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EXECUTIVE SUMMARY

The United States is beginning work on an advanced, light-water reactor (LWR), spent nuclear fuel
(SNF), waste package (WP) that uses depleted uranium dioxide (UO,) fill. The Canadian nuclear fuel waste
management program has completed a 15-year development program of its repository concept for CANadian
Deuterium Uranium (CANDU) reactor SNF. As one option, Canada has developed a WP that uses a glass-
bead or silica-sand fill. The Canadian development work on fill materials inside WPs can provide a guide for
the development of LWR SNF WPs using depleted uranium (DU) fill materials. This report summarizes the
Canadian work, identifies similarities and differences between the Canadian design and the design being -
mvestigated in the U.S. to use DU fill, and identifies what information is applicable to the development of a
DU fill for LWR SNF WPs.

In both concepts, empty WPs are loaded with SNF, the void space between the fuel pins and the outer
void space between SNF assemblies and the inner WP wall would be filled with small particles, the WPs are
then sealed, and the WPs are placed into the repository.

CANDU and LWR SNF assemblies have different geometries, but both assemblies consist of UO,
pellets in zircalloy tubes. Both types of assemblies see similar environments in the reactor. However, the
internal clearances within a CANDU assembly are smaller than those in a typical LWR assembly; thus, the
Canadians must take added care when filling their assemblies with fill. The WP designs differ also because
the proposed Canadian repository will be built in granite below the water table, whereas the proposed U.S.
repository will be in tuff above the water table. The Canadian repository may be larger than the U.S.
repository or repositories. The CANDU SNF produces less energy per ton of SNF than LWR SNF. In one
design studied for the Canadian program, the repository would have a design capacity of 191,000 metric tons
imitial heavy metal (MTIHM) of SNF. The total quantities of U.S. LWR SNF are estimated at
87,900 MTIHEM.

The proposed fill material for the U.S. LWR SNF WP is depleted UO,. The fill improves WP
performance by providing (1) shielding, (2) reduced potential for repository nuclear criticality events, and
(3) reduced long-term release of radionuclides from the WP in the repository. The DU fill lessens the long-
term release of fission products and actinides from the WP into the environment by suppressing SNF
dissolution by multiple mechanisms.

The Canadian program has developed a WP that uses high-silica, low-sodium, glass-bead or silica-sand
fill to provide structural support to the WP against external hydrostatic pressures at repository depths. The
particulate totally fills all voids inside the WP. The WP is a long-lived, thin-wall, titanium WP. At depths
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within the proposed Canadian repository, long-term hydrostatic pressure from groundwater may equal
10 MPa (~100 atm) on the exterior of the WP. The fill prevents WP wall failure, WP collapse, and
subsequent collapse of external-to-the-WP radionuclide barriers (bentonite clay) in the repository.

Canada initiated a large-scale, 15-year development and demonstration program to develop their
repository concept. This included WP development. The Canadian tests demonstrated filling WPs
containing simulated CANDU SNF with small particulates (Fig. ES.1). The investigations evaluated
alternative fill materials, different particle sizes, different mixtures of particle sizes, vibratory filling at
different vibrational frequencies and amplitudes, and other factors. Both small- and large-scale experiments
indicate that the maximum practical packing density is about 70%; that is, in a well-packed container, the
solid particulate volume is about 70 vol % of the initial void, and 30 vol % of the initial void remains as voids
between the fill particles. Vibratory filling was identified as the preferred option for this type of WP. It
provided higher fill densities and shorter fill times. The Canadians also developed WP inspection and
welding technologies (Fig. ES.2).

Larger-scale tests included successful, full-scale WP hydrostatic tests (at 10 MPa and 150°C) of the
filled WP to confirm that all voids within the WP had been filled (Fig. ES.3) and that adequate support was
provided by the particulates to the container wall. The particle-filled WP successfully passgd multiple

handling tests, including drop tests from heights up to 4 m. The thermal properties of the fill and WP were .
measured. Hot-cell tests demonstrated that the fuel assemblies could withstand, with large margins, the WP
fill operations without fuel assembly or fuel pin failures. Conceptual designs of facilities to package up to
4700 MTIHM/year have been completed. The space requirements for filling operations in the SNF
packaging plant are small compared to the rest of the facility.
The Canadian studies are directly applicable to the U.S. concept of using DU fill in LWR SNF WPs and
provides a guide for issues to consider when a WP containing a fill material is used. The fill requirements for

use as a structural material in a WP are more severe than those required for DU applications.
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1. INTRODUCTION

1.1 BACKGROUND

It has been proposed (Forsberg 1995; Forsberg 1996) to use depleted uranium (DU) dioxide (UO,) as a
fill material in light-water reactor (LWR) spent nuclear fuel (SNF) waste packages (WPs). Empty WPs at the
geologic repository are loaded with SNF. The inner void space between the fuel pins and the outer void space
between SNF assemblies and the inner WP wall are then filled with small, depleted UO, particles. The
repository WPs are then sealed and placed into the repository.

This concept provides (1) radiation shielding, (2) reduced potential for repository nuclear criticality
events, and (3) reduced long-term release of radionuclides from the WP in the repository (see Appendix A).
The presence of DU fill allows for the reduction of the radiation exposure to repository workers and to the
local geology or reduction in the external WP dimensions. The concept minimizes internal and external
nuclear criticality concerns in the repository by reducing the fissile enrichment of the WP to well below
1wt % 335U equivalent. Finally, the concept reduces the long-term release of fission products and actinides
from the WP into the environment. Most of these radionuclides are incorporated within the SNF UO, pellets.
These radionuclides can not be released until the WP fails and the SNF UO, crystal structure is destroyed,
thus allowing release of trapped radionuclides. The depleted UO, preferentially reacts with groundwater and
suppresses the dissolution of the SNF UO, after the WP has failed. This benefit is accomplished by multiple
chemical mechanisms: maintenance of chemically reducing conditions within the WP, saturation of the
groundwater in the degraded WP with DU, and reduction of degraded WP permeability to air and water flow
through the WP. These nuclear and chemical beneficial properties exist only for depleted UO, fills because
only the depleted UO, has the same chemical form as that of the LWR SNF uranium.

Associated with this concept are uncertainties including the technology required to fill the WP with DU
particulates and the mechanical behavior of the WP after filling. There have been extensive theoretical and
experimental studies (McGeary 1961; Matthews and Swanson 1979; Schutjens 1991) of fill technology, and
many industries (i.e., pharmaceutical, construction, nuclear) use different fill technologies for many
applications (Hausner et al. 1967). However, the experience of using fill materials in packages with LWR
SNF is limited. One set of proof-of-principle experiments has been done with iron shot (Cogar 1996).

Canada, as part of its waste management program for disposal of CANadian Deuterium Uranium
(CANDU) SNF, has developed as one option a titanium, thin-walled WP that uses a compacted particulates
to support the external WP walls from outside hydrostatic pressure buildup in the geological repository. This
WP system is a result of a 15-year development program. While the functional requirements of the fill
material in the Canadian WP are somewhat different from those of a U.S. WP containing DU fill, the large
experimental data base developed by the Canadians is directly applicable and useful.

1




1.2 REPORT OBJECTIVES

The objectives of this report are to review and describe the development of the Canadian WP and the use
of fill material in that WP relative to the U.S. efforts to develop a WP for LWR SNF using depleted UO, as
fill material.

1.3 STRUCTURE OF THE REPORT

The report is structured into three main sections. Section 2 provides an overview of the Canadian waste
management program so the requirements on the Canadian WP are understood. Section 3 describes the
development of the WP with its fill material, key experimental data, and key references to the detailed

information that is available. Section 4 identifies the information from the Canadian WP program that is

applicable to U.S. efforts to develop a WP that would use DU fill.




2. THE CANADIAN GEOLOGICAL REPOSITORY SYSTEM FOR DISPOSAL OF CANDU SNF

2.1 GENERAL DESCRIPTION

Both the United States and Canada use nuclear power reactors to generate electricity and have decided to
directly dispose of SNF wastes from their reactors in deep geological repositories. A brief description of the
similarities and differences of the two programs are provided herein. The differences (Forsberg 1991) in the
Canadian and U.S. designs of their proposed geological repositories (Table 2.1) are a consequence of (1) their
using different reactor types with different nuclear fuel designs and (2) their choosing different types of
geological media for SNF disposal.

Canada uses CANDU reactors (Hart 1994). These are heavy-water-moderated, pressurized-water
reactors (PWRs), commonly referred to as heavy-water reactors. The United States uses light-water
moderated, PWRs and boiling-water reactors (BWRs). PWRs and BWRs, as a class, are considered LWRSs.
In all of these reactors, the fuel is UO,, which is contained in zircalloy tubes. The CANDU reactors use
natural or slightly-enriched (<0.9 wt % #3°U) uranium fuel, whereas the LWRs use low-enriched uranium fuel
(3 to 5 wt % 233U). Typical CANDU SNF has burnups (energy production) of 6500 to 9000 Mwd/metric
tons initial heavy metal (MTIHM). The higher-enriched LWR SNF has burnups typically from 30,000 to
50,000 Mwd/MTIHM. These differences in the SNF have two major implications for repository designers.

»  The potential for nuclear criticality is essentially nonexistent in the proposed Canadian repository

(McCamis 1992) because of the very low concentration of fissile materials in the SNF. Nuclear

criticality is a concern [Nuclear Waste Technical Review Board NWTRB) 1996; NWTRB 1997,
Forsberg 1997] in the design of a U.S. repository because of the higher fissile content of the SNF.

*  The Canadian SNF has a lower burnup and produces less enérgy per ton of SNF than does LWR
SNF. As a direct consequence, large quantities of SNF must be managed. For the nuclear
generating capacity considered in the conceptual design studies (Simmons and Baumgartner 1994),
the proposed Canadian repository would dispose of 191,000 t compared to the 87,900 t of LWR
SNF to be disposed of in the United States [U.S. Department of Energy (DOE) December 1996).

Canada and the United States have chosen different geological media for their repositories. The

Canadian repository will be in granite in the Canadian Shield, which is a geological structure in the middle of
Canada that stretches from the Arctic Ocean south within the United States to Minnesota, Wisconsin, and
Michigan. The expected repository depths will be between 500 and 1000 m. The granite is saturated with
water, and the repository will be below the water table; thus, any WP within the repository must ultimately
resist the hydrostatic pressure from the groundwater. Also, the granite has chemically reducing conditions.
The proposed U.S. repository is at Yucca Mountain in Nevada and will, when built, be in tuff, which is
consolidated volcanic ash. The expected repository depth is ~300 m. The site is dry (i.e., the proposed
repository is above the water table) with no hydrostatic pressure on the WP. The tuff has chemically

oxidizing conditions.
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Table 2.1. Conceptual designs of the Canadian and U.S. geological repository systems

v Country
Characteristic Canada United States

General

Geology Granite Tuff

Depth, m 500-1000 300

Location Below water table Above water table
Waste package

Type Thin-wall titanium Thick-wall steel

Assemblies per WP 72 21

Length, cm 224.6 5335

Diameter, cm 63.3 162.9
SNF

Potential quantity, MTIHM 191,000 87,900

Type CANDU PWR

Fuel uo, Uo,

Clad Zircalloy Zircalloy

Cross section Cylindrical Square

Assembly width (diameter), cm 10.2 214

Assembly height, m 0.495 4.063

Source: Johnson April 1994.

The structure of the Canadian program is defined by the Canadian Nuclear Fuel Waste Management

Program, which is a joint program of the government of Canada and the province of Ontario. Atomic Energy
of Canada Limited (AECL) is the lead agency for research on disposal. Ontario Hydro, the Canadian electric

utility that operates most of the Canadian nuclear power plants, provides significant technical assistance to
this effort. The structure of the U.S. program is defined by the Nuclear Waste Policy Act. DOE has

responsibility for implementing the program.




2.2 SNF
The fuel assemblies for CANDU reactors (Fig 2.1) and LWRs (Fig. 2.2) are different; but the fuel pins,

materials of construction, and many other features are similar for both fuel assemblies (Table 2.2).

Figure 2.3 shows a cross section of a CANDU and PWR fuel assembly. LWR fuel assemblies have grids to
hold pins in place. The CANDU fuel assemblies have spacers attached to the fuel-pin clad. Such similarities
are expected because both reactor types are water cooled and have similar thermal-hydraulic constraints in
their reactor cores.

The internal dimensional clearances between pins within the CANDU fuel assembly, on average, are
smaller than those of LWR assemblies. The minimum clearance between rods in a CANDU fuel assembly is
1.3 mm vs 3.4 mm for a standard PWR fuel assembly. This is expected to make filling the void spaces
within CANDU fuel assemblies somewhat more difficult than filling the void spaces within LWR fuel
assemblies. Sixty-one percent of the cross section of the CANDU fuel assembly is composed of pins whereas

only 41% of the cross section of a PWR fuel assembly is composed of pin.

23 WP
2.3.1 U.S. WP with Depleted UO, Fill

The proposed U.S. repository system consists of several components. The geological repository is
located ~300 m underground in tuff. Horizontal drifts (tunnels) will be constructed to hold the WPs, which
are to be placed horizontally in the tunnels (Fig. 2.4). Ultimately, the space around the WP may be backfilled
with tuff or an equivalent material to reduce the potential for rockfalls and for water flow to the WP.

The alternative proposed WP (Table 2.3) with DU fill would be essentially identical to the current
baseline, Yucca Mountain WP design (Dyer and Voegele September 1996) without fill material. The
package is designed to hold 21 PWR fuel assemblies. The WP is a heavy-wall, steel package with an inner
layer of corrosion-resistant steel alloy and an outer layer of sacrificial steel that cathodically protects the inner
steel alloy against corrosion. The DU fill provides (1) additional shielding, (2) a reduction in the potential for
repository nuclear criticality events, and (3) a reduction in the long-term release of radionuclides from the WP
in the repository.

2.3.2 Canadian WP System

The Canadian repository system consists of several components. In one concept (Simmons and

Baumgartner 1994), the geological repository is to be located 500 to 1000 m underground in granite below

the water table. Horizontal drifts (tunnels) are to be constructed to hold the WPs, which are placed in ‘

boreholes (Fig. 2.5). Surrounding each WP is a bentonite clay material that minimizes water flow into the

WP, controls WP near-field geochemistry, and absorbs radionuclides that could be eventually released from
the WP. Beyond the buffer is the backfill that holds the buffer and WPs in place and fills all void space in the

repository.
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ORNL DWG 85-838
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Fig. 2.2. PWR fuel assembly.
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Table 2.2. Characteristics of CANDU and PWR SNF

Fuel-assembly type

Property CANDU PWR?
Weight, kg 212 611.5
Uranium, kg/assembly 19 401.
Initial enrichment, 23U wt % 0.71-0.9 3-5

Burnup, MWd/t
Assembly
Geometry
Length, m
Width (diameter), cm
Fuel pins, number
Nonfuel pins/tubes, number
Ratio of pin area to total area
Minimum pin gap, mm
Pins
Fuel type
Clad type
Length, m
Diameter, cm
Clad thickness, mm

Spacers (grids)

6,850 (design)

Circular
0.495
10.2

37

0

0.613
13

uo,
Zircalloy
0.493

1.3

0.4

3

30,000-50,000

Square
4.063
214
264

25
0.414
3.4

uo,
Zircalloy
3.868

0914

0.57

-6

2The 17 x 17 PWR fuel assembly has a total of 289 rod positions. Twenty-five positions may contain

guide tubes for control rods, instrument tubes, and/or burnable absorber rods.
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ig. 2.3. Cross sections of CANDU and PWR fuel assemblies.
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- Table 2.3. Conceptual Canadian and U.S. WP designs that use fill materials

- Country
Characteristics Canada United States
Status Design option Design option
WP material of construction Titanium-2 Steel
Fill material High-silica glass beads Depleted UO,
Assemblies per package 72 21
Levels per WP | 4 1
Assemblies per level 18 21
Diameter, cm 63.3 162.9
Length, cm 224.6 5335
Wall thickness, mm 6.35
Buffer around package yes no
) Basket structure
) Form Tube bundle? Square box bundle
Material Steel Steel
Thickness (mm) 32

Sources: Crosthwaite 1994; Forsberg 1996; Dyer 1996; Johnson et al. April 1984.

aNineteen tubes in basket with 18 tubes (108 mm ID) for SNF. The center tube is a thick-wall tube for
handling the internal basket during transfer operations.
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Fig. 2.5. One Canadian concept for CANDU SNF WPs and for disposal of WPs in granite.




13

The WP (Johnson April 1994) is made of American Society for Testing and Materials grade-2 titanium,
which was chosen because of its long-term resistance to corrosion (Allen and Simmons 1996). At depths in
the proposed Canadian repository, long-term hydrostatic pressure from groundwater reentering the repository
after closure may equal 10 MPa (~100 atm) on the exterior of the WP. To prevent WP collapse and
subsequent wall failure, the thin external wall of the WP must be supported. Supporting the WP wall also
supports the bentonite barrier (buffer) to radionuclide migration that is exterior to the WP. In one concept,

the container wall is supported by high-silica, low-sodium glass beads or silica sand that totally fill the WP
empty void spaces. This WP option is designed to hold 72 CANDU fuel assemblies.







3. CANADIAN WP DEVELOPMENT PROGRAM

Canada has conducted a 15-year development program for its repository that led to development of
alternative WPs. Canada adopted the following strategy (Crosthwaite 1994):

“Early in the development studies, it was concluded that the most credible approach to developing and

evaluating container designs was to carry out a program that included fabrication and inspection

technology development, prototype fabrication, structural proof testing, and structural-performance
modeling. This would allow:

1. the development and demonstration of fabrication and inspection techniques that would be required
for production;

2. direct measurement of the structural performance of candidate container designs;

3. the opportunity to test the validity of structural-performance predictions obtained from computer
modeling and stress analysis; and

4. evaluation of the sensitivity of the structural behavior of various container designs to tolerances in
these design specifications."
The results of the packed-particulate container development program are described below. Much of the
detailed development of the container was performed by Ontario Hydro.

3.1 SELECTION OF FILL

The requirements for the Canadian WP fill material are that it fill all empty spaces within the WP, is
chemically inert, is structurally strong, and is inexpensive. The fill is required to support the WP wall against
10 MPa of external hydrostatic pressure.

An extensive test program was initiated to define the preferred fill material (Teper 1980; Teper 1981a;
Teper 19815, Teper 1982; Teper 1986a: Teper 1987a; Teper 19875; Mikasinovic and Teper 1981;
Mikasinovic and Hoy 1982; Shelson 1983). Twelve fill materials were investigated including Wedron sand
(0.2 to 0.85 mm), coarse glass beads (0.8 to 1.2 mm), fine glass beads (0.02 to 0.3 mm), steel shot (0.6 to
1.0 mm), and bauxite grains (up to 1 mm). Compressive strength was measured. Extensive fill tests were
conducted using the large Ontario Hydro seismic shake table to define the particle size, vibration frequencies,
and accelerations that provided the most rapid and reliable filling of the WP and fuel assemblies.

Initial tests were conducted on a stack of two simulated CANDU fuel assemblies (Fig. 3.1) with the fuel
assemblies offset to provide the maximum resistance to particulate filling of void spaces in the lower fuel

assembly. Figure 3.2 shows one run during which the void space was first filled by the gravity flow of the

15




Fig. 3.1. Two-nuclear-fuel assembly particulate fill test on the Ontario Hydro large seismic shake
table (Courtesy of AECL).
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particulates followed by vibratory compaction and further consolidation of the fill material. Typicaily, the
“as poured” fill has a density of 80 to 90% of the reference density (see below) with improved densities after
vibratory compaction. The test results provided confidence that the fill matenal would go both between the
rods and through fuel assembly end fittings that were misaligned with respect to particulate flow. The tests
further showed that both particulates made of small smooth spheres and particulates with rough surfaces
(sand) would fill the assemblies. Later tests were conducted on a full-scale prototype WP (Fig. 3.3).

Table 3.1 shows the results of one set of runs.

Moderate vibration significantly improves fill density and reduces filling times. When a WP is vibrated,
the fill becomes a “fluid” and enters void spaces where the particulate fill can only enter by horizontal
channels or from the bottom. In contrast, if the fill is poured into the WP without vibration, only the void
spaces that can be filled from the top of the WP are fully filled. Vibration has the added benefit of reducing
the time required to load a WP with particulates. Because of these factors, the decision to vibrate a WP and
the filling conditions depend upon both the required final fill density for the void spaces and potential
economic advantages of shorter fill times.

The success of a filling operation is measured by the fill fraction or pércentage. This is defined as the
void space filled with particulates divided by the void space that would be filled with particulates assuming
ideal packing of the particulate fill. For uniform spheres in a face-centered cubic array, the spheres would
occupy 74.048 vol % of the void space. A particulate packing fraction of 100% implies that 74.048 vol % of
the void space is filled with solid particulate and the remainder of the space is unavoidable void space
between particulates. Higher fill fractions are possible if particulates with multiple sizes are used so the small
particulates can fill the empty spaces between the larger particles.

In the prototype WP, simulated fuel assemblies were included in the outer basket ring to simulate the
added stiffness provided by the fuel assemblies to the WP after filling was completed. The WP was welded
shut, and the welds were inspected to ensure they met the requirements of the American Society of
Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (Maak 19853).

Two materials are being considered: industrial glass beads with a diameter of ~1 mm and silica sand.
Tests indicated that for the specific WP design, the WP should be vibrated for 15 min. at 50—60 Hz with a
peak-to-peak acceleration of 39.3 m/s2. These conditions provided high confidence for a complete filling of
the WP (Crosthwaite 1994).



Fig. 3.3. WP multiassembly particulate fill test.
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3.2 FULL-SCALE WP TESTS FOR REPOSITORY CONDITIONS

The prototype WP was hydrostatically tested at the Hydrostatic Test Facility at the Whiteshell
Laboratories of AECL (Fig. 3.4). Thus facility was built to test WPs under expected repository conditions.
Testing was at 10 MPa and 150°C, a temperature that is 50° C higher than the maximum expected in the
repository. The successful test demonstrated that no significant voids were found in the WP (Teper 1985;
Teper 19875; Teper 1988a; Teper and Reid 1989). Subsequent tests measured WP behavior (after various
quantities of fill were removed) to identify the effects of leaving void spaces within the WP. With small
voids, the package was significantly deformed, but it did not fail. A parallel analytical program demonstrated
the capability to predict the consequences of various types of filling failures (Teper 1986; Teper 19885).

3.3 WP TRANSPORT AND HANDLING TESTS

Drop tests (0.1 to 4.0 m) were conducted on the filled prototype to determine its characteristics under
accidental conditions. The WP did not fail (Teper 1991). The fill provided the required structural support
for the WP. |

3.4 SNF MECHANICAL TESTS

Vibration and impact tests were conducted on CANDU SNF (Forest 1980, Forest 1985;
Wasywich 1993). These tests allowed evaluation of the potential for SNF damage during particle filling
operations. The CANDU fuel assemblies have somewhat thinner clad than typical LWR SNF. Bundles
withstood decelerations of 766 m/s? in the lateral direction and 1718 m/s? in the axial direction. Fatigue tests
indicated that the bundles would have to be shaken for ~24 h under the filling process conditions (nominally

for 15 min.) before failure would occur.

3.5 RECOVERY FROM WP MANUFACTURING FAILURE

The potential exists for the WP to fail during loading operations. Problems with welds or serious
handling accidents may make the WP unacceptable to use for final disposal of SNF. In such a case, the
following approach is planned (AECL CANDU April 1992; Simmons and Baumgartner 1994 ). (1) the
defective WP is placed on a rotary table, (2) the top and bottom ends are separated with an abrasive disk
cutter, (3) the cylindrical section is cut in two places 180° apart and removed with a grapple, (4) the
particulates are removed with a suction hose, and (5) the basket containing the SNF is lifted free of the debris.




Figure 3.4. Whiteshell Hydrostatic Test Facility to test WP at 18 MPa and 150°C

(Courtesy of AECL).
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3.6 THERMAL ANALYSIS OF THE WP

Detailed thermal analyses of the WP with fill was completed (Baumgartner, Jhinger, and Tran 1994;
Taralis 1981). Experimental measurements were made of the fill materials (Teper 1990). The results of the
thermal analysis indicated small temperature drops across the WP. The analysis indicated also that most of
the heat flowed through the metal basket structure, rather than through the particulate fill material, because of
the high conductivity of the metal basket.

3.7 PRODUCTION FACILITIES FOR FILLING WPs

The AECL (AECL CANDU April 1992; Simmons and Baumgartner 1994) has developed a conceptual
design of a repository with associated surface facilities—including cost estimates (Table 3.2). Final decisions -
on the design have not been made. The key surface facility is the Used-Fuel Packaging Plant (UFPP), which
is sized to receive 4700 MTIHM/year of CANDU SNF by rail or truck and to package that SNF into
repository WPs. The peak throughput is about 15 WPs/d. This throughput would be significantly larger than
that of the proposed U.S. repository. The facility layout is shown in Fig. 3.5. There are two parallel
processing lines within the UFPP plus storage for incoming SNF and outgoing WPs. The area associated
with filling operations is the shake table. Fill and shake operations are done simultaneously.

SNF handling within the facility is somewhat different than that used for LWR SNF. CANDU fuel
assemblies are small. Furthermore, in the design option considered, the facility must process
250,000 assemblies/year. To minimize handling, CANDU SNF assemblies, after discharge from the reactor,
are placed into storage/transport modules. A single module holds 96 SNF assemblies. A module consists of
48 stainless-steel tubes welded to two tubesheets with 2 SNF assemblies stored in each tube. The SNF at the
reactor is stored in these modules. It is planned to ship the SNF to the UFPP in these modules in transport
containers containing one or more modules. At the UFPP, SNF will remain in the modules until it is loaded
into the WP basket. (The UFPP facility equipment handles modules, not individual fuel assemblies.)

At the UFPP, the transport container is unloaded from the truck or train, inspected, cleaned, and moved
under the module-handling cell. The top of the transport container is mated with the bottom of the hot cell.
The transport container is opened and the SNF module is removed. The module may be dried and sent
directly to the UFPP packaging cell, or the SNF module may be placed in the receiving-pool surge storage for

processing at a later date. After the transport cask is unloaded, an empty module is placed inside the

transport cask, the cask is sealed and returned to the power station.
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Table 3.2. One conceptual design of CANDU SNF used-fuel packaging plant

Facility requirements
SNF throughput, MTIHM/year 4,730
SNF throughput, assemblies/year 250,000
Receiving requirements
Transport modes rail, truck
SNF modules/year 2,603
SNF assemblies/module 96
Full cask storage capacity, d ‘ 10
Empty cask storage capacity, d 10
Receiving pool capacity, months 3
Receiving pool capacity, modules 650
Packaging requirements
WP throughput, number/year 3,470
| SNF assemblies, number/WP 72
! Operations, d/year 230
Operations, shifts/d 2
Facility size
Length, m 165

Width, m 50
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In the used-fuel packaging cell, automated equipment simultaneously extracts CANDU fuel assemblies
from the module, inspects the SNF, and loads the SNF directly into the WP basket, which is a bundle of
schedule 10 steel pipes that are tack-welded together. Each steel pipe holds 4 SNF assemblies and the entire
basket holds 72 assemblies. When the basket is full, it is placed within the outer titanium WP.

The full WP is placed on a shaker table (Fig. 3.6), and the glass-bead or sand particulate fill is added
while the WP is vibrated. The table is supported on linear ball bearings on a static structure with an actuator
attached near the center of gravity of the structure to provide horizontal vibratory motion during particle
corﬁpaction. The particulate loading station hopper, metering device, and other components are located
outside the hot cell to simplify operations and maintenance. A filler hose passes through the shielded wall to
provide fill to the WP. About 566 kg of filler material is required per WP.

After the WP is filled with particulates, the lid is placed on top of the WP and welded into place. WP
welds are ultrasonically inspected to meet the requirements of Sect. VIII of the ASME pressure vessel code.
The WP then undergoes helium leak-testing to demonstrate that it is leak-tight.

If the WP does not pass all inspection tests, the WP is either repaired or cut apart to recover the SNF and
the SNF is placed into a new WP. WPs could be overpacked; however, different size WPs would complicate
underground operations. To minimize underground operations, the UFPP is designed to process any
damaged WPs.

By examining Fig. 3.5, it is noted that the filling of the WP with particulates requires relatively small

amounts of building floor space within the facility. This is a direct consequence of the relatively short time

required to fill a WP with particulates and the many other operations required in the UFPP.
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4. CONCLUSIONS

The large-scale, multiyear development of fill materials, WPs, inspection technologies, and facility
designs for the Canadian repository system provide key data for the U.S. proposed use of DU fill in LWR
SNF WPs. Specifically,

» the Canadian data provide reasonable confidence that DU fill operations are practicable,

» the Canadian data provide a basis to define a baseline DU fill concept that has an experimental basis
in the selection of design parameters,

+ the Canadian program provides a demonstrated forward path for development of DU as a WP fill
material.

There are differences between a WP for CANDU SNF that uses glass or sand fill and a WP for LWR

SNF that uses DU fill. These differences will necessitate some research and development for the use of DU

fill in LWR SNF WPs. The Canadian data does, however, provide a solid foundation for such work.
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Appendix A:

DESCRIPTION OF THE USE OF DEPLETED URANIUM DIOXIDE FILL IN LWR SNF WPs







A.1 INTRODUCTION

The use of depleted uranium (DU) dioxide (UO,) as a repository waste-package (WP) fill material is
being investigated (Forsberg 1996) for improvement of WP performance with packages containing light-
water reactor (LWR) spent nuclear fuel (SNF). A synthesis of existing laboratory data on uranium oxides,
hot-cell tests on SNF, geological field data, and other data provide the technical basis for the concept. A
description of the concept is provided herein. The mechanisms are described for (1) reduction of long-term
radionuclide release rates from the WP, (2) minimization of the potential of long-term nuclear criticality in

the repository, and (3) reduction of the radiation levels to the WP.

A.2 CONCEPT: APPLICATION TO A REPOSITORY

The repository WP is loaded with LWR SNF. The WP void space is then filled with DU UO,
particulates, which are sufficiently small (<1 mm) such as to fill coolant channels in the SNF assemblies and
spaces between the fuel assemblies and the interior wall of the WP. A simplified schematic of a loading
method is shown in Fig. A.1. Table A.1 identifies key characteristics of a representative WP using DU fill.
The DU particulate enrichment levels are as low as 0.2 wt % 233U. Thus, adding DU to the WP reduces the
total fissile material concentration in the WP to below 1 wt % of the heavy metal. In the base case, the DU
fill would be loaded at the repository. The technology is applicable to LWR SNF and potentially applicable
to high-enriched-uranium SNF.

It is expected that the use of fill material will have little impact on the design of the external WP. The
external WP walls can include added DU, if desired. The WP would probably be filled with the DU UO, fill
at the repository, but the fill could also be added to transport and storage cask baskets when the basket is to
be sent to the geological repository for disposal.

A.3 REPOSITORY BENEFITS

A.3.1 Reduction of Radionuclide Release Rate from the Repository WP

The expected repository failure mode is radionuclide migration to the open environment by (1) WP
failure, (2) leaching of SNF by water, (3) dissolution of radionuclides and generation of colloids, and
(4) transport of those radionuclides in dissolved or colloidal forms to the open environment. Three
mechanisms reduce radionuclide release rates from WPs: (1) minimizing the water flow through the WP,
(2) reducing the dissolution rate of radionuclides into groundwater, and (3) minimization of colloid transport
by blocking flow paths. Delaying the release of radionuclides from the WP by these mechanisms provides the
time for many of the radionuclides to decay to nonradioactive isotopes or less hazardous radionuclides. The
use of DU fill uses all of these mechanisms to improve WP performance for geological repositories with

oxidizing conditions, such as the proposed repository at Yucca Mountain.
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Table A.1. DU dioxide WP fill characteristics®

. Property Value
SNF, MTTHM 9.96
Solid-bead density®, g/cm> 10.96
DU, wt % of fill 88
DU mass©, t | 323
Particulate mass®, t 36.7
Assay, wt % of DU 233U 0.2
Equivalent 235U assay, wt % of SNF 1.6
Equivalent 235y assay, wt % of WP 0.53

8The design basis was the U.S. Multi-Purpose Canister (MPC) WP system for 21 PWR SNF assemblies
(DOE 1994). The MPC has an internal volume of 7.9 m>, the SNF baskets have a solid volume of 1.1 m>,
and the 21 SNF assemblies have a solid volume of 1.6 m>. A total of 5.2 m3 of the 7.9 m3 of internal volume
can be filled with beads.

bThe bead density can be controlled by the process parameters used in making the UO,. High densities
are possible using standard fuel fabrication technologies. The preferred density will involve both economic
and performance considerations.

“The fill fraction is 0.64; that is, 64% of the initial void space is filled with UO, particulates and 36% of
the initial void space remains void space between the particulates. Large-scale Canadian tests have measured
volume fill fractions up to ~73 %.

A.3.1.1 Maintenance of Chemically Reducing Conditions to Minimize SNF UO, Failure

Most fission products and actinides within SNF are incorporated within UO, crystals in SNF pellets.
Upon WP failure and after entry of groundwater into the WP, these fission products and actinides can not
escape the UQ, crystals until the UO, dissolves or is transformed into another chemical species.

Maintaining chemically reducing conditions within the WP maintains the integrity of the SNF UO,
crystals by multiple mechanisms and, hence, reduces radionuclide releases. With the use of UO, or other
uranium compounds with uranium in the +4 valence state as fill materials, the DU fill ensures chemically

reducing conditions within the WP for an extended time independent of external groundwater chemistry.

After WP failure, any oxygen in the groundwater would first encounter the DU before it encounters the SNF.
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The DU in the +4 chemical state would be oxidized to the +6 chemical state through a series of oxidation
steps, thus removing the oxygen from the groundwater and maintaining chemically reducing conditions in the
WP.

The solubility of uranium in reducing groundwater is very low (Smellie, Karlsson, and
Grundfelt 1995)—about 1 ppb. This solubility is up to four orders of magnitude less than the solubility of
uranium under oxidizing conditions. Radionuclide releases from SNF are extremely limited under chemically
reducing conditions (Smellie, Karlsson, and Grundfelt 1995) because the UO, does not dissolve and release
the radionuclides incorporated within its crystalline structure. Chemically reducing conditions also minimize
the solubility and transport of several other long-lived radionuclides (e.g., neptunium and technetium) and
reduce the formation and transport of radionuclides as colloids.

Chemically reducing conditions prevent the conversion of SNF UO, to higher urantum oxides such as
U30q. When UO, is oxidized, its crystal structure changes. In the process of converting from one crystal
form to another, some radionuclides are released from the matrix. In particular, noble gases and some soluble
radionuclides (if water is present) will be released to the air and water in the WP.

The DU fill also minimizes generation of oxidizing acids that degrade the WP and accelerate SNF
dissolution. Water and air in radiation fields generate corrosive acids (e.g., nitric acid). WPs are dried and
filled with inert gases before sealing to minimize this problem. After WP failure, DU fill reduces acid
generation by two mechanisms. The high-density fill reduces internal WP radiation fields and the available

WP air or water volume for acid generation 1s reduced by displacement with DU fill.
A.3.1.2 Saturation of Groundwater with DU

Surrounding the SNF with DU saturates any groundwater which may enter a degraded WP with uranium.
This saturation slows the SNF dissolution process because DU-saturated groundwater can not dissolve

additional SNF uranium.
A.3.1.3 Protection from Variable Groundwater Chemistry

The use of DU, particularly UO,, provides a mechanism to counteract any unexpected changes in
groundwater that may accelerate degradation of the SNF. Groundwater chemistry can change because of
climatic changes and human activities (e.g., irrigation, groundwater pumping, liquid-waste injection, etc).

The DU UQ, acts as a sacrificial chemical to absorb changes in groundwater chemistry and delay their effects
on the SNF UQ,.
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A.3.1.4 Support of WP Integrity and Secondary Barriers To Radionuclide Releases

Fill material helps maintain other barriers to radionuclide migration. Ultimately, the WP will lose its
structural strength. With a fill material, the basic geometry of the WP is maintained after loss of structural
integrity of the WP. Without a fill material, the WP will (1) itself collapse, (2) collapse any secondary
barriers to water flow, and (3) create a bed of rubble that is more permeable to groundwater flow. This

benefit applies to any fill material, not just to DU.
A.3.1.5 Minimization of the Groundwater Flow in WP

After WP failure, DU fill lowers the hydraulic conductivity within the degraded WP and, thus, ensures
low groundwater flow near the SNF. Water flow is the primary mechanism for the transport of radionuclides
to the open environment. The release of many radionuclides is controlled by solubility limits. Other
radionuclides may be transported by colloids. The slower the flow of groundwater, the slower the transport
of radionuclides. The goal is to create a WP where water flow and radionuclide migration are by diffusion
_ only because diffusion is a very slow process for transport of any radionuclide.

In oxidizing groundwater, the DU oxide fill will evolve to lower-density, higher-valence state, hydrated,
uranium oxides (Finn, Hoh, Bates, and Wolf 1994; Murphy June 1992; Smith, Schettz, Anderson, and
Smith 1982). Over much longer time periods, these compounds will evolve further into hydrated uranium
silicates. The silica is provided by the groundwater. These changes have been observed in the laboratory and
in uranium ore deposits (Pearcy, Prikryl, Murphy, and Leslic 1994; Murphy and Pearcy 1992). This
reduction in density and accompanying volume expansion fills the void space and, thus, minimizes water
flow. Figure A.2 shows this evolutionary sequence as it has been observed in natural uranium ore bodies with
oxidizing groundwater (Murphy November 1995). Because of the high surface area of the particulates and
because they are not protected by the SNF clad, they will expand and choke off groundwater flow to the SNF.
Figure A.3 sho§vs the conversion of UO, to U0y that initially occurs. The desired expansion can be
controlled by design.

A3.2 Reduction of the Potential for Repository Nuclear Criticality

Both short-term and long-term nuclear criticality are to be avoided in a geological repository. A nuclear
criticality event would geherate added radioactivity and heat. The heat can accelerate degradation of WPs and
movement of water that may transport radionuclides to the environment. The added radioactivity and heat
also create uncertainties in the modeling of the long-term performance of the repository. These and other

considerations have led to the licensing requirement that nuclear criticality be avoided in a geological

repository.
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The use of DU as a fill material reduces the potential for repository nuclear criticality events by lowering
the fissile assay of a WP below 1 wt % 233. The average enrichment of SNF (all fissile isotopes) is
~1.5 wt % (Ashline and Forsberg 1996). There is a wide distribution of fissile concentrations within the SNF
inventory. It is generally accepted that a nuclear criticality event will not occur in geologic time at
enrichments <1 wt % 23°U equivalent (Naudet 1978; Cowan 1976; Forsberg 1997).

Because of possible uranium dissolution, groundwater transport, and redeposition (a mechanism that
creates uranium ore bodies), it has been suggested that the potential for criticality events exists if the fissile
concentration in the repository SNF is sufficiently high. Criticality during operations is prevented in a
repository by (1) geometric spacing of fissile materials and (2) neutron absorbers. The degradation of the
WP and SNF will ultimately change the geometry of the WP and, thus, complicate the use of geometry
control for long-term criticality control. Neutron absorbers include 2381, boron, gadolinium, and other
materials. Neutron absorbers (except 238U) leach from WPs and travel at rates different from the SNF
uranium through the geologic media because of the different chemistries of the neutron absorbers in
groundwater. The phenomena applies to both deep geological repositories and shallow disposal sites
[Nuclear Regulatory Commission (NRC), June 1997].

The separation and concentration mechanisms for uranium in a repository are the same as those for
uranium in the natural environment. In effect, the same phenomena that created natural reactors in the distant
past may create the potential for nuclear criticality events in the future (International Atomic Energy
Agency 1978). Uranium under oxidizing conditions is several orders of magnitude more soluble than
uranium under chemically reducing conditions. This allows uranium to be oxidized to the +6 valence state by
oxidizing groundwater, dissolve in the groundwater, be transported by the groundwater, and precipitate from
groundwater when the local geological conditions create chemically reducing conditions. Potential chemical
reducing agents are natural organics and many WP materials, such as iron. Figure A.4 shows one such
scenario. The use of DU as a neutron absorber minimizes these concerns because DU has the same chemical
properties as SNF uranium and, thus, does not separate from the SNF uranium. It minimizes potential
criticality concerns inside, near, and far from the WP.

In LWR SNF, much of the fissile material is 23°Pu. The foregoing analysis is based on the assumption
that plutonium remains with the uranium until the major plutonium isotope (**°Pu) decays to 23°U and can be
isotopically diluted by the DU. This isotopic dilution is ensured if the rate of plutonium decay to uranium is

faster than the rate of dissolution and transport of uranium within the repository. Plutonium-239 has a half-

life of 24,000 years (i.c., the decay rate is 3 x 10~/year). Performance assessments indicate that plutonium

migration is slow in most geological environments; thus, DU fill provides a basis for long-term criticality
control of both 23°Pu and its decay product 233U,
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A.3.3 Enhanced Shielding

WP shielding is required to reduce radiation interactions between the WP and the local geologic
environment. This minimizes the complications in assessing long-term WP and repository performance. WP
shielding may also be used to minimize the need for shielded equipment to place WPs in the repository. The
use of a DU fill reduces radiation levels to the inside surface of the WP. This allows a reduction in shielding
to be incorporated into the WP or lower radiation levels external to the WP. This shielding effect of the DU
fill decreases the physical size of the WP because it is incorporated into the unused void spaces inside the
WP.

A.4 SCIENTIFIC BASIS OF DESIGN

A focus of repository design is on the prediction of long-term performance over geologic tinfe. Because
the kinetic dissolution mechanisms of WP and SNF degradation may be temperature-dependent and
influenced by radiolysis rates, results from accelerated laboratory testing of matenials are difficult to
extrapolate to repository time-frames. Knowledge of uranium ore body behavior provides useful insight. In
ore deposits, UO, evolves into hydrated uranium silicate minerals in conditions similar to those at Yucca
Mountain (Murphy November 1995). In these ore deposits, uranium at the outer edges of the deposits
protects internal uranium against dissolution. The use of DU fill material in SNF WP mimics this natural
phenomenon. Geological data on the performance of UO, over millions of years can be used, when combined
with laboratory data, to provide estimates of WP performance and support licensing.

Many natural uranium deposits contain sufficient 23°U mass to become nuclear reactors. However, this
does not happen because 235(J in natural uranium is isotopically diluted with 2381, The DU fill strategy
applies this same strategy for criticality control to WPs.

A.S MANAGEMENT OF DU

There is sufficient DU to implement the concept. For LWR fuel production, natural uranium with a 235U
content of 0.71% is separated into an enriched-uranium fraction with the by-product production of 4 to 6 tons
of DU per ton of enriched uranium. Currently, there are only limited uses for this material. Worldwide there
is in excess of 1,000,000 t of DU in storage. In the United States, about 400,000 t of DU is in storage-with
various 233U assays. About a third of the inventory has assay levels below 0.21 wt % 23°U.

If this material is declared a waste, existing regulatory requirements indicate that some type of geological

disposal will be required (NRC January 1994; Hickey September 22, 1992). Performance assessments
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(Martin Marietta Energy Systems, 1994) indicate that large quantities of uranium are probably not acceptable
for shallow land disposal. The uranium must be converted to a stable form such as an oxide for disposal.
Use of DU within SNF WPs eliminates the separate, not insignificant, cost of disposal of this material. The
use of DU as a beneficial material to improve WP performance reduces legal and institutional constraints in

the management of DU.

A.6 CONCLUSIONS

DU fill inside the WP creates the potential for significant improvements in WP performance based on
uranium geochemistry, reduces the potential for nuclear criticality in a repository, and provides a beneficial

use for DU.
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