eeeenn. 0.14
A1203 tecveece 23.24 ! H20+ ooooooo 2.73
Fe,0,  evunn. 1.28 TiO,  eeeeen. 0.68

FeO  euenen. 2.58 CO,  euenen. 0.09
MO .even.. 107 PO,  .eee .. 013
MgO  eernnnn 1.39 SO,  eenenn. -

CaO  ....... 0.52 S ... 1.30
Na,O  .evenn. 2.41 C . 2.78

KO  eeerenn 4.37 BaO  .even.. -

100.51

Source: Hadley and Goldsmith [5]



3. SECONDARY MINERAL FORMATION

The pyrite-rich Anakeesta is presently exposed to weathering, and the oxidation of the pyrite
produces a weak solution of sulfuric acid and ferrous sulfate. The acid solution then attacks the
other minerals of the rock. In addition, the ferrous iron is partly or completely oxidized to ferric
iron. The ferric iron in solution also acts as an efficient oxidizing agent; the net result is that acidic
water bearing dissolved Fe, Mg, Al, K, Na, Ca, Mn, and sulfate trickles down the face of the
bluff. When the acid solution passes beneath the overhang of Alum Cave Bluff, it becomes
concentrated by evaporation in the arid microclimate of the rock shelter, and eventually begins
depositing sulfate salts. Some of the evaporation and deposition takes place on the face of the
rock, but most occurs after the seepage reaches the dirt floor, Figure 2. Some areas of the site are
exposed to more direct rainfall and runoff than others, Figure 3, and at these locations the salts
were easily seen, even during a moderate rain. The minerals are thus constantly renewed. The
suite of minerals deposited at any one place depends on the relative concentrations of the metal ions
and on the pH; these constantly change as various salts are precipitated or redissolved, so that the
suite of salts varies from place to place within the site and probably changes somewhat with the

seasons [6].
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Figure 2. Secondary sulfate minerals accumulating as a shallow subsurface
deposit in the soil at Alum Cave.



Figure 3. Photo taken during a rain shower. Note the darker area in the lower"
right, further out from the overhang, which is subject to direct impingement of rainfall
and runoff from above.



4. EXPERIMENTAL

Samples of minerals were separated from surrounding soil or were scraped from exposed
rock surfaces. Small aggregates generally less than 1 mm, and in some cases tiny isolated crystals,
were mounted on carbon stubs and sputter-coated with gold to prevent charging in the SEM.
Microscopic examination was done in an ISI model SS-40 scanning electron microscope at 30 kV.
Microanalysis employed a Tracor-Northern TN-2000 energy-dispersive X-ray analysis system, in
which Na is the lightest element that can be detected.

It is important to note that XRF alone cannot be considered a conclusive identification method
because it does not detect light elements and the indicated concentrations of metals are
semiquantitative at best, particularly when dealing with raw mineral specimens that have not been
polished. The presence of impurities and/or X-ray emission from adjacent mineral phases is
another complication that must be kept in mind when analyzing natural materials. Consequently,
XRF analysis must be supportéd by consideration of other characteristics such as color, crystal
habit, symmetry, etc., and of course, by the experience of the microscopist.



5. RESULTS

Tlustrations of individual minerals and selected mineral associations were selected from well
over 100 photomicrographs and approximately 70 XRF analyses. When a particular identification
is tentative, it is indicated by (?) after the mineral name. Crystal drawings are taken from
Goldschmidt [7]. Representative XRF data are reproduced in the Appendix.

Sulfur S

Elemental sulfur occurs as minute (~ 100 pm) sharp to rounded clear
highly modified crystals. Figure 4 shows several small crystals on apjohnite.

Tschermigite? (NH)AI(SO0,),*12H,0

Tiny (~ 200 pm) sharp clear colorless octahedra and cubooctahedra
were tentatively identified as an alum group mineral from their
morphology and general appearance. A typical example (Figure 5) had
S:Al ~2:1 as expected, but no K was present. The tentative
identification of this material as tschermigite is consistent with these
observations.

Gypsum CaS0,2H,0

The morphology of gypsum at Alum Cave ranges from the fairly
fypical bladed shape, to a more acicular habit that a casual observer could

mistake for one of the hair salts. An example of gypsum in the acicular

habit is shown in Figure 6. 7 ¥ ¥
| A4

Epsomite MgSO,7H,0 i J

Epsomite forms glassy-clear fibrous to columnar masses, as well as some . —L—
euhedral prismatic terminated crystals to 5 um (resembling commercial Epsom salt), Figure 7.
Under dry conditions epsomite irreversibly loses up to 1 H,O, altering to hexahydrite [8].



Melanterite FeSO,~7H,0

Melanterite ranges from pale-green to colorless, euhedral crystals to "ram’s horn" fibers,
rounded masses, and coatings, Figure 8. Melanterite alters to opaque white pseudomorphs (the

peﬁtahydrate or lower hydrates) in dry air [8].

Apjohnite (Mn,Mg)AL(SO,),22H,0

Clear needles and silky masses of typical hair-salt appearance, Figure 9, were very common.
Most specimens of hair salt were identified as magnesian apjohnite by semiquantitative XRF
analysis (most analyses showed Mn > Mg, with little or no Fe).

Pickeringite? (Mg,Mn)AL(SO,),*22H,0

Pickeringite forms a solid solution series with halotrichite and apjohnite, and is
distinguishable with certainty only by analysis. The hair salt samples analyzed in this study were
much more frequently apjohnite; even many samples intimately associated with epsomite proved to
have Mn > Mg. Some XRF analyses of hair salt showed approximately equal amounts of Mg and
Mn, with Mg slightly greater than Mn, but a definite confirmation of pickeringite will require a
more quantitative analysis.

Halotrichite FeAl,(SO,),*22H,0

Silky white to yellowish fibrous masses and free-standing acicular crystals with no visible
terminations are shown in Figure 10. The halotrichite was associated with melanterite, and its
identity was confirmed by XRF. With pickeringite and apjohnite, gave name to locality (“iron
alum”).

Alunogen? Al (SO,);*17TH, 0

Colorless to grayish very thin plates with elongated pseudohexagonal outline (micaceous
habit), Figure 11, ~100-300 pm, associated with magnesiocopiapite on rock surfaces and crevices.
Identification of this specimen as alunogen is highly speculative at this time; it is consistent with
semiquantitative XRF analysis (only Al and S detected; S>Al), but one would normally expect
alunogen to be fibrous. As noted in Dana [9], however, "Crystals [are] small and rare; prismatic
[001] or {010} with a six-sided outline about [010]." So it is conceivable that the micaceous
crystals in Figure 11 are indeed alunogen.



“Jarosite” (probably Ammoniojarosite) (NH4)Fe*33(SO4)2(OH)6

Crusts of minute yellow to red-brown crystals (pseudocubic or flattened rhombohedron and
pinacoid) to about 200 pm, Figures 12 and 13. First identified as jarosite-group mineral from
color, habit, and insolubility [6]; the present identification is based on XRF (no K or Na was
detected in any samples analyzed). Some jarosite and/or natrojarosite could be present at Alum
Cave, although neither was present in the five “jarosites™ analyzed by XRF.

Aluminite? ALSO/,(OH),7H,0

Masses of snow-white to yellow-stained matted fibers (~2 x 20 um), Figure 14, associated
with gypsum and iron oxide. Tentatively identified by XRF (S:Al ~ 1:2) and by the

acicular/fibrous habit.

Basaluminite? AlLSO,(OH),,*SH,O

Creamy-white, very fine-grained crystalline masses were associated with gypsum. At very
high magnification, SEM shows well-crystallized material in very thin foliated crystals, Figure 15.
Tentatively identified as basaluminite by XRF (S:Al ~ 1:4).

Botryogen? MgFe**(SO,),(OH)*7H,0

Very tiny rosettes of bladed pale-orange crystals, Figure 16, have a radiating habit that is not
inconsistent with a tentative identification as botryogen. XRF analysis supports this as well,
showing S:(Fe+Mg) ~ 1:1, although the spectrum suggests some substitution of Fe*? for some of
the Mg, which is well known in this mineral [10].

Slavikite MgFe®,(SO,),(OH),*18H,0

Sharp euhedral glassy-clear greenish-yellow (fresh) to translucent orange (altered) crystals of
tabular habit with a combination of rhombohedron and pinacoid, sometimes modified by minor
rhombohedra, Figures 17 and 25, about 100 to 300 pm, were originally identified by as slavikite
by (powder) X-ray diffraction [11]. This appears to be the only known North American locality
[6]. The formula given is that of Gordon [12] on the only other (comparatively) large crystals,
from Argentina. XRF analysis of the Alum Cave Bluff material showed a trace of Mn but did not
detect sodium; however, the type material from Bohemia may have contained impurities. A trace
of manganese was also found. The crystals from Alum Cave Bluff show a slight pearly luster on
the basal pinacoid, suggesting the existence of a perfect basal cleavage which has not been
recorded in earlier descriptions. The SEM photographs, Figure 17, clearly show the crystals
splitting into thin flexible lamellae along this cleavage, suggesting that slavikite may have a sheet
sulfate structure akin to that of spangolite, langite, etc. [6].
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Magnesiocopiapite = MgFe*,(SO,),(OH),*20H,0

Crusts and masses of tiny yellow flakes, Figure 18, illustrate the characteristic habit of
magnesiocopiapite. Copiapite [(Fe,Mg)Fe*,(SO,),(OH),*20H,0] is probably also present at Alum
Cave, but all of the samples analyzed in this study have significant Mg and are properly classed as

magnesiocopiapite.

Diadochite Fe*,(P0O,)(SO,)(0OH)*6H,0

Buff to salmon masses of minute powdery (few tens of microns) crystals to rare tiny (100
pm) blocky euhedral crystals, Figures 19 and 20, were identified by XRD and XRF. The
diadochite crystals occurred in and on rock in soil associated with acicular gypsum crystals, and in
soil salts [6]. The formula presented here, with six waters of hydration instead of five, has been
determined recently by a crystal-structure analysis [13].

Coskrenite-(Ce) (Ce,Nd,La),(S0,),(C,0 )*12H,0

Tiny (<800 pm) squarish to wedge-shaped platy crystals, commonly with lozenge-shaped
cross section, Figures 21 and 22, were analyzed by XRF and provided the first surprising
evidence of rare earth minerals at Alum Cave. The spectrum showed only rare earth elements
(REE) and sulfur, from which it was surmised that the mineral was a REE sulfate (a REE sulfide
would not be stable under the conditions at Alum Cave and would likely not be transp.arent). This
mineral occurs in association with apjohnite and epsomite, and sometimes with slavikite, jarosite,
tschermigite, and the two related minerals levinsonite and zugshunstite described below. Some is
in radiating masses completely embedded in hair salt. A few crystals are cream-colored; most,
however, are pale pink under incandescent lights, pale blue-gray under fluorescent light, and
nearly colorless in sunlight. (It is well known that in glasses [14], as well as in many host crystals
[15], the very sharp absorption bands of Nd**> make the observed color particularly dependent on
the spectral energy of the illuminating light. Gemologists often refer to this phenomenon as color-
change or "alexandrite effect”, although in alexandrite REE ions are not responsible for the
coloration.) Formal descriptions of this and the two following REE minerals are in progress and
the names have been approved by the International Mineralogical Association; the formulas given
here are based mostly on completed structure analyses and electron microprobe analyses [13], with
REEs determined partly by XRF analysis. Coskrenite, levinsonite, and zugshunstite are the first
naturally-occurring rare-earth sulfates or oxalates, and the first minerals that contain both oxalate
and another anion (sulfate in the present case) [6].

11



Levinsonite-(Y) (Y,Nd,Ce)AI(SO,),(C,0,)*12H,0

The second REE mineral forms sharp euhedral colorless to white prismatic crystals with
orthorhombic aspect (but true symmetry is monoclinic [13]). Tiny rectangular prisms with
transverse striations, to several hundred pm, are shown in Figure 23. A second habit is slightly
elongated rectangular tablets, Figures 24 and 25. This mineral has somewhat lower solubility than
that of the hair salts and can be exposed by partially dissolving the hair salts with water.  This
mineral and the following one have the same formula except for the nature of the dominant REE.
Both minerals are present within a centimeter of each other in one specimen, and this occurrence
may represent a rare example of the stable coexistence of Ce- and Nd-dominant minerals, although
the yttrium ion, which is smaller than neodymium, may be necessary to stabilize levinsonite-(Y).

Zugshunstite-(Ce)  (Ce,Nd,La)Al(SO,),(C,0,)*12H,0

The third new mineral forms sharp glassy-clear crystals with blocky habit, monoclinic in
aspect, Figures 26 and 27. The mineral shows the same colors (and color-change effects) as
coskrenite, but slightly paler. Only a few specimens of this mineral, with several crystals, were
found in soil salts [6].

12



6. DISCUSSION

Many of the sulfates illustrated in this report are highly soluble in water. Exceptions are
.jarosite and diadochite (nearly insoluble); gypsum (slightly soluble); and slavikite (slowly soluble
with decomposition). Some of the minerals are unstable and normally dehydrate under dry
conditions as noted in the descriptions. The present study is not exhaustive; moreover, the
minerals present at any one time are subject to change, depending on the temperature and humidity.
It should be noted that Mount LeConte receives 80-100 inches of rainfall annually [16]. It is
perhaps surprising that such a productive soluble-salt locality should exist in one of the wetter
places in the country.

The surprising discovery of three rare-earth-element sulfate-oxalates identified in this study
may have significant implications for our understanding of rare-earth geochemistry. Minute
amounts of these minerals have been found as tiny crystals in masses of hair salt (apjohnite) in the
soil. The rare-earth elements were presumably leached from the Anakeesta; it is surprising that the
REE concentration in the leachate was high enough to precipitate these remarkable minerals. No
REE analyses are available for the Anakeesta, but REEs are ubiquitous in nature in trace amounts.
A part of the explanation may be in the efficient mobilization of REEs through oxalate chelation.
The oxalate ion no doubt originated from the leaching of decaying organic material in the overlying
soil and forest litter. The existence of these minerals in the absence of other oxalate minerals at the
site might imply that oxalate has a great affinity for REEs or that REE oxalates are less soluble than
other oxalates. Further study of these interesting species will contribute to our understanding of
the mobility of REEs under weathering conditions.

The radii of the REE ions are much larger than the radii of the other trivalent ions at the
locality (Al** and Fe*?), and the REEs are therefore unsuitable for substitution into the structures of
the other salts at the locality. The low formation temperature (probably the lowest temperatures for
any known REE minerals) further lowers the tolerance of the structures for foreign ions.
Moreover, the low temperature should permit a more complete fractionation of the REEs between
minerals, a prediction supported by the preliminary data afforded by the XRF analyses.

13



7. COLLECTION OF SECONDARY SULFATES AT ALUM CAVE

Alum Cave Bluff is within a National Park; therefore, collection of mineral specimens or
other disturbance of the site is not generally permitted. Unauthorized collecting may be prosecuted,
under Title 36, Code of Federal Regulations.

The samples used in this study were obtained under a collecting permit for scientific research.
Our future plans are to study the distribution of minerals throughout the site in a systematic way, to
determine if/how the mineral assemblages vary with local microclimate and with seasonal weather

conditions.

14
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Figure 4. Small rounded crystals of native sulfur on hair salt (apjohnite). The
sulfur crystals are about 100 um in diameter.

Figure 5. Crude octahedral crystals ~ 50-100 um presumed to be tschermigite.
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Figure 6. Acicular gypsum crystals ~ 25 pm diameter, which to the unaided
eye might appear to be hair salt. The terminations visible at this magnification are
characteristic of gypsum, and the chemical analysis confirms the identification.
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Figure 7. Epsomite crystals. Top: crystal on matrix from Alum Cave.
Bottom: glassy, rounded crystals on rock fragment collected in soil during rainy condi-
tions. Inset: commercial Epsom salt.
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Figure 8. Top: 300 pm aggregates of melanterite forming cauliflower-like
masses on halotrichite. Bottom: detail of melanterite aggregate.
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Figure 9. Acicular crystals of apjohnite, one of the “hair salts” showing charac-
teristic subparallel needles forming a solid mass.
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Figure 10. Slightly curved fibrous crystals of halotrichite, another of the
“hair salts”.
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Figure 11. Micaceous plates ~ 100 pm diameter, of an aluminum sulfate (possi-
bly alunogen). If the sample is indeed alunogen, it is a fairly uncommon habit for the
mineral, which is more typically fibrous [8].
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Figure 13. Another “jarosite” from a different sample.
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Figure 15. Foliated crystals with S:Al ~ 1:4, consistent with the composition of
basaluminite.
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Figure 16. A 100 pm rosette of bladed crystals whose composition suggests a
slightly ferroan botryogen.
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Figure 17. Top: A small group of slavikite crystals (largest is about 70 um
across). Bottom: Slavikite crystal separating along basal cleavage into laminae about
2 pm thick.
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Figure 18. Tabular 5 pm crystals of magnesiocopiapite. Top: View of sample
showing arrangement of crystals in a scaly mass. Bottom: Another sample with individ-
ual crystals showing prominent cleavage.
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Figure 19. Euhedral diadochite crystals about 10 x 20 pm on massive earthy
material. ’

Figure 20. Diadochite crystals similar to those in Figure 19 but growing in clus-
ters on acicular gypsum.

29



Figure 21. Platy crystals of coskrenite-(Ce), the largest of which are about
100 um long, forming radiating clusters. These particular crystals were cream-
colored in natural light. XRF showed Ce>Nd>>La and (Ce+Nd+La):S ~ 1:1.

Figure 22. Another sample of coskrenite-(Ce); although these crystals were
pink, the XRF data showed no discernable difference from the composition of the
cream-colored crystals shown above.
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Figure 23. Euhedral crystals of levinsonite-(Y), the largest of
which is about 75 x 100 x 150 pm.
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Figure 24. A crystal of levinsonite-(Y) in the form of a simple elongated
tablet.

Figure 25. Slavikite crystals attached to a crystal of levinsonite-(Y).
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Figure 26. Blocky crystals of zugshunstite-(Ce), the largest of
which is about 250 pm.

Figure 27. Single crystal of zugshunstite-(Ce) with a habit very similar to
epsomite.
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APPENDIX A

Selected X-ray Fluorescence Spectra
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