ORNL/THM--11454

DE91 005642

Engineering Physics and Mathematics Division

A DATA ACQUISITION WORK STATION

FOR ORELA

L. W. Weston

Date Published - September 1990

Prepared for
Energy Programs Division

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831
operated by
Martin Marietta Energy Systems, Inc.
for the
U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-840R21400

2
&
L
[]
i

TABLE OF CONTENTS

ABSTRACT .
1. INTRODUCTION

2. DESCRIPTION

2.1 General .

2.2 Computer .

2.3 MC-DIO-32F 1/O Port Adapter
2.4 Software
2.5 Data Handler

2.6 Digitizers

2.7 Data Invertor

2.8 Scalers .

2.9 Input Rates .

. DATA HANDLER

3.1 Description .
3.2 Functional Logic .
3.2.1 Software Control
3.3 Front Panel Switches and Connectors
3.4 Rear Panel Connectors .
3.5 Software Control .
3.6 Output D.C. Logic . .
3.7 MC-DIO-32F Interface Card

. CRUNCH FILES .

4.1 General
4.2 Program LOADCRUN .o .
4.3 Loading the Crunch File from Analyzcr
4.4 Crunch File Format

4.4.1 Tag Section . .

4.4.2 PSD Mode Section

4.4.3 The Crunch Section

. PROGRAM ANALYZER .

5.1 General

5.2 Analyzer Installatlon .

5.3 Starting Analyzer .

5.4 Analyzer Display

5.5 Function Keys . .

5.6 Bottom Line Commands .o
5.6.1 Load Crunch File Oommand
5.6.2 Display Overflows .

E
. o
O O & IR I I W NV VI RS V) — < o

D) ek b ek
OO W I WWw

5.6.3 Displaying Total Events and Rejects .

5.6.4 Setting the Preset Timer .
5.7 The Auto Backup File

6. DATA ACQUISITION DRIVER
6.1 General
6.2 Driver Installation. . . .
6.3 Loading in a Crunch Table . .
6.4 Data Acquisition Driver Control .

APPENDIX A
Analyzer Commands

APPENDIX B
Examples of Crunch Files

APPENDIX C
Example Program .

APPENDIX D
Rear Panel Pin Connections

APPENDIX E
Data Handler Low Level I/O Commands

APPENDIX F
Source Code for Data Acquisition Driver

iv

. 35
. 35
. 36

Y
37
37
38
.45
47
.51
.53

. 57

.59

It 1 mramam

ABSTRACT

A new multiparameter data acquisition system has been developed and fabricated at
the Oak Ridge Electron Linear Accelerator (ORELA) which utilizes an IBM PS/2 model 80
personal computer and data handler with a 2048 word buffer. The acquisition system can
simultaneously acquire data from one, two, or three digitizers, multiplex up to four dctectors,
read and control up to 16 scalers, and output 32 D.C. logic signals which can be used to
control external instrumentation. Software has been developed for the OS/2 operating
system, supporting multiparameter data storage for up to three million channels with the
capability of collecting data in a background mode, to make the computer available for other
tasks while collecting data. The system also supports multiparameter biasing and can collect,

crunch, and store data at rates as high as 30,000 events per second.

CHAPTER 1
INTRODUCTION

Nuclear spectrometry frequently involves complex analyzer systems and computers to
rapidly analyze, sort, and store applicable data. Many systems can be extremely claborate and
costly, depending on the experiment and the type of information desired. For single
parameter events, such as pulse height analysis, there are an abundance of available analyzers
on the market, many at a very reasonable price. However, multiparameter data acquisition
systems involving multiple detectors and digitizers usually require a costly and claborate
computer system having extensive memory requirecments. The availability of analyzer systems
that have storage capacity above one million channels is extremely limited with the cost of
available systems being very expensive.

These requirements at the Oak Ridge Electron Lincar Accelerator (ORELA), along
with the need to replace aging analyzers and computers within current budgets, led to the
design and fabrication of a data acquisition system consisting of a hardware interface and data
acquisiiion software which utilizes an IBM PS/2 model 80 personal computer. Developed as
the primary replacement and upgrade of older computer equipment, the new system is
capable of analyzing 64 bits of information per event into four parameter storage, using non-
linear binning, and can employ multiparameter discrimination. Having a maximum capacity
of three million channels, the system’s low cost makes it possible to provide cach
experimenter at ORELA with an independent system.

An IBM PS/2 personal computer was chosen over its contemporarics because ol its
architecture, compatibility, and multi-tasking capability. Collection of data can be performed
with top priority, while the computer is being used for other tasks such as data analysis,
making real time analysis of data possible in some situations. Softwarc, in the form of a
device driver, allows users to easily write specialized programs that have access to data during
acquisition. All software in this manual has been designed to be run under the OS/2
operating system.

This manual serves as a user’s guide for the IBM PS/2 data acquisition system
providing the reader with detailed information on setting up and using the system for a varicly
of applications, including multiparameter data storage, multiparameter biasing, time of {light

energy display, and software development. This manual also serves as a guide for the

computer code ANALYZER, a general purpose program which provides real time display of
data, backup file support, timer support, time of flight energy calculation, and other functions.
Other programs can easily be written in either the protected mode or the DOS compatible

mode to interface with the acquisition driver by following the format specified in Chapter 6.

Ty

CHAPTER 2
DESCRIPTION

2.1 GENERAL

A block diagram of the data acquisitiori system is shown in Figure 2.1. The system
consists of an IBM PS/2 model 80 personal computer attached to several external devices
through a data handler which includes a 2048 x 16 bit FIFO buffer. External instrumentation
for the initial implementation includes one ORTEC time digitizer clock, two Nuclear Data
ADCs, eight JORWAY scalers, and an inverter for the data lines coming from the ADCs.
The experimenter has the option to configure the system for specific and fewer digitizers
through switches on the front of the data handler. Therc are also 32 D.C. level output lines
that can be used to control external instrumentation.

Control of the data handler is accomplished by a computer through a commercially
available I/O board, which allows the computer to communicate with the data handler and
transfer information. The data handler has been designed to accept and store data from each
digitizer until the computer is ready to analyze it. The scalers are controlled likewise with all
data being transferred via the same interface. Transfer and processing of data is performed

by the following procedure.

1) The data handler receives a data ready signal from each applicable digitizer,
informing the data handler that there is converted data ready to be transferred.

2) The data handler stores the data from each digitizer into a buffer (FIFO) and
then simultancously resets each digitizer. This is performed in less than two
microseconds, after which each digitizer is ready to acquire new data.

3) Every 31 milliseconds the computer halts the current program and jumps to an
interrupt routine where each 16 bit v.ord in the data handler is transferred dircctly
to the CPU. Transfer of data to the computer does not prevent the data handler
from accepting new events at any time.

4) The CPU checks the most significant bit cn each word using a 1,0,C,0 sequence
to ensure the correct number of 16 bit words have been transierred for every cvent.

5) After the correct number of words have been transferred, as determined by the
word select switch, the event is analyzed and stored in its applicable channel(s).

6) After the FIFO buffer in the data handler is emptied, the computer returns (o the
current program or process that was halted.

i

TIME DIGITIZER
TOF CLOCK

v

DATA HANDLER

g

MC-DIO-32F
ADAPTER CARD

1t

iIBM PS/2 COMPUTER

MODEL 80

ADC ADC
#1 #2 SCALERS
DATA INVERTER
32 D.C.
> OUTPUT
LINES

Figure 2.1. Block diagram of data acquisition system.

2.2 COMPUTER

This data acquisition system utilizes an IBM PS/2 model 80-111 personal computer
to control the data handler and analyze cach cevent. The computer contains an 80386
microprocessor with a 20 MHz clock and has a 80387 math co-processor. Additional adapters
installed into the computer consist of an I/Q parallel port card and cxtended memory.
Memory may be extended up to 16 megabytes, giving the system approximately a three million
channel capacity, with cach channel consisting of 32 bits (four billion counts per channcel).

At least 2 megabytes of memory are reserved for the OS/2 operating system.
2.3 MC-DIO-32F /O PORT ADAPTER

The computer requires a 32 bit parallel port 1/O adapter to cnable the computer o
communicate with the data handler. The acquisition system has been developed to use a
commercially available interface card, MC-DIO-32F, from National Instruments Corporation.
This 1/O card is installed into one of the computer expansion slots and connccted to the data
handler using a 50 linc ribbon cable.

The MC-DIO-32F adapter must be installed and configured to a basc port address of
D000 hex before operation. To accomplish this, the user is referred to the instructions that
come with the board. The interrupt level and DMA channel arc currently not used in this
system, th s these parameters may be disabled or set to whatever the uscr desires.

All communication with the data handler, including the transler of data, is
accomplished through this adapter using four parallel 1/O ports (A,B,C, & D). Ports A and
B are used for transferring data, while ports C and D are used for interface control (start,
stop, etc.). Port C also controls which data is currently on ports A and B. Thus, ports A and
B can be used for transferring digitizer data, scaler data, or input of test data into the data

handler FIFO memory.

24 SOFTWARE

The methodology of software development has been to provide the uscr with a
versatile data acquisition system that can casily interface with any uscr program in the OS/2
operating system. This provides the user with the ability to expand and enhance data analysis
and display routines at his or her leisure and (o support possible upgrades in computer

hardware.

Three main programs have been written to assist the user in controlling and displaying
data; LOADCRUN.EXE, ANALYZER.EXE, and DEVICE2.SYS. Each of these programs
are described in detail in Chapters 4, 5, and 6, respectively. DEVICE2.SYS is a device driver
that controls the data handler, performing all necessary tasks to start, stop, and transfer data.
Program LOADCRUN is used to load a crunch file into the device driver. A crunch file is
an ASCII data file containing parameters supplied by the user to determine how data is to
be stored. ANALYZER provides the user with a genern! purpose program which starts,
stops, and displays data by accessing the device driver. Other data acquisition programs can
easily be written to replace ANALYZER using the format in Chapter 6 and the example in
Appendix C. |

2.5 DATA HANDLER

The data handler provides the necessary hardware for receiving data from each
digitizer and storing it in a 2048 x 16 bit word first in first out (FIFO) buffer until the
corﬁputer is ready to receive it. The FIFO buffer enables the computer to transfer data from
the buffer while the data handler is accepting data from the digitizers. The data handler also
provides the cssential signals required to start, stf)p, and read up to 16 scalers; however,
current software supports only eight scalers. The device also has an output port with 32 DC
logic lines which can be used to control external instrumentation. Although control is
primarily through software, some configuration must be performed using the switches on the
front panel of the data handler. Detailed information on the data handler is provided in
Chapter 3.

2.6 DIGITIZERS

As many as four digitizers may be used in this data acquisition system; however,
current software supports only three at this time, one clock and two ADCs. Which digitizers
are employed can be controlled from switches on the front face of the data handler. The
system is currently set up to accept up to 13 bits of data (8192 channels) from two pulse
height ADCs and 26 bits of data and four tag bits from a single time digitizer (clock).
Additional bits may be used if required; however, this will require some modification in the
device driver software. The data line configuration from each digitizer to the data handler
is described in Appendix D. Other digitizers may be used in place of those described in this
report; however, each data line signal must correspond to the same lines defined in

Appendix D. Some ADC'’s may require a data line inverter.

2.7 DATA INVERTER

The system shown in Figure 2.1 includes a data inverter between two of the ADCs
and the data handler. This is needed when using Nuclear Data ADCs, since all logic on the
data bus is inverted from that for which the system has been designed {or. The data inverter

illustrated in Figure 2.1 supports up to three Nuclear Data ADCs,
28 SCALERS

Up to eight JORWAY scalers are supported by software on this data acquisition
system. Each scaler connects to the data handler by way of a cablc assembly which has nine
connectors, one for each scaler and one to the data handler. Other scalers may be used if
they follow the same control logic as JORWAY scalers. |

In addition, there are three BNC connectors on the back side of the data handler that
are used to provide start, stop, and reset signals to all scalers. On the front face, there are

stop, start, and reset buttons that can be used to control the scalers manually.
29 INPUT RATES

The dead time of the data handler is no greater than 2 microseconds. This permits
an input rate in excess of 500,000 events per second for bursts of data not exceeding the
buffer capacity of 2048 words. The MC-DIO-32F interface performs all the necessary
handshaking requirements with the data handler to place any data in the FIFO buffer directly
onto the designated port address in the computer. This transfer to the computer is
accomplished in less than 200 nanoseconds, giving programs aimost immediate access to data.

The maximum average input rate of this data acquisition system over an extended
period of time is highly dependent on the crunch table loaded into memory. For example,
the acquisition driver is capable of taking one event and crunching and storing it in up to nine
different locations. The driver can also perform multiparameter discrimination on each event
for multiple detectors. All this takes time. Measurements, using software referenced in this
manual, have resulted in input rates as fast as 30,000 events per second when using a simple
crunch routine with one digitizer. This was performed while the computer was running
entirely in the protected mode. Acquiring data in the DOS compatibility mode results in a
10 percent reduction in the input rate due to the operating system switching in and out of the

protected mode during data storage.

If desired, additional performance and speed may be obtained by modifying the data
acquisition driver software. Simplifying the crunch and interrupt routines in the device driver
can substantially affect the maximum average input rate. Measurements have resulted in data
acquisition rates in excess of iO0,000 events per second for simple storage routines; however,

“modifying the data acquisition driver is only recommended for very specific applications where

flexibility is not a requirement.

CHAPTER 3
DATA HANDLER

3.1 DESCRIPTION

The data handler is an external device that provides an interface between each
digitizer and the PS/2 computer. It provides the necessary hardware and controls to accept
data from one to four digitizers, read 16 scalers or digital registers, and outputs 32 D.C. logic
signals which can be used to control instrumentation. It contains a 2048-word FIFO buffer
allowing non-synchronous input and output of data. This enables the data nandler to accept
data independently from the computer, resulting in very short deadtimes, less than two
microseconds, for data storage. The total deadtime can be shortened to approximatcly one
microsecond through medifications in the data handler, depending upon the requirements of
the external digitizers. The data handler is completely sofiware controlled, except for some
switches on the front panel which select the applicable digitizers and control the number of

sixteen bit words to be included in each event.

3.2 FUNCTIONAL LOGIC

Figure 3.1 is an outline of the data handler integrated into a system. Figure 3.2 is a
functional outline of the data handler. There are four ports in the system. In addition, there
is one control line from the system. Ports 1 and 2 are data input ports with their attendant
contro} lines. Port 3 is an output port only. Port 4 is an I/O port to the PS/2 computer via
the MC-DIO-32F adapter card.

Data is presented to port 1 and consists of up to 64 bits per event. The data handlcr
accepts the data as one, two, three, or four words, each word consisting of 16 bits and stores
the event into temporary memory (FIFO). The number of words per event that are accepted
and stored is controlled by the word select switch on the front panel.

The temporary memory has a capacity of 2048 words containing 18 bits. Two of these
bits are not used as data bits but can be used for other purposes such as a flag to indicate
special situations. An example of the use of the bits would be to maintain correlation when
an event consists of many words. A front panel switch permits the use of all 16 bits in the
four data words for data or in another positiomwill encod~ the most significant bit of the four

words in a sequence of 1,0,0,0. This encoding will permit software checks to ensure that

it

10

\/L ‘ \}

16

CALERS

(S)

FOR REGISTERS)

//L—————

/" CONTROL

. Ll '\JE_E__ D AT
HANDLER

—
32 pAata N\
BITS ,)

| BT
| \\ji
MC10-32F

INTERFACE

U

Figure 3.1. Data handler system.

— JrP TN a

DAaTA
JUGTTIZERS

11

. 4 44
" 1 | ! !
3) o +
~ - = ooy’ by
.] a U SN (L]
R = tal 7 Mt o
a ut il a°
o w \ _r;}))
G - ey | 1 Y 3
a a o N
g ac | oo Lo /N
[| i)
- w N ! ar 1
E ‘ ©
T -~ a
S —P : .
a0 A— 7\
o a ~ ‘_' ‘
UI
[0 1
A ‘[r‘r\
N
n’ b
TNy ag]
- (T <
o o u! N v
L [g - a
4 =W El
- ,
: . v
‘
™~ L &,
i F -
[
u '
. g =
Rl SN PP e
Z m ul) ~
(] v - x T
N N1 D S S
— C|
1 0%
o b o}
e Y —
o= b N {"
z o] W oo (@
o - ()
NG
[
w =)
- ol
TR BN 2 = g
?ﬁleLUCI"]
[Loz T 1
Ne) - o
(o a
” [qn] P P N et i = IO o= Ao N
" | 7] T uikak R ¥ : 0 RTLTNE, A
v - ke e g B
__J\ u SN —
°N = \) a0 ~ 2N S)
= m == U & 4 ANYINDY loe) __._27_776"45,
4),
zm _— e T
(] AN /\g @~ .,—]U\
el e e e, N e
- “UHINUY N ¥
/. —]
-) \ -
/ [ARNE -
b . 3
a: - - ke =3
() B . T
8 ™ o SIS
Yo Wk oa- a L
Tl Rt G -
ot ~
T 0 7
- s
[R E | T
o B - o
) ol]
' (S i
1 . 0

carD

MC12-32F

30

PS/2 MODEL

Figure 3.2. Logic diagram.

12

correlation of the four words are maintained. If the words are detected out of sequence
action can be initiated by the program. In the software outlined in this manual the detection
of an out-of-sequence series of words causes a Master Clear signal to be generated. This
signal clears the temporary memory and generates a data accepted signal to clear the external
equipment.

Time required to accept an event of four words is less than two microseconds. This
time can be reduced to less than one microsecond by reducing the width of the data accepted
pulses to the external equipment. The action of the input can be considered as a hardware
DMA with a transfer rate of 1 million words per second and a word length of 64 bits. The
size of the temporary memory is 512 words of 64 bit length or 2048 words of 16 bits length.

The input and output of the temporary memory are independent processes. The

- memory control processes the data ready signals from the selected external digitizers. When

all of the data ready signals from the selected equipment are present, the data is transferred
to the memory and a data accepted signal is generated and sent to all external equipment.
The output of data from the temporary memory to the PS/2 is controlled by the PS/2 through
the bus control system. The speed with which data can be removed from the temporary
memory via the MC-DIO-32F adapter card varies with the program being used.
Measurements have resulted in a maximum transfer rate of approximately 400,000 words of
16 bit length per second. However, software in this manual has been written to crunch each
event before storage. To crunch and store a single event of four 16 bit wdrds takes
approximately 30 microseconds (see Section 2.9). This permits a maximum average input rate
of approximately 30,000 events of 64 bits length per second.

Port 2 is an input port. This port will accept 32 bit data from one to sixteen digital
registers. Sixteen control lines are available, under software control, to read up to the
selected number of units.

Port 3 is an output port. This port will output D.C. levels on 32 lines. These 32 lines
can be used directly to control external equipment or can be decoded to generate up to 2%
lines. These lines are under software control. Port 4 is attached to the MC-DIO-32F
interface card installed into one of the expansion slots in the PS/2. This port contains 32
bidirectional lines, four lines used for handshaking with the data handler, two input control

lines, and two output control lines.

13

The two additional lines, one vontrol into and one indicating line out of the system,
are used to perform the following functions. The controi line into the system writes a bit into
an internal register. The program monitors this bit and causes the system to stop taking data
as long as this bit is low and restarts the system when the bit returns high. The indicator linc
is used by the software to output a pulse that indicates that the levels on the 32 D.C. lines
have been changed.

All input and output lines, with the exception of the scaler control lines (the 16 lincs
in port 2) and the start, stop, and reset lines to the scalers should be considered to be
standard TTL drive and input. The 16 scaler control lines will sink 20 milliamperes. The

start, stop, and reset lines will drive 50 ohms with a +12 volt pulse.

3.2.1 Software Control

Port 4 contains two bi-directional 16-bit buses, bus 1 and bus 2, two pairs of data
handshaking lines, and two pairs of flag lines. The two pairs of {lag lines go to registers in
the MC-DIO-32F card. One line in each pair reflects the condition of a bit that is set by the
software. The other line in each pair can be used to set a bit in an internal register that can
be monitored by the software. Line IN1 is accessed through the temporary memory and can
be used for data correlation if desired (software in this manual does not support this). Line
IN2 is set by a D.C. level generated externally. The software recognizes a low on this bit and
generates a signal that stops the data acquisition as long as the bit is low and restarts when
the bit goes high. The other two flag lines, OUT1 and OUTZ, are used in the data handler
with their respective buses, bus 1 and bus 2, to generate data and control functions. For
example, bus 2 with OUT2 low will generate the software control pulses that control the
system. Bus 2 with OUT2 high will cause the output of the 32 D.C. lines.

Table 1 is a listing of the codes and their functions.
3.3 FRONT PANEL SWITCHES AND CONNECTORS (scc Figure 3.3)

POWER (ON/OFF): This switch provides power to the data handler. The power

should be turned off prior to connecting or disconnecting any of the rear pancl cable

assemblies.

DATA READY SWITCHES (ON/OFF): These four switches enable or disable the

data ready signals and determine which digitizers must supply a data ready signal before the

data handler recognizes a valid event. Table 2 illustrates the proper sctting for these switches

for various combinations of digitizers when using software referenced in this manual.

14

able 1. Software Codes and Functions

Code

Function

XXXX XXXX XXXX 0000

XK XXXX XXXX 0001
XXXX XXXX XXXX 0010
XXX XXXX XXXX 0011
XXX XXX XXXX 0100
XXX XX XXXX 0101
XXX XXXX XXXX 0110
OO XXX XXXX 0111

OO XXXX XXXX 1000

XXXX XXXX XXXX 1001
XX XXXX XXXX 1010
XXX XXXX XXXX 1011
OO XXX XXXX 1100
XX XXXX XXXX 1101
XXXX XXXX XXXX 1110
XXX XXXX XXXX 1111

Not Used

Bus to Scalers

Stop Scalers

Reset Scalers

Start Scale's

Bus to Data \nput

Test Data Cut

Master Clear

Not Used

Step Through Scaler Reads
Start System Acquire

Stop System Acquire

Not Used

Output Test Word

Pulse Indicates D.C. Line Change
Removes Bus From All Ports

Table 2. Front Panel Switch Settings
Data Ready
Digitizer SW1 SwW2 Sw3 SW4 Word Select
TOF! Only ON OFF OFF OFF 2
PH1? Only OFF OFF ON OFF 3
PH2? Only OFF OFF OFF ON 4
TOF & PH1 ON OFF ON OFF 3
PH1 & PH2 OFF OFF ON ON 4
TOF, PH1, & PH2 ON OFF ON ON 4

'TOF refers to the clock digitizer
PH1 refers to pulse height analyzer #1
3PH2 refers to pulse height analyzer #2

ORNL-PHOTO 2333-90

e yovn e

Figure 3.3. Front panel for PS/2 Data Handler.

16,

DATA READY (BNC): These four BNC connectors are attached to the data ready

lines of each corresponding connector on the rear panel (CN4 - CN7), respectively. These

connectors therefore provide monitoring points for these signals,

ALL DATA READY (BNC): This connector provides a monitoring point for the

signal that indicates that all of the selected data ready signals are present.

ALL DATA READY START (BNC): This connector monitors the data ready signal

as seen by the FIFO input (indicates that all of the selected data ready signals are present and

that the system has been started).

MSB WD ENCCDING (IN/OUT): When set to the IN position, this switch sets the

most significant bit of each word transferred to memory using a 1,0,0,0 pattern for up to four

words. Software in this manual requires that this switch be set to the IN position at all times.

MASTER RESET: The two pushbuttons with this label between them must be

depressed at the same time. This action clears all data from the temporary memory,
generates a data accepted signal to the external digitizers, and removes the bus from the
temporary memory. The system must be restarted after this action. This action can also be
generated by software. The software can, of course, restart the system after a program

generated master clear.

WORD SELECT (1-4): This switch determines the number of 16 bit words stored

for cach valid event. Software in this manual assumes the first word contains the most

significant bits coming from a time digitizer and the second contains the least significant bits.
The software also assumes that the other two 16-bit words contain data from two other

digitizers. Softwarc herein requires that this switch must be set to at least two words.

DATA ACCEPTED (BNC): This BNC is a monitor for th: data accepted signal that

is sent to all external equipment after each valid event.

START MONITOR (BNC): This BNC connector supplies a TTL high when the

system is started (is in the acquire mode).

EXT DATA ACCEPT INPUT (BNC): A logic pulse (TTL high) input to this

connector will produce a data accepted output to all external digitizers. This input can be

used to ensure correlation of data contained in external digitizers.

17

EXTDATA ACCEPTINPUT ON/OFF (SWITCH): This switch enables/disables the

above input. This switch must be in the off position if the input is not being used.

SCAT.ER START SWITCH: This pushbutton generates a pulsc to the rear pancl

BNC conncctor. This signal can be generated by software. This signal will drive 50 ohms

with a 12 volt pulse.

SCALER STOP (SWITCH): This pushbutton gencrates a pulse to the rear pancl

BNC connector. This signal can also be generated by software and will drive 50 ohms with

a 12 volt pulse.

SCALER RESET (SWITCH): This pushbutton generates to a rcar pancl BNC
connector. As above, this pulse can be generated by software and has the same drive

capability.

ACCEPT DATA (LED): This LED is lighted when the system is in the acquire

mode.

DATA RATE HIGH (LED): This LED is lighted when the temporary memory
(FIFO) is full. This is an indication that the data rate is high enough to fill the FIFO and
that data is probably being lost.

3.4 REAR PANEL CONNECTORS (see Figure 3.4)

CN4 (WORD 1 INPUT): This connector corresponds to the first 16 bit word stored

for every valid event. It is normally attached to the tags and most significant bits of the time

digitizer. The pin connections are illustrated in Appendix D.

CNS (WORD 2 INPUT): This input connector corresponds to the second 16 bit

word stored for every valid event. It is normally attached to the less significant bits of the

time digitizers. The pin connections are illustrated in Appendix D.

CN6 (WORD 3 INPUT): This input connector corresponds to the third word stored

for every valid event. This cornector is normally attached to a pulse height analyz - (denoted

by PH1). The pin connections are illustrated in Appendix D.

CN7 (WORD 4 INPUT): This input corresponds to the fourth word stored for cach

valid event. This connector is normally attached to a sccond pulse height analyzer (denoted

as PH2). The pin connections are illustrated in Appendix D.

18

-1o[pue e1e 7/Sd 10J s10pouuco [poued 1eay ¢ oamILy

06-SE€€Z OLOHd-INYO

19

CN8 (D.C. OUTPUT): This is a 37 pin connector which supplics the 32 D.C. output

lines that can be used to control external instrumentation. A high signal on each linc s

approximaltcly +5 volts. The pin connections are illustrated in Appendix D.

CN9 (SCALER INPUT): This connector contains the 32 input lines and 16 output
control lines that are used to read external instrumentation, such as scalers. The pin

connections are illustrated in Appendix D.

CN10 (COMPUTER): This is a 50 pin conncctor which attaches the data handler
to the MC-DIO-32F interface card that is installed in one of the computer expansion slots.
All data and control signals to and from the computer arc routed through this connector,

The pin connections are the same as for the MC-DIO-32F card.

SCALER START: This is a BNC connector that can be used to generate a start

pulse for scaler control.

SCALER STOP: This is a BNC connector that can be used to generate a stop pulse

for scaler control.

SCALER RESET: This is a BNC connector that can be used to generate a reset

pulse for scaler control.

D.C. CHANGE: This is a BNC connector that will generate a pulse whenever a

command 14 is written to the data handler. Software presented in this manual automatically

generates a pulse at this connector every time the D.C. output lines are modificd.

3.5 SOFTWARE CONTROL

The data handler is controlled by the four least significant bits written to port C of
the MC-DIO-32F interface card. Ports C and D on the interface card must be configured
as output ports with the handshaking mode enabled. This is performed by the device driver
referenced in this manual. Writing a number from 1 to 15 to port C will control the data
handler. Again, the device driver given in this manual performs all these functions for the
user, along with the other required operations. Each command is briefly described in

Appendix E for the user’s reference,

20

3.6 OUTPUT D.C. LOGIC

To modify the D.C. output lines on the rear panel connector, the OUT2 bit on the
MC-DIO-32F interface card must be set high by the program. Once this bit is set high the
program must write two 16-bit words to ports C and D (bus 2 in port 4 of the data handler)
to output the desired 32 lines. Once the output lines are changed, the OUT2 bit must be
brought low again. The device driver referenced in this manual will perform all these steps

along with pulsing the D.C. CHANGE connector on the rear of the data handler.

3.7 MC-DIO-32F INTERFACE CARD

The MC-DIO-32F interface card is manufactured by National Instruments.

References on this card can be found in the manual on this card.

21

CHAPTER 4
CRUNCH FILES

4.1 GENERAL

Since as many as 64 bits of information may be contained in cvery event, a method
to pull out applicable data and crunch it into available computer memory is required. A
crunch table supplies the parameters for this process. Each cvent is analyzed using a crunch
table that has been loaded into the data acquisition driver. The crunch table also cstablishes
the parameters that are needed to enable tag inputs, setup multiparameter biasing (PSD), and
determine how cach event is binned and stored (i.c. one, two, or three dimensional storage).

Either of two procedures can be used to load’ crunch tables: 1) program
LOADCRUN.EXE, run from the protected mode of 0S/2; or 2) the load command dircetly
from program ANALYZER. This chapter describes both procedures and also provides a
description of the format used to create and edit crunch files. Appendix B illustrates several

cxamples of crunch files.
4.2 PROGRAM LOADCRUN

A crunch file may be loaded into compuler memory using program
LOADCRUN.EXE. This program must be run from the OS/2 protected mode with the
device driver, DEVICE2.SYS, installed. The [ollowing example illustrates the command line

format.

LOADCRUN D:\CALIB.TBL /p

The above command loads the crunch parameters listed in file CALIB.TBL, found in
the root directory on drive D. The optional parameter, /p, is used to print out the crunch
table after loading it into memory. If a format crror is found in the crunch file, the program
will display an error message and then terminate loading. If computer memory does not allow
memory allocation for the number of storage channels needed for the crunch table, the
program will terminate loading without allocating any memory. Memory allocated by

LLOADCRUN will be de-allocated whenever a new crunch file is loaded into memory.

22

Successful loading of the crunch table will be confirmed with a message displaying the
crunch file name and the number of channels allocated. One channel is equal to four bytes
(32 bits) of computer memory; thus, to allocate one million channels, the computer must have
at least four megabytes of consecutive frec memory. Starting LOADCRUN without including
a file name on the command line causes the program to prompt ihe user for a path and file

name.
43 LOADING THE CRUNCH FILE FROM ANALYZER

The crunch parameters needed for the data acquisition driver may also be loaded from
program ANALYZER. Chapter 5 describes ANALYZER in more detail; however, the load
command is discussed briefly here. The load command in ANALYZER performs the same
operation as program LOADCRUN. It reads a cruncn file and transfers the parameters into
the data acquisition driver.

The load command is entered by typing the letter "L, followed by the name of the

crunch file. The following example illustrates the format used to reload a crunch file using
ANALYZER.

L D:\CALIB.TBL

The above example loads the crunch file CALIB.TBL, found in the root directory on drive
D. An error in the crunch file results in ANALYZER informing the user and terminating

execution.
4.4 CRUNCH FILE FORMAT

Ali crunch files contain only ASCII text characters, yet may be comprised of several
crunch sections, Comments may be inserted at the beginning of each crunch file; however,
no remark may contain the key words TAG#1, PSD MODE, or SECTION, since these words
mark the beginning of a new crunch section. The rest of this chapter describes the format
used in each crunch section and provides examples to aid the user in setting up and editing
his own crunch files. Figure 4.1 provides a listing of crunch file CRUNCH.TBL, an example
of a typical crunch file that uses tags, PSD mode, and several crunch sections for multiple

-storage.
Any crunch file may be edited by a line or full screen editor, from either the OS/2

protected mode or the DOS compatibility mode. Remember, once a crunch table is edited,

23

A>TYPE CRUNCH.TBL

TAG#1: YES
TAGH2: YES
TAGH3: YES.
TAG#4: NO

PSD MODE ON
PH2

PR

128

4

100
1, 2, 4
64, 64, 128, 256, 512, 1024, 1024, 1024, 1024, 1024, 2048

SECTION 1

PARFMETERS 2

PH1

1024, 8

TOF

1, 1000

8, 32

10, 100

20, 200

TAGS: 1, 2, 4, 101, 102, 104

SECTION 2

PARAMETERS 1

PH1

512,16

TAGS: 1, 2, 4, 101, 102, 104

SECTION 3

PARAMETERS 1

TOF

1, %000

8, 32

10, 100

20, 200

AGS: 1, 2, 4, 101, 102, 104

SECTION 4

PARAMETERS 1

PH1

1,8192

TAGS: 1, 2, 3, 4, 5, 6, 7, 101, 102, 104

A>

Figure 4.1. Listing of example crunch file.

24

it must be reloaded into the data acquisition driver to activate any changes. The following

rules apply to all crunch files.

Any character may be lower or upper case.

TOF is used to refer to the time digitizer clock.

PH1 is used to refer to the first pulse height ADC.
PH2 is used to refer to the second pulse height ADC.

No more than 64 windows may be used in PSD mode.

S T

No more than nine separate crunch sections may be included in any one crunch
file.

7. Each channel coming from the time digitizer clock is assumed to be one
nanosecond (i.e. the clock "tic" is one nanosecond).

44.1 TAG SECTION

An optional data section in the crunch file, referred to as the tag section, may be used
to define which tag inputs on the time digitizer are enabled. If used, it must be the first data
section found in the crunch file and must be comprised of four lines. Each tag must be listed
with a "YES" or "NO" following the tag number. A "YES" indicates that the tag input is
enabled while a "NO" indicates that the tag input is disabled. If enabled, tags one, two, three,
and four arc worth a value of 1, 2, 4, and 8 respectively. This permits identifying any

combination of tags per event. The following example,

TAG#1: YES [* value = 1 */
TAG#2: YES [* value = 2 ¥/
TAG#3: YES [* value = 4 */
TAG#4: NO /* value = 8 */

illustrates a tag section that can be used to enable tags one, two, and three. The comments
to the right of each line are only a reminder of what each tag is worth, and are not required.
An event which includes a high signal at tag input number one will add a 1 to the tag data
register. A high signal at tag input number two will add a 2 to the tag register. A high signal
at tags one and two will result in a tag register value of 3. A high signal at tags one and three
will result in a tag value of 5. A high signal at tag four will have no effect when using the
above example. If the tag section is completely left out of the crunch file, all tag inputs are

disabled and the tag value for each event is zero.

25

442 PSD MODE SECTION

Another optional data section, referred to as the PSD section, may be used to set up
multiparameter discrimination, also referred to as pulse shape discrimination (PSD). The
PSD section must follow the tag section, if used, and come before any crunch sections.
Comprised of eight lines, it uses the format listed below. The reader may see other examples
in Appendix B containing remarks and descriptions inserted on cach of thesc lines. Remarks
are allowed since LOADCRUN and ANALYZER recognizes only numbers and certain key
words (PSD MODE, PH1, PH2, and TOF).

PSD MODE ON

PH2

PH1

128

4

100

1,24

64, 64, 128, 256, 512, 1024, 1024, 1024, 1024, 1024, 2048

Line 1: This line indicates that the next seven lines of the crunch file arc PSD
parameter data. A "YES" or "ON" found on the first line of the PSD section will
enable the PSD mode. One may keep this section in the crunch file and disable the

PSD mode by replacing the "ON" key word with the word "OFF".

Line 2: This line determines the parameter used to sct the bias channel for PSD.
It is this parameter’s spectrum that is displayed when program ANALYZER is in the
PSD mode. Normally this parameter corresponds to the pulse shape ADC.

Line 3: This line determines the parameter used in establishing the window bins for
the PSD decisions. Normally this parameter corresponds to the pulse height ADC.

The window bin width parameters are given in line 8.

Line 4: Number of channels into which the PSD analyzer data will be crunched. This
is the number of channels that will be allocated by the computer for each window and

must range from 32 to 512-and be factorable by 2".

Line 5: This is the crunch factor for the PSD parameter. For the above example, the

PSD digitizer gain must be set on 512. Thus, each event from the PSD analyzer will

26

be crunched by a factor of 4 into 128 channels. The crunch factor here must be a

number from 1 to 128, and be factorable by 2".

Line 6: This is the value added to the tag register if the event falls on or above the

PSD bias channel. All bias channels are input separately using‘ program
ANALYZER.

Line 7: These are the event tags applicable for PSD analysis. If the tag register
consists of one of these tag values, PSD analysis will be performed; otherwise, PSD
analysis will be discarded for that event and crunching will continue (i.e., a tag of 3

will not be analyzed for PSD).

Line 8 These numbers establish the window bins for each tag listed in line 7. Each
number represents the number of consecutive channels from the window parameter
(normally the pulse height analyzer) that will be used for each PSD window. All
numbers here must be on the same line and sepérated by commas and should sum to

the ADC conversion gain. This line may extend out to 256 characters.

443 THE CRUNCH SECTION

The crunch file may contain as many as nine crunch sections, not including the tag or
PSD sections. Each crunch section establishes the parameters that will be used to analyze
and store each event. Thus, every event may be crunched several times, each with different
crunch parameters. All crunch sections follow both the tag and PSD mode sections. They
may use one, two, or three parameters, allowing up to three dimensional storage capability.

An example illustrating two parameter crunching follows with a brief explanation of each line.

SECTION

PARAMETERS 2

PH1

1024, 8

TOF

1, 1000

8, 32

10, 100

20, 200

TAGS: 1, 2, 4, 101, 102, 104

27/33

Line 1: The key word "SECTION" identifics the start of a new crunch scction. Every

crunch section must begin with this key word.

Line 2: Number of parameters used for this section. This must be a number {rom
1 to 3. The word PARAMETERS is optional on this line.

- Line 3: This is the first crunch parameter. It must be either a PH1, PH2, or a TOF.

Line 4: This line represents the crunch factor for the first parameter (PH1). This
will crunch the PH1 digitizer data by a factor of 8, into no more than 1024 channels.
For this example, the gain of the PH1 digitizer should be set on 8192. More lines

may be inserted here to divide this parameter into different crunch factors.

Line 5: This identifies the second parameter used for this crunch section. This must
be a PH1, PH2, or a TOF.

Lines 6-9: These lines are similar to line 4, except they represent the crunch factors
for the second parametcr (TOF). In the above exzmple, any event occurring in the
first 1000 nanoseconds will be stored in the first TOF channel. The next 8 x 32
nanoseconds will be crunched down into eight channels using a crunch factor of 32

and so forth. ‘

Line 10: This line is always the last line in each crunch section. It determines which
tags are applicable to this section and under which tag base the event will be stored.
A tag base is the starting channel for the applicable tag section. For this section, data
would be stored as a function of three parameters (PH1 x TOF x TAG). If all tag

inputs are disabled, this line should contain a zero.

fir bl

29

CHAPTER 5
PROGRAM ANALYZER

5.1 GENERAL

ANALYZER, Version 11, is a general purposc program used [or controlling the data
acquisition driver and providing real time display of data. The program has been designed
to provide scveral uscful functions which include time of flight energy calculation,
multiparameter biasing (PSD), and backup file support. ANALYZER communicates with the
data acquisition device driver using the same methods as described in Chapter 6.

Program ANALYZER functions only in the DOS compatibility mode of OS/2 and
must be run from a hard disk environment. This chapter will describe the installation of

ANALYZER and provide detailed information on using available functions and commands.
5.2 ANALYZER INSTALLATION

To install ANALYZER onto the hard disk, run the program INSTALL.EXE located
on the installation disk. This installation program will prompt the user for the drive and
directory where the ANALYZER files arc to be installed and then copies the following files

into that designated directory.

ANALYZER.EXE @KEY.WIN
LOADCRUN.EXE @PSD.WIN
CRUNCH.TBL @SCALER.WIN
@ANAL.WIN @SCRNTOP.WIN
@CALIB.WIN - README

The filc CRUNCH.TBL contains a crunch table which can be modified by the user

to obtain the appropriate crunch parameters desired or the user may create a separate crunch

file under a different file name. Other files that begin with the @ character are data files
used by ANALYZER for graphic display. The README document contains a summary of
ANALYZER commands and provides any information that may not have been included in
this manual.

Alter the above files have been copied, the installation program copies
DEVICE2.SYS into the root directory of drive C and modifies the file CONFIG.SYS to

include the following device command.

DEVICE = DEVICE2.SYS

30

This command loads the data acquisition driver into computer memory whenever the
computer is started (booted up). Alfter the installation program finishes, the computer must

be rebooted before program ANALYZER can be started.
5.3 STARTING ANALYZER

Program ANALYZER may be run only in the DOS compatibility mode. Every time
ANALYZER is run, it reads the last crunch file that was loaded into the data acquisition
driver. This obtains the same crunch parameters used by the driver so ANALYZER may
display tag and calibration information. If the number of channels calculated by ANALYZER
differs from that of the device driver, the crunch table will be reloaded and all channcls
zeroed. This avoids incorrect display of tag and calibration information if the crunch file has
been changed and not reloaded into computer memory. Thus, care must be taken not to
change crunch files during data acquisition or loss of data may result when re-starting the
ANALYZER program. If no crunch file has been loaded into the driver, ANALYZER will
reload the last crunch file automatically. If starting ANALYZER for the f{irst time and no
crunch file has been loaded, the user will be automatically prompted for a crunch file name.

As long as the crunch file that ANALYZER reads matches the crunch table loaded
into the data acquisition driver, ANALYZER will not change anything in the system. If the
system is in the acquire mode when ANALYZER is started, it will continue to accumulate
data. If the acquisition driver is not acquiring data when ANALYZER is started, it will still
display whatever data is in computer memory. Thus, care should be taken to zcro all memory

prior to acquiring new data.
5.4 ANALYZER DISPLAY

ANALYZER has the capability of real time two-dimensional display (Channcl versus
Counts) and can scaie the display from 32 to 2048 channels horizontally and up to 67 million
counts vertically. It can also overlap and display different sections of memory while in the
static mode.

The following keys are used to adjust the display; however, these keys apply only to
the non-PEM mode since the PSD mode uses some of these keys differently. Additional

control of the display is available through the commands listed in appendix A.

PgUp: Hittin; the page up key will shift the display up by one screen. If this key is
used in the PSD mode, it will shift the display to the next highcer window.,

e oo o

31

PgDn: Hitting the page down key will shift the display down by onc screen. If this
key is used in the PSD mode, it will shift the display to the next lower window.
LEFT ARROW: The left arrow key will shift the display by one channel in the

positive direction. In the cursor mode, this key will shift the cursor down by one

channel.

RIGHT ARROW: The right arrow key will shift the display by one channel in the
negative direction. In the cursor mode, this key will shift the cursor up by one

channel.

CTRL LEFT ARROW: Pressing the left arrow key while holding down the control
key will shift the display approximately 5 percent of the horizontal width in the

positive direction.

CTRL RIGHT ARROW: Pressing the left arrow key while holding down the control
key will shift the display approximately 5 percent of the horizontal width in the

negative direction.

UP ARROW: The up arrow key will decrease the vertical scale of the display by a
factor of two. The minimum vertical scale available is 32 counts. This key has no

effect in the logarithmic mode.

DOWN ARROW: The down arrow key will increase the vertical scale of the display
by a factor of two. The maximum vertical scale available is over 67 million counts.

This key has no effect in the logarithmic mode.

5.5 FUNCTION KEYS
START (F1): This function key will start and stop data acquisition. This key will be
highlighted when the system is acquiring data.
CLEAR (F2): This function key will zero all scalers and channels as defined by the
crunch table.
CURSR (F3): This function key activates a cursor on the current display. When
active, it displays the cursor channel and number of counts in that channel. It will
also display the ncutron cnergy for TOF data if calibration parameters have been

entered using F4. The cursor is not available in the PSD mode and it will be

32

deactivated if a new crunch file is reloaded into computer memory.

CALIB (F4): This function key prompts the user for time of flight energy calculation
parameters. NOTE: The gamma flash channel must be entered in units of
uncrunched channels and each channel is assumed to be one nanosecond. The flight
path must be entered in units of meters. Incorrect input may disable any‘cncrgy

calculation. An error message may indicate an impossible energy calculation.

<< >> (F5): This function key expands the horizontal display by a factor of two.

Minimum horizontal display is 32 channels.

>> << (F6): This function key increases the number of channels horizontally
displayed by a factor of two. The maximum number of channels that may be
displayed is 2048.

LOG (F7): This function key will toggle the vertical display between a logarithmic

and linear scale.

PSD (F8): This function key places ANALYZER into the PSD display mode, giving
the user the capability to easily adjust the bias channel for each PSD window by using
the right and left arrow keys. Tke PgUp and PgDn keys will shift the display through
different windows and tags, where each window has onc bias marker. This marker
represents the bias channel where any event occurring on or to the right of the
marker is tagged with the value given in the PSD section of the crunch file. This tag
value is added to the current tag register before any crunching of data is performed.
If the event falls to the left of the bias marker, the tag register is not affected.

Function key F8 has no effect it the PSD mode is not enabled in the crunch file.

SAVE (F9): This function key is used to save all channel data and scaler counts into
a data file. If pressed the user will be prompted for an output file name and whether
it is to be saved in text (ASCII) or binary format. Binary format consists of unsigned
long integer format (4 bytes per channel). Scaler and run time data are also saved

at the end of each data file.

LOAD (F10): This function key is used to load an ANALYZER data file into
memory. When this key is pressed the user will be prompted for a file name. The

program will automatically determine if the file contains text (ASCII) or binary data

33

and will then load the file into computer memory. If the scalers are currently being
displayed when a filc is loaded into memory, the scalers will also be loaded into the

computer; however, the scaler data will not be physically loaded into each scaler.

PLOT (Ft1): This function key will dump the screen contents to a HP Laserjet

Printer.,

EXIT (F12): This function key will cause the computer to exit program ANALYZER
and return to the DOS operating system. If this key is pressed during data acquisition
the computer will continue to acquire data. Exiting will not effect any data in the

computer memory, unless the crunch file currently being used is changed.
56 BOTTOM LINE COMMANDS

Special instructions may be entered into ANALYZER by typing them out on the
keyboard; these are echoed to the bottom line of the display. Hitting the enter kcy only will
always cxccute the command line that was last entered. For example, entering "AS12" will
shift the display by 512 channels. Every time the return key is hit thereafter, the display will
be shifted 512 channels until a new command is entered. |

These commands are designed to perform specific tasks not covered by the function
keys and gives the user additional versatitity in displaying and analyzing data. A summary of
all ANALYZER commands are given in Appendix A with a brief definition. The rest of this

scction contains additional details on several of these commands for the reader’s information,
5.6.1 LOAD CRUNCH FILE COMMAND

The load crunch file command may be used to load a new crunch table into the data
acquisition driver from program ANALYZER. This command may be employed by entering
an L and the crunch file name. This performs the cxact same function as program
LOADCRUN.EXE, except that it may be cxecuted while running ANALYZER. If the
system is in the acquire mode when this command is used, the system will be stopped and all

channcls zeroed. An example of this command would be "L DACRUNCH.TBL",

5.6.2 DISPLAY OVERFLOWS
The overflow command displays overflows (events that are not stored) that have been
detected during crunching of data. Overflows are displayed by typing the letter "O" and then

hitting the enter (return) key. Several parameters will be displayed on the screen, halting the

34

real time display if the system is running; however, the system will continue to acquire data,

Hitting any key thereafic: will clear the screen and return the display to its normal mode.

An explanation of each overflow parameter follows.

PSD =

PH1 =

PH2 =

PSD
UNDER =

MAX

PSD
TAGS =

Number of events that were outside the range of the PSD parameter
as listed in the PSD section of the crunch file, Any counts here
indicate that the PSD section or ADC gain should be modilicd, Each

event listed here is completely discarded with no additional crunching,

Number of events from the time digitizer clock (TOF) that were
outside TOF crunch section, Since several TOF crunch scctions may

be used in a crunch file, a single event may result in more than onc
TOF overflow,

Number of events from Pulse Height Analyzer #1 (PHT) that were
outside PH1 crunch section. Since several PH1 crunch scctions may
be used in a crunch file, a single cvent may result in more than one
PH1 overflow.

Number of events from Pulse Height Analyzer #2 (PH2) that were
outside PH2 crunch section, Since several PH2 crunch scctions may
be used in a crunch file, a single event may result in more than one
PH2 overflow.

Number of PSD events that fall within the first two channels of any
PSD window. Each event recorded here is discarded completely with

no additional crunching,

Number of crunches that fall above the maximum allocated channcl.
This indicates a severe software or operating system problem and

should be corrected.

Number of events with a tag value not applicable to the PSD section
of the crunch file. For example, if PSD is to be performed on cvents

with tags 1, 2, or 4 only, and an event occurs with a tag 5, no PSD will

35

be performed and the event will be counted here. Crunching would
still continue,

PSD

WINDOW = Number of PSD events that fall into a window not covered by the
PSD scction in the crunch file. This indicates that cither more
windows are nceded or larger channel widths for some windows are
nceded, The crunch file should be modified if any counts are

recorded here.
5.6.3 DISPLAYING TOTAL EVENTS AND REJECTS

‘This command displays total events, rejects, and the average event count rate for the
current run. It is employed by typing the letter "R" and hitting the enter (return) key. The
number of rejects displayed corresponds to the uncorrelated events, Since each event may
consist of as many as four 16 bit words, cach word has its most significant bit set or cleared
to provide a method for the data acquisition driver to detect missing or extrancous data in
the buffer. If the acquisition driver detects a bad event it discards it and clears the interface

buffer, recording it as a reject. A short beep will sound for each reject.
5.6.4 SETTING THE PRESET TIMER

This command allows the user to set the run time for ANALYZER. It is employed
by entering the letter "T" and the desired run time in seconds (i.e. T100). Setting the timer
to zero equals infinity. This command is used with the ANALYZER program only. Data
acquisition will not stop if user is acquiring data in the background mode.

A variation of this command can be used to automatically save all data when time out
occurs, then clear and restart the system. An example would be, T1000+FILE.000. If the
extension is left off of this command, the program will automatically start from 000. In this

example, program ANALYZER would perform the following steps:

1) Acquire data for 1000 scconds then stop.

2) Save all data under the file nam- of FILE.000. If FILE,000 exists, the
data would be saved under the file name of FILE.001, and so forth.

3) Zero all channels and scalers.
4) Start acquiring new dala.

5) Go back to step one.

| | 1 e

36

5.7 THE AUTO BACKUP FILE

Every 5000 seconds during data acquisition, program ANALYZER automatically
backups all data to the hard disk using file name @BACKUP.DAT. This insures that
malfunctions in the computer or power outages result in no more than the last 5000 seconds
of data being lost. Reloading the backup file into memory is accomplished the same way as
loading in any other ANALYZER data file, using the LOAD function key (F10).

Program ANALYZER performs the backup procedure by first stopping data
acquisition and saving the current run into file @BACKUP.DAT using binary format. Once
all data is saved, ANALYZER continues data acquisition and displays the time at the bottom
of the screen when backup was performed. Program ANALYZER uses this backup
procedure only when ANALYZER is running. No backup procedure is employed while
running the data acquisition in the background mode. Program ANALYZER ncver deletes
the data ftile @BACKUP.DAT, except during the next backup when it overwrites
@BACKUP.DAT with new data.

37

CHAPTER 6
DATA ACQUISITION DRIVER

6.1 GENERAL

Data acquisition and control of the data handler is accomplished by software in the
form of a device driver. This methodology is required to utilize hardware interrupts under
the OS/2 operating system and also to permit other high level programs to control and access
data, cither from the OS/2 protected mode or the DOS compatibility mode. In the OS/2
protected mode, the device driver allows several programs to access the data concurrently
during data acquisition.

The device driver, also referred to as the data acquisition driver, performs the actual
transfer of data {rom the interface buffer to computer memory and also performs required
crunching and binning of data. Other programs wanting to start, stop, and access data must
go through the device driver labeled DEVICE2.SYS described here

DEVICE2.SYS is installed into memory during computer startup (boot up), allowing
other programs to access the driver by writing to the device file name "DEVICE_2". An
cxample program written in Microsoft C is included in Appendix C.

This chapter describes the format and procedures which allow other programs to
communicate with the data acquisition driver. The following will be of specific interest for
readers who want to write programs to display and analyze data. For those who do not need
a specialized program, a general purpose program, ANALYZER, runs in the DOS

compatibility mode. Chapter S contains more information on program ANALYZER.

6.2 DRIVER INSTALLATION

The data acquisition driver is installed into computer memory using the DEVICE
command from the CONFIG.SYS file. The CONFIG.SYS file is found in the root directory

of the boot up drive (normally drive C) and must be edited to include the following line.
DEVICE = C:\DEVICE2.SYS
This example assumes that the file, DEVICE2.SYS, is located in the root directory on drive

C; however, any path may be specified. Remember, once the CONFIG.SYS file is edited, the

computer must be rebooted to install the device driver.

38

Installation may also be performed by running INSTALL.EXE, located on the
ANALYZER installation disk. This installation program automatically copies DEVICE2.5YS
to the root directory of drive C and includes the above command in CONFIG.SYS.

6.3 LOADING IN A CRUNCH TABLE

A crunch table provides the parameters needed by the data acquisition driver to sort
out applicable data in each event and store it into an appropriate channel. The crunch table,
or crunch file as it may be referred too, is provided by the user and must be loaded into the
driver before acquiring data. |

A crunch table may be loaded into the data acquaisition driver by running the program
LOADCRUN.EXE. The LOADCRUN program is run from the protected mode which reads
an ASCII file containing parameters needed by the acquisition driver to analyze and store
data. These crunch parameters are installed into the device driver by LOADCRUN and
remain in memory until a new crunch table is reloaded or a specific command is sent to the
driver to deallocate all crunch memory. Chapter 4 contains additional information on
LOADCRUN.EXE and on crunch table format.

Until a crunch table is loaded into the data acquisition driver, most commands to the
driver are disregarded. The exception to this rule is the "DRIVER STATUS" command.
This command may be used at anytime and can determine if a crunch table has been loaded
into memory by examining the number of channels allocated by the driver. If the number of

channels allocated is zero, no crunch table has been loaded.
6.4 DATA ACQUISITION DRIVER CONTROL

Control of the data acquisition driver and transfer of data is performed by writing the
address of a long integer array to the device called "DEVICE 2". The first integer of the
array should contain a value from 1 to 15, which will instruct the data acquisition driver which
specific command is to be executed. This section explains each of these commands and
provides an example that can be used by the reader in a C language program.

Before any of these command statements can be executed, the program must first
open a path to the device driver using an unbuffered format. The following example, written
in Microsoft C, illustrates how a program may open a path to the data acquisition driver.

int device;

device = onen("DEVICE 2"

SR ARy A as v atoas L ,unvvvo—”

39

The preceding statements allow a C language program to write commands to the driver using

. ‘ the format described below and are intended to be used with all of the following examples.

All of the following commands can be used while the system is acquiring data. The reader

. is also referred to Appendix C for an example of a complete C language program which

implements several commands together.

(1) DRIVER STATUS: This command returns several parameters from the data

acquisition driver that can be used for checking the status of the current run.

C program example:
long a|52];

al0] =

1; | /* Get acquisition driver status */

write(device,(char*)&aj0],1);

Returned parameters:

al0] =

af3] =
a[4] =

al5] =

al6] =
. 3[7] =
a[8] =
. 3[9] =

1, device driver error

10, device driver not running.

11, device driver running (collecting data).

Runtime in seconds.

Number of channels allocated by the crunch table. (A zero returned
here indicates that a crunch file has not been loaded.)

Total number of events for the current run.

Number of rejects (uncorrelated events). Each event labeled as a
reject is discarded and forces the interface buffer to be cleared. A
non-zero number here may indicate a hardware interface problem.
Number of overflows found during PSD analysis. If an event is above
the range of the PSD parameter, the event is discarded and recorded
hére. |

Number of overflows found in crunching the PH1 analyzer data.
Number of overflows found in crunching the PH2 analyzer data.
Number of overflows found in crunching the TOF analyzer data.
Number of underflows found during PSD discrimination. Any PSD
event that is found in the first two channels of any PSD window is

discarded and recorded here.

40

a[10]= Number of events that have been calculated to fall above the
maximum channel number. This would indicate a severe
problem with the computer or software.

a[l1]= Number of non-applicable tags found during PSD analysis. 1f
a tag is recorded that is not applicablé to any PSD tags, no
PSD analysis is performed and the event is recorded here.
Crunching would continue.

a[12]= Number of window overflows found during PSD analysis. If
an event occurs above the given window range, no PSD
analysis is performed and the event is recorded here.

Crunching would continue.

(2) START DATA ACQUISITION: This command instructs the data acquisition

driver to start or continue data acquisition. If a crunch file has not been loaded into

computer memory or the system is already acquiring data, this command will be

disregarded.
C program example:
long a[4];
a[0] = 2; /* Start data acquisition */
write(device,(char*)&a[0],1);
Returned parameters:

a0} = 11, if successful (collecting data).

(3) STOP DATA ACQUISITION: This command will stop data acquisition. If the

'. system is already stopped, this command will be disregarded.

C program example:
long a[1];
a[0] = 3; /* Stop acquisition command */
write(device,(char*)&a[0],1);

Returned parameters:

a[0] = 10, if successful (system stopped)

41

(4) ZERO ALL CHANNELS: This command zeros all channels used for data

storage. It also clears all scalers and zeros all overflow counters and event counters.

This command will be ignored if a crunch table has not been loaded into computer

memory.

C program example:
long a[1];
al0] = 4; /* zero memory command */
write(device,(char*)&a[0],1);
Returned parameters:
a|0] = 10, if successful
(5) DEALLOCATE MEMORY: This command down loads any crunch table that
had been previously loaded into the device driver and frees all memory that was used
for data storage.
C program example:
long a[1];
al0} = §; /* Deallocate memory command */
write(device,(char*)&a|0],1);
Returned parameters:

a[0] = 10, if successful

(6) READ SCALERS: This command is used to read the eight scalers connected to

the interface. The data currently displayed on each scaler will be transferred into an

array passed by the requesting program.

C program example:
long a[9];
al0] = 6; /* Read scalers command */

write(device,(char*)&a[0],1);

Returned parameters:
a[0] = 10, if successful
a[1] = scaler 1 counts

a[2] = scaler 2 counts

42

a[3] = scaler 3 counts
a[4] = scaler 4 counts
a[5] = scaler S counts
a[6] = scaler 6 counts
a|7)] = scaler 7 counts

a|8] = scaler 8 counts

{7) LOAD IN CHANNEL DATA: This command will load data into the acquisition
driver from an array passed by a program. The user must specify the starting channcl
and number of channels that will be transferred. The maximum number of channcls
that may be transferred at one time is 16382 channels (64k bytes). Thus, to transfer
more channels will require that this command be used more than once. If the last

channel extends beyond the maximum channel, no channels will be transferred.

C program example:

long a[1006];

al0] = 7, /* Load channel data command */
a[l] =0 /* Start with channel zero */
a2] = 1000; /* Transfer 1000 channels */

a[3] = total events;

a[4] = rejects;

a[5] = run time;

a[6] = channel 0 data; /* start of data to be loaded */
a[7] = channel 1 data;

a[8] = channel 2 data;

a[9] = channel 3 data;

a[10] = channel 4 data;

a[11] = channel 5 data;

a[12] = channel 6 data;

a[100S5] = channetl 999 data;
write(device,(char*)&a[0],1);

Returned parameters:
a]0] = number of channels transferred

(8) GET CHANNEL DATA: This command will transfer data from the acquisition

driver to an array passed by the requesting program. The user must specify the

starting channel and number of channels that will be transferred. The maximum
" number of channels that may be transferred at one time is 16382 channels (64k bytes).
Thus, to transfer more channels will require that this command be used more than
once. This command may be used while the acquisition driver is in the acquire mode
without affecting data accumulation. If the last channel extends beyond the maximum

channel, no channels will be transferred.

C program example:
long a[1003];

al0] = 8; /* Get channel data command */
a[l] = 0, /* Start with channel zero */
al2] = 1000; /* Transfer 1000 channels */

write(device,(char*)&1|0],1);

Returned parameters:
a]0] = nuraber of channels transferred
a[1] = not used
a|2] = not used
a[3] = channel 0 data
a[4] = channel 1 data
a|5] = channel 2 data
a[6] = channel 3 data
a|7] = channel 4 data
a|8] = channel 5 data
a|9] = channel 6 data

a|1001] = channel 998 data
a[1002] = channel 999 data

il

44

(9) LOAD IN PSD BIAS MARKERS: This command allows the user to set the PSD

bias marker for each window when using the PSD discrimination mode. For cach

window there is one PSD bias marker which represents a channel in that window. If
any event occurs on or above the bias marker for that specific window, the PSD tag
value will be added to the tag register and all crunching for that event will then use
the summed tag value. If PSD mode is disabled or a crunch table has not been
loaded into computer memory, this command will still set the PSD bias markers;

however, they will not be used until a new crunch table is reloaded.

C program example:

long a[100];

a[0] = 9; /* Load bias markers command */
a[1] = PSD bias channel for window 1

a[2] = PSD bias channel for window 2

a[3] = PSD bias channel for window 3

a[4] = PSD bias channel for window 4

a[5] = PSD bias channel for window 5

a[6] = PSD bias channel for window 6

a[7] = PSD bias channel for window 7

write(device,(char*)&a[0],1);

Returned parameters:

a[0] = 10, if successful

(10) SET OUTPUT LOGIC SIGNALS: This command allows the user to set 32 DC
logic signals to the output port located on the rear of the interface buffer. Each logic signal

is approximately +5 volts when high and grounded when low.

C program example:

long a[2};
a[0] = 15; /* Set output logic signals */
a[l] =1 4+ 2 + 4 + 256, /* Sct lines 1,2,3, & 9 high */

write(device,(char*)&al0},1);

Returned parameters:

af0] = 10 if successtul

Axxx
Bxxx

Choxx

Ixxx yyy

L FILE.TBL
O

PC

PS

Pxxx yyy

R
Sxxx
Txxx

Txxx+FILE

45/%

APPENDIX A
ANALYZER COMMANDS

Add xxx channels to the base to shift the current display.

Display channels starting at Base channel sox.

Compare by overlapping channels starting at channel o0

Integrate / Sum the channels starting at xxx with yyy being the number
of channels integrated. A period may be used in place of xxx to
represent the cursor channel (i.e. 1.4096).

Load a new crunch file with the name of FILE.TBL.

Display overflows.

Print out the crunch table.

Print out scalers, overflows, and runtime.

Print out the counts in each channel starting at xxx with yyy being the
number of channels printed. A period may be used in place of xxx to
represent the cursor channel (i.e. P.1024).

Display total events, rejects, and count rate.

Subtract xxx channels to the base to shift the current display.

Set the preset timer to xxx scconds (0 = infinity).

Set the preset timer to xxx scconds. After time out occurs, the data
will be saved under the name FILE.000, FILE.001, etc. and then
cleared and restarted (i.e. T1800+FUSION).

Print out the PSD bias marker positions.

47

APPENDIX B
EXAMPLES OF CRUNCH FILES

EXAMPLE 1: This crunch file will only store the first 2048 channcls coming from the first
pulse height ADC (PH1). No crunching of channcls is performed. No tags arc used. PSD
mode is disabled.

SECTION 1
PARAMETERS 1
PH1

2048,1

TAGS: 0

EXAMPLE 2: This crunch file will store 8192 channels coming {rom the scecond pulse height
ADC (PH2) and crunch them into 512 channels, using a 16 channel crunch.

SECTION 1
PARAMETERS 1
PH2

512,16

TAGS: O

EXAMPLE 3: This crunch file will look at data coming from the time digitizer only. It
crunches the first 1000 channels into one channel. Then the next 2048 channels arc crunched
into 512 channels using a 4 channel crunch. It then crunches the next 4096 channcls into 512
channels using a 8 channel crunch and so forth. This crunch table will allocate 4097 channels
of computer memory (16388 bytes). Each channel coming from the time digitizer clock is
assumed to be one nanosecond in width. No tags are used here.

SECTION 1
PARAMETERS 1
TOF
1,1000
512,4
512, 8
512,16
512,32
1024, 64
1024,128
TAGS: 0

48

EXAMPLE 4: This crunch file performs two dimensional (2 parameter) storage using data
from the one pulse height ADC as one of the parameters and data {rom the time digitizer
as the other parameter. This file will allocate 2048 x 37 (75776) channels or 303104 bytes of
computer memory. No tags are used here. The PSD mode is disabled.

SECTION 1
PARAMETERS 2
PH1
2048,4
TOF
1,5000
4,128
8,256
8,512
16,1024
TAGS: 0

LEXAMPLE 5: ‘This file cnables tag inputs 1, 2, and 3 on the time digitizer, It will store data from the one pulse
height ADC and the time digitizer as a function of the tag register. 1f two tags are recorded for one event their
value will be summed into the tag register. For example, if TAG#1 (value 1) and TAG#3 (value 4) are recorded
during the same cvent, the tag for that event will be 5. A tag value of S will not be recorded anywhere using this
crunch table.

TAG#1 YES
TAG#2 YES
TAG#3 YES
TAG#4 NO

SECTION 1
PARAMETERS 1
PH1

2048,1

TAGS: 1,2,4

SECTION 2
PARAMETERS 1
TOF

1,5000

4,128

8,256

8,512
16,1024
TAGS: 1,2,4

4we29

EXAMPLE 6: This ¢runch file enables

tag inputs 1, 2, and 3, It uses the pulse shape discrimination
mode (PSD mode). Each PSD window uses 512 channels f..n PH2 crunched into 128 channels, The
crunch factor in the PSD section may only be factors of 2 (ic. 2,4,8,16,32,64). The PSD mode uscs
window parameter PH1 divided into windows of 64,64,128,... channels. Note that section 4 is used to

record the total number of events as a function of tag only.

TAG#1: VYES
TAG#2: VYES
TAG#3: YES
TAG#4: NO

PSD MODE ...cvevvenernn
PSD PARAMETER¢4...
WINDOW PARAMETER
NUMBER OF CHANNELS
CRUNCH FACTOR ¢t svevsnen
VALUE ADDED TO TAG
APPLICABLE TAGS ...a04.
WINDOWS (channel width)
2048,2048

SECTION 1

PARAMETERS 1

PH1

2048,4

TAGS: 1,2,4,101,102,104

SEC"ION 2

PARAMETERS 1

TOF

2048,4

TAGS: 1,2,4,101,102,104

SECTION 3
PARAMETERS 2
PH1

1024,8

TOF

1,950

8,32

8,48

8,64

8,96

8,160

8,256

TAGS: 1,2,4,101,102,104

SECTION 4
PARAMETERS 1
PH1

1,8192

ON

PH2

PH1

128

4

100

1,2,4
64,64,128,256,512,1024,1024,1024,

TAGS: 0,1,2,3,4,5,6,7,100,101,102,103,104,105,106,107

51/5.2

APPENDIX C
EXAMPLE PROGRAM

/*:::a::::::u::u:mﬂu::====n=n:=u=un==========u::::unnn==========n============n=====n===

This fa an example of a protected mode program written in Microsoft C to
fllustrate the following steps:

1) Load a crunch file

2) Zero all channels and scalers
2) Start ecquiring data

3) Stop aiquiring data

4) Print ov't channels 100 thru 119

Compile {nstruction: CL /AL /Lp ¢FP{87 EXAMPLE.C /link /NOD LL1BC7P+DOSCALLS

oo U oH oououn

SNt B BN B oH B8 NN

====:=====:::================ﬁ:=======ﬁ=======::ﬂ:H==:E=======ﬂ==============ﬂ==ﬂ=:==*

#include <io.h>
#include <stdio.h>
#include <process.h>
int device, i;
unsigned long a(200];

main ()

(¢
/* load crunch filo D:\CRUNCH.TBL */
spawnlp(P_WAIT, "C:\\LOADCRUN" "'C: \\LOADCRUN'", "D : \\CRUNCH. TBL'" ,NULL);
printf("\n");

device = open("device_1",60x0002); /* open device driver */

al0) = &4; /* zero all channels */
write(device, (char*)8a(01,1);
printf('System zeroed:\n");

al0] = 2; /* start acquiring data */
write(device, (char*)&a(01,1);
orintf("System started:\n");

printf("Hit any key to stop and print out channels 100 thru 119 ...\n\n");
while (lkbhit());

al0] = 3; /¥ stop acquiring data %/
write(device, (char*)&a[01,1);
printf("'system stopped:\n');

al0] = 8; /* get channel data w/
al1l = 100; /% starting with channel 100 */
a2l = 20; /* transfer 20 channels */

write(device, (char*)&a(01,1);
for (1=3; 1<23; {++) printf("Chan %d = %ld\n",1+97,al(i]);

exit(0);

CN4 CONNECTOR (WORD #1):

Data Accept #1

Data Ready
Clock Data
Clock Data
Clock Data
Clock Data
Clock Data
Clock Data
Clock Data
Clock Data
Clock Data
Clock Data
Clock Data
Tag Data #1
Tag Data #2
Tag Data #3

Tag Data #4

#l
15
16
17
18
19
20
2l
22
23
24

25

53

APPENDIX D

REAR PANEL PIN CONNECTIONS

37

36

35
—+16
34

33

32 +—

K

30

29

28

27

CN5 CONNECTOR (WORD #2):

NN

Lata Accept #2

Data Ready

Clock
Clock
Clock
Clock
Ciock
Clock
Clock
Clock
Clock
Clock
Clock
Clock
Clock
Clock

Clock

Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Pata
Data
Data
Data

Data

#e
00
01
02
03
04
05
06
07
08
09
10
11
12
13

14

374
—-18
36

—+17
35

34

33

14
T 52

~+-13
MT 31

-T12
30

29

28

27

25

26 -

23

| 24.#.-—..

22

21

<0

54

APPENDIX D - Continued

REAR PANEL PIN CONNECTIONS

CN6 CONNECTOR (WORD #3): CN7 CONNECTOR (WORD #4):
Data Accept #3 ——J-19 Data Accept #4 —m
37 4— ‘ 37

Data Ready #3 —18 Data Ready #4 —t18
36 36

ADC#1 Data 00 —-17 ADC#2 Data 00 —T17
35 35
ADC#1 Data 01 —t+16 ADC#2 Data 01 —l6 4

34 3

ADC#1 Data 02 —+15 ADC#2 Data 02 —T15
33 33

ADC#1 Data 03 14 ADC#2 Data 03 —t14
32 32

ADC#1 Data 04 —13 ADC#2 Data 04 —t+13
31 31

ADC#1 Data 05 —12 ADC#2 Data 05 —t12
30 ‘ 30

ADC#1 Data 06 —+11 ADC#2 Data 06 —t11
29 29

ADC#1 Data 07 —+10 ADC#2 Data 07 —t10
28 28

ADC#1 Data 08 —r9 ADC#2 Data 08 —7T9
‘ 27 27

ADC#1 Data 09 —8 ADC#2 Data 09 —18
26 26

ADC#1 Data 10 —7 ADC#2 Data 10 —17
25 : 25

ADC#1 Data 11 —t6 ADC#2 Data 11 —t6
24 24

ADC#1 Data 12 —+5 ADC#2 Data 12 —15
‘ 23 23

ADC#1 Data 13 —t4 ADC#2 Data 13 -14
22 22

—13 —t+3
21 21

—t2 —t2
20 20
T “'i/

k/ \

]}

(T

55

APPENDIX D - Continued

REAR PANEL PIN CONNECTIONS

CN8 PIN CONNECTIONS (D.C. OUTPUT)

DC

DC

DC

DC

DC

DC

DC

DC

DC

DC

DC

DC

DC

DC

DC

DC

DC

DC

Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line

Line

18

17

16

14

13

12

11

10

09

08

07

06

05

04

03

02

01

00

374+
364—
35—
34 4+—
334
324+
314—

301+—

294

261—
251
241
234+
221
211

204+

GND
DC Line
DC Line

DC Line

31

30

29

DC Change

DC Line
DC Line
DC Line
GND

DC Line
DC Line
DC Line
DC Line
GND

DC Line
DC Line
DC Line

GND

28

27

26

25

24

23

22

21

20

19

i

ol

Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data

56

APPENDIX D - Continued

REAR PANEL PIN CONNECTIONS

CN9 PIN COMNECTIONS (SCALER INPUT)

Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

i
QDI NKXE<CHBNWYZRHNRUIHMEHOOQE P

Data
Data
Data
Data
Data
Data
Data

Cntrl
Cntrl
Cntrl
Cntrl
Cntrl
Cntrl
Cntrl
Cntrl
Cntrl
Cntrl
Cntrl
Cntrl
Cntrl
Cntril
Cntrl
Cntrl

Input
Input
Input
Input
Input
Input
Input
OVE
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line

25
26
27
28
29
30
31
RLW
(V)
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
GND

;N<X£<Crme1'U’JE§WU-D‘l‘h(DQ-

THEHOQW
ITHEHODOQOW

Port C
Output

57/5 9

APPENDIX E

DATA HANDLER LOW LEVEL I/O COMMANDS

Description

10

11

13

14

15

Scaler Data: Places data bus (ports A & B of the interface card) on
port 2 (Scalers) of the data handler. This removes the data bus {rom
the FIFO memory and from the test data input. ‘

Scaler Stop: This generates a +12 volt pulse at the rear pancl BNC

- connector labeled Scaler Stop.

Scaler Reset: This generates a +12 volt pulse at the rear panel BNC
connector labeled Scaler Reset.

Scaler Start: This generates a +12 volt pulse at the rear panel BNC
connector labeled Scaler Start.

FIFO Memory: Places data bus (ports A & B of the interface card)
on port 1 (FIFO Memory) of the data handler. This removes the data
bus from the Scalers and from the test data input.

Test Data Input: Places data bus (ports A & B of the interface card)
onto the test data input circuit of the data handler. This requires re-
configuring ports A & B as write ports. This command also removes
the data bus from the Scalers and turns off data input from external
world.

Master Reset: Performs a master reset and clears all data from FIFO
memory. This also removes the data bus (ports A & B) {rom any
input port.

Scaler Step: 'I'is steps through the control lines going to port 2 of
the data handler. If attached to the scalers, it advances the scaler bus
by one half scaler.

Accept Data: This enables the data handler to start accepting and
storing data from each applicable digitizer.

Block Data: This disables the data handler from accepting and storing
data from any digitizer. ’

False Data Ready: This command provides a false data ready signal
used to input test data into the FIFO memory.

D.C. Linc Monitor: This generates a pulse at the rear panel BNC
connector labeled D.C. Line Monitor.

Disabie Data Bus: This removes the data bus (ports A & B of the
interface card) from everything.

59

APPENDIX F
SOURCE CODE FOR DATA ACQUISITION DRIVER

Name DEVICEZ2
Title 'DATA ACQUISITION DEVICE DRIVER - VERSION IT!'

;Compile example:
; MASM DEVICE2.ASM;

; LINK DEVICER2.0BJ,C:\DEVICE2.SYS,,DOSCALLS.LIB,DEVICE2.DEF;
!

;DEVICE2.DEF listing:

; LIBRARY DEVICE2

H PROTMODE

H CODE PRELOAD

; DATA PRELOAD
PhysToVirt equ 15h
UnPhysToVirt equ 32h
AllocPhys equ 18h
VirtToPhys equ 16h
AllocGDT equ 2Dh
PhysToGDT equ 2Eh
FreePhys equ 19h
SetTimer equ 1Dh
TickCount equ 33h
ResetTimer equ 1Eh
CFG1 equ 0D00Oh ; MC-D10-32F port address
CFG2 equ 0D002h
STAT equ 0D004h
PORT1 equ 0DO0&*
PORT2 equ 0D00&n

extrn DOSWRITE:far
P R T R E LR PP DEVICE DATA SEGMENT - -=-csserocommcanammanns

DGROUP group _DATA
_DATA segment word public 'DATA!

device drive header...

tink to next device driver

; device attribute word

; "Strategy" routine entry point
; (reserved)

logical device name

(reserved)

header dd -1
dw 8880h
dw Strat
dw 0
db 'DEVICE_2'
db 8 dup (0)

e ms ws me s wa ws

varl dw
devhip dd
tem_ax dw
tem_bx dw
running dw
runtime dd
starttm dd
working dw

4
? ; DevHlp entry point

0

0

0

0

0

0

liveoff dw 0

0

0

0

0

0

0

0

0

; data storage

numseg dw
numword dw
numcrun dw
mem_add dd
word1 dw
itag dw
Win dw
tand dw

section dw

chan
maxchn
kmax
anal
nh
tevent
reject
overf0
overf1
overf2
overf3
overfé
overf5
overfé
overf?
psdmem
saveit
gwert
vedi
vesi
veax
vebx
vecx
vedx
parm
psd
psdm
crun
GDTY

wlen

ident

PRRRRRRERRROSRRARRAARRERED

dd
dd
dw

D000 COO0O00O00000D0D0O00OO000D0DO0O00O0

5 dup (0)

200 dup (0)
100 dup (512)
1000 dup (0)
0

dw ? ; receives DOSWRITE length

db 13,10
db ‘Device driver for ANALYZER [] installed.'
db 13,10

ident_len equ $-ident

END_DS
_DATA

.......

Strat

S1:

S2:

EQU $

ends
-------------------- CODE SEGMENT --c---ccccmmmrmcmcmmmouaconononn
segment word public 'CODE'

assume cs:_TEXT,ds:DGROUP,es:NOTHING

.386p

proc far ; device driver Strategy routine,
push es ; called by 0S/2 kernel with

push ebx ; ES:BX = address of request packet
push eax

push ecx

push edx

mov di,es: [bx+2] ; get command code from packet
and di,OFFh

cmp di,8

jne s2

cli

call Write ; Write statement executed

sti

jmp Exit

cmp di, 13

jne s3

cli

call Open ; open device driver

sti

61

jmp Exit
S3: cmp di,0
jne Exit
call Install ; initialize device driver
Exit: pop edx
: pop ecx
pop eax
pop ebx
pop es
mov es: [bx+3],WORD PTR 0100h ; return with no problem
ret
Strat endp
R AL R R TR Initialize Interface Card -------=r-vecrmccmcna--
Open proc near
cmp running, 1 ; return if acquiring data
je Opend
mov dx,CFG1 ; set ports A&B for handshaking
mov ax,0100h ‘ ; in read and pulse mode
out dx , ax
call delay
mov ax,0000h
out dx, ax
call delay
mov ax,0610h
out dx, ax
call delay
mov dx,CFG2 ; set ports C& for handshaking
mov ax,0100h ; in write mode
out dx, ax
call delay
mov ax,0000h
out dx, ax
call delay
mov ax,0600h
out dx, ax
call delay
mov ax,0620h
out dx, ax
catl delay
mov dx,PORT2 ‘ ; bus disabled
mov ax, 15
out dx, ax
call delay
mov ax,? ; reset FIFO
out dx, ax
call Delay
mov dx,PORT1 ; remove anything from PORT1
in ax,dx
Opend: ret
Open endp
Mt DECODE WRITE COMMAND ~--v---cemccommcemaanennne
Write proc near
mov ax,es: [bx+16] ; put address of string in es:bx
mov bx,es: [bx+14]
mov tem_ax, ax
mov tem_bx, bx

62

mov cx,0
mov dh,1
mov dl,PhysToVirt

call devhlp ; virt address now in es:di

mov bx,di
mov al,es: [di]
Write0: cmp al ,217 ; stop and reload crunch
jne Write1
call Init
jmp Wexit
Writel: cmp al,1 ; check status
jne Write2
call Check
imp Wexit
Write2: cmp al,?2 ; Start
jne Write3
call Start
jmp Wexit
Write3: cmp al 3 ; stop
jne Writed
call Stop
jmp Wexit
Write4: cmp al,é ; zero everything
jne WriteS
call Reset
jmp Wexit

Write5: cmp at,5
jne Write6
call Devcls

; deallocate all memory

jmp Wexit
Writeb: cmp al,6 ; read scalers
jne Write?
call Scaler
jmp Wexit
Write7: cmp al,7 ; load in data
jne Write8
call Load
jmp Wexit
Write8: cmp al,8 ; get data
jne Write9
call Get
jmp Wexit
Write9: cmp al,9 ; load in psd bias markers
jne Write15
call Marker
jmp Wexit
Write15: cmp al,15 ; output to dc connector
jne Wexit
call outDC
jmp Wexit
Wexit: mov dl,UnPhysToVirt
call devhlp
ret
Write endp

63

Check proc near

mov es: [di],dword ptr 10 ; device not running
cmp running, 1

jne Check?2

mov es: [di],dword ptr 11 ; device running

cmp liveoff,1

je Check?2

catl Gtime ; Update runtime
mov ebx,starttm

cmp eax, ebx

jge Check1
add eax, 604800

Check1: sub eax, ebx
mov runtime, eax
Check2: mov eax,runtime
mov es: [di+4) ,eax ; return runtime A(1)
mov eax,maxchn
mov es: [di+8],eax ; return crunch chan A(2)
mov eaXx, tevent
mov es: [di+12], eax ; return total events A(3)
mov eax,reject
mov es: [di+16], eax ; return rejects A(4)
mov eax,overf0
mov es: [di+20],eax ; return PSD overflows A(5)
mov eax,overfil
mov es: [di+24] , eax ; return PH1 overflows A(6)
mov eax,overf2
mov es: [di+28) ,eax ; return PH2 overflows A(7)
mov eax,overf3
mov es: [di+32],eax ; return TOF overflows A(8)
mov eax,overfé
mov es: [di+36],eax ; return P3D underflows A(9)
mov eax,overf5
mov es: [di+40] ,eax ; return maxchn overflows A(10)
mov eax,overfé
mov es: [di+44], eax ; return tag overflows A(11)
mov eax,overf?
mov es: [di+48] , eax ; return window overflows A(12)
ret
Check endp
AR START DATA ACQUISTION =----=--=er--emeecconooon
Start proc near
cmp maxchn,0
je Startd
cmp runining, 1
je Startd
mov es: [di], dword ptr 11 ; return 11 (running)
mov liveoff,0
call open ; initialize [/0 board
mov dx,CFG1 ; test for number of words per event

moyv ax,0100h

Loop1:

out
call
mov
out
call
mov
out
call
mov
mov
out
call
mov
out
call
mov
out
call
mov
out
call
mov
out
call
mov
out
call
mov
mov
mov
out
catl
mov
mov
out
call
mov
out
call
add
cmp
JL
mov
mov
out
call
mov
out
call
mov
mov
out
call
mov
out
call
mov
out
call
mov
mov
out
call
mov
in
call
in
call
in
call

dx,ax

delay
ax,0000h
dx,ax
delay
ax,0021h
dx, ax
delay
dx,PORT2
ax,?
dx, ax
delay
ax,6
dx,ax
delay
ax,13
dx, ax
delay
ax,0
dx, ax
delay
ax,7
dx,ax
delay
ax,b
dx, ax
delay
cx, 1
dx,PORT1
ax,cx
dx, ax
delay
dx,CFG1
ax,0023h
dx,ax
delay
ax,0021h
dx, ax
delay
cx,1
cx,5
Loop1
dx,PORT2
ax,13
dx, ax
delay
ax,0
dx,ax
delay
dx,CFG1
ax,0100h
dx, ax
delay
ax,0000h
dx, ax
delay
ax,0610h
dx, ax
delay
dx,PORT2
ax,5
dx, ax
delay
dx,PORT1
ax, dx
delay
ax,dx
delay
ax, dx
delay

64

65

in ax,dx

call delay

and ax,15

mov numword, ax
mov dx,PORT2
mov ax,5

out dx, ax

call delay

moV dx,PORT2
mov ax, 7

out dx, ax

call delay

mov dx, PORT1
in ax, dx

call delay

mov dx,PORT2
mov ax, 10 ; enable data in
out dx, ax

call Delay

mov dx,PORT?2

mov ax, 4 ; start scalers
. out dx, ax

call Delay

call Gtime ; get start time

mov ebx, runtime

cmp eax, ebx

jge Start1
add eax, 604800

Start1: sub eax, ebx
mov starttm,eax
mov ax,offset cs:intr ; pointer to timer handler
mov dl,SetTimer
call devhlp
mov running, 1
Startd: ret
Start endp
R R AR D STOP DATA ACQUISTION =------wesvmsmuommmonoenns
Stop proc near ‘
mov es:[di], word ptr 10 ; return 10 (stopped)
cmp running,0
je Stopd
cmp Liveoff, 1 ; was livetime off?
Jne Stop0
mov Liveoff,0
call Gtime ; get start time
mov ebx, runtime
cmp eax ,ebx
Jge tart1
add eax, 604800
tart1: sub eax, ebx
mov starttm, eax
Stop0: mov ax, 1 ; disable data in
mov dx,PORT2
out dx, ax

call Delay

mov ax,2 ; stop scalers

066

out dx, ax
call Delay
mov ax,of fset cs:intr ; remove timer handler
mov dl ,ResetTimer
call devhlp
mov ax, 1 ; reset FIFD
out dx, ax
call Delay
mov running,0
call Gtime ; update runtime
fhov ebx,starttm
cmp eax,ebx
Jge stopi
add eax, 604800
Stop1: sub eax,ebx
mov runt ime, eax
Stopd: ret
Stop endp
R R ARl ZERO CHANNELS & SCALERS rr-e-cmcmemccemanvucnans
Reset proc near
cmp maxchn,0
Je Resetd
mov es:[dil, ward ptr 10 ; return 10 (reset 0.K.)

call Clrmem
Resetd: ret
Reset endp
R AR R R LR R FREE ALLOCATED MEMORY »ecrrmevv-cvevevucnumnann
Devcls proc near

mov es:[di], dword ptr 10 return 10 for success

call stop ; stop everything
cmp maxchn, 0

Je Devd

mov dl,UnPhysTovirt

call devhlp

mov bx,word ptr mem_add ; free all memory
mov ax,word ptr mem_add+2

mov dl,FreePhys
call devhlp

mov maxchn,0
Devd: ret
Devcls endp
R AL CRATCEETRET T CLEAR EXTENDED MEMORY »r-=r=vocvcranscnnoaannn.

Clrmem proc near

mov tevent,0 ; clear counters
mov reject,0
mov overf0,0
mov overf1,0
mov overf2,0

mov overf3,0

67

mov averf4,0
mov overf5,0
mov overf6,0
mov overf7,0
mov runtime,0
mov dx,PORT2 ; clear scolers
mov ax,3
out dx, ax
cmp maxchn,0 ; return {f no memory
Jg clr
ret
ctrit mov ax, numseg
mov savelt, ax ; save number of segments to clear
zerol: mov ax,word ptr mem_add+2 ; axibx 32 physical address
mov bx,word ptr mem_add
dec savelit
add ax,saveit
mov cx,0
mov dh, 1
mov dl,PhysToVirt
call devhlp ; virt address now in esidi
mov ¢x,04000h
zero2: mov es: [di1,dword ptr O
add di, 4

loop zero2
cmp saveit,0
Jg zerol

mov dl,UnPhysToVirt
call devhlp

R T PR PR P PEEPPP RS READ SCALERS === ===srsnesramnnramanmmamausnmanas

Scaler proc near
mov es: [di], dword ptr 10

cmp running,0 ; empty FIFO {f running
Je SCA1 a
mov dx,PORT2 ; disable FIFO bus
mov ax,15
out dx, ax
call delay
mov dx, STAT ; check REG1
in ax, dx
and ax,32
Jz SCA1
mov dx,PORT1 ; save word1
in ax, dx
mov word?, ax
SCAY: mov dx,PORT2 ; enable scaler bus
mov ax, 1
out dx, ax
call Delay
call Delay
mov cx,8

SCA3: add di,4
mov dword ptr es:[di],0
mov dx,PORT1

SCA4:

mov

mov
shr
and
mov
fmul

mov
shr
and
mov
fmul
add

mov
shr
and
mov
fmul

moy
and
mov
fmul
add

mov
mov

call
moy
in

mov
shr
and
mov
{mul
add

mov
shr
and
mov
imul

mov
shr
and
mov
imul
add

mov
and
add
cmp
Jle
moy

mov
mov
out
call

ax,dx
dx, ax

bx, dx

bx, 12

ebx,01111b

eax, 10000000

eax, ebx

dword ptr ess[di),eax

bx ,dx

bx,8

ebx,01111b

eax, 1000000

eax, ebx

dword ptr es:[dil, eax

bx , dx

bx, 4

ebx,01111b

eax, 100000

eax, ebx

dword ptr es:[di], eax

bx , dx

ebx,01111b

eax, 10000

eax, ebx

dword ptr es:(di],eax

dx,PORT2
ax,9
dx,ax
Delay
dx,PORT1
ax, dx
dx, ax

bx , dx

bx,12

ebx,01111b

eax, 1000

eax, ebx

dword ptr es:[di],eax

bx, dx

bx,8

ebx,01111b

eax, 100

eax, ebx

dword ptr es:(di],eax

bx, dx

bx, 4

ebx,01111b

eax, 10

eax , ebx

dword ptr es:[di],eax

bx, dx

ebx,01111b

dword ptr es:[di),ebx
dword ptr es:[di], 99999999
SCA4

dword ptr es:(di1,0

dx,PORT2
ax,9
dx, ax
Delay

68

i

Lex:

Load0:

Load!:

mov

mov
add
cmp
Jg

mov
mov
mov

cmp
shl

mov
shi
add
mov
shr
mov
mov
call

cle
push
mov
mov
add
adc
mov
mov
call

mov
mov
mov
add

cmp

pop

69

cX
cx, 0
SCA3

dx, PORT1 ; clear PORT1
ax, dx
delay

dx, PORT2

ax,5 ; enable FI1FO bus
dx, ax

R P PEEPPEE LOAD DATA INTO MEMORY «+<=ssommmruccxannsunnnn

near

es: [di], dword ptr O
maxchn,0

Load0

eax,es: [di+12] ; tevents
tevent,eax
eax,es: [di+16)
reject,eax
eax, es! [di+20]
runtime, eax

rejects

runt ime

eax,es: [di+4]
eax, es: [di+8)
ebx,maxchn
ebx, 3000

eax, ebx

Lex

ecx,0

cx,es: [di+8)
es: [d{], ecx
cx,0

Lex

cx,2

eax,es: (di+4)
eax, 2

eax ,mem_add
bx, ux

eax,16

dh,1
dl,PhysToVirt
devhlp

cx = number of channels to trans
return number of chan transfered

sterting channel

4 tytes per channel
add memory address
bx = low

ax # high

put in es:di

-~ ne e we we

ds

ax,tem_ax

bx, tem_bx

bx,24

ax,0

dh,0

dl,PhysTovirt

devhlp ; ds:si = address of source

bx,0

eax,ds: [s1+bx) ; source (exended memory)
ee: [di+hx] ,eax ; target memory

bx, 4

bx,cx

Load1

ds

70

ret
Load endp
jrmemessessecssscoumniens FETCH DATA FROM MEMORY --=-=--c--cc-ecucmmomnuoua-
Get proc near
mov es: [di], dword ptr 0
cmp maxchn,0
jg Get0
Gex: ret
Get0: mov eax,es: [di+4]
add eax,es: [di+8]
mov ebx,maxchn
add ebx,3000
cmp eax, ebx
is Gex
mov ecx,0
mov cx,es: [di+8] ; c% = number of channels to trans
nov es: [di] ex ; return number of chan transfered
cmp cx,0
je © Gex
sht cx,2
mov eax,es: [di+4) : starting channel
shi eax,2 ; 4 bytes per channel
add eax,mem_add ; add memory address
mov bx, ax ; bx = low
shr eax, 16 ; ax = high
mov dh,1 ; put in es:di
mov dl,PhysToVirt
call devhip
cle
push ds
mov ax, tem_ax
mov bx, tem_bx
add bx, 12
adc ax,0
mov dh,0
mov dl,PhysTovirt
call devhlp ‘ ; ds:si = address of target memory
mov bx,0
Get1: mov eax,es: [di+bx] ; source (exended memory)
mov ds: [si+bx],eax ; target memory
add bx,4
cmp bx,cx
jt Get1
pop ds
ret
Get endp
R L LOAD PSD BIAS MARKERS =--=----=------mccnmmcnnccnnnnn
Marker proc near
mov es: [dil, word ptr 10
mov bx,0 ; transfer psd markers
mov si,offset ds:psdm
{psdm: mov eax,es: [di+bx]
mov ds: [si+bx],eax
add bx,4
cnp bx,400
it Lpsdm
ret

Marker endp

71

R i LOAD CRUNCH TABLE --===-ssr-mvmccrmcmmmncnnne
Init proc near
catl Stop ; stop
call Devcls ; free all memory
mov ax, tem_ax ; reload crunl0] address
mov bx, tem_bx
mov cx,04000h
mov dh,1
mov dl,PhysToVirt
call devhlp
mov ax,es: [di+40] ; AND tag value - crun(10)
mov tand, ax
mov bx,0 ; transfer psd array
mov si,offset ds:psd
lpsd: mov eax, es: [di+bx+2000]
mov ds: [si+bx] ,eax
add bx,4
cmp bx,1000
jl lpsd
mov eax,psd[0]) ; start of psd memory
mov psdmem, eax
mov bx,0 ; transfer crun array
mov si,offset ds:crun
lerun: mov eax,es: [di+bx+4000]
mov ds: [si+bx],eax
add bx,4
cmp bx,4000
jt lerun
mov eax,es: [di+4] ; eax = num of chan required
mov maxchn, eax
add eax, 3000
shr eax, 14
add ax, 1 ; ax = number of 64k seg
mov numseg, ax
cle
mov bx,0 ; allocate extended memory
mov ax, numseg
mov dh,0 ; memory above 1 meg
mov d{, AllocPhys
call devhlp
jnc Init2 ; jmp if allocated
mov maxchn,0
Init2: mov word ptr mem_add, bx ; save starting mem physmem
mov word ptr mem_add+2, ax
mov bx, tem_bx
mov ax,tem_ax
mov cx, 4
mov dh,1
mov dl,PhysTovirt
call devhlp
mov eax,maxchn
mov es: [dil, eax ; return number allocated
cmp eax,0
je Initd
call Clrmem
mov ax,word ptr mem_add+2 ; put CHANIO) in es:di
mov bx,word ptr mem add
mov cx,0
mov dh,1
mov dl,PhysToVirt

I

-I‘l\

call

push
sgdt

nov

mov
mov
mov’
call

push
push
push
push

pop
pop
pop
pop

mov
mov
mov
mov
mov
movy
moy
mov

mov
mov

mov
mov
mov
call

mov
mov
mov
mov
mov
mov
or

moy
mov

mov

mov
out
call

mov
out
call

mov
out
call

72

devhlp

ds : ; put address of es in ds:si
vari

ax,word ptr varl+4

bx,es

bx,word ptr vari+2

cx,0

dh,0

dl,PhysTovirt

devhlp

word ptr ds: {si] ; save CHAN([O] descriptor
word ptr ds:[si+2]

word ptr ds:[si+4]

word ptr ds: [si+6]

word ptr es: [di]

word ptr es: [di+2]

woird ptr es: [di+é]

word ptr es:[di+6]

ds

ax,es: [di)] ; descriptor in overf
word ptr overf0,ax

ax,es: [di+2]

word ptr overfi,ax
ax,es: [di+4]
word ptr overfZ, ax
ax,es: [di+6]
word ptr overf3,ax

dword ptr es:[dil,0
dword ptr es:[di+4],0

ax,vord ptr vari+é : ; put GDT descriptor in es:di
bx,GDT

bx,word ptr vari+2

cx,0

dh,1

dl,PhysTovirt

devhlp

ax,word ptr overf3 ; modifiy decriptor and save
es: [dil,ax

ax,word ptr overf?

es: [di+2],ax

ax,word ptr overfi

es: [di+4],ax

ax,word ptr overf0

ax, 128

es: [di+6]),ax

overf0,0
overf1,0
overf2,0
overf3,0

dx,PORT2 ; disable data in
ax, 11
dx,ax
Delay

ax,3
dx, ax
Celay

; zero scalers

ax,15 ; disable FIFO bus
dx, ax
Delay

nop

mov ax,? ; reset FIFOD
out dx, ax
call Delay
Initd: ret
Init endp
HE R LR L L OUTPUT DC LOGIC =ew-=mmmeccmmcuemrancccnaonann
OutbC proc near
mov es: [di],dword ptr 10 ; return 10 to al0]
mov dx,CFG2 ; set 0OUT2 high
mov ax,0621h
out dx, ax .
call delay
mov dx, PORTZ ; output first 16 bits
mov ax,es: [di+4]
out dx, ax
call delay
mov ax,es: [di+6] ; output next 16 bits
out dx,ax
call delay
mov dx,CFG2 ; set OUT2 low
mov ax,0620h
out dx, ax
call delay
mov dx, PORT2 ; pulse P14 output
mov ax, 14
out dx, ax
ret
OutbC endp
PR R R L CRUNCH DATA & STORE IT =-e--semremmcanacccmcaauns
Crunch proc near
mov numcrun, 0
jmp short Crun0
rejd: inc dword ptr reject ; reject found in data
mov dx,PORT2
mov ax, 11 ; disable data in
out dx,ax
call Delay
mov ax,7 ; clear FIFO
out dx, ax
call delay
mov dx,PORT1 ; clear PORT1
in ax,dx
call delay
mov dx,PORT2
mov ax,10 ; enable data in
out dx,ax
call Delay
mov ax,5 ; enable FIFO bus
out dx, ax
Edn: call beep
Edone: ret
Crun0: inc nume run ; return if CR too fast
cmp numcrun, 7000
jg Edn
sti ; enable interupts breifiy

Cruni:

cli

mov
moy
in
and
jz

word 1

mov
mov
mov
cmp
jne
in
bt
jnc
mov
and
shl
shr
and
moy

word 2

in
shl
ic
shr
mov
cmp
je

word 3

in
bt
jc
and
mov
cmp
je
word 4
in
bt
jc
ard

TTAG:

mov

74

cx, numwWord
dx, STAT
ax, dx
ax, 64
Edone ‘ ; ret if DRDY1 not set

; check DRDY1

(most significant 16 bits of TOF clock & tags) ----------

dx,PORT1

ax,word?l

word1,0

ax,0

crunt

ax,dx

ax, 15

rejd

bx, ax
ax,0000011111111111b
eax, 16

bx, 11

bx, tand

itag,bx ; word 5 (tags)

; repd ports A & B
; copy bit 15 to carry flag
; rej if carry flag not Set

(least significant 16 bits of TOF clock) ---+---=-~

ax,dx

ax, 1

rejd

eax,1

dword ptr parm(4],eax
cx,2

stor

; read ports A & B
; copy bit 15 to carry flag
; reject if carry bit set

; Words 1 & 2 (tof)

(pulse height analyzer #1 PH1) -----=-----

ax, dx

ax, 15

rejd
ax,0001111111111111b
word ptr parm{8],ax
cx,3

stor

read ports A & B
copy bit 15 to carry flag
; reject if carry bit set

(puise height analyzer #2 PH2) ~----~-----

ax,dx

ax,15 -

rejd
ax,0001111111111111b
word ptr parm({12],ax

; read ports A & B
; copy bit 15 to carry flag
; reject if carry bit set

dword ptr tevent ; add 1 to total events

CHECK FOR PSD TAG ~==--------=~-

si,offset ds:psd
dword ptr ds:[si],0
CONT?2 ; if no psd

; ds:si = psd(0)

di,0 DI = PCHAN channel

bx, 40 ; PSDCI0)
WIN,1 ; applicable window
ax,itag

cx,ds: [si+24]
dx,ds: [si+bx]
dx, ax
DTAG
bx,8

number of det/tags
applicable tag?

-DTAG:

PTAG:

overfp:
under:
under1:

KTAG:

KTAG1:

YTAG:

STORE:

add
mov
add
Loop
inc
imp
mov
shl
mov

mov
mov

cmp

add
acd
add
Loop

inc
jmp
inc
jmp
inc
jmp
inc
call
jmp
moy
shl

mov
cmp
je

shr
mov
cmp
jge
cmp

jp

mov
shl
cmp
jl

mnov
add

add
nov
mov
add

cmp
jg

cmp
shl
inc

mov
add
mov

di,word ptr ds:[si+32]
dx,word ptr ds:[si+28]
WIN,dx

TTAG

overfé

CONT2

bx,ds: [si+8)
bx,?2
ax,word ptr parm{BX]

bx, 120

cx,ds: [si1+28]
dx,ds: [si+BX]
ax,dx

KTAG

di,ds: [5i+12)
bx,4

WIN,1

PTAG

overf?
crun0
overf0
crunl
overf4
crun0
overf5
beep
crun0

bx,ds: [si+4]
bx,2

ax,word ptr parmibx]
cx,ds: [si+16]
cl,0

KTAG1

ax,cl

bx,ds: [si+12]
ax, bx

overfp

ax,?2

under

YTAG

bx,WIN

bx,2

ax,word ptr psdm([bx]
short STORE
cx,word ptr psd[20]
itag,cx

di,ax
eax,0
ax,di
eax, psdmem

eax,maxchn

bigerr

eax,2

underi

eax,2 .
dword ptr es: [eax]

continue With crunch

si,offset ds:crun
si,8

ax,ds: [si]
section,ax

-~ we we

~e

-

.~

-

-

-

75

; add channels per det/tag
; add number of windows/tag

no tag - continue crunch

window parameter channel

PSD(30)
calculate which window
window channel cutoff

; window overflow

psd overflow
psd underflow

maxchn overflow

PSD parameter

PSD channel
crunch factor

psd underflow - reject

add tag if right of marker

; add if right of marker

; di = PSD chan+prev windows

PSDMEM start of PSD memory
eax = PSD memory channel

: increment channel eax

; ds:si = crun[1000)

¢ number of crunch segments

L2701:

L2702:

L2703:

L2704

13000:

L2705:

TAGIT:

add
bt
jne
moy

mov
mov
mov
inc

mov
shl
mov

mov
mov
mov
mul
add
mov

add
mov

cmp
loop

mov
shl

push
mov
add
inc
jmp
sub

mov
cdq
div
add

mov
mul

add

si,4

word ptr ds:[si+2],15

L2701
chan,0

si,4

di,0
ax,ds:[si]
kmax , ax

di

si,8

bx,ds: [si-4]
bx,2

anat ,bx

ebx,dword ptr parm{bx]

ax,ds:[si)
cx, ax

di, 24

dl

ax,si
nh, ax

si,24

eax,ds: [si-16]

ebx, eax
L3000
L2703

ax,ds: [si+4]
ax,3

ax,4

si,ax

si

si,offset ds:overf0

si,anal

dword ptr ds:(si)

si
L3100

ebx,ds: [si-20]

eax, ebx
ebx,ds: [si-4]

ebx

eax,ds: [si-12]

edx,ds: [si)
edx

chan, eax
si,nh

ax, kmax
di,ax
L2702
di,itag

si,é
cx,ds: [sil]

si,8
dx,ds: [si-4]
dx,di
NEXTT

76

; find start of next section

PNEN+

; K loop

; EBX = IP

: increment overflow

77

mov eax,chan ; EAX = CHAN
add eax,dword ptr ds:([si] ; add tag base
cmp eax,maxchn
jg bigerr
shl eax,2 ©; increment channel eax
inc dword ptr es: [eax]
L3100: dec section
cmp section,0 ; is this the last section?
g L2701 ; go do next section
Jmp CRUNO ; 9o check STAT
NEXTT: Lloop TAGIT ; if more tags goto tagit
jmp L3100
bigerr: inc overf5
call beep
jmp crun0
Crunch endp
He R A Ll INTERRUPT PROCEEDURE ~-==-=ss-vmmmcccmamecncmnnnnae
Intr proc far
cli
cmp working, 1 ; return if working
je Intrd
mov working, 1
pushad
cmp liveoff,1 ; was livetime off?
jne Intro
mov dx,STAT ; check IN2
in ax,dx
and ax,8
jz Intr2 ; Jmp if IN2 is still low
moy liveoff,0
mov dx,PORT2
mov ax,10 ; enable data in
out dx, ax
call Delay
mov dx,PORT2
mov ax,4 ; start scalers
out dx,ax
call Delay
call Gtime ; get start time
mov ebx, runtime
cmp eax, ebx
jge [tart1
add ' eax, 604800
Itart1: sub eax, ebx
mov starttm,eax
jmp Intr1
Intr0: mov dx, STAT ; check Llivetime IN2
in ax,dx
and ax,8
jnz Intr1
mov liveoff,1
mov ax, 11 ; disable data in
mov dx,PORT2)
out dx,ax
call Delay
mov ax,2 ; stop scalers
out dx, ax
call Gtime ; update runtime
mov ebx,starttm

cmp eax, ebx

Ck1:

Intri:

Intr2:

Jge
add
sub
mov

imp

mov
mov
mov
mov
mov
call

" push

call

jnz

mov
mov
out
inc
in
mov
and
mov
shr
mov
imul
add

mov
mov
out
inc
in

ck1

eax, 604800
eax, ebx
runtime, eax
Intr2

bx,word ptr mem_add
aa,vord ptr mem_add+2
cx,0

dh,1

dl,PhysTovirt

devhlp

es
es,GOT
crunch
es

dl,UnPhysToVirt
devhlp

working,0

near

dx,70h
ax,0ah
dx,al
dx 4
al,dx
al,128
G1

dx,70h
ecx,0
eax,0
dx,al
dx

al ,dx
dl,al
dL,15
cl,dl
al,4
bx,10
ax ,bx
ecx,eax

dx, 70h
eax,2
dx,al
dx
al,dx

78

; switch to protected mode

; empty FIFO and Crunch

; return to original mode

; wait for permision

; get seconds

; add minutes

LT

Gtime

Beep1:

mov
and
mov
fmul
add
mov
shr
and
mov
imul
add

mov
mov
out
inc
in
mov
and
mov
imul
add
mov
shr
and
mov
imul
add

mov
mov
out
inc
in
and
dec
mov
imul
add

mov

mov
out

ret
endp

proc

push

dl,al
eax, 15
ebx, 60
eax, ebx
ecx, eax
al,dl
al 4
eax, 15
ebx, 600
eax, ebx
ecx,eax

dx,70h
eax,4
dx,al
dx
al,dx
dl,al
eax, 15
ebx, 3600
eax, ebx
ecx, eax
al,dl
al,é
eax, 15
ebx, 36000
eax, ebx
ecx, eax

dx, 70h
eax,6

dx,al

dx

al,dx
eax, 15
eax
ebx,8640C
eax, ebx
ecx,eax

dx, 70h
eax,0Dh
dx,al

eax, ecx

ax
al,61h
ah,al

.al,3

61h,al
cx,8000h
Beep
Beepl
al,ah
61h,al
ax

cx

79

; add hours

; add days

ROUTINE SOUNDS A SHORT BEEP

; read 8255 on sYstem board

; delay count for beep

; turn off speaker

Install

Install
_TEXT

proc

mov
mov
mov
mov

mov
mov

moy
mov
mov
mov
mov
Lall

call

mov
mov
out
call

moy
out
call

push
push
push
push
push
push
call
ret

endp
ends
end

near

ax,es: [bx+14]

word ptr devhlp,ax
ax,es? [bx+16]

word ptr devhlpt+2,ax

.
t

80

gave devhlp address

word ptr es:[bx+14),offset TEXTilnstall
word ptr es:lbx+16],offset DGROUP:END_DS

ax,ds

es,ax

di,of fset ds:GDT
cx, 1

di,AllocGDT
devhlp

open

dx,PORT2
ax, 11
dx, ax
delay

ax,7
dx,ax
delay

1

ds

offset DGROUP:ident
ident_Llen

ds

offset DGROUP:wlen
DOSWRITE

]

I
'

.
i

.
¢

)
'

allocate GDT selector

{nitialize 1/0 board

data in disabled

reset FIFO

message that device was [oaded

it

