
, ,;,_.¸:'ii¸,

...._ii;_ ORNL/TM-- 114 54

•, ,_i_i, DE91 005642

, ., ,,

Engineering Physics and Mathematics Division

A DATA ACQUISITION WORK STATION

FOR ORELA

" B.D. Rooney
J. H Todd

R. R. Spencer
" L.W. Weston

Date Published - September 1990

-_ Prepared for
Energy Programs Di vi si on

<,

OAK RIDGE NATIONAL LABORATORY

,, Oak Ridge, Tennessee 37831
operated by

Martin Marietta Energy Systems, Inc.

_ for the
U.S. DEPARTMENT OF ENERGY

under Contract No. DE-AC05-84OR21400

M RT:R
IIWlI| |q_' | _| •

' _ OF _ DOOIJ_ _18UNLIMITED

' <_!i b__

.._,,:_._ TABLE OF CONTENTS
i '_?, _,.

• ,

;, ABSTRACT v

1. INTRODUCTION 1

_- 2. DESCRIPTION 3

I 2.1 General 3

2.2 Computer 5
2.3 MC-DIO-32F I/O Port Adapter 5
2.4 Software 5

2.5 Data Handler 6
| 2.6 Digitizers 6
! 2.7 Data Invertor 7

2.8 Scalers 7

2.9 Input Rates 7

3. DATA HANDLER 9

3.1 Description 9
. 3.2 Functional Logic 9

3.2.1 Software Control 13
3.3 Front Panel Switches and Connectors 13

" . 3.4 Rear Panel Connectors 17
3.5 Software Control 19

3.6 Output D.C. Logic 19
3.7 MC-DIO-32F Interface Card 20

4. CRUNCH FILES 21
4.1 General 21

4.2 Program LOADCRUN 21
4.3 Loading the Crunch File from Analyzer 22
4.4 Crunch File Format 22

4A.1 Tag Section 24
4.4.2 PSD Mode Section 25

264.4.3 The Crunch Section . .

5. PROGRAM ANALYZER 29
5.1 General 29

o 5.2 Analyzer Installation 29
5.3 Starting Armlyzer 30
5.4 Analyzer Display 30

- 5.5 Function Keys 31
5.6 Bottom Line Commands 33

5.6.1 Load Crunch File Command 33

5.6.2 Display Overflows 33

I11

z
• .

5.6.3 DisplayingTotal Events and Rejects 35
5.6.4 Setting the Preset Timer 35

5.7 The Auto Backup File 36

6. DATA ACQUISITION DRIVER 37

6.1 General 37
6.2 Driver Installation 37

z

6.3 Loading in a Crunch Table 38
6.4 Data Acquisition Driver Control 38

APPENDIX A

Analyzer Commands 45

APPENDIX B

Examples of Crunch Files 47

APPENDIX C

Example Program 51

APPENDIX D

Rear Panel Pin Connections 53 i

APPENDIX E
Data Handler Low Level I/O Commands 57 " i,

lEr

APPENDIX F i/
Source Code for Data Acquisition Driver 59 " ,

s,

iv

J

ABSTRACT

" A new multiparameter data acquisition system has been developed and fabricated at

the Oak Ridge Electron Linear Accelerator (ORELA) which utilizes an IBM PS/2 model 80

" personal computer and data handler with a 2048 word buffer. The acquisition system can

simultaneously acquire data from one, two, or three digitizers, multiplex up to four detectors,

read and control up to 16 scalers, and output 32 D.C. logic signals which can be used to

control external instrumentation. Software has been developed for the OS/2 operating

system, supporting multiparameter data storage for up to three million channels with the

capability of collecting data in a background mode, to make the computer available for other

tasks while collecting data. The system also supports multiparameter biasing and can collect,

crunch, and store data at rates as high as 30,000 events per second.

i'

V •

CHAFFER 1

INTRODUCTION

Nuclear spectrometry frequently involves complex analyzer systems and computers to
'o

: rapidly analyze, sort, and store applicable data. Many systems can be extremely elaborate and

costly, depending on the experiment and the type of information desired. For single

parameter events, such as pulse height analysis, there are an abundance of aw_ilablc analyzers

on the market, many at a very reasonable price. However, multiparameter data acquisition

systems involving multiple detectors and digitizers usually require a costly and elaborate

computer system having extensive memory requirements. The availability of analyzer systems

that have storage capacity above one million channels is extremely limited with the tc)st of

available systems being very expensive.

These requirements at the Oak Ridge Electron Linear Accelerator (ORELA), along

with the need to replace aging analyzers and computers within current budgets, led to the

design and fabrication of a data acquisition system consisting of a hardware interface and data

acquisition software which utilizes an IBM PS/2 model 80 personal computer. Developed as

the primary replacement and upgrade of older computer equipment, the new system is

capable of analyzing 64 bits of information per event into four parameter storage, using non-

linear binning, and can employ multiparameter discrimination. Having a maximum capacity

of three million channels, the system's low cost makes it possible to provide each

experimenter at ORELA with an independent system.

An IBM PS/2 personal computer was chosen over its contemporaries because of its

architecture, compatibility, and multi-tasking capability. Collection of data can bc performed

with top priority, while the computer is being used for other tasks such as data analysis,

making real time analysis of data possible in some situations. Software, in the form of a

device driver, allows users to easily write specialized programs that have access to data during

acquisition. Ali software in this manual has been designed to bc run under the OS/2

operating system.

This manual serves as a user's guide for the IBM PS/2 data acquisition system

providing the reader with detailed information on setting up and using the system for a v_riety

of applications, including multiparameter data storage, multiparameter biasing, time of flight

energy display, and software development. This manual also serves as a guide for the

1

computer code ANALYZER, a general purpose pre,gram which provides real time display of

data, backup file support, timer support, time of flight energy calculation, and other functions.

Other programs can easily be written in either the protected mode or the DOS compatible

mode to interface with the acquisition driver by following the format specified in Chapter 6.
o

CHAPTER 2

DESCRIPTION

2.1 GENERAL

A block diagram of the data acquisition system is shown in Figure 2.1. The system

consists of an IBM PS/2 model 80 personal computer attached to several external devices

through a data handler which includes a 2048 x 16 bit FIFO buffer. External instrumentation

for the initial implementation includes one ORTEC time digitizer clock, two Nuclear Data

ADCs, eight JORWAY scalers, and an inverter for the data lines coming from the ADCs.

The experimenter has the option to configure the system for specific and fewer digitizers

through switches on the front oi' the data handler. There are also 32 D.C. level output lines

that can be used to control external instrumentation.

Control of the data handler is accomplished by a computer through a commercially

available I/O board, which allows the computer to communicate with the data handler and

transfer information. The data handler has been designed to accept and store data from each

digitizer until the computer is ready to analyze it. The scalers are controlled likewise with ali

data being transferred via the same interface. Transfer and processing of data is performed

by the following procedure.

1) The data handler receives a data ready signal from each applicable digitizer,
informing the data handler that there is converted data ready to be transferred.

2) The data handler stores the data from each digitizer into a buffer (FIFO) and
then simultaneously resets each digitizer. This is performed in less than two
microseconds, after which each digitizer is ready to acquire new data.

3) Every 31 milliseconds the computer halts the current program and jumps to an
interrupt routine where each 16 bit v.ord in the data handler is transferred directly
to the CPU. Transfer of data to the computer does not prevent the data handler
from accepting new events at any time.

4) The CPU checks the most significant bit on each word using a 1,0,C,0sequence
to ensure the correct number of 16 bit words have been trans,'erred for every event.

- 5) After the correct number of words have been transferred, as determined by the
word select switch, the event is analyzed and stored in its applicable channel(s).

6) After the FIFO buffer in the data handler is emptied, the computer returns to the
current program or process that was halted.

ootzTOF CLOCK SCALERS

l /

1

'_ ,,7 _ DATA INVERTER
li

DATA HANDLER

_> 32 D.C.
OUTPUT

LINES

MC-DIO-32F
ADAPTER CARD

IBM PSi2 COMPUTER

MODEL 80

Figure 2.1. Block diagram of data acquisition system.

2.2 COMPUTER

- This data acquisition system utilizes an IBM PS/2 model 80-111 personal computer

to control the data handler and analyze each event. The computer contains an 80386

. microprocessor with a 20 MHz clock and has a 80387 math co-processor. Additional adapters

installed into the computer consist of an I/O parallel port card and extended memory.

Memory may be extended up to 16 megabytes, giving the system approximately a three million

channel capacity, with each channel consisting of 32 bits (four billion counts pcr channel) .

At least 2 megabytes of memory are reserved for the OS/2 operating system.

2.3 MC-DIO-32F I/O PORT ADAPTER

The computer requires a 32 bit parallel port I/O adapter to enable the computer to

communicate with the data handler. The acquisition system has been developed to use a

commercially available interface Card, MC-DIO-32F, from National Instruments Corporati()n.

This I/O card is installed into one of the computer expansion slots and connected tct the data

handler using a 50 line ribbon cable.

" The MC-DIO-32F adapter must be installed and configured to a base port address c)l"

D000 hex before operation. To accomplish this, the user is referred to the instructions that
o

come with the board. The interrupt level and DMA channel are currently not used in this

system, th ,s these parameters may bc disabled or set to whatever the usur desires.

Ali communication with the data handler, including the transfer ot" data, is

accomplished through this adapter using four parallel I/O ports (A,B,C, & D). Ports A and

B are used for transferring data, while ports C and D are used for interface control (start,

stop, etc.). Port C also controls which data is currently on ports A and B. Thus, ports A and

B can be used for transferring digitizer data, scaler data, or input of test data into the data

handler FIFO memory.

2.4 SOF/3_ARE

The methodology of software development has been tct provide the user with a

versatile data acquisition system that can easily interface with any user program in the OS/2

operating system. This provides the user with the ability to expand and enhance data analysis

and display routines at his or her leisure and tct support possible upgrades in computer

hardware.

Three main programs have been written to assist the user in controlling and displaying

data; LOADCRUN.EXE, ANALYZER.EXE, and DEVICE2.SYS. Each of these programs

are described in detail in Chapters 4, 5, and 6, respectively. DEVICE2.SYS is a device driver

that controls the data handler, performing ali necessary tasks to start, stop, and transfer data.

Program LOADCRUN is used to load a crunch file into the device driver. A crunch file is

an ASCII data file containing parameters supplied by the user to determine how data is to

be stored. ANALYZER provides the user with a gener'_l purpose program which starts,

stops, and displays data by accessing the device driver. Other data acquisition programs can

easily be written to replace ANALYZER using the format in Chapter 6 _r,.5the example in

Appendix C.

2.5 DATA HANDLER

The data handler provides the necessary hardware for receiving data from each

digitizer and storing it in a 2048 x 16 bit word first in first out (FIFO) buffer until the

computer is ready to receive it. The FIFO buffer enables the computer to transfer data from

the buffer while the data handler is accepting data from the digitizers. The data handler also

provides the essential signals required to start, stop, and read up to 16 scalers; however,

current software supports only eight scalers. The device also has an output port with 32 DC

logic lines which can be used to control external instrumentation. Although control i_,

primarily through software, some configuration must be per[brined using the switches on the

front panel of the data handler. Detailed information on the data handler is provided in

Chapter 3.

2.6 DIGITIZERS

As many as four digitizers may be used in this data acquisition system; however,

current software supports only three at this time, one clock and two ADCs. Which digitizers

are employed can be controlled from switches on the front face of the data handler. The

system is currently set up to accept up to 13 bits of data (8192 channels) from two pulse

height ADCs and 26 bits of data and tbur tag bits from a single time digitizer (clock).

Additional bits may be used if required; however, this will require some modification in the

device driver software. The data line configu,'ation from each digitizer to the data handler

is described in Appendix D. Other digitizers may be used in piace of those described in this

report; however, each data line signal must correspond to the same lines defined in

Appendix D. Some ADC's may require a data line inverter.

2.7 DATA INVERTER

The system shown in Figure 2.1 includes a data inverter between two oi' the ADCs

and the data handler. This is needed when using Nuclear Data ADCs, since ali logic on the

• data bus is inverted from that for which the system has been designed for. The data inverter

illustrated in Figure 2.1 supports up to three Nuclear Data ADCs.

2.8 SCALERS

Up to eight JORWAY scalers are supported by software on this data acquisition

system. Each scaler connects to the data handler by way of a cable assembly which has nine

connectors, one for each scaler and one to the data handler. Other scalers may be used if

they follow the same control logic as JORWAY scalers.

In addition, there are three BNC connectors on the back side of the data handler that

are used to provide start, stop, and reset signals to all scalers. On the front face, there are

stop, start, and reset buttons that can be used to control the scalers manually.

. 2.9 INPUT RATES

The dead time of the data handler is no greater than 2 microseconds. This permits
,4

an input rate in excess of 500,000 events per second for bursts of data not exceeding the

buffer capacity of 2048 words. The MC-DIO-32F interface performs ali the necessary

handshaking requirements with the data handler to piace any data in the FIFO buffer directly

onto the designated port address in the computer. This transfer to the computer is

accomplished in less than 200 nanoseconds, giving programs almost immediate access to data.

The maximum average input rate of this data acquisition system over an extended

period of time is highly dependent on the crunch table loaded into memory. For example,

the acquisition driver is capable of taking one event and crunching and storing it in up to nine

different locations. The driver can also perform multiparameter discrimination on each event

for multiple detectors. Ali this takes time. Measurements, using software referenced in this

manual, have resulted in input rates as fast as 30,000 events per second when using a simple

crunch routine with one digitizer. This was performed while the computer was running

_- _ entirely in the protected mode. Acquiring data in the DOS compatibility mode results in a

10 percent reduction in the input rate due to the operating system switching in and out of the

protected mode during data storage.

If desired, additional performance and speed may be obtained by modifying the data

acquisition driver software. Simplifying the crunch and interrupt routines in the device driver ,.

can substantially affect the maximum average input rate. Measurements have resulted in data

acquisition rates in excess of iO0,O00events per second for simple storage routines; however,

modifying the data acquisition driver is only recommended for very specific applications where

flexibility is not a requirement.

CHAPTER 3

DATA HA_DLER

3.1 DESCRJFrION
,i

The data handler is an external device that provides an interface between each

digitizer and the PS/2 computer, lt provides the necessary hardware and controls to accept

data from one to four digitizers, read 16 scalers or digital registers, and outputs 32 D.C. logic

signals which can be used to control instrumentation, lt contains a 2048-word FIFO buffer

allowing non-synchronous input and output of data. This enables the data handler to accept

data independently from the computer, resulting in very short deadtimes, less than two

microseconds, for data storage. The total deadtime can be shortened to approximately one

microsecond through modifications in the data handler, depending upon the requirements oi'

the external digitizers. The data handler is completely software controlled, except for some

switches on the front panel which select the applicable digitizers and control the numbc, r of

six'teen bit words to be included in each event.

3.2 FUNCTIONAL LOGIC

• Figure 3.1 is an outline of the data handler integrated into a sysJem. Figure 3.2 is a

functional outline of the data handler. There are four ports in the system. In addition, there,

is one control line from the system. Ports 1 and 2 are data input ports with their attendant

control lines. Port 3 is an output port only. Port 4 is an I/O port to the PS/2 computer via

the MC-DIO-32F adapter card.

Data is presented to port 1 and consists of up to 64 bits per event. The data handler

accepts the data as one, two, three, or four words, each word consisting of 16 bits and stores

the event into temporary memory (FIFO). The number of words per event that are accepted

and stored is controlled by the word select switch on the front panel.

The temporary memory has a capacity of 2048 words containing 18 bits. Two of these

bits are not used as data bits but can be used for other purposes such as a flag to indicate

special situations. An example of the use of the bits would be to maintain correlation when

an event consists of many words. A front panel switch permits the use of all 16 bits in the

four data words for data or in another positionwill encode the most significant bit of the fourE

words in a sequence of 1,0,0,0. This encoding ,will permit software checks to ensure that

,, , n , ,ill '_1

Ill , ,

10

LiP ro
DA rA

D!G! r[z!-qS

!

1 6 _(//ICON rROL

"-,,r Dq rq

SCqL. ERS 52 DC}
MANDI_ER LI_ES

OR REGISTERS

b

3Z Dq r qW_

BItS

_ICI @-32F

rN_F_RFqCE

PS / 2

Figure 3.1. Data handler system_

' 1!7'" ,t 'lp

, I

11

12

correlation of the four words are maintained. If the words are detected out of sequence

action can be initiated by the program. In the software outlined in this manual the detection

of an out-of-sequence series of words causes a Master Clear signal to be generated. This

signal clears the temporary memory and generates a data accepted signal to clear the external
b

equipment.

Time required to accept an event of four words is less than two microseconds. This

time can be reduced to less than one microsecond by reducing the width of the data accepted

pulses to the external equipment. The action of the input can be considered as a hardware

DMA with a transfer rate of 1 million words per second and a word length of 64 bits. The

size of the temporary memory is 512 words of 64 bit length or 2048 words of 16 bits length.

The input and output of the temporary memory are independent processes. The

memory control processes the data ready signals from the selected external digitizers. When

ali of the data ready signals from the selected equipment are present, the data is transferred

to the memory and a data accepted signal is generated and sent to all external equipment.

The output of data from the temporary memory to the PS/2 is controlled by the PS/2 through

the bus control system. The speed with which data can be removed from the temporary

memory via the MC-DIO-32F adapter card varies with the program being used.

Measurements have resulted in a maximum transfer rate of approximately 400,000 words of

16 bit length per second. However, software in this manual has been written to crunch each

event before storage. To crunch and store a single event of four 16 bit words takes

approximately 30 microseconds (see Section 2.9). This permits a maximum average input rate

of approximately 30,000 events of 64 bits length per second.

Port 2 is an input port. This port will accept 32 bit data from one to sixteen digital

registers. Sixteen control lines are available, under software control, to read up to the

selected number of units.

Port 3 is an output port. This port will output D.C. levels on 32 lines. These 32 lines

can be used directly to control external equipment or can be decoded to generate up to 232

lines. These lines are under software control. Port 4 is attached to the MC-DIO-32F
b

interface card installed into one of the expansion slots in the PS/2. This p,3rt contains 32

bidirectional lines, four lines used for handshaking with the data handler, t_o input control

lines, and two output control lines.

13

The two additional lines, one control into and one indicating line out of the system,

are used to perform the following functions. The control line into the system writes a bit !nto

an internal register. The program monitors this bit and causes the system Io stop taking data

as long as this bit is low and restarts the system when the bit returns high. The indicator line

is used by the software to output a pulse that indicates that the levels on the 32 D.C. lines

have been changed.

All input and output lines, with the exception of the scaler control [ines (the 16 lines

in port 2) and the start, stop, and reset lines to the scalers should be considered to be

standard TTL drive and input. The 16 scaler control lines will sink 20 milliamperes. The

start, stop, and reset lines will drive 50 ohms with a + 12 volt pulse.

3.2.1 Software Control

Port 4 contains two bi-directional 16-bit buses, bus 1 and bus 2, two pairs of data

handshaking lines, and two pairs of flag lines. The two pairs of flag lines go tc) registers in

the MC-DIO-32F card. One line in each pair reflects the condition of a bit that is sc,t by the

, software. The other line in each pair can be used to set a bit in an internal register that can

be monitored by the software. Line IN1 is accessed through the temporary memory and can

• be used for data correlation if desired (software in this manual does not support this). Line

IN2 is set by a D.C. level generated externally. The s'aftware recognizes a low on this bit and

generates a signal that stops the data acquisition as long as the bit is low and restarts when

the bit goes high. The other two flag lines, OIJT1 and OUT2, are used in the data handler

with their respective buses, bus 1 and bus 2, to generate data and control functions. For

example, bus 2 with OUT2 low will generate the software control pulses that control the

system. Bus 2 with OUT2 high will cause the output of the 32 D.C. lines.

Table 1 is a listing of the codes and their functions.

3.3 FRONT PANEL SWITCHES AND CONNEC'I'ORS (see Figure 3.3)

POWER (ON/OFF): This switch provides power to the data handler. The power

• should be turned off prior to connecting or disconnecting any of the rear panel cable

assemblies.

" DATA READY SWITCHES (ON/OFF): These four switches enable or disable the

data ready signals and determine which digitizers must supply a data ready signal before the

data handler recognizes a valid event. Table 2 illustrates the proper setting for thcsc switches

tbr various combinations of digilizers when using software referenced in this manual.

-

_

_

-

, ii,

14

fable 1. Software Cxxtes and Functions
..

Code Function

XXXXXXXXXXXX 0000 Not Used
XXXXXXXXXXXX 0001 Bus to Scalers
XXXXXXXX XXXX0010 Stop Scalers
XXXXXXXX XXXX0011 Reset Scalers
XXXXXXXX XXXX0100 Start Scale:s
XXXX XXXXXXXX0101 Bus to Data Input
XXXX XXXXXXXX0110 Test Data Out
XXXX XXXXXXXX0111 Master Clear
XXXX XXXXXXXX 1000 Not Used
XXXX XXXXXXXX 1001 Step Through Scaler Reads
XXXX XXXXXXXX 1010 Start System Acquire
XXXX XXXXXXXX 1011 Stop System Acquire
XXXXXXXXXXXX 1100 Not Used
XXXXXXXXXXXX 1101 Output Test Word
XXXXXXXXXXXX 1110 Pulse Indicates D.C, Line Change
XXXXXXXX XXXX1111 Removes Bus From Ali Ports

v

Table 2. Front Panel Switch Settings

Data Ready

Digitizer SW1 SW2 SW3 SW4 Word Select

TOF 1 Only ON OFF OFF OFF 2

PH12 Only OFF OFF ON OFF 3

PH2 s Only OFF OFF OFF ON 4

TOF & PH1 ON OFF ON OFF 3

PH1 & PH2 OFF OFF ON ON 4

TOF, PH1, & PH2 ON OFF ON ON 4

1TOF refers to the clock digitizer
2PH1 refers to pulse height analyzer #1
3pH2 refers to pulse heigh(, analyzer #2

15

16

DATA READY (BNC);.' These four BNC connectors are attached to the data ready

lines of each corresponding connector on the rear panel (CN4 - CN7), respectively, These

connectors therefore provide monitoring points for these signals,

ALL, DATA READY (BNC): This connector provides a monitoring point for the

signal that indicates that ali of the selected data ready signals are present.

ALL DATA READY START (BNC): This connector monitors the data ready signal

as seen by the FIFO input (indicates that ali of the selected data ready signals are present and

that the system has been started).

MSB WD ENCGDING (IN/OUT); When set to the IN position, this switch sets the

most significant bit of each word transferred to memory using a 1,0,0,0 pattern for up to four

words. Software in this manual requires that this switch be set to the IN position at ali times.

MASTER RESET: The two pushbuttons with this label between them must be

depressed at the same time. This action clears ali data from the temporary memory,

generates a data accepted signal to the external digitizers, and removes the bus from the

temporary memory. The system must be restarted after this action. This action can also be

generated by software. Tile software can, of course, restart the system after a program

generated master clcar.

WORD SELECT (1-4): This switch determines the number of 16 bit words stored

for each v_':lid event. Software in this manual assumes the first word contains the most

signiHcant bits coming from a time digitizer and the second contains the least significant bits.

The software also assumes that the other two 16-bit words contain data from two other

digitizers. Software herein requires that this switch must be set to at least two words.

DATA ACCEPTED (BNC): This BNC is a monitor for the data accepted signal that

is sent to ali external equipment after each valid event.

START MONITOR (BNC).;: This BNC connector supplies a TTL high when the

system is started (is in the acquire mode).

EXT DATA ACCEPT INPUT (BNC): A logic pulse (TI'L high) input to this

connector will produce a data accepted output to ali external digitizers. This input can be

used to ensure correlation of data contained in external digitizers.

17

EXT DATA ACCEPT INPUT ON/,OFF,.fSWITCH): This switch enables/disables tile

above input. This switch must be in the off position if the input is not being used.

SC_..&I,ERSTART SWITCH' This pushbutton generates a pulse to the re_r panel

• BNC connector. This signal can be generated by software. This signal will drive 50 ohms

with a 12 volt pulse.

SCALER STOP (SWITCH): This pushbutton generates a pulse to the rear panel

BNC connector. This signal can also be generated by software and will drive 50 ohms with

a 12 volt pulse.

SCALER RESET (SWITCH): This pushbutton generates to a rear panel BNC

connector. As above, this pulse can be generated by software and has the same drive

capability.

ACCEPT DATA (LED): This LED is lighted when the system is in the acquire

mode.

, DATA RATE HIGH (LED): This LED is lighted when the temporary memory

(FIFO) is full. This is an indication that the data rate is high enough to fill the FIFO and

• that data is probably being lost.

3.4 REAR PANEL CONNECTORS (see Figure 3.4)

_CN4(WORD 1 INPUT)' This connector corresponds tothe first 16 bit word stored

for every valid event. It is normally attached to the tags and most significant bits of the time

digitizer. The pin connections are illustrated in Appendix D.

CN5 (WORD 2 INPUT): This input connector corresponds to the second 16 bit

word stored for every valid event, lt is normally attached to the less significant bits o1'the

time digitizers. The pin connections are illustrated in Appendix D.

CN6 (WORD 3 INPUT)" This input connector "orresponds to the third wt,rd stored

for every valid event. This cor,nector is normally attached to a pulse height analyz, (denoted

by PH1). The pin connections are illustrated in Appendix D.

• CN7 (WORD 4 INPUT): This input corresponds to the fourth word stored for each

valid event. This connector is norm_iilyattached to a second pulse height analyzer (denoted

as PH2). The pin connections are illust.rated in Appendix D.

18

19

CN8 ID.C. OUTPUT,)2. This is a 37 pin connector which supplies tile 32 D.C. output

lines rhtit can be used to control external instrumentation. A high signal on each line is

approximately +5 volts. The pin connections are illustr_lted in Appendix D.

,, CN9 (SCALER INPUT)' This connector contains the 32 input lines _md 16 output

control lines that are used to read external instrumentation, such as sculers. The pin

connections are illustrated in Appendix D.

CN10 (COMPUTER): This is a 50 pin connector which attaches the dattl handler

to the MC-DIO-32F intert'ace card that is installed in one o1' the computer expansion slots.

Ali data and control signals to and from the computer are routed through this connector.

The pin connections are the same as for the MC-DIO-32F card.

SCALER START: This is a BNC connector their can be used to generate a starl

pulse for scaler control.

SCALER STOP: This is _lBNC connector that can be used to gener_lte t_stop pulse

tbr scaler control.
'I

SCALER RESET: This is a BNC connector theft can be used to generate a reset

• pulse tbr scaler control.

D.C. CHANGE: This is a BNC connector that will generate tl pulse whenever _

command 14 is written to the data handler. Software presented in this manual automatically

generates a pulse at this connector every time the D.C. output lines _lre modified.

3.5 SOFTWARE CONTROL

The data handler is controlled by the four least significant bits written to port C oi'

the MC-DIO-32F interface card. Ports C and D on the interlace card must be configured

as output ports with the handshaking mode enabled, This is performed by the device driver

referenced in this manual. Writing a number from 1 to 15 to port C will control the data

handler. Again, the device driver given in this manual performs ali these t'unctions for the

user, along with the other required operations. Each comm_md is briefly described in

Appendix E for the user's reference.

20

3.6 OUTPUT D.C. LOGIC

To modify the D.C. output lines on the rear panel connector, the OUT2 bit on the

MC-DIO.32F interface card must be set high by the program. Once this bit is set high the

program must write two 16-bit words to ports C and D (bus 2 in port 4 of the data handler)

to output the desired 32 lines, Once the output lines are changed, the OUT2 bit must be

brought low again, The device driver referenced in this manual will perform ali these steps

along with pulsing the D.C. CHANGE connector on the rear of the data handler.

3.7 MC-DIO-32F INTERFACE CARD

The MC-DIO-32F interface card is manufactured by National Instruments.

References on this card can be tbund in the manual on this card.

21

CttAIrI'ER 4

CRUNCH FILES

4.1 GENERAL

Since as many as 64 bits of inlbrmation may be c,ontained in every event, a tnetht_d

to pull out applicable data and crunch it into available computer menaory is required. A

crunch table suppliea the parameters for this process. Each event is analyzed using a crunch

table that has been loaded into the data acquisition driver. 'l-'hecrunch table also establishes

the parameters that are needed to enable tag inputs, setup multiparameter biasing (PSD), anti

determine how each event is binned and storc,d (i.e. one, two, or three dimensional storage).

Either of two procedures can be used to load crunch tables: 1) program

LOADCRUN.EXE, run from the protected mode of OS/2; or 2) the load command directly

from program ANALYZER. This chapter describes both procedures und also provide,; a

description of the tk_rmatused to create and edit crunch files, Appendix B illustrates several

examples of crunch files.

4.2 PROGRAM LOADCRUN

" A crunch file malt be loaded into computer memory using program

LOADCRUN.EXE. This program must be run from the OS/2 protected mode with the

device driver, DEVICE2.SYS, installed. The R_llowingexample illustrates the command line

format.

LOADCRUN D:\CALIB.TBL/p

The above command loads the crunch parameters listed in file CALIB.TBL, found in

the root directory on drive D. The optional parameter,/p, is used to print out the crunch

table after loading it into memory. If a R)rmat error is found in the crunch file, the program

will display ataerror message and then terminate loading. If computer nacmory does not allow

memory allocation for the number of storage channels needed for the crunch table, the

. program will terminate loading without allocating any memory. Memory allocated by

LOADCRUN will be dc-allocated .whenever a new cruncla file is louctcclinto memory.

22

Successful loading of the crunch table will be confirmed with a message displaying the

crunch file name and the number of channels allocated. One channel is equal to four bytes

(32 bits) of computer memory; thus, to allocate one million channels, the computer must have

at least four megabytes of consecutive frec memory. Starting LOADCRUN without including
N

a file name on the command line causes the program to prompt ;.he user for a path and file

name.

4.3 LOADING THE CRUNCH FILE F,"ROMANALYZER

The crunch parameters needed for the data acquisition driver may also be loaded from

program ANALYZER. Chapter 5 describes ANALYZER in more detail; however, the load

command is discussed briefly here. The load command in ANALYZER performs the same

operation as program LOADCRUN. lt reads a cruncn file and transfers the parameters into

the data acquisition driver.

The load command is entered by typing the letter "L", followed by the name of the

crunch file. The tbllowing example illustrates the format used to reload a crunch file using

ANALYZER.

L D:\CALIB.TBL

The above example loads the crunch file CALIB.TBL, found in the root directory on drive

D. An error in the crunch file results in ANALYZER intbrming the user and terminating

execution.

4.4 CRUNCH FILE FORMAT

Ali crunch files contain only ASCII text characters, yet may be comprised of several

crunch sections. Comments may be inserted at the beginning of each crunch file; however,

no remark may contain the key words TAG# 1, PSD MODE, or SECTION, since these words

mark the beginning of a new crunch section. The rest of this chapter describes the format

used in each _'runch section and provides examples to aid the user in setting up and editing

his own crunch files. Figure 4.1 provides a listing of crunch file CRUNCH.TBL, an example

of a typical crunch file that uses tags, PSD mode, and several crunch sections for multiple

storage.

Any crunch file may be edited by a line or full screen editor, from either the OS/2

protected mode or the DOS compatibility mode. Remember, once a crunch table is edited,

23

A>TYPE CRUNCH.TBL
M

TAG#l: YES
TAG#2: YES
TAG#3: YES.'
TAG#4: NO

PSD MODE ON
PH2
PHI

128
4

lO0

I, 2, .4
" 64, 64, 128, 256, 512, 1024, 1024, 1024, 1024, 1024, 2048

SECTION ,I
PARAMETERS 2
PHI

1024, 8
TOF

1, 1000
8, 32
lO,1oo
20, 200
TAGS: I, 2, 4, 101, 102, 104

SECTION 2
PARAMETERS1
PH1
512,16
TAGS: I, 2, 4, I01, I02, 104

SECTION 3
PARAMETERS I
TOF

1, 1000
8, 32
10, 100
20, 200
,'AGS: I, 2, 4, 101, 102, 104

SECTION 4
PARAMETERS I

PHI

1,8192
TAGS: I, 2, 3, 4, 5, 6, 7, 101, 102, 104

A>

, . 11111II Jl II IIIIII IIIIrll I I I I II IIii 111

Figure 4.1. Listing of example crunch file.

24

it must be reloaded into the data acquisition driver to activate any changes. The following

rules apply to ali crunch files.

1. Any character may be lower or upper case.

2. TOF is used to refer to the time digitizer clock.

3. PH1 is used to refer to the first pulse height ADC.

4. PH2 is used to refer to the second pulse height ADC.

5. No more than 64 windows may be used in PSD mode.

6. No more than nine separate crunch sections may be included in any one crunch
file.

7. Each channel coming from the time digitizer clock is assumed to be one
nanosecond (i.e. the clock "tic" is one nanosecond).

4..4.1 TAG SECTION

An optional data section in the crunch file, referred to as the tag section, may be used

to define which tag inputs on the time digitizer are enabled. If used, it must be the first data

section found in the crunch file and must be comprised of four lines. Each tag must be listed

with a "YES" or "NO" following the tag number. A "YES" indicates that the tag input is

enabled while a "NO" indicates that the tag input is disabled. If enabled, tags one, two, three,

and four are worth a value of 1, 2, 4, and 8 respectively. This permits identifying any

combination of tags per event. The following example,

TAG#l: YES /* value = 1 */

TAG#2: YES /* value = 2 */

TAG#3: YES /* value = 4 */

TAG#4: NO /* value = 8 */

illustrates a tag section that can be used to enable tags one, two, and three. The comments

to the right of each line are only a reminder of what each tag is worth, and are not required.

An event which includes a high signal at tag input number one will add a 1 to the tag data

register. A high signal at tag input number two will add a 2 to the tag register. A high signal

at tags one and two will result in a tag register value of 3. A high signal at tags one and three

will result in a tag value of 5. A high signal at tag four will have no effect when using the

above example. If the tag section is completely left out of the crunch file, ali tag inputs are

disabled and the tag value for each event is zero.

25

4.4.2 PSD MODE SECTION

Another optional data section, referred to as the PSD section, may be used to set up

multiparameter discrimination, also referred to as pulse shape discrimination (PSD). The

. PSD section must follow the tag section, if used, and come before any crunch sections.

Comprised of eight lines, it uses the format listed below. The reader may see other examples

in Appendix B containing remarks and descriptions inserted on each of these lines. Remarks

are allowed since LOADCRUN and ANALYZER recognizes only numbers and certain key

words (PSD MODE, PH1, PH2, and TOF).

PSD MODE ON

PH2

PH1

128

4

100

1, 2, 4

64, 64, 128, 256, 512, 1024, 1024, 1024, 1024, 1024, 2048

" Line 1" This line indicates that the next seven lines of the crunch file are PSD

parameter data. A "YES" or "ON" found on the first line of the PSD section will

enable the PSD mode. One may keep this section in the crunch file and disable the

PSD mode by replacing the "ON" key word with the word "OFF".

Line 2: This line determines the parameter used to set the bias channel tbr PSD.

It is this parameter's spectrum that is displayed when program ANALYZER is in the

PSD mode. Normally this parameter corresponds to the pulse shape ADC.

Line 3: This line determines the parameter used in establishing thewindow bins for

the PSD decisions. Normally this parameter corresponds to the pulse height ADC.

The window bin width parameters are given in line 8.
d

Line 4: Number of channels into which the PSD analyzer data will be crunched. This

. is the number of channels that will be allocated by the computer for each window and

must range from 32 to 512 and be factorable by 2".

Line 5: This is the crunch factor for the PSD parameter. For the above example, the

PSD digitizer gain must be set on 512. Thus. each event from the PSD ;_nalyzcr will

_

-

26

be crunched by a factor of 4 into 128 channels. The crunch factor here must be a

number from 1 to 128, and be factorable by 2".

Line 6: This is the value added to the tag register if the event falls on or above the

PSD bias channel. Ali bias channels are input separately using program

ANALYZER.

Line 7: These are the event tags applicable for PSD analysis. If the tag register

consists of one of these tag values, PSD analysis will be performed; otherwise, PSD

analysis will be discarded for that event and crunching will continue (i.e., a tag of 3

will not be analyzed for PSD).

Line 8: These numbers establish the window bins for each tag listed in line 7. Each

number represents the number of consecutive channels from the window parameter

(normally the pulse height analyzer) that will be used for each PSD window. Ali

numbers here must be on the same line and separated by commas and should sum to

the ADC conversion gain. This line may extend out to 256 characters.

4.4.3 THE CRUNCH SECTION

The crunch file may contain as many as nine crunch sections, not including the tag or

PSD sections. Each crunch section establishes the parameters that will be used to analyze

and store each event. Thus, every event may be crunched several times, each with different

crunch parameters. All crunch sections follow both the tag and PSD mode sections. They

may use one, two, or three parameters, allowing up to three dimensional storage capability.

An example illustrating two parameter crunching follows with a brief explanation of each line.

SECYION

PARAMETERS 2

PH1

1024, 8

TOF
i.

1, 1000

8, 32

10, 100

20, 200

TAGS: 1, 2, 4, 101, 102, 104

Line 1: The key word "SECTION" identifies the start of a new crunch sectit_n. Every

crunch section must begin with this key word.

Line 2: Number of parameters used for this section. This must be a number from

. 1 to 3. The word PARAMETERS is optional on this line.

Line 3" This is the firstcrunch parameter, lt must be either a PH1, PH2, or a TOF.

Line 4: This line represents the crunch factor for the first parameter (PH1). This

will crunch the PH1 digitizer data by a factor of 8, into no more than 1024 channels.

For this example, the gain of the PH1 digitizer should be set on 8192. More lines

may be inserted here to divide this parameter into different crunch factors.

Line 5: This identifies the second parameter used for this crunch section. This must

be a PH1, PH2, or a TOF.

Lines 6-9: These lines are similar to line 4, except they represent the crunch factors

for the second parameter (TOF). In the above ex&mple, any event occurring in the

• first 1000 nanoseconds will be stored in the first TOF channel. The next 8 x 32

nanoseconds will be crunched down into eight channels using a crunch factor of 32

. and so forth. ,

Line 10: This line is always the last line in each crunch section, lt determines which

tags are applicable to this section and under which tag base the event will be stored.

A tag base is the starting channel for the applicable tag section. For this section, data

would be stored as a function of three parameters (PH1 x TOF x TAG). If ali tag

inputs are disabled, this line should contain a zero.

29

CHAPTER 5

PROGRAM ANALYZER
,ii

5.1 GENERAL
4'

ANALYZER, Version II, is a general purpose program used for controlling the data

acquisition driver and providing real time display of data. The program has been designed

to provide several useful functions which include time of tlight energy calculation,

rnultiparamctcr biasing (PSD), and backup file support. ANALYZER communicates with the

data acquisition device driver using the same methods as described in Chapter 6.

Program ANALYZER functions only in the DOS compatibility mode of OS/2 and

must be r_Jn from a hard disk environment. This chapter will describe the. installation of

ANALYZER and provide detailed information on using available functions and commands.

5.2 ANALYZER INSTALLATION

To install ANALYZER onto the hard disk, run the program INSTALL.EXE located

on the installation disk. This installation program will prompt the user tbr the drive and

directory where the ANALYZER files arc to be installed and then copies the following files

" into that designated directory.

ANALYZER.EXE @KEY.WIN

LOADCRUN.EXE @PSD.WIN

CRUNCH.TBL @SCALER.WIN

@AN AL. WI N @SCRNTO P. WIN

@CALIB.WIN README

The file CRUNCH.TBL contains a crunch table which can be modified by the user

tc) obtain the appropriate crunch parameters desired or the user may create a separate crunch

file under a different file name. Other files that begin with the @ character are data files

used by ANALYZER for graphic display. The README document contains a summary of

ANALYZER commands and prcwides any information that may not have been included in

this manual.

At'ter the above files have been copied, the installation program copies

DEVICE2.SYS into the root directory of drive C and modifies the file CONFIG.SYS to

inc'lude the fc)llowing device command.

DEVICE = DEVICE2.SYS

3O

This command loads the data acquisition driver into computer memory whenever the

computer is started (booted up). After the installation program finishes, the computer must

be rebooted before program ANALYZER can be started.

5.3 S_FARTING ANALYZER

Program ANALYZER may be run only in the DOS compatibility mode. Every time

ANALYZER is run, it reads the last crunch file that was loaded into the data acquisition

driver: This obtains the same crunch parameters used by the driver so ANALYZER may

display tag and calibration information. If the number of channels calculated by ANALYZER

differs from that of the device driver, the crunch table will be reloaded and ali channels

zeroed. This avoids incorrect display of tag and calibration inff_rmation if the crunch t'ilc has

been changed and not reloaded into computer memory. Thus, care must be taken not to

change crunch files during data acquisition or loss of data may result when re-starting the

ANALYZER program. If no crunch file has been loaded into the driver, ANALYZER will

reload the last crunch file automatically. If starting ANALYZER tbr the first time and no

crunch file has been loaded, the user will be automatically prompted for a crunch file name.

As long as the crunch file that ANALYZER reads matches the crunch table loaded

into the data acquisition driver, ANALYZER will not change anything in the system. If the

system is in the acquire mode when ANALYZER is started, it will continue to accumulate

data. If the acquisition driver is not acquiring data when ANALYZER is started, it will still

display whatever data is in computer memory. Thus, care should be taken to zero ali memory

prior to acquiring new data.

5.4 ANALYZER DISPLAY

ANALYZER has the capability of real time two-dimensional display (Channel versus

Counts) and can scale the display from 32 to 2048 channels horizontally and up to 67 million

counts vertically. It can also overlap and display different sections of memory while in the

static mode.

The following keys are used to adjust the display; however, these keys apply only to

the non-PeT') mode since the PSD mode uses some of these keys differently. Additional

control of the display is available through the commands listed in appendix A.

Hitting. the page up key will shift the display up by one screen, li" this key is

used in the PSD mode, it will shift the display to the next higher window.

31

PgDn: Hitting the page down key will shift the display down by one screen. If this

, key is used in the PSD mode, it will shift the display to the next lower window.

LEFT ARROW: The left arrow key will shift the display by one channel in the

, positive direction. In the cursor mode, this key will shift the cursor down by one

channel.

RIGHT ARROW: The right arrow key will shift the display by one channel in the

negative direction. In the cursor mode, this key will shift the cursor up by one

channel.

CTRL LEFT ARROW: Pressing the left arrow key while holding down the control

key will shift the display approximately 5 percent of the horizontal width in the

positive direction.

CTRL RIGHT ARROW: Pressing the left arrow key while holding down the control

key will shift the display approximately 5 percent of the horizontal width in the

. negative direction.

UP ARROW: The up arrow key will decrease the vertical scale of the display by a

- factor of two. The minimum vertical scale available is 32 counts. This key has no

effect in the logarithmic mode.

DOWN ARROW: The down arrow key will increase the vertical scale of the display

by a factor of two. The maximum vertical scale available is over 67 million counts.

This key has no effect in the logarithmic mode.

5.5 FUNCTION KEYS

START (F1): This function key will start and stop data acquisition. This key will be

highlighted when the system is acquiring data.

CLEAR _.(_- This function key will zero ali scalers and channels as defined by the

o crunch table.

CURSR _ This function key activates a cursor on the current display. When

" active, it displays the cursor channel and number of counts in that channel, lt will

also display the neutron energy for TOF data if calibration parameters have been

entered using F4. The cursor is not available in the PSD mode and it will be

32

deactivated if a new crunch file is reloaded into computer memory.

CALIB (F4): This function key prompts the user fl'_rtime of flight energy calculation '

parameters. NOTE: The gamma flash channel must be entered in units of

uncrunched channels and each channel is assumed to be one nanosecond. The fligtlt

path must be entered in units of meters. Incorrect input may disable any energy

calculation. AJl error message may indicate an impossible energ5, calculation,

< < > > (F5): This function key expands the horizontal display by a factor of two.

Minimum horizontal display is 32 channels.

>> << (F6): This function key increases the number of channels horizontally

displayed by a factor of two. The maximum number of channels that may be

displayed is 2048.

LOG (F7): This function key will toggle the vertical display between a logarithmic

and linear scale.

PSD (F8): This function key places ANALYZER into the PSD display mode, giving

the user the capability to easily adjust the bias channel for each PSD window by using

the right and left arrow keys. "1_ PgUp and PgDn keys will shift the display through

different windows and tags, where each window has one bias marker. This marker

represents the bias channel where any event occurring on or to the right of the

marker is tagged with the value given in the PSD section of the crunch file. This tag

value is added to the current tag register before any crunching of data is performed.

If the event falls to the left of the bias marker, the tag register is not affected.

Function key F8 has no effect if the PSD mode is not enabled in the crunch file.

SAVE (F9): This function key is used to save ali channel data and scaler counts into

a data file. If pressed the user will be prompted for an output file name and whether

it is to be saved in text (ASCII) or binary format. Binary format consists of unsigned

long integer format (4 bytes per channel). Scaler and run time data are also saved

at the end of each data file.

LOAD (F10): This function key is used to load an ANALYZER data file into

memory. When this key is pressed the user will be prompted for a file name. The

program will automatically determine if the file contains text (ASCII) or binary data

33

and will then load the file into computer memory, If the scalers are currently being

, displayed when a file is loaded into memory, the scalers will also be loaded into the

computer; however, the scaler data will not be physically loaded into each scaler.

. PLOT (FI1): This function key will dump the screen contents to a _HP Laserjet

Printer.

EXIT (F12): This function key will cause the computer to exit program ANALYZER

and return to the DOS operating system. Ii' this key is pressed during data acquisition

the computer will continue to acquire data. Exiting will not effect any data in the

computer memory, unless the crunch file currently being used is changed.
i

5.6 BO'VFOM LINE COMMANDS

Special instructions may be entered into ANALYZER by typing Ihem out on the

keyboard; these are echoed to the bottom line of the display, ttitting the enter key only will

always execute the command line that was last entered. For example, entering "A512" will

. shift the display by 512 channels. Every time the return key is hit thereafter, the display will

be shifted 512 channels until a new command is entered.

These commands are designed to perform specific tasks not covered by the functionlm

keys and gives the user additional versath!ty in displaying and analyzing data. A summary of

ali ANALYZER commands are given in Appendix A with a brief definition. The rest of this

section contains additional details on several of these commands ibr the reader's information.

5.6.1 LOAD CRUNCH FILE COMMAND

The load crunch file command may be used to load a new crunch table into the data

acquisition driver from program ANALYZER. This command may bc employed by entering

an L and the crunch file name. This performs the exact same function as program

LOADCRUN.EXE, except that it may bc executed while running ANALYZER. If the

system is in the acquire mode when this command is used, the system will be stopped and ali

. channels zeroed. An example of this command would be "L D:\CRUNCH.TBL".

5.6.2 DISPLAY OVERFLOWS
k*

The overflow command displays overflows (events that are not stored) that havc been

detected during crunching oi' data. Overtlows are displayed by typing the letter "O" and then

hitting the enter (return) key. Several parameters will be displayed on the screen, halting t'he

34

real time display if the system is running; however, the system will continue to acquire data,

Hitting any key thereafter will clear the screen and return the display to its normal mc_tte. 0

An explanation of each overflow parameter follows.

PSD = Number of eve_atsthat were outside the range of the PSD parameter

as listed in the PSD section of the crunch file, Any cc_unts hero

indicate that the PSD section or ADC gain should he modified. Each

event listed here is completely discarded with no additional crunching.

TOF = Number of events from the time digitizer clock (TOF) tla_lt were

outside TOF crunch section. Since several TOF crunch sections may

be used in a crunch file, a single event may result in more tla_n one

TOF overflow.

PH1 = Number of events from Pulse Height Analyzer #1 (PH1) that were

outside PH1 crunch section. Since several PHI crunch sections may

be used in a crunch file, a single event may result in more than one
I,

PH1 overfow.

PH2 = Number of events from Pulse Height Analyzer #2 (PH2) theft were

outside PH2 crunch section. Since several PH2 crunch sections may

be used in a crunch file, a single event may result in more tla_lnc_nc

PH2 overflow.

PSD
UNDER = Number of PSD events that fall within the first two channels of any

¢

PSD window. Each event recorded here is discarded completely with

no additional crunching.

MAX
CHAN = Number of crunches that fall above the maximum allocated channel.

This indicates a severe software or operating system problem _nd

should be corrected.

PSD

TAGS = Number of events with a tag value not applicable to the PSD scctk_n

of the crunch lte. For example, ii' PSD is to be performed on events

with tags 1, 2, or 4 only, and an event occurs with a tag 5, no PSI) will

35

be perl'ormed and the event will he counted here, Crunching would

still continue,
o

PSD

WINDOW = Nurnber of PSD cvcnts that fall into a window not covered by the

PSD section in the crunch file, This indicates th_lt either more

windows arc needed or larger channel widths R)r some windows are

needed. The crunch file should be modified ii' any counts are

recorded here.

5.6.3 DISPI.,AYING TOTAL EVENTS AND REJECTS

This command displays total events, rejects, and the average event count rate for the

current run. lt is employed by typing the letter "R" and hitting the enter (return) key. The

number of rejects displayed corresponds to the uncorrelated events. Since each ewmt may

consist of as many as four 16 bit words, each word has its most significant bit set or cleared

to provide a method for the data acquisition driver to detect missing or extraneous data in

• the buffer. If the acquisition driver detects a bad event Jt discards it and clears the interface

buffer, recording it as a reject. A short beep will sound for each reject,
,w

5.6.4 SEqTING THE PRESET TIMER

This command allows the user to set the run time for ANALYZER. lt is employed

by entering the letter "T" and the desired run time in seconds (i.e. T10()). Setting tlm timer

to zero equnls infinity. This command is used with the ANALYZER program only. Data

acquisition will not stop ii' user is acquiring data in the background mode.

A variation of this command can be used to automatically save all data when time out

occurs, then clear and restart the system. An example would be, TI(K,_0+FILE.0(_). If the

extension is left off of this command, the program will automatically start from 000. In this

example, program ANALYZER would perform the following steps:

1) Acquire data t'c_rl(K}0seconds then stop.
r,

2) Save ali data under the file nam'-' of FILE.0(X). If FILE,000 exists, the
data would be saved under the file name of FILE(N1, and so forth.

" 3) Zero ali channels and scalers.

4) Start acquiring new data.

5) Go back to step one.

II 'lilt 'II'

36

5.7 THE AUTO BACKUP FILE

Every 5000 seconds during data acquisition, program ANALYZER automatically •

backups all data to the hard disk using file name @BACKUP.DAT. This insures that

malfunctions in the computer or power outages result in no more than the last 5000 seconds

of data being lost. Reloading the backup file into memory is accomplished the same way as

loading in any other ANALYZER data file, using the LOAD function key (F10).

Program ANALYZER pertbrms the backup procedure by first stopping data

acquisition and saving the current run into file @BACKUP.DAT using binary format. Once

ali data is saved, ANALYZER continues data acquisition and displays the time at the bottom

of the screen when backup was performed, Program ANALYZER uses this backup

procedure only when ANALYZER Is running. No backup procedure is employed while

running the data acquisition in the background mode. Program ANALYZER never deletes

the data file @BACKUP.DAT, except during the next backup when it overwrites

@BACKUP.DAT with new data.

,i

37

CHAPTER 6

DATA ACQUISITION DRIVER
I,

6.1 GENERAL

Data acquisition and control of the data handler is accomplished by software in the

form of a device driver, This methodology is required to utilize hardware interrupts under

tile OS/2 operating system and also to permit other high level programs to control and access

data, either from the OS/2 protected mode or the DOS compatibility mode. In the OS/2

protected mode, the device driver allows several programs to access the data concurrently

during data acquisition.

The device driver, also referred to as the data acquisition driver, performs the actual

transfer of data from the interface buffer to computer memory and also performs required

crunching and binning of data. Other programs wanting to start, stop, and access data must

go through the device driver lat_eled DEVICE2.SYS described here

DEVICE2.SYS is installed into memory during computer startup (boot up), allowing

• other programs to access the driver by writing to the device file name "DEVICE_2". An

example program written in Microsoft C is included in Appendix C.

• This chapter describes the format and procedures which allow other programs to

communicate with the data acquisition driver. The following will be of specific interest for

readers who want to write programs to display and analyze data. For those who do not need

a specialized program, a general purpose program, ANALYZER, runs in the DOS

compatibility mode. Chapter 5 contains more information on program ANALYZER.

6.2 DRIVER INSTALLATION

The data acquisition driver is installed into computer memory using the DEVICE

command from the CONFIG.SYS file. The CONFIG.SYS file is found in the root directory

of the boot up drive (normally drive C) and must be edited to include the following line.

" DEVICE = C:\DEVICE2.SYS

" This example assumes that the file, DEVICE2.SYS, is located in tlm root directory on drive

C; however, any path may be specified. Remember, once the CONFIG.SYS file is edited, the

computer must be rebootcd to install the device driver.

38

Installation may also be performed by running INSTALL.EXE, located on the

ANALYZER installation disk. This installation program automatically copies DEVICE2.SYS
m

to the root directory of drive C and includes the above command in CONFIG.SYS.

6.3 LOADING IN A CRUNCH TABLE

A crunch table provides the parameters needed by the data acquisition driver to sort

out applicable data in each event and store it into an appropriate channel. The crunch table,

or crunch file as it may be referred too, is provided by the user and must be loaded into the

driver before acquiring data.

A crunch table may be loaded into the data acqaisition driver by running the program

LOADCRUN.EXE. The LOADCRUN program is run from the protected mode which reads

an ASCII file containing parameters needed by the acquisition driver to analyze and store

data. These crunch parameters are installed into the device driver by LOADCRUN and

remain in memory until a new crunch table is reloaded or a specific command is sent to the

driver to deallocate ali crunch memory. Chapter 4 contains additional information on

LOADCRUN.EXE and on crunch table format.

Until a crunch table is loaded into the data acquisition driver, most commands to the

dri',cr are disregarded. The exception to this rule is the "DRIVER STATUS" command.

This command may be used at anytime and can determine if a crunch table has been loaded

into memory by examining the number of channels allocated by the driver. If the number of

channels allocated is zero, no crunch table has been loaded.

6.4 DATA ACQUISITION DRIVER CONTROL

Control of the data acquisition driver and transfer of data is performed by writing the

address of a long integer array to the device called "DEVICE_2". The first integer of the

array should contain a value from 1 to 15,which will instruct the data acquisition driver which

specific command is to be executed. This section explains each of these commands and

provides an example that can be used by the reader in a C language program.

Before any of these command statements can be executed, the program must first

open a path to the device driver using an unbuffered format. The following example, written

in Microsoft C, illustrates how a program may open a path to the data acquisition driver.

int device;

39

The preceding statements allow a C language program to write commands to the driver using

• the format described below and are intended to be used with ali of the following examples.

Ali of the following commands can be used while the system is acquiring data. The reader

• is also referred to Appendix C for an example of a complete C language program which

implements several commands together.

(,2.) DRIVER STATUS: This command returns several parameters from the data

acquisition driver that can be used for checking the status of the current run.

C program example:

long ai52];

ai0] = 1; /* Get acquisition driver status */

write(device,(char*)&al0], 1);

Returned parameters:

a[0] = 1, device driver error

10, device driver not running.

11, device driver running (collecting data).

ai1] = Runtime in seconds.

a[2] = Number of channels allocated by the crunch table. (A zero returned

here indicates that a crunch file has not been loaded.)

ai3] = Total number of events for the current run.

ai4] = Number of rejects (uncorrelated events). Each event labeled as a

reject is discarded and forces the interface buffer to be cleared. A

non-zero number here may indicate a hardware interface problem.

a[5] = Number of overflows found during PSD analysis. If an event is above

the range of the PSD parameter, the event is discarded and recorded

here.

al6] = Number of overflows found in crunching the PH1 analyzer data.

• a[7] = Number of overflows found in crunching the PH2 analyzer data.

ai8] = Number of overflows tbund in crunching the TOF analyzer data.

• a[9] = Number of underflows found during PSD discrimination. Any PSD

event that is found in the first two channels of any PSD window is

discarded and recorded here.

4O

a[10]= Number of events that have been calculated tc) fall above the

maximum channel number. This would indicate a severe •

problem with the computer or software.

a[ll]= Number of non-applicable tags found during PSD analysis. If

a tag is recorded that is not applicable to any PSD tags, no

PSD analysis is performed and the event is recorded here.

Crunching would continue.

a[12]= Number of window overflows found during PSD analysis. If

an event occurs above the given window range, no PSD

analysis is performed and the event is recorded here.

Crunching would continue.

(2) START DATA ACQUISITION: This command instructs the data acquisition

driver to start or continue data acquisition. If a crunch file has not been loaded into

computer memory or the system is already acquiring data, this command will be

disregarded.

C program example:

long a[4];

a[0] = 2; /* Start data acquisition */

write(device,(char*)&a[0], 1);

Returned parameters:

a[0] = 11, if successful (collecting data).

_.) STOP DATA ACQUISITION: This command will stop data acquisition. If the

system is already stopped, this command will be disregarded.
i

C program example:

long a[l];

a[0] = 3; /* Stop acquisition command */ ,

write(device,(char*)&a[0], 1);

Returned parameters:

a[0] = 10, if successful (system stopped)

41

(4) ZERO ALL CHANNELS: This command zeros ali channels used for data

storage, lt also clears ali scalers and zeros ali overflow counters and event counters.b

This command will be ignored if a crunch table has not been loaded into computer

memory.

C program example:

long aI1];

ai0] = 4; /* zero memory command */

write(device,(char*)&a[0], 1);

Returned parameters:

al0] = 10, if successful

(5) DEALLOCATE MEMORY: This command down loads any crunch table that

had been previously loaded into the device driver and frees ali memory that was used

for data storage.

C program example:e

long a[1];

, a[0] = 5; /* Deallocate memory command */

write(device,(char*)&a[0], 1);

Returned parameters:

ai0] = 10, if successful

(6) READ SCALERS: This command is used to read the eight scalers connected to

the interface. The data currently displayed on each scaler will be transferred into an

array passed by the requesting program.

C program example:

long a[9];

a[0] = 6; /* Read scalers command */

° write(device,(char*)&a[0], 1);

Returned parameters:

a[0] = 10, if successful

a[1] = scaler I counts

a[2] = scaler 2 counts

42

a[3] = scaler 3 counts

a[4] = scaler 4 counts

a[5] = scaler 5 counts

ai6] = scaler 6 counts

ai7] = scaler 7 counts

a[8] = scaler 8 counts

(7) LOAD IN CHANNEL DATA: This command will load data into the acquisition

driver' from an array passed by a program. The user must specify the starting channel

and number of channels that will be transferred. The maximum number of channels

that may be transferred at one time is 16382 channels (64k bytes). Thus, to transfer

more channels will require that this command be used more than once. If the last

channel extends beyond the maximum channel, no channels will be transferred.

C program example:

long a[1006];

a[O] = 7; /* Load channel data command */

ai1] = 0 /* Start with channel zero */

a[2] = 1000; /* Transfer I(X)0channels */ •

a[3] = total events;

a[4] = rejects;

a[5] = run time;

a[6] = channel 0 data; /* start of data to be loaded */

a[7] = channel 1 data;

a[8] = channel 2 data;

a[9] = channel 3 data;

a[10] = channel 4 data;

all l] = channel 5 data;

ai12] = channel 6 data;

a[1005] = channel 999 data;

write(device,(char*)&a[0], 1);

43

Returned parameters:

ai0] = number of channels transferred

(8) GET CHANNEL DATA: This command will transfer data from the acquisition

, driver to an array passed by the requesting program. The user must specify the

starting channel and number of channels that will be transferred. The maximum

number of channels that may be transferred at one time is 16382 channels (64k bytes).

Thus, to transfer more channels will require that this command be used more than
i

once. This command vaay be used while the acquisition driver is in the acquire mode

without affecting data accumulation. If the last channel extends beyond the maximum

channel, no channels will be transferred.

C program example:

long a[1003];

a[0] = 8; /* Get channel data command */

a[1] = 0; /* Start with channel zero */

• ai2] = 1000; /* Transfer 1000 channels */

write(device,(char*)&a[0], 1);

Returned parameters:

ai0] = number of channels transferred

ai1] = not used

a[2] = not used

ai3] = channel 0 data

ai4] = channel 1 data

a[5] = channel 2 data

ai6] = channel 3 data

ai7] = channel 4 data

a[8] = channel 5 data

, ai9] = channel 6 data

ai1001] = channel 998 data

a[1002] = channel 999 data

-2_

m

44

(9) LOAD IN PSD BIAS MARKERS: This command allows the user to set the PSD

bias marker for each window when using the PSD discrimination mode. For each
Q

window there is one PSD bias marker which represents a channel in that window. Ii'

any event occurs on or above the bias marker for that specific window, the PSD tag
' d

value will be added to the tag register and ali crunching for that event will then use

the Summed tag value. If PSD mode is disabled or a crunch table has not been

loaded into computer memory, this command will still set the PSD bias markers;

however, they will not be used until a new crunch table is reloaded.

C program example:

long a[100];

a[0] = 9; /* Load bias markers command */

a[1] = PSD bias channel for window 1

ai2] = PSD bias channel for window 2

a[3] = PSD bias channel for window 3

ai4] = PSD bias channel for window 4
,i

a[5] = PSD bias channel for window 5

ai6] = PSD bias channel for window 6
ii

ai7] = PSD bias channel for window 7

write(device,(char*)&a[0], 1);

Returned parameters:

a[0] = 10, if successful

(10) SET OUTPUT LOGIC SIGNALS: This command allows the user to set 32 DC

logic signals to the output port located on the rear of the interface buffer. Each logic signal

is approximately +5 volts when high and grounded when low.

C program example:

long a[2];

a[0] = 15; /* Set output logic signals */ ,

a[1] = 1 + 2 + 4 + 256; /* Sut lines 1,2,3, & 9 high */

write(device,(char*)&a [0], 1);

Returned parameters:

=- a[0] = 10 if successful

!

APPENDIX A

ANALYZER COMMANDS

Axxx Add xxx channels to the base to shift the current display.
b

Bxxx Display channels starting at Base channel xxx.

Cxxx Compare by overlapping channels starting at channel xxx.

Ixxx yyy Integrate / Sum the channels starting at xxx with yyy being the number
of channels integrated. A period may be used in place of xxx to
represent the cursor channel (i.e. 1.4096).

L, FILE.TBL Load a new crun,;h file with the name of FILE.TBL.

O Display overflows.

I:'C Print out the crunch table.

PS Print out scalers, overflows, and runtime.

' Pxxx yyy Print out the counts in each channel starting at xxx with yyy being the

number of channels printed. A period may be used in piace ot' xxx to
represent the cursor channel (i.e.P.1024).

v

R Display total events, rejects, and count rate.

Sxxx Subtract xxx channels to the base to shift the current display.

Txxx Set the preset timer to xxx seconds (0 = infinity).

Txxx+FILE Set the preset timer to xxx seconds. After time out occurs, the data
will be saved under the name FILE.(KI0, FILE.001, etc. and then

cleared and restarted (i.e. T1800+FUSION).

W Print out the PSD bias marker positions.

.47

APPENDIX B

EXAMPLES OF CRUNCH FILES

a,

EXAMPLE i: This crunch file will only store the first 2048 channels coming t'ronatile first
pulse height ADC (PH1). No crunching of channels is performed. No tags are used. PSD
mode is disabled.

SECTION 1

PARAMETERS 1

PHI

2048,1
TAGS : 0

EXAMPLE 2: This crunch file will store 8192 channels coming l'rona the second pulse height
ADC (PH2) and crunch them into 512 channels, using a 16 channel crunch.

t

SECTION 1

PARAMETERS 1

PH2

512 ,16
TAGS : 0

J

EXAMPLE 3: This crunch file will look at data coming from thc time digitizer only. lt
crunches the first 1000 channels into one channel. Then the next 2048 channels arc crunched

into 512 channels using a 4 channel crunch, lt then crunches the next 4096 channels intc_512
channels using a 8 channel crunch and so t'orth. This crunch table will allocate 4097 channels
of computer memory (16388 bytes), Each channel coming from the time digitizer clock is
assumed to be one nanosecond in width. No tags are used here.

SECTION 1

PARAMETERS 1

TOF

• i,i000

512,4

512,8

. 512 ,16

512,32

1024,64

1024,].28
TAGS : 0

48

EXAMPLE 4: This crunch file performs two dimensional (2 parameter) storage using data

from the one pulse height ADC as one o1' the parameters and data from the time digitizer

as the other parameter, This file will allocate 2048 x 37 (75776) channels or 303104 bytes of

computer memory, No tags are used here, The PSD mode is disabled.

SECTION 1

PARAMETERS 2

PHI

2048,4
TOF

1,5000

4,128

8,256

8,512

16,1024
TAGS : 0

I_XAMIH.E 5: This file enables tag inputs 1, 2, and 3 on the time digitizer, lt will store data from the one Fulse
height AI)(;: and the time digitizer as a function of the tag register. If two tags are recorded for one event their
value will be summed into the tag register, For example, if TAC.#I (wdue 1) and TAG#3 (value 4) are recorded
during the same event, the tag for thal event will be 5, A tag value of 5 will not be recorded anywhere using this
crunch table, ,,

TAG# 1 YES

TAG#2 YES

TAG# 3 YES

TAG#4 NO

SECTION 1

PARAMETERS 1
PHI

2048 ,1

TAGS: 1,2,4

SECTION 2

PARAMETERS 1
TOF

],,5000

4,128

8,256

8,512

16 _,1024

TAGS: 1,2,4

E

EXAMPLE 6: This _runch ftle enables tag inputs 1, 2, and 3, lt uses the pulse shape discrimination
mode (PSD mode), Each PSD window uses 512 channels l':,...n PH2 crunched Into 128 channels, The
crunch factor in the PSD section may only bc factors of 2 (tc, 2,4,8,16,32,64), The PSD mode uses

" window parameter PHI divided into windows of 64,64,128,,,, channels, Note that section 4 Is used lt)
record the total number of events as a function of tag only,

TAG#l: YES

TAG#2 : YES

TAG#3 : YES

TAG#4 : NO

PSD MODE ON

PSD PARAMETER PH2

WINDOW PARAMETER PHI

NUMBER OF CHANNELS 128

CRUNCH FACTOR 4

VALUE ADDED TO TAG i00

APPLICABLE TAGS i, 2 ,4

WINDOWS (channel width) 64,64,128,256,512,1024,1024.1024,
2048,2048

• SECTION 1

PARAMETERS 1

PHI

2048,4

TAGS : i, 2,4,101,102,104

SEC" ION 2

PARAMETERS 1

TOF

2048,4

TAGS: 1,2,4, i01,102,104

SECTION 3

PARAMETERS 2

PHI

1024,8
TOF

1,95o
8,32

8,48

. 8,64

8,96

8 ,160

8,256

TAGS: 1,2,4, i01,102,104

SECTION 4

PARAMETERS 1

PHI

1,8192

TAGS: 0,i,2,3,4,5,6,7,100,I01,102,103,104,105,106,107

| _
s

APPENDIX C

EXAMPLE PROGRAM

= This is an exampleof a protectedmode programwritten in MicrosoftC to =
= Illustratethe following steps= =

= 1) Load a crunch ftle =
= 2) Zero all channels and scalers =
= 2) Start ecqutrtng data =
: 3) Stop al:qutrtng data =
= 4) Print o_'tchannels 100 thru 119 =
_. :=

= Compilelnstructlonl CL /AL /Lp IFPI87EXAMPLE,C/llnk /NOD LLIBCTP+DOSCALLS =

#Include <to.h>
#include <stdto.h>
#include <process.h>
Int device, t;
unstgned long a[200];

main ()
{

/* load crunch ft lo D:\CRUNCH.TBL */
spawnl p(P WAIT,"C .'\\I.OADCRUN","C: \\LOABCRUN","D : \\CRUNCH.TBL", NULL) ;

, prlntf("\n,I);

device = open("devlce I",0x0002); /* open deviceclrlver*/

• a[O] = 4; /* zero all channels */
write(device, (char*)&a[O] ,1);
pr_ntf("System zeroed:\n");

a[O] = 2; /* start acquiring data */
urtte(devtce, (char*)&a[O] ,1);
erint f ("System started:\n");

prtntf("Htt any key to stop and print out channels 100 thru 119 ...\n\n");
while (Ikbhit());

a[O] = 3; /* stop acquiring data */
write(device, (char*)&a[O] ,1);
print f("System stopped: \n");

a lO] = 81 /* get channel data */
al1] = 100; /* starting wtth channel 100 */
al2] = 20; /* transfer 20 channels */
wrlte(devlce,(char*)&a[O],I);
for (I=3; I<23; i++) printf("Chan%d = %ld\n",i+97,a[i]);

exit(O);
)

53

APPENDIX D

,, REAR PANEL PIN CONNECTIONS

CN4 CONNECTOR (WORD #1): CN5 CONNECTOR (WORD #2):

Data Accept Ill --.i Data Accept #2

Data Ready #l -- 18 Data Ready #2
36

Clock Data 15 --17 Clock Data 00
35 | 35- --

Clock Data 16 -.,16 Clock Data 01 _16

34 34- --

Clock Data 17 --15 Clock Data 02 15
33 -"_| 33 --

Clock Data 18 --.14 --- Clock Data 03 ---14

32 32 - --

Clock Data 19 ---13 Clock Data 04 ---13
" 31-i-- 31- "-

Clock Data 20 ---12 Clock Data 05 --12
30 -- 30---

• Clock Data 21 -- ii Clock Data 06 ---ii
29 -- 29 - --

Clock Data 22 --i0 Clock Data 07 --i0
28 -- 28- --

Clock Data 23 --9 Clock Data 08 --9
27 -- 27---

CloCk Data 24 ---8 Clock Data 09 --. 8

26 --. 26 ---
' Clock Data i0 -- 7Clock Data 25 ---7

25 -- 25-'--

Tag Data #i -- 6 Clock Data ii -- 6
24 -- 1 24 --

Tag Data Ii2 -- 5 Clock Data 12 -_-5
23 __ | 23 --

Tag [3ata #3 --4 Clock Data 13 --_-4
22 -- 22 --.-.-

Tag Data #4 --3 Clock Data 14 3 I
21 -- 21-[--

--2 .--.2 |

20,--- 20 _----

-L/'_ -L/__

rqp

54

APPENDIX D - Cbntinued

REAR PANEL PIN CONNECI'IONS

CN6 CONNECTOR (WORD #3): CN7 CONNECI_R (WORD #4):

Data Accept #3 19 Data Accept #4 --19_
37 - --, 37 --

Data Ready #3 8 I Data Ready #4 --18
36- --I 36 --

ADC#1 Data 00 7 i ADC#2 Data 00 --.17

35- -J 35 --ADC#1 Data 01 ADC#2 Data 01 ---16
34- --I 34_--

ADC#1 Data 02 15 | ADC#2 Data 02 ---15
33 - --_ 33_ --

ADC#1 Data 03 14 ADC#2 Data 03 ---14
32 - --- 32- --

ADC#1 Data 04 3 ADC#2 Data 04 ---13 *
31- u 31- --

ADC#1 Data 05 2 ADC#2 Data 05 --12
30 - -- 30 -- .

ADC#I Data 06 1 ADC#2 Data 06 --ii
29- u 29 --

ADC#I Data 07 i0 ADC#2 Data 07 --].0
28- _ 28---

ADC#1 Data 08 -9 ADC#2 Data 08 --9
27- m 27---

ADC#1 Data 09 ADC#2 Data 09 ---8
26 --- 26 --

ADC#1 Data i0 7 ADC#2 Data i0 ---7
25--- 25 --

ADC#1 Data Ii 6 ADC#2 Data II --.6
24 --- 24 --

ADC#1 Data 12 .5 ADC#2 Data 12 --5
23 --- 23 --

ADC#1 Data 13 -4 ADC#2 Data 13 --4
22 --- 22 --

3 --3 .

21--- 21---

2 ---2

20 --- 20--- i

,i I --vi

55

APPENDIX D - Continued

REAR PANEL PIN CONNEC-q'IONS

u

CN8 PIN CONNECTIONS (D.C. OUTPUT),

DC Line 18 ---19 _
37 --- GND

DC Line 17 _-18 36-- DC Line 31

DC Line 16 ---17 35 DC Line 3O

DC Line 15 ---16

34_--DC Line 29
DC Line 14 -15

33 -- DC Change
DC Line 13 ---14

32- DC Line 28

. DC Line 12---13
31 -- DC Line 27

DC Li_le ii---12

30 -- DC Line 26
•_ ,

DC Line I0 -- ii

29 -- GND

DC Line 09- i0

28-- DC Line 25

DC Line 08 ---9

27- DC Line 24
DC Line 07 --8

26_--DC Line 23
DC Line 06 --.7

25- DC Line 22
DC Line 05 ---6

24 -- GND
DC Line 04 ---5

23 -- DC Line 21

DC Line 03 --4

22- DC Line 20

DC Line 02 --3
l

' 21- DC Line 19

DC Line 01 ---2

20_-- GND

. DC Line 00 _ 1

_

56

APPENDIX D - C_ntinued

REAR PANEL PIN CONNECTIONS

CN9 PIN CONNECTIONS (SCALER INPUT)

Data Input 00 - A Data Input 25 - d

Data Input 01 - B Data Input 26 - e

Data Input 02 - C Data Input 27 - f

Data Input 03 - D Data Input 28 - h

Data Input 04 - E Data Input 29 - j

Data Input 05 - F Data Input 30 - k

Data Input 06 - H Data Input 31 - m

Data Input 07 - J OVERLW - n

Data Input 08 - K Cntrl Line 00 - p

Data Input 09 - L Cntrl Line 01 - r

Data Input i0 - M Cntrl Line 02 - s

Data Input ii - N Cntrl Line 03 - t

Data Input 12 - P Cntrl Line 04 - u

Data Input 13 - R Cntrl Line 05 - v

Data Input 14S Cntrl Line 06 - w

Data Input 15 - T Cntrl Line 07 - x

Data Input 16 - U Cntrl Line 08 - y

Data Input 17 - V Cntrl Line 09 - z

Data Input 18 - W Cntrl Line i0 - AA

Data Input 19 - X Cntrl Line ii - BB

Data Input 20 - Y Cntrl Line 12 - CC

Data Input 21 - Z Cntrl Line 13 - DD

Data Input 22 - a Cntrl Line 14 - EE

Data Input 23 - b Cntrl Line 15 - FF

Data Input 24 - c GND - HH

APPENDIX E

. DATA HANDLER LOW LEVEL I/O COMMANDS

. Port C
Output Description

1 Scaler Data: Places data bus (ports A & B of the interface card) on
port 2 (Scalers) of the data handler. This removes the data bus from
the FIFO memory and from the test data input.

2 Scaler Stop: This generates a +12 volt pulse at the rear panel BNC
connector labeled Scaler Stop.

3 Scaler Reset: This generates a + 12 volt pulse at the rear panel BNC
connector labeled Scaler Reset.

4 Scaler Start: This generates a +12 volt pulse at the rear panel BNC1

connector labeled Scaler Start.

5 FIFO Memory: Places data bus (ports A & B of the interface card)
on port 1 ('FIFO Memory) of the data handler. This removes the data
bus from the Scalers and from the test data input.

6 Test Data Input: Places data bus (ports A & B of the interface card)
onto the test data input circuit of the data handler. This requires rc-
configuring ports A & B as write ports. This command also removes
the data bus from the Scalers and turns off data input from external
world.

7 Master Reset: Performs a master reset and clears all data from FIFO
memory. This also removes the data bus (ports A & B) from any
input port.

9 Scaler Step: ""_''o_ l,:,, steps through the control lines going to port 2 of
the data handler. If attached to the scalers, it advances the scaler bus
by one half scaler.

' 10 Accept Data: This enables the data handler to start accepting and
storing data from each applicable digitizer.

11 Block Data: This disables the data handler from accepting and storing
, data from any digitizer.

13 False Data Ready: This command provides a false data ready signal
used to input test data into the FIFO memory.

i,

14 D.C. Line Monitor: This generates a pulse at the rear panel BNC
connector labeled D,C. Line Monitor.

, 15 Disable Data Bus: This removes the data bus (p,,_rt,,;A & B oi' the
interface card) from everything.

59

APPENDIX F

SOURCE CODE FOR DATA ACQUISITION DRIVER
J

Name DEVICE2
Title 'DATA ACQUISITION DEVICE DRIVER -VERSION II'

a

•
t

;Compile example:
; MASMDEVICE2.ASM;
; LINK DEVICE2.0BJ,C:\DEVICE2.SYS,,DOSCALLS.LIB,DEVICE2.DEF;

;DEVICE2.DEF listing:
; LIBRARY DEVICE2
; PROTMODE
; CODE PRELOAD
; DATA PRELOAD
• ..
a

PhysToVirt ecu 15h

UnPhysToVirt ecu 32h
AllocPhys ecu 18h
VirtToPhys ecu 16h
AllocGDT ecu 2Dh

PhysToGDT ecu 2Eh
FreePhys ecu 19h
SetTimer ecu IDh
TickCount ecu 33h
ResetTimer ecu IEh

CFGI equ ODOOOh ; MC-DIO-32F port address
CFG2 equ ODOO2h
STAT equ ODOO4h
PORTI equ 0D006_
PORT2 equ ODOO8.

extrn DOSWRITE:far

;........................... DEVICE DATA SEGMENT

DGROUP group DATA
_DATA segment word public 'DATA'

; device drive header.._

header dd -I ; ,ink to next device driver
dw 8880h ; device attribute word
dw Strat ; "Strategy" routine entry point
dw 0 ; (reserved)
db 'DEVICE 2' ; logical device name

db 8 dup (5) ; (reserved)

varl dw 4 dup (0)
devhlp dd ? ; DevHlp entry point
tem_ax dw 0 ; data storage
tem bx dw 0

running dw 0
runtime dd 0
starttm dd 0

• working dw 0
[iveoff dw 0

numseg dw 0
numword dw 0

• nu_ run dw 0
mem add dd 0
wordl dw 0

itag dw 0
win dw 0
tand dw 0

6O

section dw 0
chan dd 0
maxchn dd 0
kmax dw 0
anal dw 0
nh dw 0
tevent c_d 0

reject ck_ 0
overfO dd 0
overfl dd 0
overf2 dd 0
overf3 ck_ 0
overf4 _ 0
overf5 dd 0
overf6 (:Sd 0
overf7 ck_ 0

psdmem dd 0
save(t dw 0

qwcrt dw 0
vedi dd 0
vesi dd 0
veax dd 0
vebx dci 0
vecx dd 0
vedx dd 0

parm dd 5 dup (0)
psd dd 200 dup (0)
psdm dd 100 dup (512)
crun dd 1000 dup (0)
GDT dw 0

wlen dw ? ; receives DOSWRITE Length

ident cR) 13,10
cl) 'Device driver for ANALYZER II installed, i

cit) 13,10

ident.len equ $-ident

END_DS EQU $
DATA ends

;.......................... CODE SEGMENT

TEXT segment word public 'CODE'
assume cs:_TEXT,ds:DGRCWJP,es:NOTHING
.386P

Strat proc far ; device driver Strategy routine,
push es ; called by 0S/2 kernel with

push ebx ; ES:BX = address of request packet
push eax

push ecx
push edx

mov di,es:[bx+2] ; get command code from pecket
and di,OFFh

S1 : cmp di ,8
jne s2
cli

call Write ; write statement executed
sti

jmp Exit

S2: cmp di,13
jne S3
cli

call Open ; open device driver
sri

61

jmp Exit

S3: cmp di,O
. jne Exit

call Install ; initialize device driver

Exit: pop edx

. pop ecx
pop eax

pop ebx
pop es

mov es:[bx+3],WORD PTR 0100h ; return with no problem
ret

Strat endp

; Initialize Interface Card

Open proc near
cmp running,1 ; return if acquiring data
je Opend

mov dx,CFG1 ; set ports A&B for handshaking
mov ax,OIOOh ; in read and pulse mode
out dx,ax
call delay
mov ax,OOOOh
out dx,ax
call delay
mov ax,O610h
out dx,ax
call delay

P

mov dx,CFG2 ; set ports C&D for handshaking
mov ax,OIOOh ; in write mode
out dx,ax

• call delay
mov ax,OOOOh
out dx,ax
call delay
mov ax,O6OOh
out dx,ax
call delay
mov ax,O620h
out dx,ax
call delay

mov dx,PORT2 ; bus disabled
mov ax,15
out dx,ax
call delay

mov ax,7 ; reset FIFO
out dx,ax

call Delay

mov dx,PORT1 ; remove anything from PORT1
in ax,dx

Opend: ret

Open endp

; DECODE WRITE COMMAND

Write proc near

mov ax,es:[bx+16] ; put address of string in es:bx
mov bx,es: [bx+14]
mov tem_ax, ax
mev tem_bx, bx

62

mov cx,O
mov dh,1
mov dl,PhysToVirt
call devhlp ; virt address now in es:di
mov bx,di

mov al,es:[di]

WriteO: cmp al,217 ; stop and reload crunch
jne Writel
call Inlt

jmp Wexit

Write1: cmp al,1 ; check status
jne Write2
call Check

.imp Wexit

Write2: cmp al,2 ; start
jne Write3
call Start

jmp Wexit

Write3: cmp atf3 ; stop
jne Write4

call Stop
jmp gexit

Write4: cmp al,4 ; zero everything
jne Write5
call Reset

jmp Wexit

Write5: cmp al,5 ; deallocate all memory
jne Wri te6
call Devcls
]mpp Wexit

Write6: cmp at,6 ; read scalers
jne Write7
call Scaler

jmp Wexit

WriteT: cmp al,7 ; load in data
jne Write8
call Load

imp Wexit

WriteS: cmp al,8 ; get data
jne Write9
call Gel

jmp Wexit

Write9: cmp al,9 ; load in psd bias markers
jne Write15
call Marker

jmp Wexit

Write15: cmp at,15 ; output to dc connector
jne Wexit
call OutDC

imp Wexit

Wexit: mov dl,UnPhysToVirt
call devhlp
ret

Write endp

;........................ CHECK DRIVER STATUS

63

Check proc near
mov es:[di],dword ptr 10 ; device not running
cmp running,1

• jne Check2
mov es:[di],dword ptr 11 ; device running

cmp liveoff,1
je Check2

° call Gtime ; update runtime
mov ebx,starttm
cmp eax,ebx
jge Checkl
add eax,604800

Check1: sub eaxaebx
mov runtime,eax

Check2: mov eax,runtime
mov es:[di+4],eax ; return runtime A(1)

mov eax,maxchn
mov es:[di+8],eax ; return crunch chan A(2)

mov eax,tevent

mov es:[di+12],eax ; return total events A(3)

mov eax,reject
mov es:[di+16],eax ; return rejects A(4)

mov eax,overfO

mov es:[di+20],eax ; return PSD overflows A(5)

mov eax,overfl

mov es:[di+24],eax ; return PHI overflows A(6)

mov eax,overf2
mov es:[di+28],eax ; return PH2 overflows A(7)

mov eax,overf3
mov es:[di+32],eax ; return TOF overflows A(8)

mov eax,overf4
mov es:[di+36],eax ; return PSD underflows A(9)

mov eax,overf5

mov es:[di+40],eax ; return maxchn overflows A(IO)

mov eax,overf6
mov es:[di+44],eax ; return tag overflows A(11)

mov eax,overf7

mov es:[di+48],eax ; return window overflows A(12)

ret

Check endp

;........................ START DATA ACQUISTION

Start proc near

cmp maxchn,O
• je Startd

cmp running,1
je Startd

. mov es:[di], dword ptr 11 ; return 11 (running)
mov liveoff,O

call open ; initialize I/O board

mov dx,CFGI ; test for number of words per event
mov ax,OlOOh

64

oUt dx,ax
call delay
mov ax,OOOOh
out dx,ax
call delay
mov ax,OO21h
out dx,ax
call delay 0
mov dx,PORT2
mov ax,7
out dx,ax
call delay
mov ax,6
out dx,ax
call delay
mov aX,13
out dx,ax
call delay
mov ax,O
out dx,ax
call delay
mov ax,7
out dx,ax
call delay
mov a×,6
out dx,ax
call delay
mov cx_l

Loop1: mov dx,PORTI
mov aXeCX
out dx,ax

call delay
mov dx,CFGI
mov ax,OO23h
out dx,ax
call delay

mov ax,OO21h
out dx,ax
call delay

add cx,1
cmp cx,5
jt Loop1
nlov dx,PORT2
mov ax,13
out dx,ax
call delay

mov axeO
out dx,ax
call delay
mov dx,CFGI
mov ax,OIOOh
out dx,ax
call delay
mov ax,OOOOh
out dx,ax
call delay
mov ax,O610h
out dx,ax
call delay
mov dx,PORT2 •
mOV ax05
out dx,ax
call delay
mov dx,PORT1
in ax,dx
call delay
in ax,dx
call delay
in ax,dx
cell delay

65

in axtdx
cart delay
and ax,15

' mov numword,ax

mov dx,PORT2
mov ax,5

out dx,ax
call delay

moV dx,PORT2
mov ax,7
out dx_ax
call delay

mov dx,PORT1
in ax,dx
call delay

mov dx,PORT2
mov ax,lO ; enable data in
out dx,ax
call Delay

mov dx,PORT2
mov ax,4 ; start scalers
out dx,al;
call Delay

call Gtlme ; get start tlme

mov ebx,runtlme

. cmp eax,ebx
jge Startl

add eax,604800
Start1: sub eax,ebx

n_v starttm, eax

mov ax,offset cs:intr ; pointer to timer handler'
mov dl,SetTtmer
call devhtp

mov running,1
Startd: ret

Start endp

.......................... STOP DATA ACQUISTIONt

Stop proc near
mov es:[dl], word ptr 10 ; return 10 (stopped)

cmp runnlng,O
je Stopd

cmp [iveoff,1 ; was ltvettme off?
Jne StopO
mov liveoff,O
call Gtime ; get start time

mov ebx,runtime

, cmp eax,ebx
jge tartl

add eax,604800
tart1: sub eaxaebx

mov starttm, eax

StopO: mov ax,11 ; disable data in
mov dx,PORT2
out dx,ax
call Delay

mov ax,2 ; stop scalers

oUt dxeax
call Delay

mev ax,offset cs_tntr ; remove timer handler'
meV dlsResetTtmer
call devhtp

mev ax,7 t reset FIFO
out dxsax
call DeLay

moV runningsO

call Gt_me I update runtfme
f_v ebx,starttm
cmp eax,ebx
Jge Stop1
add eax,604800

Stop1: sub eax,ebx
mev runtIme,eax

Stopd_ ret

Stop endp

........................ ZEROCHANNELS& SCALERS

Reset proc near
cn_ maxchn,O
Je Resetd

mev es:[dl], word ptr'10 ; return 10 (resetO.K.)
call Clrm_

Resetd: ret

Reset endp

; FREEALLOCATEDMEMORY.........................

Devcls proc near

mev es:[dl], dword ptr 10 ; return 10 for success
carl stop ; stop everythlng

crop maxchn,0
je Devd

mev dl,UnPhysToVirt
carl devh[p

mev bx,wordptr l_em_add ; free atr memory
mev ax,wordptr mem_add+2
mev dl,FreePhys
call devh[p
mov maxchn,O

Devd: ret

Devcls endp

;.........................CLEAR EXTENDEDMEMORY '

C[rmem proc near

mev tevent,O ; clear counters
mov reject,O
mov over'fO,O
mov overfl,0
mov overf2,0
mev overf3,0

67

mev overf4,O
ft_v over f5 _0
mev overf6,O

, mev overfT,O
mev runt tme,0

mov dx,PORT2 ; clear scalers
t mov axS]

oUt dx0ax

crop m_xchn,O ; return if no memory
Jg Clrl
ret

Ctr1: mev ax,numsog
mev savelttax 3 save number of segments to clear

zero1: mev nx,wordptr mefiLadd+2 ; ax=bx 32 physlcat address
mev bx,wordptr atom_add
dec saveit
add aX,savelt
mov cxeO
mev dh, 1
mev d[ePhysToVt rt
call devhtp ; vtrt address now in es:di

mev cx,04000h
zero2: mev est [dt],dword ptr 0

add di ,4
loop zero2
cmp savet t, 0
jg zero1i,

mov d[,UnPhysToVirt
cat l devhlp
ret

Ct rmem endp

; READSCALERS....................................

Scaler proc near
n_V es:[dl],dword ptr 10

cmp runnlng,O ; empty FIFO if running
Je SCA1 ,'

moV dX,PORT2 ; disable FIFO bus
mev aX,15
out dx, aX
call delay

mov dx,STAT ; check REQ1
i n ax, dx
af_d ax,32
j z SCA1
mev dx,PORrl ; save word1
tn ax,dx
mev word1,ax

SCA1: mev dx,PORT2 ; enable scaler bus
mov eX,I
out dx,aX
cat[Delay
call Delay

mov CX,8
SCA3: add di,4

mov dword ptr es:[dl],O
mov dx,PORTI

68

4n axtdx
mov dxeax

mov bxt dx "
nhr bx,12
and ebx,O1111b
may eax t10000000
tmut eax,ebx
add dword ptr es=[dl]aeax

may bxsdx
shf bxsB
and ebxeOllllb
mov eaXs1000000
ImuI eax, ebx
acid dword ptr es=[dl]_eax

mov bxsdx
shr bx04
and ebxsOllllb
may eaxe100000
imuI eaxsebx
add dword ptr es_ [dt]teax

may bxedx
and ebxtOllllb
mov eaxsIDO00
tmut eaxeebx
acid dword ptr est[dl]seax

mov dxtPORT2
mov aXe9
out dxeax
cart Delay
mov dX,PORT1
in ax,dx
nw:}V dx taX

mov bxsdx
ahr bx,12
and eb_(,O1111b
mov eax, 1000
Imul eax,ebx
add dword ptr es=[dl],eax

mov bxedx
shr bx,8
and ebx,O1111b
mov eax, 1O0
Imut eaxeebx
add d_mrd ptr es: [dl],eax

mov bx,dx
shf bx,4
and ebx,O1111b
mov eax, I0
imut eax,ebx
add dword ptr es:[dl],eax

mov bx,dx
and ebx,O1111b
add dword ptr est(di] _ebx
cmp dword ptr est[di] ,99999999
j t • SCA4
may dword ptr es: [dt),O

SCA4: mov dx,PORT2
IIW)V aXt9
OUt dx eax
carl DeLay

69

dec CX
cmp cx,O
jg SCA3

!

mev dXsPORT1 ; clear PORT1
in ax,dx
call delay

w

mev dXsPORT2
mev ax,5 ; enable FIFO bus
oUt dx,ax

ret

3ca[er endp

........................ LOADDATAINTO MEMORY.........................

Load proc near
moV es:[dt], dword ptf' 0
cmp maxchn,O
jg LoadO

Lox: ret

LoadO: meV eax,es:[dt+12] ; tevents
mov tevent,eax
meV eax,es:[dt+16] ; rejects
mev reject,eax
meV eax,es=[dI+20] ; runtlme
mev runtIme,eax

mov eax,es:[di+4]
add eax, es : [d t +8]

" mev ebx, maxchn
add ebx,3000
cmp eax,ebx
Jg Lex

,_V ecx,O
mev cx,es:[d1+8] ; cx = number of channelsto trans
mev esz[di],ecx ; returnnumberof chan transfered
cmp cx,O
Je Lex
sht cx,2
mev eax,es:[dl+4] ; starting channel
shf eax,2 ; 4 k.ltesper channel
add eax,mem_add ; add memory address
mev bx,ux ; bx : low
shf eax,16 ; ax _ high
mev dh,1 ; put in es:dl
mev dl,PhysToVlrt
call devhlp

clc
push ds
mev ax,tem ax
mov bx,tem_bx
add bx,24
adc ax,O
moV dh,O

-' mev dt,PhysToVlrt
call devhtp ; ds:st : address of source

moV bx,O
Load1: mev eax,ds:[si+bx] ; source (exendedmemory)

mev e_:[di+bx],eax ; targetmemory
add bx,4
cmp bx,cx
jl Loadl

pop ds

?0

ret

Load endp

;........................ FETCH DATA FROM MEMORY -'........................

Get proc near
mov es:[di], dword ptr 0
crop maxchn, 0
jg GetO

Gex: ret

GetO: mov eax,es: [di+4]
add eax, es: ld i +8]
mov ebx,maxchn

add ebx, 3000
cmp eax, ebx
jg Gex

mov ecx, 0
mov cx,es: [di+8] ; cx = number of channels to trans
mov es: [di]_cx ; return number of chan transfered
cmp cx,O
je Gex
shl cx, 2
mov eax,es:[di+4] ; starting channel
shl eax,2 ; 4 bytes per channel
add eax,mem_add ; add memory address
mov bx,ax ; bx = low
sbr eax,16 ; ax = high
mov dh,1 ; put in es:di
mov dl, PhysToVi rt
call devhlp

clc

push ds
rlW)V ax,tem_ax
mov bx,tem bx-- #

add bx, 12
adc ax,O
mov dh, 0
mov dl, PhysToVi rt
call devhtp ; ds:si = address of target memory

mov bx, 0
Get1: mov eax,es: [di+bx] ; source (exended memory)

mov ds: [si+bx] ,eax ; target memory

add bx,4
cmp bx,cx
j [Get 1

pop ds
ret

Get endp

; LOAD PSD BIAS MARKERS

Marker proc near
mov es:[di], word ptr 10

mov bx,O ; transfer psd r_mrkers ,

mov si,offset ds:psdm
Ipsdm: mov eax,es: [di+bx]

mov ds: [s i +bx], eax
add bx,4

cng bx, 400
j t tpsdm

ret

Marker endp

7],

;........................ LOAD CRUNCH TABLE

Init proc near!

call Stop ; stop
'cal l Devcls ; free al l memory

, mov ax,tem_ax ; reload crun[O] address
mov bx, tem_bx
mov cx,O4OOOh

mov dh, I
mov dl, PhysToVi rt
ca Il devh Ip

' mov ax,es:[di+40] ; AND tag value - crun('lO)
'mov t and, ax

mov bx,O ; transfer psd array
mov si ,offset ds:psd

lpsd: mov eax,es: [di +bx+2000]
mov ds: [s i +bx], eax
add bx,4
cmp bx, 1000
j l l psd
mov eax,psd[O] ; start of psd memory
mov psdmem, eax

mov bx,O ; transfer crun array
mov st,offset ds:crun

[crun: mov eax,es:[di+bx+4000]
mov ds: [s i +bx], eax

. add bx, 4
cmp bx, 4000
jI tcrun

mov eax,es:[di+4] ; eax =num of chan required
mov maxchn,eax
add eax, 3000
sbr eax, 14
add ax,1 ; ax = number of 64k seg
mov numseg, ax

clc

mov bx,O ; allocate extended memory
mov ax, numseg
mov dh, 0 ; memory above 1 meg
mov dl ,AL locPhys
call devh lp
jnc Init2 ; imp if a/located
mov maxchn, 0

Init2: mev word ptr mem_add,bx ; save starting mem physmem
mov word ptr metaadd+2,ax
mov bx, t em_bx
mov ax,tem_ax
moV CXf4
mov dh, I
mov dl,PhysToVi rt
ca[l devh lp

mev eax,maxchn
mov es: [di], eax ; return number allocated
cmp eax, 0
je Initd

* cat L CLrn_n

mov ax,word ptr memadd+2 ; put CHAN[O] in es:di
mov bx,word ptr mem add
meV CX,0
mov dh, I
mov dl, PhysToVi rt

72

ca l l devh l p

push ds ; put address of es in ds:si
sgdt var1 ,:
mov ax,word ptr var1+4
mov bx, es
add bx,word ptr var1+2
mov cx, 0
mov dh, 0
mov' dl,PhysToVi rt

ca Il devh Ip

push word ptr ds:[si] ; save CHAN[O] descriptor
push word ptr ds: [si+2]
push word ptr ds : [s i +4]
push word ptr ds: [si+6]
pop word ptr es: [di]
pop word ptr es: [di+2]
pop word ptr es: [di+4]
pop word ptr es: ld!+6]
pop ds

mov ax,es:[di] ; descriptor in overf
mov word ptr overfO,ax
(nov ax,es: [di+2]

mov word ptr overfl,ax
mov ax,es: [di+4]
_v word ptr overf2,ax
mov ax,es: [di+6]
mov word ptr overf3,ax

mov dword ptr es: [di],O

mov dword ptr es: [di+4],O

mov ax,tlord ptr 'var1+4 ; put GDT descriptor in es:di
mov bx,GDT
add bx,word ptr var1+2 w
mov cx, 0
mov dh, 1
mov dl, PhysToVi rt
cat I devh lp

mov ax,word ptr overf3 ; modifiy decriptor and save
mov es: ld i], _.x
mov ax,word ptr overf2
mov es: [di+2] ,ax
mov ax,word ptr overfl
mov es: [di+4),ax
mov ax,word ptr overfO
or ax, 128
mov es: [di+6],ax

muv overfO,O
mov overf 1,0
mov overf2,0
mov overf3,0

mov dx,PORT2 ; disable data in
mov ax,11
out cb(,ax
cat l Delay

mov ax,3 ; zero scalers
out dx, ax
cat t Delay

mov ax,15 ; disable FIFO bus
out dx,ax

" cat I Delay

!

,-,,m

73

mov ax,7 ; reset FIFO
out dx,ax

call Delay

Initd: ret

Init endp

• ;........................ OUTPUT DC LOGIC

OUtDC proc' near
mov es:[di],dword ptr 10 ; return 10 to a[O]

mov dx,CFG2 ; set _JT2 high
mov ax,O621h
out dx,ax °
call delay

mov dx, PORT2 ; output first 16 bits
mov ax,es:[di+4]
out dx,ax

call delay

mov ax,es:[di+6] ; output next 16 bits
out dx,ax
call delay

mov dx,CFG2 ; set OUT2 low
mov ax,O620h
out dx,ax
call delay

• mov dx, PORT2 ; pulse P14 output
mov ax,14
out dx,ax

ret
OutDC endp

;....................... CRUNCH DATA & STORE IT

Crunch proc near
mov numcrun,O
imp short CrunO

rejd: Jnc dword ptr reject ; reject found in data
mov dx,PORT2

mov ax,11 ; disable data in
out dx,ax
cat[Delay
mov ax,7 ; clear FIFO
out dx,ax
call delay

mov dx,PORTI ; clear PORTI
in ax,dx
call delay
mov dx,PORT2
mov ax,lO ; enable data in
out dx,ax

, call Delay
mov ax,5 ; enable FIFO bus
out dx,ax

Edn: call beep
Edone: ret

CrunO: inc numcrun ; return if CR too fast
cr_ numcrun,7000
jg Edn

sri ; enable Interupts Dreifiy
nop

74

cli

mov cx,nLm_word
mev dx,STAT ; check DRDY1
in ax,dx

, and ax,64
jz Edone ; ret if DRDYI not set

t

;...... word I (most significant 16 bits of TOF clock & tags)

mov dx,PORTI
mov ax,wordl

nw)v word1,0
cmp ax,O
jne ,Crunl
in ax,dx ; read ports A & B

Crun1: bt ax,15 ; copy bit 15 to carry flag
jnc rejd ; rej if carry flag not Set
mov bx,ax
and ax,OOOOO11111111111b
shl eax,16
shr bx,11
and bx,tand
mev itag,bx ; word 5 (tags)

;...... word 2 (least significant 16 bits of TOF clock)

in ax,dx ; read ports A & B
sh[ax,1 ; copy bit 15 to carry flag
jc reid ; reject if carry bit set
shr eax,1
mov dword ptr parm[4],eax ; words I & 2 (tof)
cmp cx,2
je stor

;...... word 3 (pulse height analyzer #I PHI)
w

_n ax,dx ; read ports A & B
bt ax,15 ; copy bit 15 to carry flag
jc rejd ; reject if carry bit set
and ax,OOO1111111111111b
mov word i_trparm[8],ax
cmp cx,3
je stor

;...... word 4 (pulse height analyzer #2 PH2)

in ax,dx ; read ports A & B
bt ax,15 ; copy bit 15 to carry flag
jc rejd ; reject if carry bit set
ard ax,OOO1111111111111b
mev word ptr parm[12],ax

stor: inc dword ptr tevent ; add 1 to total events

; CHECK FOR PSD TAG

mev si,offset ds:psd ; ds:si = psd(O)
cn_) dword ptr ds:[si),O
je CONT2 ; if no psd

mev di,O ; DI = PCHAN channel
mev bx,40 ; PSD(lO)
mev WIN,I ; applicable window
mev ax,itag
mev cx,ds:[si+24] ; number of det/tags

TTAG: mev dx,ds:[si+bx] ; applicable tag?
cmp dx,ax
je DTAG
add bx,8

?5

add di,word ptr ds:[si+323 ; add channels per det/tag
mov dx,word ptr ds:[si+28]
add WIN,dx ; add nunW_er of windows/tag

' Loop TTAG
Jnc overf6 ; no tag - continue crunch
imp CONT2

* ,DTAG: mov bx,ds: [si+83
shl bx,2
mov ax,word ptr parmEBX3 ; window para_ter channel

mov bx,120 ; PSD(30)
nw)v cx,ds:[si+28] ; celculate which window

PTAG: _w)v dx,ds:[si+BX] ; window channel cutoff

cn_) ax,dx
jI KTAG

add di,ds: I'si+12]
add bx,4
add WIN,I
loop PTAG

Jnc overf7 ; window overflow
jmp crunO

overfp: Jnc overfO ; psd overflow
jn_ crunO

under: Jnc overf4 ; psd urwJerflow
jlTT) crunO

under1: inc overf5 ; maxchn overflow
ca (l beep
jmp crunO

, KTAG: mov bx,ds: [si+4] ; PSD paraim_ter
sh l bx,2
mov ax,word ptr parm[bx3 ; PSD channel
mov 'cx,ds:[si+163 ; crunch factor

b cmp cl,O
je KTAGI
shr ax,cl

KTAGI: mov bx,ds:[si+12]

cn_ ax,bx
jge overfp
cmp ax,2 ; psd underflow - reject
jI under

jn_ YTAG

YTAG: mov bx,WIN ; add tag if right of nw_rker
shL bx,2

cmp ax,word ptr psdm[bx3
jI short STORE

mov cx,word ptr psd[201 ; add if right of marker
add itag,cx

STORE: add di,ax ; di = PSD chan+prev windows
i_ov eax,0

mov ax,di ; PSDMEM start of PSD nw_mory
add eax,psdmem ; eax = PSD memory channel

cmp eax,maxchn
, jg bigerr

cmp eax, 2
jI under I
shl eax,2 ; increment channel eax

Jnc dword ptr es:[eaxl

;............ continue with crunch

CONT2: mov si,offset ds:crun ; ds:si : crun[1000]
add si ,8

mov ax,ds: [si] ;,number of crunch segments
mov seclion,ax

"76

L2701: add si,/, ; find start of next section
bt word ptr ds:[si+2],15
jnc L2701
mov chan,0

add si,4 ; N = N + I

mov di,O ; K l,oop
mov ax,ds: [si]
mov kmax,ax

L2702: inc' di

add si,8 ; EBX = IP
mov bx,ds : [si-4]
sh l' bx,2
mov ana I,bx
mov ebx,dword ptr parm[bx]

mov ax,ds: [si] ; NH
I110V CX0aX
mov di,,24
mul. dl
add ax,si
mov nh,ax

L2703: add si,24
mov eax,ds: [si-16]

cmp ebx, eax
j l L3000

L2704: loop L2703

mov ax,ds: [si+4]
shf, ax,3
add ax,4
add si ,ax
push si ; increment overflow
mov si ,offset ds:overfO
add si,anal

Jnc dword ptr ds: [si]
pop si
jmp L3100

L3000: sub ebx,ds: [si-20]
mov eax, ebx
mov ebx,ds: [si-4]
cdq
d i v ebx

I

add eax,ds: [si-12]

mov edx,ds: [si]
• muf, edx

add chan, eax

fIw)V si ,nh

mov ax,kmax

crop di, ax
j t L2702
mov di, itag

L2705: add si,4
mov cx,ds: [si]

TAGXT: add si,8
mov dx,ds-[si-4] ; IG = DX
crop dx, d i
jne NEXTT

??

mov eax,chan ; EAX = CHAN
add eax,dword ptr ds:[si] ; add tag base
cmp eax,maxchn
jg bigerr

shl eax,2 ; increment channel eax
inc dword ptr es:[eax]

L3100: dec section

cmp section,O ; is this the last section?
jg L2701 ; go do next section

imp CRUNO ; go check $TAT

NEXTT: loop TAGIT ; if more tags goto tagit
imp L3100

bigerr: Jnc overf5

call beep
jmp CrunO

Crunch endp

;........................ INTERRUPT PROCEEDURE

Intr proc far
cli

cmp working, I ; return if working
je Intrd

mov working, I
pushad

Q

cmp tiveoff,1 ; was livetime off?
jne IntrO
mov dx,STAT ; check IN2
in ax,dx

r and ax,8

jz Intr2 ; jmp if IN2 is still low
mov tiveoff,O
mov dx,PORT2
mov a×,10 ; enable data in
out dx,ax

call Delay
mov dx,PORT2
mov ax,4 ; start scalers
out dx,ax
call Delay
call Gtime ; get start time
mov ebx,runtime
cmp eax,ebx
jge Itartl
add eax,604800

Itart1: sub eax,ebx
mov starttm, eax
jmp Intrl

IntrO: mov dx,STAT ; check Livetime IN2
in ax,dx
and ax,8

' jnz Intrl

mov liveoff,1
mov ax,11 ; disable data in
mov dx,PORT2

' out dx,ax
call Delay
mov ax,2 ; stop scalers
out dx,ax
call Gtime ; update runtime
mov ebx_starttm
cmp eax,ebx

?8

Jge ck1
add eax,604800

Ck1: sub eax,ebx
n_v runtIn_,eax
imp Intr2

Intr1: mov bx,wordptr mem_add ; switchto protectedmode
mov 8x,_mordptr metaadd+2
mov cx,0
mov dh, I
mov dl, PhysToVirt
ca tI devht p

push es
mov es,GDT
call crunch ; empty FIFO and Crunch
pop es

mov dt,UnPhysToVtrt ; return to ortgtnat mode
caI l devh l p

Intr2: popad
sti

hop
mov worklng,O

Intrd: sri
ret

Intr endp

;..................DELAY PROCEEDUREFOR OUT COMMAND

Detay proc near
hop
nop
nop
ret

Detay endp

;..................GET CLOCK TIME IN SECONDS

Gtime proc near

GI: mov dx,70h ; wait for permision
mov ax, Oah
out dx,aL
Jnc dx
in at ,dx
and al,128
jnz G1

mov dx,70h ; get seconds
mov ecx,0
mov eax, 0
out dx,al
inc dx

in aL,dx
mov dl,al
and dr,15
mov ct,dL
shr at,4
mov bx,lO
imul ax,bx
add ecxmeax

mov dx,70h ; add minutes,,

mov eax,2
out dx, a l
inc dx

in al.,dx

79

mov dr,at
and eax, 15
mov ebx_60

' tl_t eax,ebx
add ecx, eax
mov al,dl
shr al,4

" and eax, 15
mov ebx,600
imul eax,ebx
add ecx,eax

mov dx,70h ; add hours
nlov eax_4
out dx,at
inc dx
in at,dx
mov dL,al
and eax, 15
mov ebx,3600
imut eax, ebx
add ecx,eax
mov al,dl
shr at,4
and eax, 15
mov ebx,36000
imuI eax,ebx
add ecx, eax

mov dx,70h ; add days
mov eax,6
out dx,al
inc dx

in al,dx
and eax, 15

• dec eax
mov ebx,8640C
imuI eax,ebx
add ecx,eax

mov dx, 70h
mov eax,ODh
out dx,al
mov eax, ecx

ret
Gt i me endp

; THIS ROUTINESOUNDSA SHORTBEEP

Beep proc near
push cx
push ax
in al,61h ; read 8255 on systemboard
mov ah,al
or ,at,3
out 61h,al
mov cx,8OOOh ; delay count for beep
jmp Beepl

Beepl: loop Beepl
, mov at, ah

out 6lh,al ; turn off speaker
pop ax
pop cx
ret

Beep endp

;..........................INIT[I.IZATION PROCEDURE

80

installproo near

may ax,es:[bx4.14] ; nave devhtp address
may word ptr devhlp,ax i
may ax,es:[bx+16]
mar word ptr devhlp+2,ax

may word ptr es:[bx+14],offset TEXT=Irtstall
may word ptr es=[bx+16],offsetDOROUP:END_DS

may ax,ds ; allocate GDTselector
may es,ax
may dl,offsetds:ODT
n_v cx,1
may dl,AllocODT
_alt devhtp

call open ; initialize %/0 board

may dx,PORT2
may ax,ll ; data in disabled
out dx,ax
call delay

may ax,7 ; reset F%FO
out dx,ax
call delay

push I ; messagethat device was loaded
push ds
push offset DOROUP:tdent
push Ident_len
push ds
push offsetDGROUP_wlen
call DOSWRITE
ret

N

Install endp
_TEXT ends

end

- ib

.............. _b J

