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ABSTRACT

As numerical tools (computers and display euqipment) become more

powerful ●nd the atomic structures of important biological molecules

become known, the importance of detailed computation of nonequilibrium

bimolecular dynamics increases. In this manuscript we report results

from a well developed study of the hydrogen bonded polypeptide crystal

acetanilide, a model. protein. Directions for future research are

Cuggested.
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1. Introduction

It is over ten years since Davydov* first suggested a self-trapping

mechanism in a-helix proteins which would give rise to a soliton-like

excitation on these biologically important ❑olecules. This pioneering

work has led to ●xtensive theoretical and experimental investi~ations on

both sides of the Atlantic. In this paper we would like to summarize

some of the work carried out in this area at Los Alamos over the last

12 months. Full detaila of the topics discussed here will appear else-

2-5
where.

This study begins with an investigation into solitons in acetanilide

(ACN), a crystalline material with many properties in comsnon with a-helix

proteins. This work extends in a natural manner to a theory of self-

trapping, applicable to many discrete systems, described by a new set of

equations which we hnve called the Discrete Self-Trapping (DST) equat.ion~.

These ●quations are a discrete, generalized form of the ~onlinear

Schr&dinger (NLS) ●quation. The introduction of discreteness introduces

many novel mathematical features which still require further study.

Although these equations were deve!oped to describe solitons on large

discrete lattice~, it turns out tnat the same equations for a small ‘

number of l}lttice sites hsve important applications to the study of

solitoll-like vibrationtil modes of small molecules.
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2. Solitons in Acetanilide

When crystalline acetanilide, (CH3C0~C6H5 )x or ACN, is cooled . -

below room temperature, a new spectral line in both Raman and infrared

absorption ❑easurements is observed at 1650 cm‘1 (see Fig. 1). This

band is related to other amide-I bands (CO bond stretching) which can

be explained using conventional exciton theory, but until recently this

new band

The

proteins

has been of uncertain origin.

importance of ACN in relation to Davydov solitons cn a-helix

is that ACN contains chains of hydrogen-bonded amide groups

with similar character to those occuring in proteins, and that ACN is

❑uch more amenable to experimental work than proteins.

A recent theory2 to account for the anomalous amide-I band proposed

asoigning the effect to a soliton-like excitation. The ❑echanism is

similar to that put forward by Davydov for the u-helix, namely a self-

trapping due to an interaction between the localized amide-I bond energy

and lattice distortion. However in the ACN case only the hydrvgen-bonded

proton is displaced rather than the whole lattice structure.
.

This original theoryz was based on a simple nearest-neighbor

coupling model and led to reasonable agreement with ●xperiments. In’ a

more recent ~tudy3 we have attempted to refine the model by including

couplings between adjacent unit cells, and by a more detailed investigii-

tion of the various soliton-like modes arising in the crystal. We

confine our at.tcntion to stationary solitons, f.e. thooe for which the

❑odulus of probability amplitude lanai for the amide-I quanta is constant

in time (at least to a good approximation, i.e. slowly varying in time).

Hare the ●mplitude are labeled by unit cell (n) and by position within

the unit cell (a = 1,2,3 or 4). In this case, following an appropriately
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1,2
❑edified version of Davydov’s Theory , we are led to the set of

●quations 3

.

ik-n = diag[(Eo+Es-ylan112 , . ..]~n

+ [E: +R~n+l+fiTan-ll s n =1,2, . . .

wkere E. + Es is the exciton energy and y is a ❑easure of the nonlinear-

ity of the hydrogen bond. The dot over the an denotes differentiation

with respect to time, and 4 x 4 matrices R and R contain dipole coupling

terms between sites in the nth and adjacent units cells respectively.

The 4-vector in = (an1,an2,an3,an4). The 4 x 4 matrix diag[dl, ...] is

a real diagonal matrix with diagonal ●lements all}... . If we work with

a finite crystal with N unit cells, the Eqs. (2.1) can be written in

full ❑atrix form

2
ii + y diag[lan112 , lan21 , . ..]i+cl’lii=o (2.2)

Here we have scaled out M by t + tit and scaled out E. + E2 by the trans-.

formaticn~+~ exp[-i(Eo+Es)].
. .

The 4N vector A has elements a1,a2,0. . ,

aN‘
H is the 4N x 4N block tridiagonal matrix

H=-:

0

●

-TN H
.

. ,.

(2.1)

(2.3)

I

and c is a scaling factor chosen such that the largest ●lement of M is

unity.



We define stationary solutions of (2.2) to be tho~e having the form

X= $ exp(it,ut) (2.4)

.
where @ is a time independent 4N-v?ctor. Inserting this into (2.2) we

get a nonlinear eigenvalue problem for UJand $

(2.5]

Solutions of (2.5) for fixed values of y,c and UJcan be found by Newton

iterative methods3. f’~ce a solution ia known, it can be continued as a

function of the parameters by using

Some typical solutions are shown in

two types of soliton-like solutions

a solution ca~$ulated for small y.

6numerical path following techniques .

Fig. 2. Figures 2(a) and (c) show

for large y values: Fig. 2(b) shows

All three solutions lie on one con-

tinuous branch of solutions. Note that the four sites in each unit cell

are labeled U,+,o,x respectively, and that the solitona are large y

values are ❑uch more localized than in the case where the nonlinearity

is small. Numerical tests on the full evolution equations (2.2) suggest

that the solution shown in Fig. 2(a) is stable but that the other 6olu-

tiona ❑ay be unstable to perturbations. We argue that the “anamolou;

amide-I” line in Fig. 1 can be explained in the presence of solitons of

the type shown in Fig. 2(a), with the energy focused essentially on one

peptide group in the unit ce113.

3. The Discrete Self-Trapping Equations

In the study of the ACN problem, many other, more complicated,

Stationary oolutions were found3. In addition, the evolution and self-

trapping of atatea starting out an arbitrary nonlocalized distribu~ions
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of energy waa hot clearly understood. It was algo noticed that

applied to many other systems for which self-trapping was known

With appropriate choices of the matrix H, this system can model

Eq. (2.2)

to occur.

solitons

on a-helix proteins or globdar proteins 8
i or polarons in a crystal .

Furthermore, these equationo could also be used to model the vibrational

4
states of polyatomic molecules , a problem for which (2.2) with only a

small number of sites would be appropriate. If M is chosen to be

tridiagonal, with appropriately chosen coefficients, a finite difference

version of the nonlinear Schr6dinger (NLS) equation is obtained. In

view of the general

system the Discrete

importance of (2.2), it was decided to name the

Self-Trapping (DST) equation

.

ii + y diag[l~12]~ + cfi = O (3.1)

where now A is a complex n-vector, y and & are real parameters, and M is

5
an arbitrary real synnnetric n x n matrix . ‘n view of the application to

molecular vibrational analysis for small n , and as a first s~ep to under-

standing the behavior of the equations for large n, we have carried out

an initial investigation of (3.1) for n = 1,2,3 and 4 and fora few .

specific choices of !4.

Some general properties of the DST equation (3.1) ~re worth listing

before progressing to specific examples. The DST equation can be

derived from Lhe Lagrangian

(3.2)

‘here ‘he ‘j k are the elements of M, m.Jk = ‘kj”
The Hamiltonian (energy)

iB
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H= -*7 Z lAj14 - & Z m. A*A
~,kJkJk” (3.3)

If we define the

N =2 lAji2

j

number N as

(3.4)

then it is straightforward to show that both H and N are constant in

time.

If all the diagonal

the phase transformation

zeros on the diagonal of

the diagonal elements of

In the limit y + O,

.
i~*&fi=O

elements of M are equal (mll = . . . = mm = m),

i= ~ exp(imt) gives a DST equation for ~ with

M. We have considered only the casr in which

M are zero.

(3.1) reduces t-o the linear, tiispersive system

(3.5)

which ia completely integrable. In the limit & + O (or equivalently

y+~up to a scaling of t), the equations decouple to give the non-

linear system

ii+ y diag[lA12]A= O (3.6)

which can also Lte solved explicitly. We are interested in the case Y,c #

O in which there is an interaction between dispersion and nonlinearity.

As in the case of the ACN investigation, stationary solutions of the

DST equations defined by (2.4) play an important role in the theory. In

many case~ it is possible to obtain ●xact solutions of (2.5) in closed

form, and in ❑any physical ~ituatione the~e solutions can be ●xpected to

play a major role. Even when no analytic form for a stationary solution
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is available, numerical path-following techniques can be used to study

these solutions as functions of y or c, using the solutions of the
. .

reduced problems (3.5) or (3.6) as starting points.

Another advantage of working with stationary solutions is that the

5,9linear stability of such solutions can easily be calculated . In the

case where ~ is real , it is necessary to examine the eigenvalues of the

system

det[JC-A21] = O (3.7)

where the n x n matrix J is the Jacobian of the equations (2.5)

J = -wI + 3y diag[$~] + CM (3.8)

and -C is the

c =wI-

matrix ❑ultiplying ~ in (2.5)

y diag[~~] - EM . (3.9)
A

It is straightforward to show that if (w,$) is a stationary solution to

(2.5), then a necessary condition for the stability of this solution is

that all the A: in (3.7) are purely real and negative. Corvt’rsely, if

2
at least. one of the Ai is not purely real and negative, this is a s

sufficient condition for instability. Numerical test suggest that the

necessary condition for stability is usually sufficient also. The

eigenvalues of (3.7) can be evaluated numerically if necessary.

It is useful to adopt a simple notation to label the different

solutions that can occur in considering stationary solutions of (3.1),

i.e. those satififyizg

are invariant under a

los~ of generality we

(2.4), (2.5). Firstly, note that the equations

gauge transformation ~ + ~ exp(iu), so without

can choose the first component of $ to be real.
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In many cases, all the components of ~ will be real, and it is con-

venient to label them according to their behavior as y + m. From (2.4)

and (3.6) we deduce that in this limit (for real $)

-@i+y@~=~ i=l,...,n (3. 10)

so either @i = O ort(w/y)$. If we further assume that the ~ has been

normalized so that N in (3.4) is unity (this is always possible by a

resealing of y), then either $i = O or $i = il/fi, where K is the number

of nonzero components of ~ in the limit y + ~. We denote these nonzero

components of ~ by ? or J respectively. The components of ~ which tend

to zero as y + m are denoted by the symbol ●, whersas those components

of $ which are zero for all y are denoted by O. Finally, complex com-

ponents of ~ are denoted by *. Only solutions which are independent

under the permutation gr’>up of M are listed.

We now examine some sp~cial cases for various n, considering both

stationary and non-stationary solutions. Recall that we are restricting

ourselves to the cases where the diagonal elements of M can be trans-

formed to zero, and we normalize N to unity in (3.4).

1) The case n = 1
.

In this case, H = O add there is only one soll;tion of (3.1) the

stationary solution A = exp(iyt), denoted by (t) This stable solution

corresponds to a single harmonic oscillator.

2) ~he case n = 2

In view of our restrictions on M, the only case to consider is

[101
H=

10”
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A straightforward analysis of (2.5) shows that the only station&ry

solutions of (3.1) are those shown in Table 1. . .

Stationa ry Solutions of (3.1) for the case n = 2

Mode Description Mode Amplitudes u H

02 ❑ l/J2 y/2+& -y/4-&

-$2 = l/Jz y/2- E -y/4+&

= {#[lt(l-4&2/y2)%* y -y/2-&2/y

(y > Z&)

These solution curves are shown in Fig. 3, with unstable

shown by dotted lines. Aty= O there are two branches, (?+)

solutions

and (?+)

corresponding to the two eigenvectors of M. Aty= 2uJ/& the (??) branch

bifurcates to give an additional (?O) branch. The (?J) and (+0) branches

are stable, whereas the (??) branch loses stability at the bifurcation

point.

IrI order to study non-stationary solutions of the n = 2 case, it

is simplest to change to a new set of variables. Writing Al = a exp{iOl),

‘2 = b exp(i02j, with a2 + b2 = N = 1, then it can be shown that (3.1)

reduces to two eqtiations for a and the phase difference 9 = tll - 92.

= ~(1-a2)$ sine
;

(3.11;
2

b=
~

y[2a2-1) + c 1-~a2) cos e

The phase plbne diagram for this system is equivalent to a contour

plot of constant energy solut.ionam In these variables we have
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H=- #y(l+2a4-2a2) - Zca(l-az)+ ~oa ~ . (3.9)

In Figs. 4 and 5 we show the a -
. .

0 phase plane for the case y > 2C

(y=4&) and y < 2& (y= C) respectively. The stationary solutions

(Table 1) correspond to fixed points in these phase planes: (?t), (T$)

corresponds to a = l/~~ and e = O,n respectively, and (t*) (~or y > 2c)

is a fixed point at e = O and a equal to one of the @ values in Table 1.

It is clear that the solutlon (tt) is a stable fixed wint for

y ~ 2c: for y > 2& it turns into an unstable saddle point and the two

new stable centers corresponding to the (?*) solution appear. The (?$)

fixed point is a stable center ror all y.

The n = 2 case then furnishes a nice example of a nonlinear

oscillator system where all the solutions are well understood.

3) The case n = 3

We have studied

r

onlv the case

H

011
M= 1 0 1

110

coupled

(3,1C)

corresponding to three sites interacting wiLh equal strengths. This.

system is invariant to any permutations of the three sites, ao the

distinct asymptotic stationary solutions turn out to be (t””), (*t*),

(?$0), (~f?), (ttJ), and (?*). It is possible to show that there iti

only one complex solution (?~b}): $1 = 1, $2 = $; = l/J5 exp(2ni ’:),

w= y/3 - &. Two of I.he real solutions hnve analyli,. forma: (???),

o ‘$ ‘o = l/J5, u= y/3 + 2C; (tJo), @ ❑ -$ = l/Jl, o =0, w“

y/2 - c. No tinalvlir solutions for the othrr three rc:~l solutionh known

have been found.
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Solution curves for the real solutions are shown in Fig. 6. There

is a bifurcation point at (w,y) = (7&/2,9c/2). The (too) branch becomes

stable at the point at which Cly/~w = O. The (t$o) branch is unstable in

the interval 3.5385. . . <w/c ~ 8, where the first number is the only root

of x3 -8X-16=0. Stability calculations suggest that the complex

stationary solution (t*) is stable for all y.

Numerical integrations of (3.1) for a variety of initial conditions

have been ❑ade to study non-stationary solutiors. A range of periodic,

4,5
quasi-periodic, and chaotic solutions have been found . It is possible

that a different choice of tl in the n = 3 case would kive an integrable

system, but this possibility is still an open question.

4) The rase n = 4.—— — .

‘Iwo cases have ken studied for n = 4. One is an “equal-strengt~j”

interac~ion matrix with zercs on che diagonal and unit elements else-

where. The other is a “nearcs$. nei8hbor” interaction with m. . ❑ O iflJ

[i - jl = 0,2 and m.. = 1 el~ewhere. !letailed bifurcation diagrams for
lJ

the stationary sclutio[ls in this cn~e are reported ●lsewhere.

5) }Qgher value~ of n..—. ..- ....— -.

TIJr sulution~ dearribed above for n = 2,3,... can br used to ‘

gencratr p~riod 2,3,... nolutions to hfghrr order prnblemti with ~ppro-

priate synwmtries.

It is clwr thnt onr of th~ most interrRting solutinn~ will h’ the

one corresponding to thr single ~tatjonary snliton-ljke nolutioll

(t*.*~*~~ ). Exp~rirl;rr with thr i\CN bO]LC~OI)II RuRRest that this is

glohu]nr protcinn, the

thfu canr thr cn~r~y
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of the single soliton localized at one site will vary from site to site.

An important problem, as yet poorly understood, is how an arbitrary non-

local ●nergy distribution becomes focused into a single soliim or some

cimilar mode. In more regular structures such as ACN the initial

mechaniam for self trapping is the Benjamin-Feir Instability, but there

is no theory ●s yet for ❑ ore random structures.

In considering the DST ●quation (3.1) for smaller n values, al-

thoush the localized soliton states are stable, the “basin of attrac-

tion” for such states is small. Initial homogeneous energy distributions

behave in a stochastic reamer, and the ●nergy does not become localized

●t any one site for any appreciable period. Presumably as n is increased,

the tendency to self-trap becomes stronger, since it is known from the

ACN and NLS studies that this occurs for large n. Further studies are

under way to investigate this effect for both regular ad random struc-

tures.
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Figure Captions

Fi8. 1 Infrared absorption ~pectrum of ●cetsnilide.

Fig. 2 Some solutiona of (2.5).

Fig. 3 Stationary solutions of DST for n = 2.

Fig. 4 Phase plane plot of DST for n = 2 and y > 2c.

Fig. 5 Phase plane plot of DST for n = 2 and y < 2c.

Fig. 6 Stationary solution of DST for n = 3 and H as in (3.10).
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