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ABSTRACT

As numerical tools (computers and display euqipment) become more
powerful and the atomic structures of important biological molecules
become known, the importance of detailed computation of nonequilibrium
biomolecular dynamics increases. In this manuscript we report results
from a well developed study of the hydrogen bonded polypeptide crystal
acetanilide, a model protein. Directions for future research are

ruggested.



1. Introduction

It is over ten vyears since Davydovl first suggested a self-trapping
mechanism in «-helix proteins which would give rige to a scliton-like
excitation on these biologically important molecules. This pioneering
work bas led to extensive theoretical and experimental investigations on
both sides of the Atlantic. In this paper we would like to summarize
some of the work carried out in this area at Los Alamos over the last
12 months. Full details of the topics discussed here will appear else-

where.z-5

This study begins with an investigation into solitons in acetanilide
(ACN), a crystalline material with many properties in common with a-helix
proteins. This work extends in a natural manner to a theory of self-
trapping, applicable to many discrete systems, described by a new set of
equations which we have called the Discrete Self-Trapping (DST) equationu.
These equations are a discrete, generalized form of the aonlinear
Schrodinger (NLS) equation. The irtroduction of discreteness introduces
many novel mathematical features which still require further study.
Although these equations were developed to describe solitons on large
discrete lattices, it turns out tnat the same equations for a small °
number of lattice sites have important applications to the study of

soliton=like vibrationsl modes of smali molecules.



2. Solitons in Acetanilide

When crystalline acetanilide, (CH3COHNC6H5)x or ACN, is cooled . -
below room temperature, a new spectral line in both Raman and infrared
absorption measurements is observed at 1650 cm-1 (see Fig. 1). This
band is related to other amide-I bands (CO bond stretching) which can
be explained using conventional exciton theory, but until recently this
new band has been of uncertain origin.

The importance of ACN in relation to Davydov solitons cn o-helix
proteins is that ACN contains chains of hydrogen-bonded amide groups
with similar character to those occuring in proteins, and that ACN is
much more amenable to experimental work than proteins.

A recent theory2 to account for the anomalous amide-I band proposed
assigning the effect {o a soliton-like excitation. The mechanism is
similar to that put forward by Davydov for the o-helix, namely a self-
trapping due to an interaction between the localized amide-I bond energy
and lattice distortion. However in the ACN case only the hydrvgen-bonded
proton is displaced rather than the whole lattice structure.

This original Lheory2 was based on a simple nearest-neighbor
coupling model and led to reasonsble agrcement with experiments. In a
more recent study3 we have attempted to refine the model by including
couplings between adjacent unit cells, and bty a more detailed investiga-
tion of the various soliton-like modes arising in the crystal. We
confine our attention to stationary solitons, i.e. those for which the
modulus of probability amplitude Ianal for the amide-I quanta is constant
in time (at least to a good approximation, i.e. slowly varying in time).
Here the samplitudes are labeled by unit cell (n) and by position within

the unit cell (o = 1,2,3 or 4). In this case, following an appropriately



modified version of Davydov's Theoryl'z, we are led to the set of
equation33
2

insn = diag[(E°+Es-ylan1| , "'];n

(2.1)

+ [Ma +Na +ﬁTa ] ,n=1,2, ...
D nt+i n-1

where E° + Es is the exciton energy and Yy ie a measure of the nonlinear-
ity of the hydrogen bond. The dot over the ;n denotes differentiation
with respect to time, and 4 X 4 matrices M and ¥ contain dipole coupling
terms between sites in the nth and adjacent units cells respectively.
The 4-vector ;n = (anl'an2'8n3’an6)' The 4 X 4 matrix diag[dl,...] is
a real diagonal matrix with diagonal elements dl"" . If we work with
a finite crystal with N unit cells, the Eqs. (2.1) can be written in

full matrix form

2

. 2 N
iA + y dxagllanll , Ianzl , -..JA+eEMA=0 (2.2)

Here we have scaled out i by t + Jt and scaled out Eo + E2 by the trans-
formaticn A + A exp[-i(Eo+Es)]. The 4N vector A has elements ;l';Z""

;N' M is the 4N % 4N block tridiagonal matrix

- =
¥ N
0
. T # W
M= ‘E ) . (2.3)
0 N f
. -

and € is a scaling factor chosen such that the largest element of M is

unity.



We define stationary solutions of (2.2) to be those having the form

A = ¢ exp(iut) (2.4)

where 6 is a time independent 4N-vactor. Inserting this into (2.2) we

get a nonlinear eigenvalue problem for w and ¢
-wh + y disg[I51°18 + etg = 0 . (2.5)

Solutions of (2.5) for fixed values of y,¢ and w can be found by Newton
iterative methodsS. Cnce a solution is known, it can be continued as a
function of the parameters by using numerical path following techuiques6.
Some typical solutions are shown in Fig. 2. Figures 2(a) and (c) show
two types of soliton-like solutions for large y values: Fig. 2(b) shows
a solution calculated for small y. All three solutions lie on one con-
tinuous branch of solutions. Note that the four sites in each unit cell
are labeled O,+,0,x respectively, and that the solitons are large \
values are much more localized than in the case where the nonlinearaty
is small. Numerical tests on the full evolution equations {2.2) sugzest
that the solution shown in Fig. 2(a) is stable but that the other solu-
tions may be unstable to perturbations. We argue that the "anamolous
amide-I" line in Fig. 1 can be explained in the presence of solitons of
the type shown in Fig. 2(a), with the vnergy focused essentially on one

peptide group in the unit ce]13.

3. The Discrete Self-Trapning Equations

In the study of the ACN problem, many other, more complicated,
ctationary solutions vere founda. In addition, the evolution and self-

trapping of states starting out as arbitrary nonlocalized distributions



of energy was ot clearly understood. It was aleo noticed that Eq. (2.2)
applied to many other systems for which self{-trapping was known to occur.
With appropriate choices of the matrix M, this system can model solitons
on o-helix proteins or globular proteins7 or polarons in a crystals.
Furthermore, these equations could also be used to model the vibratiounal
states of polyatomic moleculesa, a problem for which (2.2) with only a
small oumber of sites would be appropriate. If M is chosen to be
tridiagonal, with appropriately chosen coefficients, a finite difference
version of the nonlinear Schrodinger (NLS) equation is obtained. In
view of the general importance of (2.2), it was decided to name the

system the Discrete Self-Trapping (DST) equation

iA + y diag[lﬁlzlﬁ + eMA = 0 (3.1)

vhere now A is a complex n-vector, Yy and € are real parameters, and M is
an arbitrary real symmetric n X n matrixs. "n view of the application to
molecular vibrational analysis for small n, and as a first step to under-
standing the behavior of the equations for large n, we have carried out
an initial investigation of (3.1) for n = 1,2,3 ard 4 and for a few
specific choices of M.

Some general properties of the DST equation (3.1) sre worth listing
before progressing to specific examples. The DST equation can be
derived from the Lagrangian

L= Z[hiAA-AAD) + AYIA 14l ¢ 6 2 m AA (3.2)

i 371 733 gk JKIE

J J

where the mjk are the elements of M, mjk = mkj' The Hamiltonian (energy)

is



4 *
H= - 2 JA. - 2 LA, .
Y ; | JI 2 kaAJAk (3.3)

If we define the number N as

, 2
N=2Z|A.j (3.4)
c
J
then it is straightforward to show that both H and N are constant in
time.
If all the diagonal elements of M are equal (m11 =...=m = m),
the phase transformation A = B exp(imt) gives a DST equation for B with
zeros on the diagonal of M. We have considered only the casf in which

the diagonal elements of M are zero.

In the limit y » 0, (3.1) reduces to the linear, dispersive system

iA + eMA = 0 (3.5)

which is completely integrable. In the limit € + 0 (or equivalently
y * ® up to a scaling of t), the equations decouple to give the non-

linear system

ik + y diag[1A1%]A = 0 (3.6)

which can also Le solved explicitly. We are interested in the case y,t #
0 in which there is an interaction between dispersiou and nonlinearity.
As in the case of the ACN investigation, stationary solutions of the
DST equations defined by (2.4) play an important role in the theory. 1In
many cases it is possible to obtain exact solutions of (2.5) in closed
form, and in many physical situations these solutions can be expected to

play a major role. Even when no analytic form for a stationary solution



is available, numerical path~following techniques6 can be used to study
these solutions as functions of y or €, using the solutions of the
reduced problems (3.5) or (3.6) as starting points.

Another advantage of working with stationary solutions is that the

5’9. In the

linear stability of such solutions can easily be calculated
case where 5 is real, it is necessary to examine the eigenvalues of the

system

det[JC-A%I] = 0 (3.7)
where the n X n matrix J is the Jacobian of the equations (2.5)

S = -wl + 3y diag[q)zi] + €M (3.8)
and -C is the matrix multiplying ¢ in (2.5)

C = wl - y diag[¢?] - eM . (3.9)

It is straightforward to show that if (w,$) is a stationary solution to
(2.5), then a necessary condition for the stability of this solution is
that all the Af in (3.7) are purely real and negative. Corversely, if
at Jeast one of the A? is not purely real and negative, this is a
sufficient condition for instability. Numerical test suggest that the
necessary condition for stability is usually sufficient also. The
eigenvalues of (3.7) can be evaluated numerically if necessary.

It is useful to adopt a simple notation to label the different
solutions that can occur in considering stationary solutions of (3.1),
i.e. those satisfying (2.4), (2.5). Firstly, rnote that the equations
are invariant under a gauge transformation B+ A exp(ia), so without

loss of generality we can choose the first component of ¢ to be real.
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In many cases, all the components of 3 will be real, and it is con-
venient to label them according to tieir behavior as y + ®. From (2.4)

and (3.6) we deduce that in this limit (for real §)
3 _ .
w, + Y4, =0 i=1,...,n (3.10)

so either ¢i =0 or t(w/y)k. If we further assume that the ¢ has been
normalized so that N in (3.4) is unity (this is always possible by a
rescaling of y), then either ¢i =0 or ¢i = tl/Ji, where K is the number
of nonzero components of $ in the limit y » », We denote these nonzero
components of o by * or ¢ respectively. The components of ¢ which tend
to zero as Y * ® are denoted by the symbol -, wherz2as those components
of ¢ which are zero for all Yy are denoted by 0. Finally, complex ccm-
ponents of ¢ are denoted by *. Only solutions which are independent
under the permutation group of M are listed.

We now examine some spacial cases for various n, considering both
stationary and non-stationary solutions. Recall that we are restricting
ourselves to the cases where the diagonal elements of M can be trans-
formed to zero, and we normalize N to unity in (3.4).

1) The casen =1

In this case, M = 0 aud there is only one solition of (3.1) the
stationary solution A = exp(iyt), denoted by (*). This stable solution
corresponds to a single harmonic oscillator.

2) The case n = 2

In view of our restrictions on M, the only case to consider is
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A straightforward analysis of (2.5) shows that the only stationery

solutions of (3.1) are those shown in Table 1.

Tahle 1

Stationary Solutions of (3.1) for the case n = 2

Mode Description Mode Amplitudes w H
1 0, = 9, = 1/42 y/2te  -y/h-€
4 0, = -0, = 1/42 y/2-8  -y/h+e
- 0, , = (Bl-ae?/ MYy w2ty
(y > 2¢)

These solution curves are shown in Fig. 3, with unstable solutions
shown by dotted lines. At y = 0 there are two branches, (%*) and (t+)
corresponding to the two eigenvectors of M. At y = 2w/e the (*1) branch
bifurcates to give an additiomal (%) branch. The (t¢) and (4+) branches
are stable, whereas the (t*) branch loses stability at the bifurcation
point.

In order to study non-stationary solutions of the n = 2 case, it
is simpl.st to change to a new set of variables. Writing Al = a exp(iel),

2

A, =D exp(iaz), with a“ + b2 =N =1, then it can be shown that (3.1)

2

reduces to two equations for a and the phase difference © = 61 - 62.

8 8(1-82)5 51in6

2
2 1-2a ) N
y(2a®-1) + ¢ Sh—————; cos © (3.11;
’ a(1-a2)

The phase plane diagram for this system is equivalent to a contour

-
n

plot of constant energy solutions. In these variables we have
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4

H = -}y(1+2a -Zaz) - 258(1_82)5 cos O . (3.9)

In Figs. 4 and 5 we show the a - 6 phase plane for the case y > 2¢
(y = 4¢) and y < 2e (y = ¢) respectively. The stationary solutions
(Table 1) correspond to fixed pcints in these phase planes: (t1), (t¢)
corresponds to a = 1/y2 and 6 = O,n respectively, and (*+¢) (1or y > 2¢)
is a fixed point at 6 = 0 and a equal to one of the ¢ values in Table 1.
It is clear that the solution (t*) is a stable fixed noint for
Y © 2c: for y > 2¢ it turns int~ an unstable saddic point and the two
new stable centers corresponding to the (%) solution appear. The (%4)
fixed point is a stable center tor all Y.
The n = 2 case then furnishes a nice example of a nonlinear coupled
oscillator system where all the solutions are well understood.

3) The case n = 3

We have studied only the case

0 1 1
M= 1 0 1 (3.10)
1 1 0

corresponding to three sites interacting with equal strengths. This,
system is invariant to any permutations of the three sites, sc the
distinct asymptotic stationary solutions turn out to be (t::), (%t:),
(240), (211), (*14), and (™). It is possible to show that there is
only one cumplex solution (#%¥): °1 =1, ¢2 = Q: = 1/y3 exp(2ni’?),
w=1Y/3~-¢. Two of the real solutions have analyti- forms: (%11),

¢ =6 =6 =1/y3, w=y/3+2c; (140), ¢ =<6 =1/42, ¢ =0, w~
Y/2 - €. No analvtir golutions for the other three rcal solutions known

have been found.



13

Solution curves for the real solutions are shown in Fig. 6. There
is & bifurcation point at (w,y) = (7¢/2,9¢/2). The (*+°) branch becomes
stable at the point at which 9y/dw = 0. The (t+0) branch is unstable in
the interval 3.5385... <w/€ < B, where the first number is the only root
of x3 - 8x - 16 = 0. Stability calculations suggest that the complex
stationary solution (t**) is stable for all y.

Numerical integrations of (3.1) for a variety of initial conditions
have been made to study non-stationary solutiors. A range of periodic,
quasi-periodic, and chaotic solutions have been found"s. It is possible
that a different choice of M in the n = 3 case would give an integrable
system, but this possibility is still an open question.

4) The casen = 4

Two cases have tcen studied for n = 4. One is an "equal-strength"
interaciion matrix with zercs on che diagonal and unit elements else-
where. The other is a '"neares' neighbor" interaction with m . = 0 if
li - j| = 0,2 and mij = ] elsevhere. Detailed bifurcation diagrams for
the stationary sclutions in this case are reported elsewheres.

5) HRigher values of n

The sulutions described above for n = 2,3,... can be used to
gencrate period 2,3,... solutions to higher order problems with appro-
priate symmetlries.

It is clear that one of the most interesting solutions will be the
one corresponding to the single stationary soliton-like solution
(treeeres), ExperivJLr with the nCN solucions suggest that this is
always the one with the highest bindiug energy.

When this approach is applied to arbitrary globular proteins, the

interaction matrix M is esnentially random. In this case the energy
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of the single soliton localized at one site will vary from site to site.
An important problem, as yet poorly understood, is how an arbitrary non-
local energy distribution becomes focused into a single soliion or some
cimilar mode. In more regular structures such as ACN the initial
mechanism for self trapping is the Benjamin-Feir Instability3, but there
is no theory as yet for more random structures.

In considering the DST equation (3.1) for smaller n values, al-
though the localized soliton states are stable, the "basin of attrac-
tion" for such states is small. Initial homogeneous energy distributions
behave in a stochastic manner, and the energy does not become localized
at any one site for any appreciable period. Presumably as n is increased,
the tendency to self-trap becomes stronger, since it is known from the
ACN and NLS studies that this occurs for large n., Further studies are
under way to investigate this effect for botk regular aud random struc-

tures.
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Figure Captions

Fig.
Fig.
Fig.
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Fig. 5

Fig.

Infrared absorption spectrum of acetanilide.
Some solutions of (2.5).

Stationary solutions of DST for n = 2.

Phase plane plot of DST for n = 2 and y > 2¢c.

Phase plane plot of DST for n = 2 and y < 2¢.

Stationary solution of DST for n = 3 and M as in (3.10).
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